BASIC ELECTRONICS ENGINEERING

III Semester: CE								
Course Code	Category	Hours / Week			Credits	Maximum Marks		
AECB01	Foundation	L	Т	Р	С	CIA	SEE	Total
		3	-	-	3	30	70	100
Contact Classes: 45	Tutorial Classes: 15	P	ractica	l Class	es: Nil	Total Classes: 70		

OBJECTIVES:

The will try to learn:

- I. The Fundamental knowledge of the operational principle and characteristics of semiconductor devices and their applications
- II. The working principle of Op-Amp and its linear and non linear applications such as amplifiers, data converters.
- III. The binary numbers systems, Boolean algebra principles and basic logic gates to implement combinational and sequential circuits

COURSE OUTCOMES:

After successful completion of the course, students will be able to:

- 1 Demonstrate the properties of semiconductor materials which forms the basis for the formation of pn junction diode and zener diode.
- 2 Extend the pn junction characteristics for the diode applications such as switch and rectifiers.
- 3 Compare the half and full wave rectifier circuits with and without filters for attenuating ripples in rectifier output.
- 4 Explain the constructional features and principle of operation of bipolar and unipolar devices for operating in active, saturation and cutoff regions.
- 5 Make use of the V-I characteristics of BJT, JFET and MOSFET for determining the input, output resistance and current, voltage gain.
- 6 Extend the different modes of op-amp configurations for finding parameters of slew rate, CMRR and PSRR.
- 7 Utilize the inverting and non-inverting amplifiers as arithmetic operations, waveform generator and in IC related real time applications.
- 8 Illustrate monostable and astable multivibrator using the IC 555 timer
- 9 Classify the various data converters for converting analog data to digital data and digital data to analog data.
- 10 Identify the different performance characteristics and specifications of data converters.
- 11 Examine the need of binary number systems, Boolean algebra and logic gates for implementing digital circuits.
- 12 Interpret the need of sequential logic design principles for designing flip-flops, counters and shift registers.

MODULE-I DIODE AND APPLICATIONS	Classes: 09
Semiconductor Diode - Ideal versus Practical, Resistance Levels, Diode E Line Analysis; Diode as a Switch, Diode as a Rectifier, Half Wave and Full W without Filters; Breakdown Mechanisms, Zener Diode – Operation and Application	ave Rectifiers with and
MODULE-II BIPOLAR JUNCTION TRANSISTOR (BJT)	Classes: 09
Bipolar Junction Transistor (BJT) – Construction, Operation, Amplifying Action, Emitter and Common Collector Configurations, Operating Point, Voltage Divider Effect Transistor (FET) – Construction, Characteristics of Junction FET, Depletic Metal Oxide Semiconductor (MOS) FETs, Introduction to CMOS.	Bias Configuration; Fiel
MODULE-III OPERATIONAL AMPLIFIERS AND APPLICATIONS	Classes: 10
Introduction to Op-Amp, Differential Amplifier Configurations, CMRR, PS Diagram, Pin Configuration of 741 Op-Amp, Characteristics of Ideal OpAmp, Co Op-Amp Applications- Inverting, Non-Inverting, Summing and Difference Amp Comparator, Differentiator, Integrator.	oncept of Virtual Ground
MODULE-IV TIMERS AND DATA CONVERTERS	Classes: 09
IC 555 Timer – Block Diagram, Astable and Mono stable Multi vibrator Configura Basic Principle of Analogue–to-Digital (ADC) and Digital-to-Analogue (DAC) Counter-ramp type and Successive Approximation type ADCs, Resistor Ladder T of ADC and DAC.	Conversion, Flash type,
	Classes: 08
MODULE -V BASIC DIGITAL ELECTRONICS Binary Number Systems and Codes; Basic Logic Gates and Truth Tables, Boolea Theorems, Logic Circuits, Flip-Flops – SR, JK, D type, Clocked and Master Counters Asymphronous Symphronous Symphronous	n Algebra, De Morgan's er-Slave Configurations
Binary Number Systems and Codes; Basic Logic Gates and Truth Tables, Boolea Theorems, Logic Circuits, Flip-Flops – SR, JK, D type, Clocked and Maste Counters –Asynchronous, Synchronous, Ripple, Non-Binary, BCD Decade types; Shift, Left-Shift, Serial-In-Serial-Out and Serial-In-Parallel-Out Shift Registers; A Text Books: 1. R. L. Boylestad & Louis Nashlesky, "Electronic Devices & Circuit Theory", Pe	n Algebra, De Morgan's er-Slave Configurations Shift Registers – Right- oplications. earson Education, 2007.
Binary Number Systems and Codes; Basic Logic Gates and Truth Tables, Boolea Theorems, Logic Circuits, Flip-Flops – SR, JK, D type, Clocked and Maste Counters –Asynchronous, Synchronous, Ripple, Non-Binary, BCD Decade types; Shift, Left-Shift, Serial-In-Serial-Out and Serial-In-Parallel-Out Shift Registers; A Text Books: 1. R. L. Boylestad & Louis Nashlesky, "Electronic Devices & Circuit Theory", Pe	n Algebra, De Morgan's er-Slave Configurations Shift Registers – Right- oplications. earson Education, 2007.
 Binary Number Systems and Codes; Basic Logic Gates and Truth Tables, Boolea Theorems, Logic Circuits, Flip-Flops – SR, JK, D type, Clocked and Mast Counters –Asynchronous, Synchronous, Ripple, Non-Binary, BCD Decade types; Shift, Left-Shift, Serial-In-Serial-Out and Serial-In-Parallel-Out Shift Registers; Apple Text Books: R. L. Boylestad & Louis Nashlesky, "Electronic Devices & Circuit Theory", Pd. Santiram Kal, "Basic Electronics- Devices, Circuits and IT Fundamentals", Press. 	n Algebra, De Morgan's er-Slave Configurations: Shift Registers – Right- oplications. earson Education, 2007. entice Hall, India, 2002. 08. 2009. Co., 2010.
 Binary Number Systems and Codes; Basic Logic Gates and Truth Tables, Boolea Theorems, Logic Circuits, Flip-Flops – SR, JK, D type, Clocked and Maste Counters –Asynchronous, Synchronous, Ripple, Non-Binary, BCD Decade types; Shift, Left-Shift, Serial-In-Serial-Out and Serial-In-Parallel-Out Shift Registers; A Text Books: R. L. Boylestad & Louis Nashlesky, "Electronic Devices & Circuit Theory", Po Santiram Kal, "Basic Electronics- Devices, Circuits and IT Fundamentals", Pro Reference Books: David A. Bell, "Electronic Devices and Circuits", Oxford University Press, 20 Thomas L. Floyd and R. P. Jain, "Digital Fundamentals", Pearson Education, 2 R. S. Sedha , "A Text Book of Electronic Devices & Circuits – Conventional Flo 	n Algebra, De Morgan's er-Slave Configurations; Shift Registers – Right- oplications. earson Education, 2007. entice Hall, India, 2002. 08. 2009. Co., 2010.
 Binary Number Systems and Codes; Basic Logic Gates and Truth Tables, Boolea Theorems, Logic Circuits, Flip-Flops – SR, JK, D type, Clocked and Maste Counters –Asynchronous, Synchronous, Ripple, Non-Binary, BCD Decade types; Shift, Left-Shift, Serial-In-Serial-Out and Serial-In-Parallel-Out Shift Registers; A Text Books: R. L. Boylestad & Louis Nashlesky, "Electronic Devices &Circuit Theory", Pe 2. Santiram Kal, "Basic Electronics- Devices, Circuits and IT Fundamentals", Pre Reference Books: David A. Bell, "Electronic Devices and Circuits", Oxford University Press, 20 Thomas L. Floyd and R. P. Jain, "Digital Fundamentals", Pearson Education, 2 R. S. Sedha , "A Text Book of Electronic Devices and Circuits", S. Chand & C R. T. Paynter, "Introductory Electronic Devices & Circuits – Conventional Flo Education, 2009. 	n Algebra, De Morgan's er-Slave Configurations: Shift Registers – Right- oplications. earson Education, 2007. entice Hall, India, 2002. 08. 2009. Co., 2010.
 Binary Number Systems and Codes; Basic Logic Gates and Truth Tables, Boolea Theorems, Logic Circuits, Flip-Flops – SR, JK, D type, Clocked and Maste Counters –Asynchronous, Synchronous, Ripple, Non-Binary, BCD Decade types; Shift, Left-Shift, Serial-In-Serial-Out and Serial-In-Parallel-Out Shift Registers; Af Text Books: R. L. Boylestad & Louis Nashlesky, "Electronic Devices & Circuit Theory", Pd Santiram Kal, "Basic Electronics- Devices, Circuits and IT Fundamentals", Pro Reference Books: David A. Bell, "Electronic Devices and Circuits", Oxford University Press, 20 Thomas L. Floyd and R. P. Jain, "Digital Fundamentals", Pearson Education, 2 R. S. Sedha , "A Text Book of Electronic Devices and Circuits", S. Chand & C R. T. Paynter, "Introductory Electronic Devices & Circuits – Conventional Flo Education, 2009. Web References: mcsbzu.blogspot.com https://archive.org/details/ElectronicDevicesCircuits https://www.smartzworld.com 	n Algebra, De Morgan's er-Slave Configurations: Shift Registers – Right- oplications. earson Education, 2007. entice Hall, India, 2002. 08. 2009. Co., 2010.