
1 | P a g e

INSTITUTE OF AERONAUTICAL ENGINEERING
(Autonomous)

Dundigal, Hyderabad - 500 043

COMPUTER SCIENCE AND ENGINEERING

COURSE DESCRIPTION FORM

Course Title COMPILER DESIGN

Course Code A50514

Regulation R15

Course Structure
Lectures Tutorials Practicals Credits

4 - - 4

Course Coordinator Ms. B Ramyasree, Assistant Professor.

Team of Instructors
Ms. N Mamatha Assistant Professor,

Mr. N Poorna Chandra Rao, Assistant Professor.

I. COURSE OVERVIEW:

This course is intended to make the students learn the basic techniques of compiler construction

and tools that can used to perform syntax-directed translation of a high-level programming

language into an executable code. It also discuss various aspects of the run-time environment into

which the high-level code is translated. This will provide deeper insights into the more advanced

semantics aspects of programming languages, code generation, machine independent

optimizations, dynamic memory allocation, and object orientation.

II. PREREQUISITE(S):

Level Credits Periods/ Week Prerequisites

UG 4 4 Computer Programming, Formal Languages Automata Theory

III. MARKS DISTRIBUTION:

Sessional Marks

University

End Exam

marks

Total

marks

Midterm Test

There shall be two midterm examinations. Each midterm examination consists

of essay paper, objective paper and assignment. The essay paper is for 10 marks

of 60 minutes duration and shall contain 4 questions. The student has to answer

2 questions, each carrying 5 marks. The objective paper is for 10 marks of 20

minutes duration. It consists of 10 multiple choice and 10 fill-in-the blank

questions, the student has to answer all the questions and each carries halfmark.

First midterm examination shall be conducted for the first two and half units of

syllabus and second midterm examination shall be conducted for the remaining

portion. Five marks are earmarked for assignments. There shall be two

assignments in every theory course. Assignments are usually issued at the time

of commencement of the semester. These are of problem solving in nature with

critical thinking.

Marks shall be awarded considering the average of two midterm tests in each

course.

75

100

2 | P a g e

IV. EVALUATION SCHEME:

S. No Component Duration Marks

1. I Mid Examination 80 minutes 20

2. I Assignment - 5

3. II Mid Examination 80 minutes 20

4. II Assignment - 5

5. External Examination 3 hours 75

V. COURSE OBJECTIVES:

I. Be familiar with major concepts of language translation and compiler design.

II. Learn the various parsing techniques and different levels of translation

III. Extend the knowledge of parser by parsing LL parser and LR parser.

IV. Enrich the knowledge in various phases of compiler ant its use, code optimization techniques,

machine code generation, and use of symbol table.

V. Be familiar with compiler architecture and with register allocation.

VI. Learn how to optimize and effectively generate machine codes

VII. Provide practical programming skills necessary for constructing acompiler.

VI. COURSE OUTCOMES:

At the end of the course the students are able to:

1. Understand the design of a compiler and the phases of program translation from source code to

executable code and the files produced by these phases.

2. Relate finite state automata, push-down automata and their connection to language definition through

regular expressions and grammars.

3. Use the powerful compiler generation tools such as Lex and YACC for generating the parser.

4. Identify the analysis phase, similarities and differences among various parsing techniques and grammar

transformation techniques.

5. Implement major parsing techniques ranging from the recursive decent methods to the computationally

more intensive LR techniques that have been used in parser generator.

6. Apply the formal attributed grammars for specifying the syntax and semantics of programming

languages.

7. Implement the static semantic checking and type checking using syntax directed definition (SDD) and

syntax directed translation (SDT).

8. Translate common programming language constructs into intermediate code.

9. Understand the storage organization used to support the run-time environment of aprogram.

10. Identify the effectiveness of optimization and effectively generate machine codes.

11. Implement the global optimization using data flow analysis such as basic blocks and DAG.

12. Apply the several algorithms for collecting and optimizing the information using data flow analysis.

13. Understand the code generation techniques to generate target code.

14. Differentiate between machine-dependent and machine-independent optimizations.

3 | P a g e

VII. HOW PROGRAM OUTCOMES ARE ASSESSED:

Program Outcomes Level
Proficiency

assessed by

PO1 Engineering knowledge: Apply the knowledge of mathematics,

science, engineering fundamentals, and an engineering specialization to

the solution of complex engineering problems.

H

Exercises

PO2 Problem analysis: Identify, formulate, review research literature, and

analyze complex engineering problems reaching substantiated

conclusions using first principles of mathematics, natural sciences, and

engineering sciences.

H

Exercises

PO3 Design/development of solutions: Design solutions for complex

engineering problems and design system components or processes that

meet the specified needs with appropriate consideration for the public

health and safety, and the cultural, societal, and environmental

considerations.

H

Assignments

PO4 Conduct investigations of complex problems: Use research-based

knowledge and research methods including design of experiments,

analysis and interpretation of data, and synthesis of the information to

provide valid conclusions.

S

Projects

PO5 Modern tool usage: Create, select, and apply appropriate techniques,

resources, and modern engineering and IT tools including prediction

and modeling to complex engineering activities with an understanding

of the limitations.

H

Mini Projects

PO6 The engineer and society: Apply reasoning informed by the contextual

knowledge to assess societal, health, safety, legal and cultural issues

and the consequent responsibilities relevant to the professional

engineering practice.

N

--

PO7 Environment and sustainability: Understand the impact of the

professional engineering solutions in societal and environmental

contexts, and demonstrate the knowledge of, and need for sustainable

development.

N

--

PO8 Ethics: Apply ethical principles and commit to professional ethics and

responsibilities and norms of the engineering practice.
N --

PO9 Individual and team work: Function effectively as an individual, and

as a member or leader in diverse teams, and in multidisciplinary

settings.

H

Projects

PO10 Communication: Communicate effectively on complex engineering

activities with the engineering community and with society at large,

such as, being able to comprehend and write effective reports and

design documentation, make effective presentations, and give and

receive clear instructions.

N

--

PO11 Project management and finance: Demonstrate knowledge and

understanding of the engineering and management principles and apply

these to one’s own work, as a member and leader in a team, to manage

projects and in multidisciplinary environments.

S

Projects

PO12 Life-long learning: Recognize the need for, and have the preparation

and ability to engage in independent and life-long learning in the

broadest context of technological change.

N

--

N - None S - Supportive H - Highly Related

4 | P a g e

VIII. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

Program Specific Outcomes Level
Proficiency

assessed by

PSO1 Professional Skills: The ability to research, understand and implement

computer programs in the areas related to algorithms, system software,

multimedia, web design, big data analytics, and networking for efficient

analysis and design of computer-based systems of varying complexity.

S

Lectures,

Assignments

PSO2 Problem-solving Skills: The ability to apply standard practices and

strategies in software project development using open-ended programming

environments to deliver a quality product for business success.

H

Projects

PSO3 Successful Career and Entrepreneurship: The ability to employ modern

computer languages, environments, and platforms in creating innovative

career paths, to be an entrepreneur, and a zest for higher studies.

S
Guest

Lectures

N - None S - Supportive H - Highly Related

IX. SYLLABUS:

UNIT – I

Overview of Compilation: Phases of Compilation – Lexical Analysis, Regular Grammar and regular

expression for common programming language features, pass and Phases of translation, interpretation,

bootstrapping, data structures in compilation – LEX lexical analyzer generator

Top down Parsing: Context free grammars, Top down parsing – Backtracking, LL (1), recursive descent

parsing, Predictive parsing, Preprocessing steps required for predictive parsing.

UNIT – II

Bottom up parsing: Shift Reduce parsing, LR and LALR parsing, Error recovery in parsing , handling

ambiguous grammar, YACC – automatic parser generator.

UNIT – III

Semantic analysis: Intermediate forms of source Programs – abstract syntax tree, polish notation and three

address codes. Attributed grammars, Syntax directed translation, Conversion of popular Programming

languages language Constructs into Intermediate code forms, Type checker.

Symbol Tables: Symbol table format, organization for block structures languages, hashing, tree structures

representation of scope information. Block structures and non block structure storage allocation: static,

Runtime stack and heap storage allocation, storage allocation for arrays, strings and records.

UNIT – IV

Code optimization: Consideration for Optimization, Scope of Optimization, local optimization, loop

optimization, frequency reduction, folding, DAG representation.

Data flow analysis: Flow graph, data flow equation, global optimization, redundant sub expression

elimination, Induction variable elements, Live variable analysis, Copy propagation.

UNIT – V

Object code generation: Object code forms, machine dependent code optimization, register allocation and

assignment generic code generation algorithms, DAG for register allocation.

Text books:

1. A.V. Aho . J.D.Ullman, “Principles of compiler design”, Pearson Education.

2. Andrew N. Apple, “Modern Compiler Implementation in C”, Cambridge University Press.

References:

1. John R. Levine, Tony Mason, Doug Brown, “Lex & yacc”, O’reilly.

2. Dick Grune, Henry E. Bal, Cariel T. H. Jacobs, “Modern Compiler Design” Wiley dreamtech.
3. Cooper & Linda, “Engineering a Compiler”, Elsevier.

4. Louden, “Compiler Construction”, Thomson.

5 | P a g e

X. COURSE PLAN:

At the end of the course, the students are able to achieve the following course learning outcomes.

Lecture

No.
Topics to be covered Course Learning Outcomes Reference

1-4
Introduction, structure, Phases of

Compilation.

Understand the basic compilers

and compilation process
T1:1.1-1.8

5-8

Construction of regular grammar from

regular expression

NFA,DFA, common programming

features

Relate regular grammar to

programming feature

T1:35-3.7

9
Concept of pass and difference between

pass and phase.

Differentiate Pass and Phases of

translation
T1:3.3,T2:2.3

10
Bootstrapping and types of compiler. Design of compiler for a

language
T1:4.1

11-13

Lex-Lexical analyzer generator

Derivations and parse tree

regular expressions v/s context free

grammar.

Identify Data structure in

compilation Using lexical

analyzer

T1:4.1

14-16
Backtracking, LL(1),Recursive decent

parsing

Finding FIRST and FOLLOW.

Understand Top down parsing

techniques

T1:3.8,T2:2.5

T1:4.1,

T2:3.1

17-20
Construction of parse tables, Predictive

parsing.

Construct the parsing table for

given inputs
T1:4.3

21-22

Shift reduce parsing, operator precedence

parsing

Understand bottom up parsing

techniques

T1:4.4

23-25
LR-SLR,LR(0) Differentiate types of LR(0)

parsers
T1:4.5

26-28
LALR,CLR. Differentiate types of LR(1)

parsers
T1: 4.6

29
Description of error recovery Construct a parse tree for

ambiguous grammar
T1: 4.7

30 Yacc parser generator Implement parser generator T1:4.8

31-32
Abstract syntax tree, three address code Implement the construction of

syntax trees
T1:4.9

33-35

Introduction to attributes grammars

Syntax directed definitions, applications

of SDD,

implementing L-attributed SDD’s

Recognize the semantics of

grammar

T1:5.2

36-37

Control flow, back patching, switch

statements

Describe the forms of

intermediate code generation

phases

T1:5.1.5.3,5.4

38-40

Rules, type conversions,

Overloading, type inference and

polymorphic functions.

List different types of language

constructs

T1:8.1-8.6

41-43

Symbol table format, ordered and

unordered symbol tables.

Organization for block structures

languages

Summarize the symbol table
T1:6.1-6.6

44-46
Static, runtime stack and heap storage
allocations

List different types of storage
allocation

T1:7.6

47-48 Storage allocation for arrays, strings and Understand storage allocations T1: 7.7

6 | P a g e

 records for data structures
48-50 Introduction for optimization.

Local, global and scope optimization
Understand Various

optimization techniques
T1:7.8-7.9

51-53 Basic blocks, flow graphs, loops, code

motion, induction variables, reduction in

strength

Implementation of basic block

optimization techniques

T1:10.1-10.2

54-55 DAG construction, applications Construction of DAG T1:10.3-10.4

55-57 Data flow analysis of flow graphs. Flow

graph, loops in flow graphs

Representing data flow information, data

flow equations for programming

constructs

Understand the Data flow

analysis

T1:10.5

58-60 Examples for sub expression elimination,

Live variable analysis copy propagation

and examples

Implement optimization on data

flow graphs

T1:10.6-10.8

T2:9.1

61-62 Introduction, issues in code generation,

object code forms

Need of machine dependent code

optimization, peephole optimization

Understand various code

generation techniques

T1:10.9-

10.13

63-65 Global register allocation, register

assignment for outer loops

Rearranging the order, heuristic ordering

for DAGs, optimal ordering and labeling

algorithm

Implement machine dependent

optimizations

T1:10.12

XI. MAPPING COURSE OBJECTIVES LEADING TO THE ACHIEVEMENT OF

PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

Course

Objectives

Program Outcomes
Program Specific

Outcomes

PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO3

I S S H S H S

II S H S S S H S

III H S H S S S S

IV S S H S S S

V S S H H H S

VI H S S S S

VII S S H H S

S - Supportive H - Highly Related

7 | P a g e

XII. MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM

OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

Course

Outcomes

Program Outcomes
Program Specific

Outcomes

PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO3

1 H S S H S

2 S S H S S S S H

3 H H S S H

4 S S S S H H S

5 S S H H S S S H S

6 S H S H

7 H S H S

8 S S H S S S

9 S S H H H S

10 H S S S S

11 S H S S H S

12 H S S S S

13 H S S S S

14 H S S S S

S - Supportive H - Highly Related

Prepared by: Ms. B Ramyasree, Assistant Professor,

Ms.N Mamatha, Assistant Professor,

Mr.N Poornachandra Rao, Assistant Professor.

HOD, COMPUTER SCIENCE AND ENGINEERING

