

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad -500 043

ELECTRONICS AND COMMUNICATION ENGINEERING

COURSE DESCRIPTOR

Course Title	DIGITAL AND PULSE CIRCUITS								
Course Code	AEC019								
Programme	B.Tech								
Semester	IV	IV EEE							
Course Type	Foundation								
Regulation	IARE - R16								
			Theory	Practical					
Course Structure	Lectur	res	Tutorials	Credits	Laboratory	Credits			
	4		-	3	-	-			
Chief Coordinator	Dr. Vija	y Va	llabhuni, Associ	ate Professor, E	BCE				
Course Faculty	Mrs. V.	Binc	lusree, Assistant	Professor, ECE					

I. COURSE OVERVIEW:

The course will make them learn the basic theory of switching circuits and their applications in detail. Starting from a problem statement they will learn to design circuits of logic gates that have a specified relationship between signals at the input and output terminals. They will be able to design combinational and sequential circuits. They will learn to design counters, adders, sequence detectors. This course provides a platform for advanced courses like Computer architecture, Microprocessors & Microcontrollers and VLSI design. Greater Emphasis is placed on the use of programmable logic devices and State machines.

II. COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites	Credits
UG	AEC001	III	Electronic Devices and Circuits	4

III. MARKS DISTRIBUTION:

Subject	SEE Examination	CIA Examination	Total Marks	
Digital and Pulse Circuits	70 Marks	30 Marks	100	

IV. DELIVERY / INSTRUCTIONAL METHODOLOGIES:

~	Chalk & Talk	>	Quiz	~	Assignments	×	MOOCs			
~	LCD / PPT	>	Seminars	×	Mini Project	~	Videos			
~	Open Ended Experiments									

V. EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIA examinations or the marks scored in the make-up examination.

Semester End Examination (SEE):

The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into FIVE units and each unit carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each unit. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The emphasis on the questions is broadly based on the following criteria:

50 %	To test the objectiveness of the concept.
50 %	To test the analytical skill of the concept OR to test the application skill of the concept.

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 25 marks for Continuous Internal Examination (CIE), 05 marks for Quiz / Alternative Assessment Tool (AAT).

Table 1: Assessment pattern for

Component		Total Marks			
Type of Assessment	CIE Exam	Quiz / AAT	- Iotal Marks		
CIA Marks	25	05	30		

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8th and 16th week of the semester respectively. The CIE exam is conducted for 25 marks of 2 hours duration consisting of two parts. Part–A shall have five compulsory questions of one mark each. In part–B, four out of five questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Quiz / Alternative Assessment Tool (AAT):

Two Quiz exams shall be online examination consisting of 25 multiple choice questions and are be answered by choosing the correct answer from a given set of choices (commonly four). Marks shall be awarded considering the average of two quizzes for every course. The AAT may include seminars, assignments, term paper, open ended experiments, five minutes video and MOOCs.

VI. HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program Outcomes (POs)	Strength	Proficiency assessed by
PO 1	Engineering knowledge: Apply the knowledge of	3	Lectures,
	mathematics, science, engineering fundamentals, and an		Assignments,
	engineering specialization to the solution of complex		Exercises
	engineering problems.		
PO 2	Problem analysis: Identify, formulate, review research	2	Seminars,
	literature, and analyze complex engineering problems reaching		Lab related
	substantiated conclusions using first principles of mathematics,		exercises
	natural sciences, and engineering sciences.		
PO 3	Design/development of solutions: Design solutions for	1	Assignments
	complex engineering problems and design system components		
	or processes that meet the specified needs with appropriate		
	consideration for the public health and safety, and the cultural,		
	societal, and environmental considerations.		
PO 4	Conduct investigations of complex problems: Use research-	1	Five minute
	based knowledge and research methods including design of		videos
	experiments, analysis and interpretation of data, and synthesis		
	of the information to provide valid conclusions.		

3 = High; **2** = Medium; **1** = Low

VII. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program Specific Outcomes (PSOs)	Strength	Proficiency assessed by
PSO 1	Professional Skills: An ability to understand the basic	3	Lectures and
	concepts in Electronics & Communication Engineering and to		Assignments
	apply them to various areas, like Electronics, Communications,		
	Signal processing, VLSI, Embedded systems etc., in the design		
	and implementation of complex systems.		
PSO 2	Problem-Solving Skills: An ability to solve complex	1	Seminars
	Electronics and communication Engineering problems, using		
	latest hardware and software tools, along with analytical skills		
	to arrive cost effective and appropriate solutions.		
PSO 3	Successful Career and Entrepreneurship: The ability to	2	Guest lectures
	employ modern computer languages, environments, and		
	platforms in creating innovative career paths, to be an		
	entrepreneur, and a zest for higher studies.		

3 = **High**; **2** = **Medium**; **1** = Low

VIII. COURSE OBJECTIVES (COs):

The co	ourse should enable the students to:				
т	Enrich the knowledge of probability on single random variables and probability distributions				
1	and apply the concept of correlation and regression to find covariance.				
п	Analyze the given data for appropriate test of hypothesis and discuss the concept of sequential				
11	circuits and analyze sequential systems.				
ш	Interpret the concept of feedback and classify various types of feedback amplifiers and				
111	understand the principle of oscillation and design different types of oscillators.				
IV	Design and analyze single stage and multi stage Amplifiers				
1 V	Design and analyze single stage and many stage Ampinters.				

CLO **CLOs** At the end of the course, the student will have POs Strength of Code the ability to: Mapped Mapping Understand number systems, binary addition and CAEC019.01 CLO₁ PO 1 2 subtraction, 2's complement Representation and PO 2 operations with this representation and understand the different binary codes. CAEC019.02 CLO₂ Illustrate the switching algebra theorems and apply PO 1 2 them for reduction of Boolean function. PO₂ CAEC019.03 CLO 3 Identify the importance of SOP and POS canonical PO 2 2 forms in the minimization or other optimization of Boolean formulas in general and digital circuits. CAEC019.04 CLO₄ Discuss about digital logic gates and their PO 2 2 properties, and implement logic gates using universal gates. CAEC019.05 CLO 5 Evaluate functions using various types of PO 1 2 minimizing algorithms like Boolean algebra. **PO** 2 CAEC019.06 CLO 6 **PO 2** 1 Evaluate functions using various types of minimizing algorithms like Karnaugh map or PO 4 tabulation method. CLO 7 Design Gate level minimization using K-Maps and CAEC019.07 PO 4 1 realize the Boolean function using logic gates. CAEC019.08 CLO 8 Analyze the design procedures of Combinational PO 3 1 logic circuits like adder, binary adder, carry look ahead adder. CLO 9 Understand bi-stable elements like latches, flip-flop CAEC019.09 PO 3 1 and illustrate the excitation tables of different flip flops. CAEC019.10 CLO 10 Analyze and apply the design procedures of small PO 2 2 sequential circuits to build the gated latches. PSO 2 PO 3 CAEC019.11 CLO 11 Understand the concept of Shift Registers and 1 implement the bidirectional and universal shift registers. CAEC019.12 CLO 12 Implement the synchronous counters using design PO 3 1 procedure of sequential circuit and excitation tables of flip – flops. CAEC019.13 CLO 13 Implement the Asynchronous counters using design PO 3 1 procedure of sequential circuit and excitation tables of flip – flops. CAEC019.14 CLO 14 Understand the design analysis of feedback PO₂ 2 amplifiers & types of feedback circuits. CAEC019.15 CLO 15 Design various sinusoidal Oscillators like RC PO 3 1 Phase shift, Wien bridge, Hartley and Colpitts oscillator for various frequency ranges. CAEC019.16 CLO 16 Analyze the design of BJT as single stage and PO 2 2 multistage amplifier circuits. CAEC019.17 CLO 17 **PO** 2 Implement the design analysis of coupling 2 amplifiers and types of coupling circuits.

IX. COURSE LEARNING OUTCOMES (CLOs):

3 = High; 2 = Medium; 1 = Low

X. MAPPING COURSE LEARNING OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

Course Learning	Program Outcomes							Program Specific Outcomes							
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CAEC019.01	3	2												1	
CAEC019.02	3	2												1	
CAEC019.03		2												1	
CAEC019.04		2											3		
CAEC019.05	3	2												1	
CAEC019.06		2		1										1	
CAEC019.07				1										1	
CAEC019.08			1												
CAEC019.09			1												
CAEC019.10		2												1	
CAEC019.11			1											1	
CAEC019.12			1											1	
CAEC019.13			1										3		
CAEC019.14		2												1	
CAEC019.15			1												2
CAEC019.16		2													2
CAEC019.17		2												1	

3 = **High**; **2** = **Medium**; **1** = Low

XI. ASSESSMENT METHODOLOGIES – DIRECT

CIE Exams	PO 1, PO 2 PO 3, PO 4	SEE Exams	PO 1, PO 2 PO 3, PO 4	Assignments	PO 1	Seminars	PO 2
Laboratory Practices	-	Student Viva	_	Mini Project	-	Certification	-
Term Paper	_						

XII. ASSESSMENT METHODOLOGIES - INDIRECT

~	Assessment of Course Outcomes (By Feedback, Once)	~	Student Feedback on Faculty (Twice)
×	Assessment of Mini Projects By Experts		

XIII. SYLLABUS

Unit-I BOOLEAN ALGEBRA AND SWITCHING FUNCTIONS:

Introduction of binary numbers: Complements of numbers, codes, binary codes, binary code decimal code and its properties, unit distance codes, alpha numeric codes, error detecting and correcting codes;

Boolean alge	bra: Basic theorems and properties, switching functions, canonical and standard form.				
Unit-II M	INIMIZATION TECHNIQUES AND DESIGN OF MSI:				
Minimization don't care ma Arithmetic ci	Minimization with theorem: Karnaugh map method, five variable map, prime and essential implications, don't care map entries, tabular method, partially specified expressions; combination all design: Arithmetic circuits, comparator, multiplexers, code converters, hazards and hazard free relations.				
Unit-III S	Unit-III SEQUENTIAL CIRCUITS DESIGN:				
Basic different sequential ma of Flip Flops clock skew. Counters: De	nces between combinational and sequential logic circuits, binary cell, fundamentals of achine operation, D Flip Flop, T Flip Flop, J K Flip Flop, design procedure for conversion , conversion from one type of Flip-Flop to another, timing and triggering consideration, esign of single mode counter, ripple counter, ring counter, shift register, shift register				
sequences, riv	ng counter using shift register.				
Unit-IV F	EEDBACK AMPLIFIERS AND OSCILLATORS:				
Feedback An characteristic series, voltag Oscillators: C Generalized a oscillators, st	nplifiers: Concepts of feedback, classification of feedback amplifiers, general s of negative feedback amplifiers, effect of feedback on amplifier characteristics, voltage e shunt; Current series; Current shunt feedback configurations, illustrative examples; Classification of oscillators, condition for oscillations, RC phase shift oscillators; analysis of LC oscillators: Hartley and Colpitts oscillators, Wien Bridge and crystal ability of oscillators.				
Unit-V S	INGLE STAGE AMPLIFIERS AND MULTISTAGE AMPLIFIERS				
Single Stage Amplifiers: Classification of amplifiers, distortion in amplifiers, analysis of CE, CC and CB configurations with simplified hybrid model, analysis of CE amplifier with emitter resistance and emitter follower, Miller's theorem and its dual design of single stage RC coupled amplifier using BJT; Multistage amplifiers: Analysis of cascaded RC coupled BJT amplifiers, cascade amplifier, darlington pair, different coupling schemes used in amplifiers RC coupled amplifiers, transformer coupled amplifier.					
Text Books:					
 M Morris Fletcher V Limited, 1 Zvi Koha John M Y 2006. Millmax 	Mano, Michael D Ciletti, "Digital Design", Pearson Education / PHI, 3rd Edition, 2008. V I, "An Engineering Approach to Digital Design", Prentice Hall India Learning Private 1990. vi, "Switching and Finite Automata Theory", Tata McGraw-Hill, 3rd Edition, 2004. "arbrough, "Digital logic applications and design", Thomson publications, 1st Edition,				
S. J Willindi Reference R					
 Fredriac Edition, 2 Thomas Roth, "F Comer, " Rashid, " 	J Hill, Gerald R Peterson, "Introduction to Switching Theory and Logic Design", 3rd 2008. L Floyd, "Digital Fundamentals", Pearson Publications, 10th Edition, 2013. undamentals of Logic Design", Thomson Publications, 7th Edition, 2004 Digital Logic and State Machine Design", Oxford Publications, 3rd Edition, 2013. 'Electronic Circuit Analysis", Cengage Publishers, 12th Edition, 2013.				
6. Robert L 2008.	Boylestad, Louis Nashelsky, "Electronic Devices and Circuits Theory", PHI, 9th Edition,				

XIV. COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

	Lecture No	Topics to be covered	Course Learning Outcomes (CLOs)	Reference
ſ	1-5	Number systems, base conversion methods.	CLO 1	T1:1.1 to 1.5
				R1: 3.1 to 3.5
	6-8	Complements of numbers, codes- binary codes, BCD code and its	CLO 2	T1:1.7

Lecture No	Topics to be covered	Course Learning Outcomes (CLOs)	Reference
	properties.		R1: 3.7 to 3.9
9-11	Unit distance code, alphanumeric codes, and error detecting and	CLO 2	T1:1.7
	correcting codes.		R1: 4.1 to 4.2
12-15	Basic theorems and its properties, switching functions, canonical	CLO 4	T1:2.1 to 2.6
16.10	and standard form.		K2: 2.8 to 3.5
16-18	Algebraic simplification of digital logic gates, properties of XOR	CLO 4	11:2.8 P2:33 to 37
10.21	gaies.	CLO7	\mathbf{K}_{2} . 5.5 to 5.7
19-21	Oniversal gates, Multilevel NAND/NOR realizations.		R3: 2.7 to 2.9
22-24	Tabular method.	CLO 9	T1:3.5 to 3.9
			R3: 3.8 to 3.9
25-32	Combinational design, arithmetic circuits- adders, subtractors.	CLO 9	T1:4.1 to 4.9
			R4: 2.1 to 2.4
33-35	Serial adder, 1's complement subtractor, 2's complement	CLO 11	T1:5.1 to 5.2
	subtractor.		R4: 3.1 to 3.5
36-38	Combinational and sequential circuits, the binary cell, the	CLO 11	T1:5.3 to 5.5
	fundamentals of sequential machine operation.		R4: 5.1 to 5.8
39-42	Flip-flop, D-Latch Flip-flop, "Clocked T" Flip-flop, "Clocked JK	CLO 13	T1:5.3 to 5.5
	"flip-flop.		R4: 6.1 to 6.6
43-45	Design of a clocked flip-flop conversion from one type of flip-	CLO 11	T1:5.3 to 5.5
	flop to another.		R4: 6.7 to 7.9
46-48	Registers and counters	CLO 9	T1: 6.1 to 6.5
			R4: 7.1 to 7.7
49-51	Feedback Amplifiers: Concepts of feedback, design of different	CLO 14	T3:12.1to12.4
	feedback Amplifiers.		R5: 4.1 to 4.8
52-54	Oscillators & design of types of oscillators	CLO 14	T3:15.2.1 to
			15.2.2 D5: 7.1 to 7.4
55 50	Single stops & multi stops Amplifians design of trans-		KJ: /.1 t0 /.4
55-58	Single stage & multi stage Amplifiers design of types	CLU 14	13.8.4
50.60	Casanda & assanda amplifians	CLO 14	$T_{2} \cdot 4 \ 0.1 \ t_{2}$
39-00	Cascade & cascade ampimers	CLU 14	13:4.9.1 10
			R6: 8.1 to 8.5

XV. GAPS IN THE SYLLABUS - TO MEET INDUSTRY / PROFESSION REQUIREMENTS:

S.No	Description	Proposed actions	Relevance with POs	Relevance with PSOs
1	Gate level Minimization.	Seminars /	PO 1, PO 2,	PSO 1
		NPTEL	PO 4	
2	Design of combinational circuits using	Seminars / Guest	PO 2, PO 3,	PSO 1
	universal gates.	Lectures / NPTEL	PO 4	
3	Verilog programming for combinational and	Laboratory	PO 1, PO 3,	PSO 3
	sequential circuits.	Practices	PO 4	

Prepared by: Dr. Vijay Vallabhuni, Associate Professor, ECE

HOD, ECE