

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad -500 043

ELECTRONICS AND COMMUNICATION ENGINEERING

COURSE DESCRIPTOR

Course Title	CONT	CONTROL SYSTEMS						
Course Code	AEE00)9						
Programme	B.Tech	B.Tech						
Semester	IV	IV ECE						
Course Type	Core							
Regulation	IARE - R16							
			Theory		Pract	ctical		
Course Structure	Lectu	ires	Tutorials	Credits	Laboratory	Credits		
	3		1	4	-	-		
Chief Coordinator	Dr. Kaul, Professor							
Course Faculty	Dr. K Nehru, Professor Mr. N Nagaraju, Assistant Professor Mr. M L RaviTeja, Assistant Professor							

I. COURSE OVERVIEW:

The course will make them learn the basic fundamentals of modeling and control of linear time invariant systems. Component modeling and servomechanisms which play major part in speed and position control systems. Starting from a problem statement they will learn to design a dynamic control system for a given specification. They will be able to analyze open loop and closed loop systems in time and frequency domains. They will learn to design different types of controllers and their simulation techniques using available software platforms.

II. COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites	Credits
UG	AHS011	III	Mathematical Transform Techniques	4

III. MARKS DISTRIBUTION:

Subject	SEE Examination	CIA Examination	Total Marks
Control Systems	70 Marks	30 Marks	100

IV. DELIVERY / INSTRUCTIONAL METHODOLOGIES:

~	Chalk & Talk	~	Quiz	~	Assignments	×	MOOCs
~	LCD / PPT	>	Seminars	×	Mini Project	~	Videos
×	✗ Open Ended Experiments						

V. EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for SEE. Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIA examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into five units and each unit carries equal weightage in terms of marks distribution. The question paper pattern is as follows: Two full questions with "either" or "choice" are drawn from each unit of the syllabus. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The emphasis on the questions is broadly based on the following criteria:

50 %	To test the theoretical concepts and derivation capabilities.
50 %	To test the analytical and problem solving skills.

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks of which 25 marks for problem solving and 05 marks for Quiz/ Alternative Assessment Tool (AAT).

Table 1:	Assessment	pattern for	CIA
----------	------------	-------------	-----

Component		Theory		
Type of Assessment	CIE Exam	Quiz / AAT	i otar marks	
CIA Marks	25	05	30	

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8th and 16th week of the semester respectively. The CIE exam is conducted for 25 marks of 2 hours duration consisting of two parts. Part–A shall have five compulsory questions of one mark each. In part–B, four out of five questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Quiz / Alternative Assessment Tool (AAT):

Two Quiz exams shall be online examination consisting of 25 multiple choice questions and are be answered by choosing the correct answer from a given set of choices (commonly four). Marks shall be awarded considering the average of two quizzes for every course. The AAT may include seminars, assignments, term paper, open ended experiments, five minutes video and MOOCs.

VI. HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program Outcomes (POs)	Strength	Proficiency
		-	assessed by
PO 1	Engineering knowledge: Apply the knowledge of	3	Lectures,
	mathematics, science, engineering fundamentals, and an		Assignments
	engineering specialization to the solution of complex		U
	engineering problems		
DO 3	Design/development of solutions: Design solutions for	2	Locturos
105	Design development of solutions. Design solutions for	2	Lectures,
	complex engineering problems and design system components		Assignments
	or processes that meet the specified needs with appropriate		
	consideration for the public health and safety, and the cultural,		
	societal, and environmental considerations.		
PO 9	Individual and team work: Function effectively as an	2	One minute
	individual, and as a member or leader in diverse teams, and in		videos
	multidisciplinary Settings.		
PO 12	Life-long learning: Recognize the need for, and have the	2	Lectures
	preparation and ability to engage in independent and life-long		
	learning in the broadest context of technological change.		

3 = **High**; **2** = **Medium**; **1** = Low

VII. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program Specific Outcomes (PSOs)	Strength	Proficiency assessed by
PSO 1	Professional Skills: The ability to understand the basic	2	Seminars
	concepts in Electronics & Communication Engineering and to		
	apply them to various areas, like Electronics,		
	Communications, Signal processing, VLSI, Embedded		
	systems etc., in the design and implementation of complex		
	systems.		
PSO 2	Problem-Solving Skills: The ability to solve complex	-	-
	Electronics and communication Engineering problems, using		
	latest hardware and software tools, along with analytical skills		
	to arrive cost effective and appropriate solutions.		
PSO 3	Successful Career and Entrepreneurship: The	-	-
	understanding of social-awareness & environmental-wisdom		
	along with ethical responsibility to have a successful career		
	and to sustain passion and zeal for real-world applications		
	using optimal resources as an Entrepreneur.		

3 = **High**; **2** = **Medium**; **1** = Low

VIII. COURSE OBJECTIVES (COs):

The cou	The course should enable the students to:				
Ι	Organize modelling and analysis of electrical and mechanical systems.				
II	Evaluate systems by applying block diagrams, signal flow graphs to study the time response.				
III	Demonstrate the analytical and graphical techniques to study the stability to design the control system.				
IV	Illustrate the frequency domain and state space analysis.				

IX. COURSE LEARNING OUTCOMES (CLOs):

CLO	CLO's	At the end of the course, the student will	PO's	Strength of
Code		have the ability to	Mapped	Mapping
AEE009.01	CLO 1	Understand the concept of open loop and closed	PO 1	3
		loop systems with real time examples.		
AEE009.02	CLO 2	Derive the mathematical model for electrical	PO 1	2
		and mechanical systems using differential		
		equations.		
AEE009.03	CLO 3	Identify the equivalent model for electrical and	PO 1, PO 12	2
		mechanical systems using force voltage and		
		force current analogy.		
AEE009.04	CLO 4	Discuss the block diagram reduction techniques	PO 3	3
		and effect of feedback in open loop and closed		
		loop systems.		
AEE009.05	CLO 5	Evaluate the transfer function of signal flow	PO 3	2
		graphs using Mason's gain formula and apply		
		standard test signals for transient analysis.		
AEE009.06	CLO 6	Evaluate steady state errors and error constants	PO 1, PO 9	1
		for first and second order systems by using step,		
		ramp and impulse signals.		
AEE009.07	CLO 7	Apply Routh Hurwitz stability criterion to find	PO 3	3
		the necessary and sufficient conditions for		
		stability.		
AEE009.08	CLO 8	Analyze and apply the design procedures of root	PO 3	2
		locus for stability and discuss the effect of poles		
		and zeros on stability.		
AEE009.09	CLO 9	Implement controllers using proportional	PO 1, PO 12	2
		integral, proportional derivative and	,	
		proportional integral derivative controllers.		
AEE009.10	CLO 10	Understand the concept of frequency domain	PO 1, PO 9	2
		and discuss the importance of resonant		
		frequency, resonant peak and bandwidth on		
		stability.		
AEE009.11	CLO 11	Evaluate the performance of stability using bode	PO 3	1
		plot: polar plot and nyquist plot and calculate		
		the gain crossover frequency and phase		
		crossover frequency.		
AEE009.12	CLO 12	Analyze the gain margin and phase margin for	PO 3	2
		higher order systems and demonstrate the		
		correlation between time and frequency		
		response.		
AEE009.13	CLO 13	Understand the concept of state, state variables	PO 1	3
		and derive the state models from block		-
		diagrams.		
AEE009.14	CLO 14	Apply state space design techniques for	PO 1	2
	02011	modeling and control system design Formulate	101	_
		and solve state-variable models of linear		
		systems.		
AEE009 15	CLO 15	Apply analytical methods to system models:	PO 1	1
		controllability observability and stability		
		Design a lag lead and lag lead networks for		
		stability improvement		
	1		1	1

CLO	CLO's	At the end of the course, the student will	PO's	Strength of
Code		have the ability to	Mapped	Mapping
AEE009.16	CLO 16	Applications of the principles of communication engineering and digital signal processing.	PO 9, PO 12	3

3 = High; **2** = Medium; **1** = Low

X. MAPPING COURSE LEARNING OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

(CLOs)	Program Outcomes (POs)									Program Specific Outcomes (PSOs)					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CLO 1	3														
CLO 2	2												3		
CLO 3	3											1	2		
CLO 4			3												
CLO 5			2										1		
CLO 6	1								1						
CLO 7			3												
CLO 8			2										3		
CLO 9	3											2			
CLO 10	2								2				2		
CLO 11			1										1		
CLO 12			2										2		
CLO 13	3														
CLO 14	2												2		
CLO 15	1														
CLO 16									3			3	3		

3 = **High**; **2** = **Medium**; **1** = Low

XI. ASSESSMENT METHODOLOGIES – DIRECT

CIE Exams	PO 1, PO 3, PO 9, PO 12	SEE Exams	PO 1, PO 3, PO 9, PO 12	Assignments	PO 1, PO 3	Seminars	PSO 1
Laboratory Practices	-	Student Viva	-	Mini Project	-	Certification	-
Term Paper	-						

XII. ASSESSMENT METHODOLOGIES - INDIRECT

~	Early Semester Feedback	>	End Semester OBE Feedback
×	Assessment of Mini Projects by Experts		

XIII. SYLLABUS

Unit-I	INTRODUCTION AND MODELLING OF PHYSICAL SYSTEMS
Control sy models an rotational	ystems: Introduction, open loop and closed loop systems, examples, comparison, mathematical ad differential equations of physical systems, concept of transfer function, translational and mechanical systems, electrical systems, force voltage and force current analogy.
Unit-II	BLOCK DIAGRAM REDUCTION AND TIME RESPONSE ANALYSIS
Block D characteri response convolutio response s	iagrams: Block diagram representation of various systems, block diagram algebra, stics of feedback systems, servomotors, signal flow graph, Mason's gain formula; Time analysis: Standard test signals, shifted unit step, ramp and impulse signals, shifting theorem, on integral, impulse response, unit step response of first and second order system, time specifications, steady state errors and error constants.
Unit-III	STABILITY ANALYSIS AND CONTROLLERS
Concept stability c	of stability: Necessary and sufficient conditions for stability, Routh's and Routh Hurwitz riterions.
Root locu of k for Controller	s technique: Introduction, root locus concept, construction of root loci, graphical determination specified damping ratio, relative stability, effect of adding zeros and poles on stability. rs: Proportional, derivative and proportional derivative, proportional integral and PID s.
Unit-IV	FREQUENCY DOMAIN ANALYSIS
Frequency plot, Pola function,	y domain analysis: Introduction, frequency domain specifications, stability analysis from Bode r plot, Nyquist plot, calculation of gain margin and phase margin, determination of transfer correlation between time and frequency response.
Unit-V	STATE SPACE ANALYSIS AND COMPENSATORS
State Space block diag properties	ce Analysis: Concept of state, state variables and state model, derivation of state models from grams, diagonalization, solving the time invariant state equations, state transition matrix and , concept of controllability and observability; Compensators: Lag, lead, lag lead networks.
Text Boo	ks:
 J. Nag Editio K. Og N. C. 	grath, M. Gopal, "Control Systems Engineering", New Age International Publications, 3 rd on, 2007. gata, "Modern Control Engineering", Prentice Hall, 4 th Edition, 2003. Jagan, "Control Systems", BS Publications, 1 st Edition, 2007.
Reference	e Books:
1. A. Ar 2. S Pala 3. N. K.	nand Kumar, "Control Systems", PHI Learning, 1 st Edition, 2007. ani, "Control Systems Engineering", Tata McGraw Hill Publications, 1 st Edition, 2001. Sinha, "Control Systems", New Age International Publishers, 1 st Edition, 2002.

XIV. COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

Lecture Topics to be covered No	Course Learning Outcomes (CLOs)	Reference
---------------------------------	--	-----------

Lecture No	Topics to be covered	Course Learning Outcomes (CLOs)	Reference
1-5	Understand the different type of control systems.	CLO 1	T1:1.1
6-8	Analyze differential equations and mathematical model of control system.	CLO 2	T1:1.7
9-11	Identical transfer functions of mechanical and electrical systems.	CLO 3	T1:1.7
12-15	Understand the block diagram reduction techniques.	CLO 4	T1:2.1
16-18	Analyze the characteristics of feedback system and understand the concepts of servomotor.	CLO 4	T1:2.8
19-21	Apply Mason's gain formula to derive the transfer function using signal flow graph.	CLO 5	T1:3.7
22-24	Analyze time response for test signals in system.	CLO 6	T1:3.5
25-32	Apply time domain specifications to find steady state error and error constants.	CLO 6	T1:4.1
33-35	Understand the concepts of stability and apply Routh's Hurwitz criterions to find stability of the system.	CLO 7	T1:5.1
36-38	Apply root locus technique to examine the stability of the system.	CLO 8	T1:5.3
39-42	Analyze the effect of poles and zeros in transfer function and design controllers using PI, PD and PID controllers.	CLO 9	T1:5.3
43-44	Understand the concepts of stability in frequency domain.	CLO 10	T1:5.3
45-46	Apply the graphical method for determining the stability of a control system.	CLO 11	T1:6.1
47-49	Evaluate the transfer function using gain and phase margin.	CLO 12	T1:5.7
50-53	Understand the state variables and its models.	CLO 13	T1:6.1
54-57	Analyze different state models from block diagrams of the system. And controllability, observability of system model.	CLO 14	T1:7.1
58-60	Design a lag, lead and lag lead controllers and discuss the properties of state transition matrix.	CLO 15	T1:7.3

XV. GAPS IN THE SYLLABUS - TO MEET INDUSTRY / PROFESSION REQUIREMENTS:

S No	Description	Proposed Actions	Relevance with POs	Relevance with PSOs
1	Control systems with real time examples.	Guest Lectures	PO 9	PSO 1
2	Time response analysis of feedback systems with transportation lag.	Seminars / NPTEL	PO 1	PSO 1
3	Design of digital controllers.	NPTEL	PO 3	PSO 1

Prepared by:

Mr. N Nagaraju, Assistant Professor

HOD, ECE