

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad - 500 043

COMPUTER SCIENCE AND ENGINEERING

COURSE DESCRIPTION FORM

Course Title	Computational M	Computational Mathematics and Integral Calculus					
Course Code	AHS003	AHS003					
Course Structure	Lectures	Lectures Tutorials Practicals Credits					
	3	1	-	4			
Course Coordinator	Ms. V Subba Laxr	Ms. V Subba Laxmi, Assistant Professor					
Team of Instructors	Mr. Ch Kumara Sv	Mr. Ch Kumara Swamy, Mr. Ch. Somashekar					
	Ms. L Indira, Mr.	G Nagendra Kumar					

I. COURSE OVERVIEW

The course focuses on more advanced Engineering Mathematics topics which provide with the relevant mathematical tools required in the analysis of problems in engineering and scientific professions. The course includes Types of Interpolation, Curve fitting, Numerical solutions of Ordinary Differential Equations, Multiple Integrals, Vector Calculus and Special functions. The mathematical skills derived from this course form a necessary base to analytical and design concepts encountered in the program.

II. PREREQUISITE(S)

Level	Credits	Periods	Prerequisite
UG	4	6	Differentiation, Integration, Properties of vectors

III. MARKS DISTRIBUTION

Subject	SEE Examination	CIA Examination	Total Marks
Computational Mathematics and Integral Calculus	70 Marks	30 Marks	100 Marks

Semester End Examination	70 Marks	5 questions to be answered. Each question carries
70 Marks	(3 Hours)	14 Marks
All the Units (1, 2, 3, 4 and 5)		

Continuous Internal Assessment - 1

Average of two CIA Examinations	30 Marks (2 Hours)	Units I, II and III (half)	Continuous Internal Examination (CIE) (2 hours)	Part - A 5 questions to be answered out of 5 questions, each carries 1 mark. Part - B 4 questions to be answered out of 5 questions, each carries 5 marks.	
			Quiz-I /Alternate Assessment Tool (AAT- I)	5 marks for assignment.	
	Continuous Internal Assessment - 2				
	30 Marks (2 Hours)	Units III (half) IV and V	Continuous Internal Examination (CIE) (2 hours)	Part – A 5 questions to be answered out of 5 questions, each carries 1 mark. Part - B 4 questions to be answered out of 5 questions, each carries 5 marks.	
		Quiz-II /Alternate Assessment Tool (AAT- II)	5 marks for assignment.		

IV. EVALUATION SCHEME

S. No	Component	Duration	Marks
1	CIE - I Examination 2 hour		25
2	Quiz - I / AAT - I	-	05
	TOTAL	30	
3	CIE - II Examination	2 hour	25
4	Quiz - II / AAT - II	-	05
	TOTAL		30
	CIA Examination marks to be co	onsidered as average of abov	ve two CIA's
5 EXTERNAL Examination		3 hours	70
	GRAND TOTAL	100	

V. COURSE OBJECTIVES

The goal of this course is to create awareness and acquire comprehensive knowledge in algebra and differential equations.

The course should enable the students to

- I. Enrich the knowledge of solving algebraic, transcendental and differential equation by numerical methods.
- II. Apply multiple integration to evaluate mass, area and volume of the plane.
- III. Analyze gradient, divergence and curl to evaluate the integration over a vector field.
- IV. Understand the Bessels equation to solve them under special conditions with the help of series solutions.

VI. COURSE OUTCOMES

By the end of the module students should be able to

- 1. Solve algebraic and transcendental equations using Bisection method, Method of False position and Newton-Raphson method.
- 2. Apply numerical methods to interpolate.
- 3. Apply method of least squares to fit a curve .
- 4. **Solve** differential equation using numerical methods(Taylor's series, Euler's, Modified Euler's and Runge-Kutta methods).
- 5. Evaluate double and triple integrals .
- 6. **Evaluate** line, surface and volume integrals by expressing in other coordinate systems and find area and volume.
- 7. Analyze scalar and vector fields and compute the gradient, divergence and curl.
- 8. Apply Green's Theorem, Divergence Theorem and Stoke's theorem to evaluate integrals.
- 9. Solve the Differential Equations by series solutions
- 10. Analyse Bessel's function and study its properties.

VII. HOW PROGRAM OUTCOMES ARE ASSESSED

	Program outcomes	Level	Proficiency assessed by
PO1	Engineering knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.	Н	Assignments
PO2	Problem analysis : Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences	Н	Assignments
PO3	Design/development of solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.	S	Assignments
PO4	Conduct investigations of complex problems : Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.	S	Assignments
PO5	Modern tool usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.	S	
PO6	The engineer and society : Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.	S	
PO7	Environment and sustainability : Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.	S	
PO8	Ethics : Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.	S	
PO9	Individual and team work : Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.	Ν	
PO10	Communication : Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design	Ν	

	documentation, make effective presentations, and give and receive clear instructions.		
PO11	Project management and finance : Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.	Ν	
PO12	Life-long learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.	Н	

VIII. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED

	Program Specific Outcomes	Level	Proficiency Assessed by
PSO1	Professional Skills: The ability to research, understand and implement	S	Lectures,
	computer programs in the areas related to algorithms, system software,		Assignments
	multimedia, web design, big data analytics, and networking for efficient		
	analysis and design of computer-based systems of varying complexity.		
PSO2	Problem-solving Skills: The ability to apply standard practices and	S	Assignments
	strategies in software project development using open-ended programming		
	environments to deliver a quality product for business success.		
PSO3	Successful Career and Entrepreneurship: The ability to employ modern	S	Guest
	computer languages, environments, and platforms in creating innovative		Lectures
	career paths, to be an entrepreneur, and a zest for higher studies.		
	N - None S - Supportive H -	- Highly l	Related

UNIT-I

ROOT FINDING TECHNIQUES AND INTERPOLATION: Solving algebraic and transcendental equations by bisection method, method of false position Newton-Raphson method; Interpolation: Finite differences, forward differences, backward differences and central differences; Symbolic relations; Newton's forward interpolation, Newton's backward interpolation; Gauss forward central difference formula, Gauss backward central difference formula; Interpolation of unequal intervals: Lagrange's interpolation.

UNIT – II

CURVE FITTING AND NUMERICAL SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS:

Fitting a straight line; Second degree curves; Exponential curve, power curve by method of least squares. Taylor's series method; Step by step methods: Euler's, modified Euler's and Runge-Kutta method.

UNIT – III

MULTIPLE INTEGRALS: Double and triple integrals; Change of order of integration. Change of variables: Polar, cylindrical and spherical; Finding the area of a region using double integration and volume of a region using triple integration.

UNIT – IV

VECTOR CALCULUS:Scalar and vector point functions; Gradient, divergence, curl and their related properties; Solenoidal and irrotational vector point functions; Scalar potential function; Laplacian operator; Line integral, surface integral and volume integral; Vector integral theorems: Green's theorem in a plane, Stoke's theorem; Gauss divergence theorem-statements and verification.

$\mathbf{UNIT} - \mathbf{V}$

SPECIAL FUNCTIONS : Gamma function, properties of gamma function; Ordinary point and regular singular point of differential equations. Series solutions to differential equations around zero, Frobenius Method about zero; Bessel's differential equation: Bessel functions properties, recurrence relations, orthogonality, generating function, trigonometric expansions involving Bessel functions.

Text Books:

- 1. Kreyszig, "Advanced Engineering Mathematics", John Wiley & Sons Publishers, 9th Edition, 2014.
- 2. B. S. Grewal, "Higher Engineering Mathematics", Khanna Publishers, 42nd Edition, 2012.

Reference Books:

- 1. RK Jain & SRK Iyengar, "Advanced Engineering Mathematics", Narosa Publishers, 5th Edition, 2016.
- 2. S. S. Sastry, "Introduction methods of numerical analysis", Prentice-Hall of India Private Limited, 5th Edition, 2012.

X. COURSE PLAN:

The course plan is meant as a guideline. There may probably be changes.

		I Spe	ell	
Unit	Lecture Number	Topic Planned to be covered	Learning Objective	References
	1	Solution of Algebraic and Transcendental Equations. Introduction	Define Algebraic and Transcendental equations	T-2, R-2
	2	Bisection Method	Apply Bisection method to find the root	T-2, R-2
	3	Method of False Position	Apply False Position method to find the root	T-2, R-2
	4	Newton-Raphson Method	Apply Newton-Raphson method to find roots	T-2, R-2
	5	Interpolation	Define what interpolation is	T-2, R-2
I	6	Symbolic relations and separation of symbols	Explain the relation between symbols	T-2, R-2
	7	Newton's forward difference	Solve the problems by Newton's forward method	T-2, R-2
	8	Newton's backward difference	Solve the problems by Newton's backward method	T-2, R-2
	9	Gauss forward difference	Solve the problems by Gauss forward method	T-2, R-2
	10	Gauss backward difference	Solve the problems by Gauss backward method	T-2, R-2
	11	Lagrange's and Newton's dividend difference interpolation	Solve the problems by lagrange's and Newtons dividend difference	T-2, R-2
	12	Curve fitting: Fitting straight line	Solve a straight line	T-2, R-2
	13	Fitting a second degree curve	Solve a second degree parabola	T-2, R-2
	14	Fitting an exponential curve	Solve an exponential curve	T-2, R-2
	15	Fitting a power curve	Solve a power curve	T-2, R-2
П	16	Numerical solution of Ordinary Differential equations: Taylor's series method	Solve the ODE by Taylor's series method	T-2, R-2
	17	Euler's Method	Solve the ODE by Euler's Method- Euler's modified method	T-2, R-2
	18	Euler's modified method,	Solve the ODE Euler's modified method	T-2, R-2
	19	Runge-Kutta Methods	Solve the ODE by Runge-Kutta Methods	T-2, R-2
	20-21	Multiple Integrals	Calculate double and triple integrations	T-2, R-2
III	22-23	Change of order of integration	Use the Change of order for multiple integrals	T-2, R-2

Course Content Delivery --- Lecture Wise Break-up of Topics

Unit	Lecture Number	Topic Planned to be covered	Learning Objective	References
	24-26	Change of variables	Use the Change of variables in multiple integrals	T-1, R-1
III	27-28	Area of a region using double integration	Apply double integration for finding the area	T-1, R-1
	29-30	Volume of a region using triple integration	Apply triple integration for finding the volume	T-1, R-1
	31	Introduction to vector calculus	Define vector calculus and vector fields and their properties	T-1, R-1
	32	Gradient, divergent and curl	Determine Gradient, divergent and curl of vector fields	T-1, R-1
	33	Line integral	Calculate line integral along smooth path and find work done	T-1, R-1
	34	Surface integral	Calculate the surface area of field	T-1, R-1
IV	35	Volume integral	Calculate volume of field	T-1, R-1
	36	Green's theorem	Use Green's theorem to evaluate line integrals along simple closed contours on the plane	T-1, R-1
	37	Stoke's theorem	Use Stokes' theorem to give a physical interpretation of the curl of a vector field	T-1, R-1
	38	Gauss divergence theorem	Use the divergence theorem to give a physical interpretation of the divergence of a vector field	T-1, R-1
	39-40	Improper Integrations Gamma function	Apply gamma function for improper integrals	T-1, R-1
	41-42	Identify ordinary points, singular points and regular singular points for the given ODE	Motivation for series solution Ordinary and regular point of a differential equation	T-1, R-1
v	43-44	Determine the solution of ordinary differential equations in series form	Transformation of non-zero singular point to zero singular point Series solutions of differential equations around zero	T-1, R-1
	45-46	Apply the Frobenius method to obtain a series solution for the given linear ODE	Frobenius Method about zero	T-1, R-1
	47-48	Demonstrate Bessel's Differential equation	Bessel's Differential equation, Bessel functions properties: – Recurrence relations, Orthogonality, Generating function	T-1, R-1
	49-50	Explaining trigonometric expansions	Trigonometric expansions involving Bessel functions.	T-1, R-1

XI. MAPPING COURSE OBJECTIVES LEADING TO THE ACHIEVEMENT OF THE PROGRAM OUTCOMES

Course Objectives	Program Outcomes													Program Specific Outcomes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
Ι	Н	Н											S	S		
Π	S	Н											S	S		
III	Н												S			
IV	S												S			
S – Supportivo							H - Highly related									

S = Supportive

H = Highly related

XII. MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF TSHE PROGRAM OUTCOMES

Course Objectives	Program Outcomes													Program Specific Outcomes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
1	Н	Н	S										S	S		
2	Н	S											S			
3	S	S		S										S		
4	Н												S			
5	S		Н										S			
6	Н													S		
7		Н											S			
8	Н													S		
S = Supportive							H = Highly related									

Prepared by: Ms. V Subba Laxmi, Assistant Professor

HOD, FRESHMAN ENGINEERING