
Page | 1

COMPILER DESIGN

V Semester: CSE / IT

Course Code Category Hours / Week Credits
Maximum

Marks

ACSB11

Core
L T P C CIA SEE Total

3 1 - 4 30 70 100

Contact Classes: 45 Tutorial Classes: 15 Practical Classes: Nil Total Classes: 60

OBJECTIVES:

The students will try to learn:

I. The process of translating a high-level language to machine code required for compiler construction.
II. The Software tools and techniques used in compiler construction such as lexical analyser and parser generators .

III. The data structures used in compiler construction such as abstract syntax trees, symbol tables, three-address code,

and stack machines.

IV. The deeper insights into the syntax and semantic aspects of programming languages, dynamic memory

allocation and code generation.

COURSE OUTCOMES:

After successful completion of the course, students will be able to:
1. Describe the components of a language processing system for the conversion of high level

languages to machine level languages.

2. Classify the importance of phases of a compiler for constructing a compiler.

3. Demonstrate a lexical analyser from a specification of a Language’s lexical rules for dividing

the programming statements into tokens.

4. Construct the derivations , FIRST set , FOLLOW set on the context free grammar for

performing the top-down and bottom up parsing methods.

5. Distinguish top down and bottom up parsing methods for developing parser with the parse tree

representation of the input.

6. Construct LEX and YACC tools for developing a scanner and a parser.

7. Describe syntax directed definitions & translations for performing Sementic Analysis.

8. Classify the different intermediate forms for conversion of syntax translations into

Intermediate Code.

9. Demonstrate type systems for performing the static and dynamic type checking

10. Describe the run-time memory elements for storage allocation strategies which includes

procedure calls, local variable allocation, dynamic memory allocation.

11. Apply the code optimization techniques on intermediate code form for improving the

performance of a program.

12. Make use of optimization techniques on basic blocks for reducing utilization of registers in

generating the target code.

MODULE -I INTRODUCTION TO COMPILERS

Introduction to compilers: Definition of compiler, interpreter and its differences, the phases of a compiler;
Lexical Analysis: Role of lexical analyzer, input buffering, recognition of tokens, finite automata, regular
Expressions, from regular expressions to finite automata, pass and phases of translation, bootstrapping,
LEX-lexical analyzer generator.

Page | 2

MODULE -II SYNTAX ANALYSIS

Syntax Analysis: Parsing, role of parser, context free grammar, derivations, parse trees, ambiguity,

elimination of left recursion, left factoring, eliminating ambiguity from dangling-else grammar; Types of

parsing: Top-down parsing, backtracking, recursive-descent parsing, predictive parsers, LL (1) grammars.

Bottom-up parsing: Definition of bottom-up parsing, handles, handle pruning, stack implementation of shift-

reduce parsing, conflicts during shift-reduce parsing, LR grammars, LR parsers-simple LR, canonical LR

and Look Ahead LR parsers, error recovery in parsing, parsing ambiguous grammars, YACC-automatic

parser generator.

MODULE -III SYNTAX-DIRECTED TRANSLATION AND INTERMEDIATE CODE

GENERATION

Syntax-Directed Translation: Syntax directed definitions, construction of syntax trees, S-attributed and L-

attributed definitions; Syntax Directed Translation schemes.

Intermediate code generation: Intermediate forms of source programs– abstract syntax tree, polish notation

and three address code, types of three address statements and its implementation, syntax directed translation

into three-address code, translation of simple statements, Boolean expressions and flow-of- Control

statements.

MODULE -IV TYPE CHECKING AND RUN TIME ENVIRONMENT

Type checking: Definition of type checking, type expressions, type systems, static and dynamic checking of
types, specification of a simple type checker.
Run time environments: Source language issues, Storage organization, storage-allocation strategies, access to
nonlocal data on the stack, garbage collection, symbol tables.

MODULE -V CODE OPTIMIZATION AND CODE GENERATOR

Code optimization: The principle sources of optimization, optimization of basic blocks, loops in flow
graphs, peephole optimization.
Code Generation: Issues in the Design of a Code Generator, The Target Language, addresses in the Target
Code, Basic Blocks and Flow Graphs, Optimization of Basic Blocks, A Simple Code Generator, register
allocation and assignment, DAG representation of basic blocks.

Text Books:

1. Alfred V. Aho, Ravi Sethi, Jeffrey D. Ullman, -Compilers-Principles, Techniques and Tools‖, Pearson

Education, Low Price Edition, 2004

Reference Books:

1. Kenneth C. Louden, Thomson, ―Compiler Construction– Principles and Practice‖, PWS Publishing

1st Edition ,1997

2. Andrew W. Appel, ―Modern Compiler Implementation C‖, Cambridge University Press, Revised

Edition, 2004.
3. Andrew W. Appel, Modern Compiler Implementation C, Cambridge University Press, 2004.

 Web References:

1. www.vssut.ac.in/lecture_notes/lecture1422914957.pdf
2. http://csenote.weebly.com/principles-of-compiler-design.html

3. http://www.faadooengineers.com/threads/32857-Compiler-Design-Notes-full-book-pdf-download

4. https://www.vidyarthiplus.com/vp/thread-37033.html#.WF0PhlMrLDc

http://csenote.weebly.com/principles-of-compiler-design.html
http://www.faadooengineers.com/threads/32857-Compiler-Design-Notes-full-book-pdf-download

