DISCRETE MATHEMATICAL STRUCTURES

III Semester: CSE / IT										
Course Code	Category	He	ours / W	'eek	Credits	Maximum Marks				
ACSB04	Core	L	Т	Р	С	CIA	SEE	Total		
		3	1	0	4	30	70	100		
Contact Classes: 45	Tutorial Classes: 15	Practical Classes: Nil			Total Classes: 60					

COURSE OBJECTIVES:

The course should enable the students to:

- I. Describe the logical and mathematical foundations, and study abstract models of computation.
- II. Illustrate the limitations of predicatelogic.
- III. Define modern algebra for constructing and writing mathematical proofs.
- IV. Solve the practical examples of sets, functions, relations and recurrencerelations.
- V. Recognize the patterns that arise in graph problems and use this knowledge for constructing the trees and spanningtrees.

COURSE OUTCOMES (COs):

- CO 1 : To understand the concepts associated with Mathematical Logic and Predicate calculus
- CO 2 : Ability to learn the basic concepts about relations, functions and to draw different diagrams like Lattice, Hasse diagrams.
- CO 3 : To understand the concepts of Algebraic Structures and combinatorics.
- CO 4: To describe various types of recurrence relations and the methods to find out their solutions.
- CO 5 : To understand the basic concepts associated with Graphs and Trees.

COURSE LEARNING OUTCOMES (CLOs):

- 1. Understand logical connectives and compound prepositions for building compoundstatements.
- 2. Learntheformal symbols and use the preposition logic and predicate logic to solve problems on logical equivalences and implications.
- 3. Memorize different scientific notations to simplify the logicalstatements.
- 4. Prepare valid arguments from the given propositional statements by using rules of inference.
- 5. Identify ordered pairs to form a binary relation from the givensets.
- 6. Construct directed graph and a matrix representation using a binary relation on finite orderpairs.
- 7. Identify the properties of relations to check for equivalence relation and partial order relationand compute relations using operations onrelations.
- 8. Construct a hasse diagram to recognize the relevant partial ordered sets from the given binary relation.
- 9. Describe the types of functions (one to one, on-to, bijective, Identity and constantfunction).
- 10. Implement the concept of the inverse and recursive functions to get solution for an appropriate problem.
- 11. Use the concept of lattices (Greatest Lower Bound (GLB) and Least Upper Bound (LUB) to represent a defined finite set in multi-dimensionapplications.
- 12. Explain about the properties and types of lattices (bounded and distributivelattice)
- 13. Construct different algebraic structures by using concepts of groups, sub groups, monoidsand rings.
- 14. Understandbinomialandmultinomialtheoremstocomputethecoefficientsforthegiven expansions.
- 15. Understand the concept of homomorphism and isomorphism ofsemi-groups.
- 16. Analyze the given sets by using inclusion and exclusionprinciple.
- 17. Identify the different counting techniques (permutations) related to mathematics and computer science.
- 18. Solve discrete probability and set problems by using permutations and combinatorics.
- 19. Identify the series of expansion to represent the sequence by using generatingfunctions.
- 20. Identify the general solution for first-order and second-order linear homogeneous recurrence relations.
- 21. Identify the roots of second and higher order linear non-homogeneous recurrencerelations.
- 22. Understand the use of graphs and trees as representation tools in a variety of context
- 23. Identify Euler's and Hamilton rule for a simple connected graph in NP-completeproblems.
- 24. Construct a spanning tree by using search techniques (Depth First Search and BreadthFirst Search).
- 25. Construct a minimal spanning tree by using Kruskal's and Prim's algorithm to obtain a solution for a real timeproblem.
- 26. Possess the knowledge and skills for employability and to succeed in national and international level competitive exams.

MODULE-I	MATHEMATICAL LOGIC AND PREDICATES	Classes: 09					
Mathematical logic: Statements and notations, connectives, well-formed formulas, truth tables, tautology, equivalence implication; Normal forms: Disjunctive normal forms, conjunctive normal forms, principle disjunctive normal forms; Predicate calculus: Predicative logic, statement functions, variables and quantifiers, free and bound variables, rules of inference, consistency, proof of contradiction, automatic theorem proving.							
MODULE-II	RELATIONS, FUNCTIONS AND LATTICES	Classes: 09					
Relations: Properties of binary relations, equivalence, compatibility and partial ordering relations, lattices, Hasse diagram; Functions: Inverse function, composition of functions, recursive functions; Lattices: Lattices as partially ordered sets; Definition and examples, properties of lattices, sub lattices, some special lattices.							
MODULE-III	ALGEBRAIC STRUCTURES AND COMBINATORICS	Classes: 09					
Algebraic structures: Algebraic systems, examples and general properties, semi groups and monoids, groups, sub groups, homomorphism, isomorphism, rings. Combinatory: The fundamental counting principles, permutations, disarrangements, combinations, permutations and combinations with repetitions, the binomial theorem, multinomial theorem, generalized inclusion exclusion principle.							
MODULE-IV	RECURRENCE RELATIONS	Classes: 09					
Recurrence relation: Generating functions, function of sequences calculating coefficient of generating function, recurrence relations, solving recurrence relation by substitution and generating functions, characteristics roots solution of homogeneous recurrence relation.							
MODULE-V	GRAPHS AND TREES	Classes: 09					
Graphs:Basicconceptsofgraphs,isomorphicgraphs,Eulergraphs,Hamiltoniangraphs,planargraphs,graphcoloring, digraphs, directed acyclic graphs, weighted digraphs, region graph, chromatic numbers; Trees: Trees, spanning trees, minimal spanning trees.							
Text Books:							
 J. P. Tremblay, R. Manohar, -Discrete Mathematical Structures with Applications to Computer Sciencel, Tata McGraw Hill, India, 1stEdition,1997. JoeL.Mott, AbrahamKandel, TheodoreP. Baker, -Discrete Mathematics forComputer Scientists and Mathematiciansl, Prentice Hall of India Learning Private Limited, New Delhi, India, 2ndEdition, 2010. 							
Reference Books:							
 Kenneth H. Rosen, -DiscreteMathematics and Its Applications, Tata Mcgraw-Hill, New Delhi, India, 6thEdition,2012. C. L. Liu, D. P. Mohapatra, -Elements of Discrete Mathematics, Tata Mcgraw-Hill, India, 3rdEdition,2008. Ralph P. Grimaldi, B. V. Ramana, -Discrete and Combinatorial Mathematics - An Applied Introduction, Pearson Education, India, 5thEdition,2011. D. S. Malik, M.K.Sen, -Discrete Mathematical Structures:Theory and Applications, Thomson Course Technology, India, 1stEdition, 2004. 							
Web References:							
 http://www.web.stanford.edu/class/cs103x http://www.cs.odu.edu/~cs381/cs381content/web_course.html http://www.cse.iitd.ernet.in/~bagchi/courses/discrete-book http://www.saylor.org/course/cs202/ http://www.nptel.ac.in/courses/106106094/ http://www.tutorialspoint.com/discrete_mathematics http://www.dmtcs.org/dmtcs-ojs/index.php/dmtcs 							

E-Text Books:

- 1. https://people.eecs.berkeley.edu/~daw/teaching/cs70-s05/
- $2.\ http://home.anadolu.edu.tr/~eakyar/dersler/ayrik/kitap/kitap.pdf$
- $3.\ http://45.63.83.30/graph-theory-keijo-ruohonen-pdf-tut.pdf$
- 4. http://www.zib.de/groetschel/teaching/WS1314/BondyMurtyGTWA.pdf