

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous)

Dundigal, Hyderabad - 500 043

COMPUTER SCIENCE AND ENGINEERING

COURSE DESCRIPTOR

Course Title	DATA STRUCTURES					
Course Code	ACSB03	ACSB03				
Program	B.Tech	B.Tech				
Semester	THIRD	THIRD				
Course Type	Core					
Regulation	IARE - R18					
		Theory		Pract	tical	
Course Structure	Lectures	Tutorials	Credits	Laboratory	Credits	
	3	0	3	3	1.5	
Course Coordinator	Ms. B Padmaja, Assistant Professor					

I. COURSE OVERVIEW:

The course covers some of the general-purpose data structures and algorithms, and software development. Topics covered include managing complexity, analysis, static data structures, dynamic data structures and hashing mechanisms. The main objective of the course is to teach the students how to select and design data structures and algorithms that are appropriate for problems that they might encounter in real life. This course reaches to student by power point presentations, lecture notes, and lab which involve the problem solving in mathematical and engineering areas.

II. COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites
B.Tech	ACSB01	II	Programming for Problem Solving

III. MARKS DISTRIBUTION:

Subject	SEE Examination	CIA Examination	Total Marks
Data Structures	70 Marks	30 Marks	100

~	РРТ	~	Chalk & Talk	>	Assignments	X	MOOCs
~	Open Ended Experiments	~	Seminars	✓	Mini Project	~	Videos
~	Others: Quiz						

IV. DELIVERY / INSTRUCTIONAL METHODOLOGIES:

V. EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIA examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into FIVE modules and each module carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each module. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The expected percentage of cognitive level of the questions is broadly based on the criteria given in Table: 1.

Percentage of Cognitive Level	Blooms Taxonomy Level
0 %	Remember
50 %	Understand
40 %	Apply
10 %	Analyze
0 %	Evaluate
0 %	Create

Table 1: The expected percentage of cognitive level of questions in SEE

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 2), with 20 marks for Continuous Internal Examination (CIE), 05 marks for Quiz and 05 marks for Alternative Assessment Tool (Table 3).

Table 2: Assessment patt	tern for CIA
--------------------------	--------------

Component		Total Marka		
Type of Assessment	CIE Exam	Quiz	AAT	Totai Marks
CIA Marks	20	05	05	30

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8th and 16th week of the semester respectively. The CIE exam is conducted for 20 marks of 2 hours duration consisting of five descriptive type questions out of which four questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams

Quiz–Online Examination:

Two Quiz exams shall be online examination consisting of 25 multiple choice questions and are to be answered by choosing the correct answer from a given set of choices (commonly four). Such a question paper shall be useful in testing of knowledge, skills, application, analysis, evaluation and understanding of the students. Marks shall be awarded considering the average of two quiz examinations for every course.

Alternative Assessment Tool (AAT):

This AAT enables faculty to design own assessment patterns during the CIA. The AAT converts the classroom into an effective learning center. The AAT may include tutorial hours/classes, seminars, assignments, term paper, open ended experiments, METE (Modeling and Experimental Tools in Engineering), five minutes video, MOOCs etc. The AAT chosen for this course is given in table 3.

5 Minutes Video	Assignment	Tech-talk	Seminar	Open Ended Experiment
20%	30%	30%	10%	10%

VI. COURSE OBJECTIVES:

The stue	lents will try to learn:
Ι	To provide students with skills needed to understand and analyze performance trade-offs of different algorithms / implementations and asymptotic analysis of their running time and memory usage.
II	To provide knowledge of basic abstract data types (ADT) and associated algorithms: stacks, queues, lists, tree, graphs, hashing and sorting, selection and searching.
III	The fundamentals of how to store, retrieve, and process data efficiently.
IV	To provide practice by specifying and implementing these data structures and algorithms in Python.
V	Understand essential for future programming and software engineering courses.

VII. COURSE OUTCOMES:

After su	After successful completion of the course, students will be able to:				
		Knowledge			
	Course Outcomes	Level (Bloom's			
	Course Outcomes	Taxonomy)			
CO 1	Carryout the analysis of a range of algorithms in terms of algorithm	Understand			
	analysis and express algorithm complexity using the O notation.				
CO 2	Make use of recursive algorithm design technique in appropriate	Apply			
	contexts.				

CO 3	Represent standard ADTs by means of appropriate data structures.	Understand
CO 4	Select appropriate sorting technique for given problem.	Understand
CO 5	Select appropriate searching technique for given problem.	Understand
CO 6	Implement standard searching and sorting algorithms; including binary search; merge sort and quick sort; and their complexities.	Apply
CO 7	Design and implement linked lists, stacks and queues in Python.	Apply
CO 8	Explain the use of basic data structures such as arrays, stacks, queues and linked lists in program design.	Understand
CO 9	Extend their knowledge of data structures to more sophisticated data structures to solve problems involving balanced binary search trees, AVL Trees, B-trees and B+ trees, hashing, and basic graphs.	Apply
CO 10	Design and implement tree structures in Python.	Apply
CO 11	Compare and contrast the benefits of dynamic and static data structures implementations and choose appropriate data structure for specified problem domain.	Understand
CO 12	Quickly determine and explain how efficient an algorithm or data structure will be, apply appropriate data structures for solving computing problems with respect to performance.	Analyze

COURSE KNOWLEDGE COMPETENCY LEVELS

VIII. HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program Outcomes	Strength	Proficiency Assessed by
PO 1	Engineering knowledge: Apply the knowledge of	3	CIE/Quiz/AAT
	mathematics, science, engineeringfundamentals, and an		
	engineering specialization to the solution of complex		
	engineering problems.		
PO 2	Problem analysis: Identify, formulate, review research	2	CIE/Quiz/AAT
	literature, and analyze complexengineering problems		
	reaching substantiated conclusions using first principles of		
	mathematics, natural sciences, and engineering sciences		

	Program Outcomes	Strength	Proficiency Assessed by
PO 3	Design/development of solutions: Design solutions for	2	Seminar/
	complex engineering problems and design system		Conferences/
	components or processes that meet the specified needs with		Workshops
	appropriate consideration for the public health and safety,		
	and the cultural, societal, and environmental considerations.		
PO 5	Modern Tool Usage: Create, select, and apply appropriate	2	Assignments/
	techniques, resources, and modern Engineering and IT tools		Discussion
	including prediction and modelling to complex Engineering		
	activities with an understanding of the limitations.		
PO 9	Individual and Teamwork: Function effectively as an	2	Class group/
	individual, and as a member or leader in diverse teams, and		Multi-disciplinary
	in multidisciplinary settings		group
PO 10	Communication: Communicate effectively on complex	2	Discussion on
	Engineering activities with the Engineering community and		Innovations/
	with society at large, such as, being able to comprehend and		Presentation
	write effective reports and design documentation, make		
	effective presentations, and give and receive clear		
	instructions.		
PO 12	Life-Long Learning: Recognize the need for and having	1	Seminars/
	the preparation and ability to engage in independent and		Workshops/ Short
	life-long learning in the broadest context of technological		term courses
	change.		

3 = High; 2 = Medium; 1 = Low

IX. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program Specific Outcomes	Strength	Proficiency assessed by
PSO 1	Professional Skills: Understand, design and analyze	1	Mini Projects/
	computer programs in the areas related to Algorithms,		Seminar/
	System Software, Web design, Big data, Artificial		Assignments
	Intelligence, Machine Learning and Networking.		-
PSO 3	Successful Career and Entrepreneurship: Make use of	2	Discussion on
	modern computer tools for creating innovative career paths,		Innovations/
	to be an entrepreneur and desire for higher studies.		Industry exposure

3 = High; **2** = Medium; **1** = Low

X. MAPPING OF EACH CO WITH PO(s), PSO(s):

Course Outcomes					Pro	gram	Outco	omes					Program Specific Outcomes		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	\checkmark	-	-	-	-	-	-	-	-	-	-	-	\checkmark	-	-
CO 2	\checkmark	-	-	-	-	-	-	-	-	-	-	-	\checkmark	-	-
CO 3	\checkmark	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 4	\checkmark	-	-	-	-	-	-	-	-	\checkmark	-	-	\checkmark	-	-

CO 5	\checkmark	-	-	-	-	-	-	-	-	\checkmark	-	-	\checkmark	-	-
CO 6	\checkmark	-	-	-	-	-	-	-	-	\checkmark	-	-	\checkmark	-	-
CO 7	\checkmark	\checkmark	\checkmark	-	-	-	-	-	-	\checkmark	-	-	\checkmark	-	\checkmark
CO 8	\checkmark	\checkmark	\checkmark	-	-	-	-	-	-	\checkmark	-	-	\checkmark	-	\checkmark
CO 9				-	-	-	-	-	-	\checkmark	-	-	\checkmark	-	\checkmark
CO 10			\checkmark	-	-	-	-	-	-	\checkmark	-	-	\checkmark	-	
CO 11				-	-	-	-	-	-	\checkmark	-	-	\checkmark	-	\checkmark
CO 12		\checkmark	\checkmark	-	-	-	-	-	-	\checkmark	-	-	\checkmark	-	

XI. JUSTIFICATIONS FOR CO – (PO, PSO) MAPPING –DIRECT

Course Outcomes	POs / PSOs	Justification for mapping (Students will be able to)	No. of key competencies
CO 1	PO 1	Understand (knowledge) the basic concept of algorithm	3
		analysis which provides theoretical estimates for the	
		resources needed by any algorithm for a given computational	
		problem. These estimates provide an insight into reasonable	
		directions of search for efficient algorithms by applying the	
		principles of mathematics and science.	
	PSO 1	Understand, design and analyze computer programs in the	1
		areas related to Algorithms and System Software.	
CO 2	PO 1	Describe (knowledge) to simplify an algorithm easily	3
		understood by most people. To solve a problem using	
		recursion, the solution depends on solutions to smaller	
		instances of the same problem using principles of	
		mathematics, science, and engineering fundamentals.	
	PSO 1	Make use of recursive approaches is crucial to the process of	2
		creating efficient and well-structured solutions for design and	
		development of real-time computational problems.	
CO 3	PO 1	Focus on (knowledge) data abstraction or abstract data type as	2
		a logical description of viewing the data and the operations	
		without regard to how they will be implemented using the	
		fundamentals of mathematics, science, and engineering.	
CO 4	PO 1	Describe (knowledge) the use sorting techniques as a basic	3
		building block in algorithm design and problem solving using	
		principles of mathematics, science, and engineering	
		fundamentals.	
	PO 10	Recognize the importance of efficient sorting techniques for	4
		optimizing the efficiency of other algorithms that require	
		input data to be in sorted by communicating effectively with	
		engineering community.	
	PSO 1	Focus on simple sorting algorithms which are at the heart of	2
		solving important problems in computational geometry,	
		machine learning, Big data and AI by understanding and	
		applying the engineering principles.	

CO 5	PO 1	Outline the importance of searching algorithms to retrieve an	3
		element from any data structure where it is stored by	
		understanding and applying the fundamentals of	
		mathematics, science and engineering.	
	PO 10	Understand the use of searching techniques that retrieve	3
		information stored within some data structure by	
		communicating effectively with engineering community.	
	PSO 1	Extend the focus to understand searching techniques in	2
		solving many Web design, Machine Learning and Artificial	
		Intelligence (AI) problems by understanding and applying	
		the engineering principles.	
CO 6	PO 1	Make use of broad knowledge of searching and sorting	3
		techniques to efficiently search an item from a data structure	
		and optimize the efficiency of other algorithms by applying	
		the knowledge of mathematics, science, Engineering	
		fundamentals.	
	PO 10	Build strong foundation of Asymptotic analysis of algorithms	3
		and searching and sorting applications for career building by	
		communicating effectively with engineering community.	
	PSO 1	Acquire sufficient knowledge to understand the importance of	2
		algorithmic analysis in real-time problem solving in various	
		domains like Big-data, Cloud computing, Web design etc. by	
		understanding and applying the engineering principles.	
CO 7	PO 1	Make use of linear data structures to organize the data in a	3
		particular way so to use them in the most effective way by	
		applying the basic knowledge of mathematics, science ,	
		engineering fundamentals.	7
	PO 2	Build strong foundation of data Structures which tells the	/
		program now to store data in memory and forming some	
		development of new products	
	DO3	Decognize the need of linear data structures such as linked	7
	105	list array stack and queue by designing solutions for	7
		complex Engineering problems in real-time	
	PSO 1	Extend the focus to understand the linear data structures as	2
	1501	the key building blocks of many important algorithms used in	2
		the areas related to System Software. Web design. Big data .	
		Artificial Intelligence. Machine Learning and Networking.	
	PSO 3	Acquire sufficient knowledge to develop real-time	2
		applications by making use of linear data structures in career	
		building and higher studies.	
CO 8	PO 1	Describe (knowledge) the usage of data structures in	3
		organizing, managing, and storing different data formats that	
		enables efficient access and modification by applying the	
		fundamentals of mathematics, science, and engineering.	
	PO 2	Recognizing (knowledge) the importance of basic data	7
		structures that are suitable for different kinds of applications	
		by analyzing and formulating solutions of complex	
		engineering problems.	
	PO 3	Understand the applications of basic data structures such as	6
		stacks, queues, linked lists in designing and developing	
		solutions of complex engineering applications.	

	PSO 1	Make use of basic data structures to understand, design and	2
		analyze computer programs in reducing time and space	
		complexities of various applications.	
	PSO 3	Make use of modern computer tools for applying the basic	1
		data structure concepts in building real-time applications for a	
		successful career.	
CO 9	PO 1	Apply the sophisticated hierarchical data structures to	2
		organize keys in form of a tree to use in many real-life	
		applications by using the principles of mathematics and	
		engineering fundamentals.	
	PO 2	Make use of non-linear data structures such as balanced trees	7
		in by identifying, formulating and analyzing complex	
		engineering problems such as databases, syntax tree in	
		compilers and domain name servers etc. with the help of	
		basic mathematics and engineering sciences.	
	PO 3	Extend the concept of tree data structures to design and	6
		develop solutions for complex engineering problems.	
	PSO 1	Extend the focus to understand data structures and algorithms	2
		that play a major role in implementing software in Big data ,	
		Machine Learning, Networking and Operating Systems.	
	PSO 3	Make use of modern computer tools in implementing non-	1
		linear data structures for various applications to become a	
		successful professional in the domain.	
CO 10	PO 1	Demonstrate different tree structures in Python to implement	3
		real-time problems by applying basic knowledge of science	
		and engineering fundamentals.	
	PO 2	Illustrate the importance of tree data structures used for	7
		various applications by identifying, formulating and	
		analyzing complex engineering problems such as operating	
		systems and compiler design.	
	PO 3	Make use of tree data structures to design and develop	6
		solutions for complex engineering problems and which is	
		the key organizing factor in software design. Data structures	
		can be used to organize the storage and retrieval of	
		information stored in both main memory and secondary	
		memory.	
	PSO 1	Build strong foundation of Trees which reflect structural	2
		relationships in the data and provides flexibility in allowing	
		data to move sub-trees around with minimum effort in various	
		computer science applications.	
	PSO 3	Acquire sufficient knowledge in field of data structures and	2
		its applications by using modern computer tools so that new	
		product development can take place, which leads to become	
		successful entrepreneur and or to obtain higher	
		education.	
CO 11	PO 1	Understand (knowledge) the benefits of dynamic and static	3
		data structures implementations and choose appropriate data	
		structure for specified problem domain	
		using knowledge of mathematics, science and engineering	
		fundamentals.	
	PO 2	Recognize the need of dynamic and static data structures in	6
		identifying, formulating and analyzing complex	
		engineering problems.	

	PO 3	Describe (knowledge) the usage of static and dynamic data	7
		structures in designing solutions for complex Engineering	
		problems.	
	PSO 1	Understand, design and implement computer programs	2
		using the benefits of static and dynamic data structures in the	
		areas related to Algorithms, System Software, Web design,	
		Big data, Artificial Intelligence, Machine Learning and	
		Networking.	
	PSO 3	Build sufficient knowledge of dynamic data structures by	2
		using modern tools so that new product can be developed,	
		which leads to become successful entrepreneur in the	
		present market.	
CO 12	PO 1	Build strong foundation of quickly determining the efficiency	3
		of an algorithm or data structure for solving computing	
		problems with respect to performance by using knowledge of	
		mathematics, science and engineering fundamentals.	
	PO 2	Recognize the importance of suitable data structures in	8
		checking the efficiency of algorithms used for complex	
		engineering problems.	
	PO 3	Make use of broad usage of data structures in designing and	7
		developing of complex engineering applications.	
	PSO 1	Make use of data structures to understand, and implement	2
		computer programs in reducing time and space complexities	
		of various applications.	
	PSO 3	Extend the concept of data structures in solving complex	2
		engineering problems using modern engineering tools to	
		become a successful professional in the domain.	

XII. TOTAL COUNT OF KEY COMPETENCIES FOR CO – (PO, PSO) MAPPING

Course		Progr	am O	utcon	nes) /]	No. of	Key	Comp	etenci	ies Ma	atched	l	PSO / No. of key competencies			
Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
	3	10	10	11	1	5	3	3	12	5	12	12	2	2	2	
CO 1	3	-	-	-	-	-	-	-	-	-	-	-	1	-	-	
CO 2	3	-	-	-	-	-	-	-	-	-	-	-	2	-	-	
CO 3	2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
CO 4	3	-	-	-	-	-	-	-	-	4	-	-	2	-	-	
CO 5	3	-	-	-	-	-	-	-	-	3	-	-	2	-	-	
CO 6	3	-	-	-	-	-	-	-	-	3	-	-	2	-	-	
CO 7	3	7	7	-	-	-	-	-	-	-	-	-	2	-	2	
CO 8	3	7	6	-	-	-	-	-	-	-	-	-	2	-	1	
CO 9	2	7	6	-	-	-	-	-	-	-	-	-	2	-	1	

CO 10	3	7	6	-	-	-	-	-	-	-	-	-	2	-	2
CO 11	3	6	7	-	-	-	-	-	-	-	-	-	2	-	2
CO 12	3	8	7	-	-	-	-	-	-	-	-	-	2	-	2

XIII. PERCENTAGE OF KEY COMPETENCIES FOR CO – (PO, PSO):

Course]	Progra	am Oi	utcom	es / N	o. of k	xey co	mpet	encies			PSOs / No. of key competencies			
Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
	3	10	10	11	1	5	3	3	12	5	12	12	2	1	2	
CO 1	100.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	50.0	0.0	0.0	
CO 2	100.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	100.0	0.0	0.0	
CO 3	66.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
CO 4	100.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	80.0	0.0	0.0	100.0	0.0	0.0	
CO 5	100.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	60.0	0.0	0.0	100.0	0.0	0.0	
CO 6	100.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	60.0	0.0	0.0	100.0	0.0	0.0	
CO 7	100.0	70.0	70.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	100.0	0.0	100.0	
CO 8	100.0	70.0	60.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	100.0	0.0	50.0	
CO 9	66.7	70.0	60.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	100.0	0.0	50.0	
CO 10	100.0	70.0	60.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	100.0	0.0	100.0	
CO 11	100.0	60.0	70.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	100.0	0.0	100.0	
CO 12	100.0	80.0	70.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	100.0	0.0	100.0	

XIV. COURSE ARTICULATION MATRIX (PO – PSO MAPPING)

COs and POs and COs and PSOs on the scale of 0 to 3, **0** being **no correlation**, **1** being the **low correlation**, **2** being **medium correlation** and **3** being **high correlation**.

 $\mathbf{0} - \mathbf{0} \le \mathbf{C} \le 5\%$ –Nocorrelation;

2 – 40 % <**C**< 60% –Moderate.

 $1 - 5 < C \le 40\%$ – Low/ Slight;

 $3-60\% \leq C < 100\%$ – Substantial /High

Course Outcomes	Program Outcomes											Program Specific Outcomes			
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	3	-	I	-	-	-	-	-	-	-	-	-	2	-	-
CO 2	3	-	-	-	-	-	-	-	-	-	-	-	3	-	-

CO 3	3	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 4	3	-	-	-	-	-	-	-	-	3	-	-	3	-	-
CO 5	3	-	-	-	-	-	-	-	-	3	-	-	3	-	-
CO 6	3	-	-	-	-	-	-	I	-	3	I	-	3	-	-
CO 7	3	3	3	-	-	-	-	-	-	-	-	-	3	-	3
CO 8	3	3	3	-	-	-	-	-	-	-	-	-	3	-	2
CO 9	3	3	3	-	-	-	-	-	-	-	-	-	3	-	2
CO 10	3	3	3	-	-	-	-	-	-	-	-	-	3	-	3
CO 11	3	3	3	-	-	-	-	-	-	-	-	-	3	-	3
CO 12	3	3	3	-	-	-	-	-	-	-	-	-	3	-	3
TOTAL	36	18	18	-	-	-	-	-	-	9	-	-	32	-	16
AVERAGE	3.0	3.0	3.0	-	-	-	-	-	-	3.0	-	-	2.9	-	2.6

XV. ASSESSMENT METHODOLOGY - DIRECT

CIE Exams	PO 1,PO 2, PO 3,PO 5, PO 12, PSO 1,PSO 3	SEE Exams	PO 1, PO 2, PO 3, PO 5, PO 12, PSO 1,PSO 3	Assignment	PO 1,PO 2, PO 3,PO 5, PO 12, PSO 1,PSO 3	Seminars	PO 1,PO 2, PO 3,PO 5, PO 12, PSO 1,PSO 3
Laboratory Practices	PSO 1, PSO 3	Student Viva	-	Mini Project	-	Certification	-
Term Paper							

XVI. ASSESSMENT METHODOLOGY - INDIRECT

>	Early Semester Feedback	-	End Semester OBE Feedback
X	Assessment of Mini Projects by Experts		

XVII. SYLLABUS

MODULE-I INTRODUCTION TO DATA STRUCTURES, SEARCHING AND SORTING

Basic concepts: Introduction to data structures, classification of data structures, operations on data structures, abstract data type, algorithms, different approaches to design an algorithm, recursive algorithms; Searching techniques: Linear search, binary search and Fibonacci search; Sorting techniques: Bubble sort, selection sort, insertion sort, quick sort, merge sort, and comparison of sorting algorithms.

MODULE- II LINEAR DATA STRUCTURES

Stacks: Primitive operations, implementation of stacks using Arrays, applications of stacks arithmetic

expression conversion and evaluation; Queues: Primitive operations; Implementation of queues using Arrays, applications of linear queue, circular queue and double ended queue (deque).

MODULE-III LINKED LISTS

Linked lists: Introduction, singly linked list, representation of a linked list in memory, operations on a single linked list; Applications of linked lists: Polynomial representation and sparse matrix manipulation.

Types of linked lists: Circular linked lists, doubly linked lists; Linked list representation and operations of Stack, linked list representation and operations of queue

MODULE-IV NON LINEAR DATA STRUCTURES

Trees: Basic concept, binary tree, binary tree representation, array and linked representations, binary tree traversal, binary tree variants, application of trees; Graphs: Basic concept, graph terminology, graph implementation, graph traversals, Application of graphs, Priority Queue

MODULE-V BINARY TREES AND HASHING

Binary search trees: Binary search trees, properties and operations; Balanced search trees: AVL trees; Introduction to M-Way search trees, B trees; Hashing and collision: Introduction, hash tables, hash functions, collisions, applications of hashing.

Textbooks:

Rance D. Necaise, "Data Structures and Algorithms using Python", Wiley Student Edition.
Benjamin Baka, David Julian, "Python Data Structures and Algorithms", Packt Publishers, 2017.

Reference Books:

1. S. Lipschutz, "Data Structures", Tata McGraw Hill Education, 1st Edition, 2008.

2. D. Samanta, "Classic Data Structures", PHI Learning, 2nd Edition, 2004.

XVIII. COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

Lecture	Topics to be Covered	COs	Reference
No			
1 0		CO 2	T1:1.1.3
1 - 2	Basic concepts: Introduction to Data Structures	03	R2:1.2
3 1	Classification of data structures	CO3	T1:1.1.3
5-4	Classification of data structures	005	R2:1.4
5-6	Operations on data Structures	CO 3	T1:1.2
7 - 8	Searching techniques: Linear search and binary	CO 5, CO 6,	T1:5.1
	search	CO 12	
0 10	Sorting techniques: Rubble sort selection sort	CO 4, CO 6,	R1:14.5
9 - 10	Softing techniques. Bubble soft, selection soft	CO 12	
11 14	Insertion sort and comparison of sorting algorithms	CO 4, CO 6,	T1:5.2
11 - 14	insertion soft and comparison of softing argorithms.	CO 12	R2:10.2
15 - 16	Stacks: Primitive operations, implementation of stacks	CO 7, CO 8,	T1:7.1
	using Arrays	CO 11, CO 12	
17 - 20	Applications of stacks arithmetic expression	CO 7, CO 8,	T1:7.2
	conversion and evaluation	CO 11, CO 12	
21 - 22	Queues: Primitive operations; Implementation of	CO 7, CO 8,	T1:8.1
	queues using Array	CO 11, CO 12	
23 - 24	Applications of linear queue, circular queue	CO 7, CO 8,	T1:8.4
	Applications of fillear queue, circular queue	CO 11, CO 12	
25 26	Double and a guage (degue)	CO 7, CO 8,	R2:5.4
23 - 20	Double ended queue (deque)	CO 11, CO 12	

Lecture No	Topics to be Covered	COs	Reference
27 - 28	Linked lists: Introduction, singly linked list.	CO 7. CO 8.	T1:9.1
	representation of a linked list in memory	CO 11, CO 12	
29-30	Operations on a single linked list, Applications of	CO 7, CO 8,	T1:9.2
	linked lists: Polynomial representation, Circular linked	CO 11, CO 12	
	lists, doubly linked lists		
31 - 32	Sparse matrix manipulation	CO 7, CO 8,	T2:9.2
51 - 52		CO 11, CO 12	
33 – 35	Linked list representation and operations of Stack,	CO 7, CO 8,	T1:9
	Linked list representation and operations of queue	CO 11, CO 12	
36 - 38	Trees: Basic concept, binary tree, binary tree	CO 8, CO 9,	T1:13.
	representation, array and linked representations	CO 10, CO 11,	1-13.2
		CO 12	
39 - 40	Binary tree traversal, binary tree variants, application	CO 8, CO 9,	T1:13.2.3
	of trees	CO 10, CO 11,	
		CO 12	
41 - 43	Graphs: Basic concept, graph terminology, graph	CO 8, CO 9,	R2:8.2
	Implementation	CO 10, CO 11,	
		CO 12	
		CO 8, CO 9,	T2:6.2
44 - 46	Graph traversals, Application of graphs	CO 10, CO 11,	
		CO 12	
		CO 8, CO 9,	T1:6.1
47 - 50	Priority Queue	CO 10, CO 11,	T2:5.6
		CO 12	
		CO 8, CO 9,	T1:14.1
51 - 52	Binary search trees, properties and operations	CO 10, CO 11,	
		CO 12	
53 – 55	Balanced search trees: AVL trees, Introduction to M-	CO 8, CO 9,	T1:14.3
	Way search trees, B trees	CO 10, CO 11,	
		CO 12	
56 – 58	Hashing and collision: Introduction, hash tables, hash functions	CO 9, CO 12	R2 : 6.4
59 - 60	Collisions, applications of hashing	CO 9, CO 12	R2 : 6.4

Prepared by: Ms. B Padmaja, Assistant Professor

HOD, CSE