
Hall Ticket No Question Paper Code: ACSB03

INSTITUTE OF AERONAUTICAL ENGINEERING
(Autonomous)

Dundigal, Hyderabad - 500 043

MODEL QUESTION PAPER-I

B.Tech III Semester End Examinations, November 2020

Regulations: IARE - R18

DATA STRUCTURES

(COMMON TO ME/CSE/IT/ECE/CE)

Time: 3 hour Maximum Marks: 70

Answer ONE Question from each MODULE
All Questions Carry Equal Marks

All parts of the question must be answered in one place only

MODULE-I

1. (a) Define sorting? Write the procedure for bubble sort using a suitable example? [7m]

(b) Write a selection sort algorithm and also discuss its efficiency? [7m]

2. (a) Compare the time complexities of various searching and sorting algorithms? [7m]

(b) Given a list of integers 9, 12, 23, 30, 35, 42, 55, 61, 71, 82, 99. Search for an element 35 in
the sorted array by repeatedly dividing the search interval in half. Begin with an interval
covering the whole array. If the value of the search key is less than the item in the middle
of the interval, narrow the interval to the lower half. Otherwise narrow it to the upper
half. Repeatedly check until the value is found or the interval is empty. [7m]

MODULE-II

3. (a) Implement the basic stack operations PUSH, POP, DISPLAY using a list? [7m]

(b) Suppose a circular queue of capacity (n − 1) elements is implemented with an array of n
elements. Assume that the insertion and deletion operation are carried out using REAR
and FRONT as array index variables, respectively. Initially, REAR = FRONT= 0. Find
the conditions to detect queue full and queue empty by using the following conditions.
[7m]

1. Full: (REAR+1) mod n == FRONT, empty: REAR == FRONT

2. Full: (REAR+1) mod n == FRONT, empty: (FRONT+1) mod n == REAR

3. Full: REAR == FRONT, empty: (REAR+1) mod n == FRONT

4. Full: (FRONT+1) mod n == REAR, empty: REAR == FRONT

4. (a) Write a program to reverse a stack using recursion. Use the following ADT functions [7m]

(i) on Stack (S)

(ii) isEmpty(S)

(iii) push(S)

(iv) pop(S)

(b) Design a data structure SpecialStack that supports all the stack operations like push(),
pop(), isEmpty(),isFull() and an additional operation getMin() which should return
minimum element from the SpecialStack. Consider the following SpecialStack and return
the minimum element in the current stack. 16−− > TOP 15 29 19 18 [7m]

MODULE-III

5. (a) Given a doubly linked list, write a function to sort the doubly linked list in increasing
order using merge sort. [7m]

(b) Given a singly linked list and a position, Write a program to delete a linked list node at
the given position. [7m]

(i) Input: position = 1, Linked List = 8− >2− >3− >1− >7
Output: Linked List = 8− >3− >1− >7

(ii) Input: position = 0, Linked List = 8− >2− >3− >1− >7
Output: Linked List = 2− >3− >1− >7

6. (a) Write a function to implement the basic operations of a doubly linked list. [7m]

(b) Given a singly linked list, write a program to check if the linked list is circular or not. A
linked list is called circular if it not NULL terminated and all nodes are connected in the
form of a cycle. [7m]

MODULE-IV

7. (a) Describe various collision resolution techniques in hashing. [7m]

(b) Construct a binary tree given the pre-order traversal and in-order traversals as follows:

(i) Pre-Order Traversal: G B Q A C K F P D E R H

(ii) In-Order Traversal: Q B K C F A G P E D H R [7m]

8. (a) Write the procedure to be followed during infix to postfix conversion. Convert the following
expression (2 + 3) − (4/5)7 from infix to postfix form. [7m]

(b) The Breadth First Search algorithm has been implemented using the queue data structure.
Discover breadth first search for the graph shown in fig 1 with starting node M. [7m]

Figure 1: 8B

MODULE-V

9. (a) Write how an AVL tree is different from Binary search tree and Create a AVL tree and
binary search tree for the given data:
56, 45,91,82,34,22,100,71,85,12 [7m]

Page 2

(b) Create a B-Tree of order 4 for the following data: 67, 33, 57, 81, 20, 11, 16, 38, 61, 78. [7m]

10. (a) Define Hashing? Explain various collision resolution techniques? [7m]

(b) Define a binary tree? Construct a binary tree given the pre-order traversal and in-order
traversals as follows:

(i) Pre-Order Traversal: G B Q A C K F P D E R H

(ii) In-Order Traversal: Q B K C F A G P E D H R

END OF EXAMINATION

Page 3

COURSE OBJECTIVES:
The course should enable the students to:

1 To provide students with skills needed to understand and analyze performance
trade-offs of different algorithms/implementations and asymptotic analysis of their
running time and memory usage.

2 To provide knowledge of basic abstract data types (ADT) and associated algorithms:
stacks, queues, lists, tree, graphs, hashing and sorting, selection and searching.

3 The fundamentals of how to store, retrieve, and process data efficiently.

4 To provide practice by specifying and implementing these data structures and
algorithms in Python.

5 Understand essential for future programming and software engineering courses.

COURSE OUTCOMES:
After successful completion of the course, students should be able to:

CO 1 Carryout the analysis of a range of algorithms in terms of algorithm analysis and
express algorithm complexity using the O notation.

CO 2 Make use of recursive algorithm design technique in appropriate contexts.

CO 3 Represent standard ADTs by means of appropriate data structures.

CO 4 Select appropriate sorting technique for given problem.

CO 5 Select appropriate searching technique for given problem.

CO 6 Implement standard searching and sorting algorithms; including binary search; merge
sort and quick sort; and their complexities.

CO 7 Design and implement linked lists, stacks and queues in Python.

CO 8 Explain the use of basic data structures such as arrays, stacks, queues and linked lists
in program design.

CO 9 Extend their knowledge of data structures to more sophisticated data structures to
solve problems involving balanced binary search trees, AVL Trees, B-trees and B+
trees, hashing, and basic graphs.

CO 10 Design and implement tree structures in Python.

CO 11 Compare and contrast the benefits of dynamic and static data structures
implementations and choose appropriate data structure for specified problem domain.

CO 12 Quickly determine and explain how efficient an algorithm or data structure will be,
apply appropriate data structures for solving computing problems with respect to
performance.

Page 4

MAPPING OF SEMESTER END EXAMINATION QUESTIONS TO
COURSE OUTCOMES

Q.No All Questions carry equal marks Taxonomy CO’s PO’s

1
a Define sorting? Write the procedure for bubble

sort using a suitable example?
Remember CO

4,6,12
PO 1

b Write a selection sort algorithm and also discuss
its efficiency?

Understand CO
4,6,12

PO 1

2
a Compare the time complexities of various

searching and sorting algorithms?
Apply CO 1 PO 1

b Given a list of integers
9, 12, 23, 30, 35, 42, 55, 61, 71, 82, 99. Search for an
element 35 in the sorted array by repeatedly
dividing the search interval in half. Begin with
an interval covering the whole array. If the value
of the search key is less than the item in the
middle of the interval, narrow the interval to the
lower half. Otherwise narrow it to the upper
half. Repeatedly check until the value is found or
the interval is empty.

Apply CO
4,5,6,12

PO 1

3
a Implement the basic stack operations PUSH,

POP, DISPLAY using a list?
Apply CO

7,8,11,12
PO
1,2,3

b Suppose a circular queue of capacity (n− 1)
elements is implemented with an array of n
elements. Assume that the insertion and deletion
operation are carried out using REAR and
FRONT as array index variables, respectively.
Initially, REAR = FRONT= 0. Find the
conditions to detect queue full and queue empty
by using the following conditions. 1. Full:
(REAR+1) mod n == FRONT, empty: REAR
== FRONT 2. Full: (REAR+1) mod n ==
FRONT, empty: (FRONT+1) mod n == REAR
3. Full: REAR == FRONT, empty: (REAR+1)
mod n == FRONT 4. Full: (FRONT+1) mod n
== REAR, empty: REAR == FRONT

Analyze CO
7,8,11,12

PO
1,2,3

4
a Write a program to reverse a stack using

recursion. Use the following ADT functions
(i) on Stack (S) (ii) isEmpty(S) (iii) push(S)
(iv) pop(S).

Apply CO
7,8,11,12

PO
1,2,3

Page 5

b Design a data structure SpecialStack that
supports all the stack operations like push(),
pop(), isEmpty(),isFull() and an additional
operation getMin() which should return
minimum element from the SpecialStack.
Consider the following SpecialStack and return
the minimum element in the current stack.
16−− > TOP 15 29 19 18

Apply CO
7,8,11,12

PO
1,2,3

5
a Given a doubly linked list, write a function to

sort the doubly linked list in increasing order
using merge sort.

Apply CO
7,8,11,12

PO
1,2,3

b Given a singly linked list and a position, Write a
program to delete a linked list node at the given
position. (i) Input: position = 1, Linked List =
8− >2− >3− >1− >7 Output: Linked List =
8− >3− >1− >7 (ii) Input: position = 0, Linked
List = 8− >2− >3− >1− >7 Output: Linked
List = 2− >3− >1− >7

Apply CO
7,8,11,12

PO
1,2,3

6
a Write a function to implement the basic

operations of a doubly linked list.
Understand CO

7,8,11,12
PO
1,2,3

b Given a singly linked list, write a program to
check if the linked list is circular or not. A linked
list is called circular if it not NULL terminated
and all nodes are connected in the form of a
cycle.

Analyze CO
7,8,11,12

PO
1,2,3

7
a Describe various collision resolution techniques

in hashing.
Remember CO

9,12
PO
1,2,3

b Construct a binary tree given the pre-order
traversal and in-order traversals as follows:
(i) Pre-Order Traversal: G B Q A C K F P D E
R H (ii) In-Order Traversal: Q B K C F A G P
E D H R

Analyze CO
8,9,10,11

PO
1,2,3

8
a Write the procedure to be followed during infix

to postfix conversion. Convert the following
expression (2 + 3) − (4/5)7 from infix to postfix
form.

Apply CO
7,8,11,12

PO
1,2,3

b The Breadth First Search algorithm has been
implemented using the queue data structure.
Discover breadth first search for the graph shown
in fig 1 with starting node M.

Apply CO
7,8,11,12

PO
1,2,3

Page 6

9
a Write how an AVL tree is different from Binary

search tree and Create a AVL tree and binary
search tree for the given data: 56,
45,91,82,34,22,100,71,85,12

Understand CO
8,9,10,11

PO
1,2,3

b Create a B-Tree of order 4 for the following data:
67, 33, 57, 81, 20, 11, 16, 38, 61, 78.

Apply CO
8,9,10,11

PO
1,2,3

10
a Define Hashing? Explain various collision

resolution techniques?.
Understand CO

9,12
PO
1,2,3

b Define a binary tree? Construct a binary tree
given the pre-order traversal and in-order
traversals as follows: (i) Pre-Order Traversal: G
B Q A C K F P D E R H (ii) In-Order Traversal:
Q B K C F A G P E D H R

Apply CO
8,9,10,11

PO
1,2,3

KNOWLEDGE COMPETENCY LEVELS OF MODEL QUESTION PAPER

1.png

Signature of Course Coordinator HOD, ME
Ms. B Padmaja, Assistant Professor, CSE

Page 7

