DATASTRUCTURES

Module - 1
Introduction to Data Structures,
Searching and Sorting

Introduction to Data Structures

Classification of Data Structures

Operations on Data Structures

Searching Techniques - Linear, Binary

Sorting Technigues- Bubble, Selection, Insertion,
Comparison of Sorting Algorithms

Data structure organizing efficiently

program data
structure

Every data structure is used to organize the large amount of data.

Every data structure follows a particular principle.

The operations in a data structure should not violate the basic principle of that data structure.

fData Structure

Non primitive

Primitive data structures

Non-primitive data structures

[is organizing the data in , then

that data structure is called as

PAY HERE

N

If a is organizing the data in , then
that data structure is called as

* Contiguous Data Structures

* Non-contiguous Data Structures

1 2 3 l 1 — 2 —

Contiguous Non - Contiguous

* Contiguous Data Structures - Ex. Arrays

* Non-contiguous Data Structures — Ex. Linked Lists

Contiguous Data Structures are of 2 types:

* Arrays: Which contains data items of all the same size.

e Structures: Which contains data items of different size.

struct stud_data{
int age;
intarr[3] ={1,2,3}; char name[20];
)
stud data data ={22,"chandrashekhar"}

"chandrashekhar”

Array

Struct

contiguous structures example

10

Non-Contiguous Data Structures:
* Linked-lists: It is a linear, one-dimensional type of non-contiguous DS.

* Trees and Graphs: It is a two-dimensional non-contiguous DS.

s >
P Q R \

Linked List

Tree
11

T - . e Accessing each record exactly once so that certain items in the record

ra Ve rS I n g . may be processed.

S h : o e Finding the location of the record with a given key value, or finding
e a rC I n g . the locations of all records which satisfy one or more conditions.

I n S e rti n g : e Adding a new record to the structure.

12

De I Et| ng : e Removing a record from the structure.

SO rt| n g . e Arranging the records in some logical order.

- : e Combining the records in two different sorted
M e rgl n g . files into a single sorted file.

13

mathematical model operations

Abstract Data Type (ADT)

ADT separates data type declaration from representation.

ADT separates function declaration (prototype) from implementation.

14

Abstract Data Type

* Model of a data type Abstract Data Type (ADT)

* Properties of the data
* Operations that can be performed on that data

» Definition: Abstract data type (ADT) is a

mathematical model with a collection of
operations defined on that model.

Language.

Example of Abstract Data Type (ADT)

B |nteger Integer ADT
*..-4,-3,-2,-1,0,1,2,3,4..

One more Example of ADT

* SET
e {2'416l8010}

* Take two SET as input and return union
* SET union(SET a, SET b)

* Take two SET as input and return intersection
* SET intersection(SET a, SET b)

* Take two SET as input and return difference
* SET difference(SET a, SET b)

Implementation of ADT:
Implement the operations of a Data
Structure using a programming

SET ADT

15

There are two basic structures we can use to implement an ADT List: arrays and
linked lists.

* Array Implémentation
* Linked List Implémentation

16

Problem
An algorithm is a instructions used for a J,

problem, which can be implemented (as a program) on a computer Algorithm

v
Input —=» —>Output

Algorithm Specifications

e Every algorithm must e Every algorithm must e Every ¢ For all different cases, e Every instruction must

take zero or more produce an output as statement/instruction the algorithm must be basic enough to be

number of input values result. in an algorithm must produce result within a carried out and it also
from external. be clear and finite number of steps. must be feasible.

unambiguous (only one
interpretation)

17

Problem Statement : Find the largest number in the given list of numbers?

Input : A list of positive integer numbers.

Output : The largest number in the given list of positive integer numbers.

18

Algorithm Code in C Programming

int findMax (L)

Step 1: Define a variable 'max’' and initialize with '0'. {

int max =0,i;
Step 2: Compare first number (say 'x') in the list 'L' for(i=0; i < listSize; i++)

{
with 'max’, if 'x' is larger than 'max’, set 'max' to 'x'. if(L[i] > max)

max = L[i];

Step 3: Repeat step 2 for all numbers in the list 'L'. }

return max;
Step 4: Display the value of 'max' as a result. }

19

General approaches to the
to problems.

e a straightforward approach to solve a problem based on the problem’s

Brute force statement and definitions of the concepts involved.

e The solution is constructed through a sequence of steps, each expanding a
partially constructed solution obtained so far. At each step the choice must be
locally optimal — this is the central point of this technique.

20

* Given an instance of the problem to be solved, split this into several smaller sub-instances
D|v|de-and-Conquer (of the same problem), independently solve each of the sub-instances and then combine
the sub-instance solutions so as to yield a solution for the original instance.

® The idea behind dynamic programming is to avoid this pathology by obviating the
Dynamlc Programmlng requirement to calculate the same quantity twice. The method usually accomplishes this
by maintaining a table of sub-instance results.

e we start with a possible solution, which satisfies all the required conditions. Then we
Backtracklng move to the next level and if that level does not produce a satisfactory solution, we
return one level back and start with a new option.

* The purpose of a branch and bound search is to maintain the lowest-cost path to a target.
Branch and Bound Once a solution is found, it can keep improving the solution. Branch and bound search is
implemented in depth-bounded search and depth—first search.

21

The function which is called as Direct
Recursive function (or Recursive function)

mcursively move
fouc din g
| I{ J G 3 |
1 move one fing
mcursively move
foucdn g
L 3 3
[|

* An algorithm is called recursive if it solves a problem by reducing it to
an instance of the same problem with smaller input.

22

Computing n!

Procedure factorial (n : nonnegative integer)
If n=0 then factorial(n)=1
else factorial(n) := n * factorial(n-1)
Take n=4
41 = 4*31 = 4 * (3 *21) = 4*3*2*(1!) = 4*3*2*1*(0!) = 24

1 ifn=20

factorial(n) = { n* factorial(n —1) ifn>1

23

~ Recursion

24

* Linear Recursion: makes at most one recursive call each time it is invoked.
E.g. factorial, sum of natural numbers, GCD

* Binary Recursion: makes two recursive calls. E.g. Fibonacci series

. Multliple Recursion: makes more than two recursive calls. E.g. Combinatorial
puzzles

e Tail Recursion: A recursive function call is tail recursive when recursive call is
the last thing executed by the function. E.g. factorial of a number.

. 1 if n=0 pot + pan = bib
factorial(n) = : .
n* factorial(n — 1) ifn>1 .
dog + cat = pig
0 if n=0 boy + girl = baby
Fib(n) = {1 if n=1,
| Fib(n — 1) + Fib(n — 2) otherwise.

25

1. Which of the following data structure is non-linear type?
a. Strings
b. Stacks
c. Linked lists
d. Trees

2. Which of the following data structure is linear type?
a. Strings
b. Queues
c. Linked lists
d. All the above

26

3. To represent hierarchical relationship between elements, which data structure is
suitable?

a. Queues

b. Stacks

c. Trees

d. All the above

4. An algorithm that calls itself directly or indirectly is known as?
a. Sub algorithm
b. Recursion
c. Traversal algorithm
d. All the above

27

5. Which of the following are algorithmic design techniques?
a. Divide-and-conquer
b. Branch and bound
c. Dynamic programming
d. All the above

6. Which is not a property of an algorithm?
a. Generality
b. Effectiveness
c. Definiteness
d. Performance

28

7. LIFO (Last in first out) mechanism is used in which data structure?
a. Linked lists
b. Arrays
c. Queues
d. Stacks

8. FIFO (First in first out) mechanism is used in which data structure?
a. Linked lists
b. Arrays
c. Queues
d. Stacks

29

9. In which data structure, the element which is inserted first will be removed last
(FILO principle)?

a. Linked lists

b. Arrays

c. Queues

d. Stacks

10. The data structure, in which the data items are physically not next to each
other, but virtually in linear order is called a ----- ?

a. Arrays

b. Queues

c. Linked lists

d. Stacks

30

11. Based on organization of data, the classification of data structures are ?
a. Linear and non-linear DS
b. Primitive and non-primitive DS
c. Contiguous and non-contiguous DS
d. All the above

12. Based on arrangement of data elements in memory, the classification of data
structures are

a. Linear and non-linear DS

b. Primitive and non-primitive DS

c. Contiguous and non-contiguous DS

d. All the above

31

13. Arrays and structures follow which category of data structures?
a. Non-linear DS
b. Primitive DS
c. Contiguous DS
d. All the above

14. Linked lists Is an example of which data structures?
a. Linear DS
b. Non-primitive DS
c. Non-contiguous DS
d. All the above

32

15. A list which display the relationship of adjacency between elements is said to
be?

a. Linear

b. Non-linear

c. Linked lists

d. Trees

33

Definition: An algorithm is a finite sequence of instructions, each of which
has a clear meaning and can be performed with a finite amount of effort in a
finite length of time.

Properties of an algorithm:
> Input

» Output
» Definiteness
> Finiteness

> Effectiveness

34

Choosing an efficient algorithm or data structure is an important aspect of the
design process. There are three basic design goals that we should strive for in a
program:

Design issues of an algorithm:
» Try to save time (Time Complexity)

» Try to save space (Space Complexity)
» Try to have face

35

The performance of a program is the amount of computer memory and time
needed to run a program.

Time Complexity:

The time needed by an algorithm expressed as a function of the size of a
problem is called the Time Complexity of the algorithm. The time complexity
of a program is the amount of computer time it needs to run to completion.

Space Complexity:

The space complexity of a program is the amount of memory it needs to run to
completion. The space need by a program has the following components:

» Instruction Space
» Data Space

» Environment Stack Space

36

» 1 (Constant running time)
» log n (logarithmic)

> n (linear)

» nlogn

» n?(Quadratic)

> n3(Cubic)

> nk (Polynomial)

» 2" (Exponential)

If n is the number of data items to be processed or degree of polynomial or the size of the file to be
sorted or searched or the number of nodes in a graph etc.

37

» The complexity of an algorithm M is the function f(n) which gives the running
time and/or storage space requirement of the algorithm in terms of the size n of
the input data.

»Mostly, the storage space required by an algorithm is simply a multiple of the
data size n. Complexity shall refer to the running time of the algorithm.

» The function f(n), gives the running time of an algorithm, depends not only on
the size n of the input data but also on the particular data.

» The complexity function f(n) for certain cases are:

v" Best Case: Provides a lower bound on running time.
v"Average Case: Provides the expected running time.

v"Worst Case: Provides an upper bound on running time.

38

Run time of an algorithm is described as the function of input size n. Time
Complexity is described asymptotically 1.e. as the input size goes to infinity.

Time Complexity Is expressed using the highest-order term in the expression for
the exact running time. E.g. f(n) = n? + 4n + 5, then it is written as ®(n?)

» BIg-Oh(O) — Upper bound of a function
» Big-Omega(€2) — Lower bound of a function

» Theta(®) — Average bound of a function

39

f (n)=0(g(n)): there exist positive constantsc and n, such that
0< f(n)<cg(n)forall n>n,

g(n) is asymptotic upper bound for f(n).
l1<logn<n<nlogn<n?<nd. . .<2"..<n
Example: f(n) =2n + 3

2n +3 <10n
Then f(n) = O(n)
2n+3<7/n Vn >1
Then f(n) = O(n)
2n+3<2n+3n Vn >1
2n+3<5n
Then f(n) = O(n)

f(n)=2n+3
2n+3< 2n?+3n> Vn>1
2n + 3 < 5n?
Then f(n) = O(n?)
2n+3<5n® Vn >1
Then f(n) = O(n3%)
2n+3<5n° Vn>1
Then f(n) = O(n®)

f(n) = O(n)

40

cg(n)

f(n)

41

f (n)=Q(g(n)): there exist positive constantsc and n, such that

0< f(n)>cg(n)forall n>n,
g(n) is asymptotic lower bound for f(n).
l1<logn<n<nlogn<n?<nd...<2"..<n
Example: f(n) =2n + 3
f(n) > c*g(n)
2n+3 > 1*n Vn>1
Then f(n) = Q(n) Is true
2n+3 > 1*logn Vn=>1
Then f(n) = Q(log n) is true
2n+3 > 1*n? V n >1is not satisfied
Then f(n) = Q(n?) is false

42

f(n)

cg(n)

43

f (n)=0(g(n)): there exist positive constantsc,, c,, and n, such that
0<cg(n)< f(n)<c,g(n)forall n>n,

f(n)=0(g(n))= f(n)=0(g(n)) AND f(n)=(g(n))
g(n) is average or tight bound for f(n).
1<logn<n<nlogn<n?<nd..<2"..<n
Example: f(n) =2n + 3
c,*g(n) = f(n) < c,*g(n)
1*n < 2n+3< 5*n Vn=>1
Then f(n) = ®(n) Is true

44

C,g(n)

f(n)

c,9(n)

45

"o fin) = ©(g(m)

cgin)

.-ﬂ”}

0 fn) = Oam)

<

fln)

_cgln)

- 1 [

Y fimy = Qigln))

N

46

l1<logn<n<nlogn<n?<nd. . <2"<3"<4"< . <n"

Example: f(n) = 2n? + 3n + 4

2n?+3n+4 < c*g(n)

2n’+3n+4 < 2n’+3n°+4n> Vn >1

2n%+3n+4 <9n?
Then f(n) = O(n?) is true
Example: f(n) = 2n? + 3n + 4

2n°>+3n+4 > ¢ *g(n)

2n>+3n+4 > 1*n? Vn>1
Then f(n) = Q(n?) is true
Example: f(n) =2n? + 3n + 4

c*g(n) < f(n) < c,*g(n)

1*n? < 2n°+3n+4 < 9n? vVn>1
Then f(n) = ®(n?) is true

47

1<logn<n<nlogn<n?<nd..<2"<3"<4"< . <n"

Example: f(n) = n? log n + n represent the function f(n) using Big-Oh, Omega and
Theta notation.

c*g(n) < f(n) < c,*g(n)
1*n?logn < n’logn+n < 10*n?logn Vn >1
Then f(n) = O(n? log n) is true
f(n) = Q(n? log n) is true
f(n) = ®(n? log n) is true

48

1<logn<n<nlogn<n?<nd..<2"<3"<4n< .. <n"

Example: f(n) = n! represent the function f(n) using Big-Oh, Omega and Theta
notation.

nt=n*(n-1)*(n-2)*(n-3)*............ *3*2*1
We canalsowriteas1*2*3* *(n-2) * (n-1) * n
¢, *g(n) < f(n) < c,*g(n)
1*1*...... *I<L1*2*3* ... *n<n*n*n* ... *n Vn=>1
1 < nl<nn so here g(n) is different in both sides.

Then f(n) = O(n") Is true and this is upper bound.
f(n) = Q(1) is true and this is lower bound.

But we are unable to find a suitable place in between upper and lower bound. So we
can’t write theta notation for this function.

49

l1<logn<n<nlogn<n?<nd...<2"<3"<4"< <n"
Example: f(n) = log n! represent the function f(n) using Big-Oh, Omega and Theta notation.
nN=n*n-1)*(n-2)*(n-3)*............ *3*2*1
We canalsowriteas1*2*3* *(n-2) * (n-1) * n
c*g(n) < f(n) < c*g(n)
log(1*1*...... *D<log(1*2*3*....... *n<log(hn*n*...*n) Vn=>1
1 < logn!< lognn so here g(n) is different in both sides.
Then f(n) = O(log n") is true and this is upper bound.
f(n) = Q(1) is true and this is lower bound.
Here we can’t write theta notation for this function.

Note: Every function may not have an average or tight bound, in that case express the
function using either upper or lower case.

50

Example 1: for (I1=0; 1 <n; I++) ----mmmmmmmmmmmme - n+1 times or n times

{
stmt; 0 —meemmmeemee n times
}
Time Complexity ---------- O(n)
Example 2: for (I=1;1>0; 1--) --------mmmmmmmmmmmo- n+1 times or n times
{
stmt; = mmmeemmmmemmeeeeeeeeeee n times
}
Time Complexity ---------- O(n)

51

Example 3: for (I=1; 1 <n; I=i+ 2)

{

stmt; 0 n/2 times, so it’s a function of f(n) = n/2
Time Complexity ---------- O(n)
Example 4: for (i=1; 1 <n; i=i + 20)

{

stmt; 00 e n/20 times, so it’s a function of f(n) = n/20

52

Example 5: for (I=0; 1 <n; I++) ----mmmmmmm- n+1 times

{
for(j=0; j<n; j++) = -mmmmeeeee n* (n+1)
{
Stmt; ~ ==mmeeeee n * n times, so it’s a function of f(n) = n?
}
}

Time Complexity ---------- O(n?)

53

Example 6: for (i = 0; i < n; i++)

{
for(j=0; j<i; j++)
{
stmt:
}
}

1+2+3+4+...... +n = (n(n+1)) / 2 times
f(n) = (n?+1)/2
Time Complexity O(n?)

i J no of times stmt executed
0 false stmt not executed
1 0 1 time

1 false
2 0 2 times

1

2 false
3 0 3 times

1

2

3 false
n 0 n times

1

2

n-1

n false

54

Example 7:
p=0;
for (iI=1,p<=n;i++)
{
P =P+l
}

Assume when p > n then the loop will
stop.

Since p = (k(k+1))/2
(k(k+1))/2>n
Assume k2 >n
K>y n
Time Complexity f(n) = O(y n)

|

1 0+1=1

2 1+2 =3

3 1+2+3 =6

4 1+2+3+4 = 10

S 1+2+3+4+5=15

K 1+2+3+4+5+....+K

55

Example 8:
for(i=21;1<n;1=1*2)

{

stmt;

}

Assume when i > n then the loop will
stop.

Since i = 2K
2k >=n
Take 2K =n
k =log,n
Time Complexity f(n) = O(log,n)

1

1x2=2
2X2=22
22 x2=23
23x 2 =24
2kl x 2 = 2K

56

Example 9:
for(i=n;1>=1;1=1/2)
{

stmt;

}

Assume when i < 1 then the loop will
stop.

Sincei=n/ 2K
n/2k<1
So n=2k
k =log,n
Time Complexity f(n) = O(log,n)

57

Example 10:
for(1I=0;1*1<n;i++)

{

stmt;

s
Till 1 * 1 <n the loop will execute,
when 1 * 1 >= n then the loop will stop.
Since i >=n
So i“=n

I =N
Time Complexity f(n) = O(v'n)

58

Example 11: Independent loops
for (i=0;1<n; I++)

{

stmt; 0 - n times
}
for j =0;] <n;j++)
{

stmt; - n times
}

Total 2n times both the loops will run.
Time Complexity f(n) = O(n)

59

Example 12: Dependent loops

p=0;
for(i=1;i<n;i=i*2)
{
p++;, e log n times
}
for(j=1,)<p;]=J*2)
{
stmt; 0 - log p times = log log n times
}

Time Complexity f(n) = O(log log n)

60

Example 13: Nested loops

for(i=0;1<n;1++) ------- n+1 times or n times
{
forG=1;j<n;j=j*2) ------ n log n times
{
stmt; e n log n times
}
}

Total both the loops will run 2nlog n + n times
Time Complexity f(n) = O(nlog n)

61

1. The Big-Oh notation for f(x) =5 log x Is ?
a. 1
b. X
C. X?
d. X3
Ans: 5 log x < x then f(x) = O(x)

2. The Big-Omega notation for f(x) = 2x* + x? - 4?
a. X2
b. x°
C. X
d. X4
ANs: 2x* + x? —4 > x*then f(x) = Q(x*)

62

Definition: Searching is an operation or a technique that helps finds the place
of a given element or value In the list. Any search is said to be successful or

unsuccessful depending upon whether the element that is being searched is
found or not.

Searching Techniques:
» Linear or Sequential Search

» Binary Search
» Fibonacci Search

» Interpolation Search

63

This is the simplest of all searching techniques. In this technique, an ordered or unordered list will
be searched one by one from the beginning until the desired element is found. If the desired
element is found in the list then the search is successful otherwise unsuccessful.

Time Complexity of Linear Search algorithm:

» Suppose there are n elements organized sequentially on a List. The number of comparisons
required to retrieve an element from the list, purely depends on where the element is stored in
the list. If it is the first element, one comparison will do; if it is second element two

comparisons are necessary and so on. On an average you need [(n+1)/2] comparison’s t0
search an element. If search is not successful, you would need ‘n’ comparisons.

» The time complexity of linear search
» Best case: O(1)
» Average case: O(n/2)
» Worst case: O(n)

64

Let array a[n] stores n elements. Determine whether element X is present or not.
linear_search(a[n], x)

{
Index = 0; flag = 0;
while (index < n) do
{
If (x == a[index])
{
flag = 1,
break;
by
Index ++;
by
If(flag == 1)
printf(“Data found at %d position”, index);
else

printf(“‘data not found”);

65

Array={3,5,6,8,1,7,9,2, 10, 4 } Find the position of 8.

3 5 6 8 7 10
0 1 2 3 5 g
3 5 6 8 7 10
0 1 2 3 5 8
3 5 6 8 7 10
0 1 2 3 5 8
3 5 6 8 7 10
0 1 . 3 5 8

66

» Binary Search iIs used for searching an element in a sorted array.

> It is a fast search algorithm with run-time complexity of O(log, n).
» Binary search works on the principle of divide and conquer.

» This searching technique looks for a particular element by comparing the middle most
element of the collection.

> It is useful when there are large number of elements in an array.

» The time complexity of Binary search
» Best case: O(1)

» Average case: O(log, n)
» Worst case: O(log, n)

67

Elements

If we are searching for x = 4 then

Low =1, high =12, mid = 6, check 20

Low = 1, high =5, mid = 3, check 8

Low =1, high = 2, mid = 1, check 4, Data Found (3 comparisons)

If we are searching for x = 77

Low = 1, high = 12, mid = 6, check 20

Low= 7, high =12, mid = 9, check 39

Low = 10, high = 12, mid = 11, check 54

Low =12, high =12, mid = 12, check 77, Data Found

Time Complexity of Binary search : O(log n) (4 comparisons)

binary_search(a[], n, x)

{
low = 1; high = n;
while (low < high) do
{
mid = (low + high)/2;
If (x <a[mid])
high = mid - 1;
else if (x > a[mid])
low = mid + 1;
else
return mid;
}
return O;

69

Definition: Sorting allows an efficient arrangement of elements within a given data structure. It is a way in
which the elements are organized systematically for some purpose.

For example, a dictionary in which words is arranged in alphabetical order and telephone director in which
the subscriber names are listed in alphabetical order.

There are a number of many sorting techniques such as:
> Bubble sort

» Selection sort

» Insertion sort

» Quick sort

» Merge sort

» Heap sort

» Radix sort

There are two types of sorting techniques:

» Internal sorting
» External sorting

70

»Bubble sort is a simple sorting algorithm. This sorting algorithm is comparison-based
algorithm in which each pair of adjacent elements is compared and the elements are swapped if
they are not in order.

» This sorting technique is also known as exchange sort, which arranges values by iterating
over the list several times and in each iteration the larger value gets bubble up to the end of the
list.

» Consider the array x[n] which is stored in memory as shown below:

Pass 1.
Initial Array or List X[0] | x[1]1 | x[2] | X[3]1 | x[41 | X[5] | Remarks
33 | 44 | 22 | 1t | 66 | 55
xio] | x11 | xt21 | xt31 | xta1 | x(s
(0] | X[1] | Xi2] | X(3] | X(4] | (5] N
33 | 44 | 22| 11| e6 | 55 4 | aa
a4 | 66
55 66
33 22 11 44 55 66

71

Pass 4:

Pass 2:
X[0] X[1] X[2] X[3] | X[4] | Remarks
33 22 11 44 55
22 33
11 33
33 44
44 55
22 11 33 44 55
Pass 3:
X[0] | X[1] X[2] X[3] | Remarks
22 11 33 44
11 22
22 33
33 44
11 22 33 44

X[0] | X[1] [X[2] Remarks
11 22 33
11 22
22 33
Pass 5: The array will be sorted

72

begin BubbleSort(list) void bubble(int a], int n){
for(int iI=0; i=<n; i++){

for all elements of list int swaps=0;
if list[i] > list[i+1] fﬂfii'jtF‘_E'; Fﬁ—i—‘l; Rl
swap(list[i], list[i+1]) balre el
end if int t=alj],
end for abl=afr+1]
afi+1]=t;
return list y SwEpsT
}
end BubbleSort if(swaps==0)
break;
}

73

In Bubble Sort, n-1 comparisons will be done in the 1st pass, n-2 in 2nd pass, n-3 in 3rd pass and so on.
So the total number of comparisons will be,

(n-1)+(n-2)+(n-3)+....+3+2+1
Sum = n(n-1)/2
i.e. O(n?)

The bubble sort method of sorting an array of size n requires (n-1) passes and (n-1) comparisons on
each pass. Thus the total number of comparisons is (n-1) * (n-1) = n? — 2n + 1, which is O(n?).

Therefore bubble sort is very inefficient when there are more elements to sorting.

»\Worst Case Time Complexity: O(n?) upper bound
»Best Case Time Complexity: Q(n) lower bound (when the list is already sorted)
»Average Time Complexity: O(n?) average bound

»Space Complexity: O(1) because only a single additional memory space is required i.e. for temp
variable.

74

1. Where is linear searching used?

a) When the list has only a few elements

b) When performing a single search in an unordered list

c) Used all the time

d) When the list has only a few elements and When performing a single search in an unordered list

2. What is the best case for linear search?
a) O(nlogn)

b) O(logn)

¢) O(n)

d) O(1)

3. What is the worst case for linear search?
a) O(nlogn)

b) O(logn)

c) O(n)

d) O(1)

75

4. What is the best case and worst case complexity of ordered linear search?
a) O(nlogn), O(logn)

b) O(logn), O(nlogn)

¢) O(n), O(1)

d) O(1), O(n)

5. Which of the following is a disadvantage of linear search?

a) Requires more space

b) Greater time complexities compared to other searching algorithms
c) Not easy to understand

d) Not easy to implement

6. What is the advantage of recursive approach than an iterative approach?
a) Consumes less memory

b) Less code and easy to implement

¢) Consumes more memory

d) More code has to be written

76

7. Given an input arr = {2,5,7,99,899}; key = 899; What is the level of recursion?
a) 5
b) 2
c)3
d) 4

8. Given an array arr = {45,77,89,90,94,99,100} and key = 99; what are the mid values(corresponding
array elements) in the first and second levels of recursion?

a) 90 and 99

b) 90 and 94

c) 89 and 99

d) 89 and 94

9. What is the worst case complexity of binary search using recursion?
a) O(nlogn)

b) O(logn)

c) O(n)

d) O(n2)

77

10. What is the average case time complexity of binary search using recursion?
a) O(nlogn)

b) O(logn)

c) O(n)

d) O(n2)

11. Which of the following is not an application of binary search?
a) To find the lower/upper bound in an ordered sequence

b) Union of intervals

c¢) Debugging

d) To search in unordered list

12. Binary Search can be categorized into which of the following?
a) Brute Force technique

b) Divide and conquer

c) Greedy algorithm

d) Dynamic programming

78

13. Given an array arr = {5,6,77,88,99} and key = 88; How many iterations are done until the element is
found in binary search?

a) 1

b) 3

c)4

d) 2

14. What is the time complexity of binary search with iteration?
a) O(nlogn)

b) O(logn)

c) O(n)

d) O(n2)

15. Is there any difference in the speed of execution between linear serach(recursive) vs linear
search(lterative)?

a) Both execute at same speed

b) Linear search(recursive) is faster
c) Linear search(lterative) is faster
d) Cant be said

79

16. Is the space consumed by the linear search(recursive) and linear search(iterative) same?
a) No, recursive algorithm consumes more space

b) No, recursive algorithm consumes less space

c) Yes

d) Nothing can be said

17. What is the worst case runtime of linear search(recursive) algorithm?
a) O(n)

b) O(logn)

c) O(n2)

d) O(nx)

18. Linear search(recursive) algorithm used in
a) When the size of the dataset is low

b) When the size of the dataset is large

c) When the dataset is unordered

d) Never used

80

19. Can linear search recursive algorithm and binary search recursive algorithm be performed on an
unordered list?

a) Binary search can’t be used
b) Linear search can’t be used
c) Both cannot be used

d) Both can be used

20. What is an external sorting algorithm?

a) Algorithm that uses tape or disk during the sort
b) Algorithm that uses main memory during the sort
c¢) Algorithm that involves swapping

d) Algorithm that are considered ‘in place’

21. What is an internal sorting algorithm?

a) Algorithm that uses tape or disk during the sort
b) Algorithm that uses main memory during the sort
c) Algorithm that involves swapping

d) Algorithm that are considered ‘in place’

81

22. \What is the worst case complexity of bubble sort?
a) O(nlogn)

b) O(logn)

¢) O(n)

d) O(n?)

23. What is the average case complexity of bubble sort?
a) O(nlogn)

b) O(logn)

c) O(n)

d) O(n?)

24. Bubble sort is also known as -----------------

82

» Selection sort is an in-place comparison sorting algorithm.
» The algorithm divides the input list into two parts:

* A sorted sub-list of items which is built up from left to right at the front (left) of the list and

* A sub-list of the remaining unsorted items that occupy the rest of the list.
> Initially, the sorted sub-list is empty and the unsorted sub-list is the entire input list.
» The algorithm proceeds by finding the smallest (or largest, depending on sorting order) element
In the unsorted sub-list, exchanging (swapping) it with the leftmost unsorted element (putting it in
sorted order), and moving the sub-list boundaries one element to the right.

83

Let us consider the following example with 9 elements to analyze selection Sort:

1 2 3 4 5 6 7 8 9 Remarks
65 70 75 80 50 60 55 85 45 find the first smallest element
i j swap ali] & a[j]
45 70 75 80 50 60 55 85 65 find the second smallest element
i j swap ali] and a[j]
45 50 75 80 70 60 55 85 65 Find the third smallest element
i j swap a[i] and a[j]
45 50 55 80 70 60 75 85 65 Find the fourth smallest element
i j swap ali] and a[j]
45 50 55 60 70 80 75 85 65 Find the fifth smallest element
i j swap ali] and a[j]
45 50 55 60 65 80 75 85 70 Find the sixth smallest element
i j swap a[i] and a[j]
45 50 55 60 65 70 75 85 80 Find the seventh smallest element
ij swap ali] and a[j]
45 50 55 60 65 70 75 85 80 Find the eighth smallest element
i] swap ali] and a[j]
45 50 55 60 65 70 75 80 85 The outer loop ends.

84

Sorted sublist

Unsorted sublist

Least element in unsorted list

() (11, 25, 12, 22, 64) | 11
(11) (25,12, 22, 64) 12
(11, 12) (25, 22, 64) 22
(11, 12, 22) (25, 64) 25
(11, 12, 22, 25) (64) 64

(11, 12, 22, 25, 64)

0

85

Selection sort

Class
Data structure

Worst-case
performance

Best-case
performance

Average
performance

Worst-case space
complexity

Sorting algorithm
Array

O(n?) comparisons,

O(n) swaps

O(n?) comparisons,

O(1) swaps

O(n?) comparisons,

O(n) swaps

O(1) auxiliary

» The time efficiency of selection sort is quadratic, so there are a number of sorting techniques
which have better time complexity than selection sort.
» One thing which distinguishes selection sort from other sorting algorithms is that it makes the
minimum possible number of swaps, n — 1 in the worst case.

86

FindMinIndex(Arr[], start, end)

min_index = start

FOR i from (start + 1) to end:
IF Arr[i] < Arr[min_index]:

min_index = 1
END of IF
END of FOR

Return min_index

87

» This iIs an in-place comparison-based sorting algorithm. Here, a sub-list is maintained which is
always sorted.

»An element which is to be inserted in this sorted sub-list, has to find its appropriate place and
then it has to be inserted there. Hence the name, insertion sort.

»The array is searched sequentially and unsorted items are moved and inserted into the sorted
sub-list (in the same array).

» This algorithm is not suitable for large data sets as its average and worst case complexity are of
O(n2), where n is the number of items.

Example:

» Insertion sort works similarly as we sort cards in our hand in a card game.

»\We assume that the first card iIs already sorted then, we select an unsorted card. If the unsorted
card is greater than the card in hand, it is placed on the right otherwise, to the left. In the same
way, other unsorted cards are taken and put at their right place.

88

Insertion Sort Execution Example

. 3 2 10 12 1 3] 6

10 12 1 9 6

10 12 1 5 6

4| KB [12] [1][5][6s

89

» Efficient for (quite) small data sets, much like other quadratic sorting algorithms.

»Adaptive, 1.e., efficient for data sets that are already substantially sorted: the time complexity
Is O(kn) when each element in the input is no more than k places away from its sorted position.
» Stable; i.e., does not change the relative order of elements with equal keys.

»In-place; i.e., only requires a constant amount O(1) of additional memory space.

» Online: 1.e., can sort a list as it receives it.

90

» The best case input is an array that is already sorted. In this case insertion sort has a linear
running time (i.e., O(n)). During each iteration, the first remaining element of the input is only
compared with the right-most element of the sorted subsection of the array.

» The simplest worst case input is an array sorted in reverse order. In these cases every iteration
of the inner loop will scan and shift the entire sorted subsection of the array before inserting the
next element. This gives insertion sort a quadratic running time (i.e., O(n?)).

»The average case is also quadratic (O(n?)), which makes insertion sort impractical for sorting
large arrays.

» However, insertion sort is one of the fastest algorithms for sorting very small arrays.

91

Class
Data structure

Worst-case performance

Best-case performance

Average performance

Worst-case space
complexity

Sorting algorithm

Array

O(n?) comparisons and
swaps

O(n) comparisons, O(1)
swaps

O(n?) comparisons and
swaps

O(n) total, O(1) auxiliary

92

INSERTION-SORT(A)
for 1 = 1 to n
key « A [1]
Jj+«1i-1
while 7 > = @8 and A[]] > key
A[J+1] « A[7]
1«3 -1
End while
A[j+1] « key
End for

93

Algorithm

Bubble Sort
Insertion Sort

- Selection Sort

Time
Complexity
(Best)

O(n)
O(n)
0O(n?)

Time
Complexity
(Average)

O(n?)
0O(n?)
O(n?)

Time

Space

Complexity Complexity

(Worst)
O(n?)
0O(n?)
O(n?)

O(1)
O(1)
O(1)

1
4

94

25. How many passes does an insertion sort algorithm consist of?
a) N

b) N-1

c) N+1

d) N?

26. What is the average case running time of an insertion sort algorithm?
a) O(N)

b) O(N log N)

c) O(log N)

d) O(N?)

27. Any algorithm that sorts by exchanging adjacent elements require O(N2) on average.
a) True
b) False

95

28. What is the running time of an insertion sort algorithm if the input is pre-sorted?
a) O(N2)

b) O(N log N)

c) O(N)

d) O(M log N)

29. What will be the number of passes to sort the elements using insertion sort?
14, 12,16, 6, 3, 10

a) 6

b) 5

c)7

d) 1

30. Which of the following real time examples is based on insertion sort?
a) arranging a pack of playing cards

b) database scenarios and distributes scenarios

c) arranging books on a library shelf

d) real-time systems

96

31. Which of the following options contain the correct feature of an insertion sort algorithm?
a) anti-adaptive

b) dependable

c) stable, not in-place

d) stable, adaptive

32. Which of the following sorting algorithms is the fastest for sorting small arrays?
a) Quick sort

b) Insertion sort

c) Shell sort

d) Heap sort

33. For the best case input, the running time of an insertion sort algorithm is?
a) Linear

b) Binary

¢) Quadratic

d) Depends on the input

97

34. What is an in-place sorting algorithm?

a) It needs O(1) or O(logn) memory to create auxiliary locations
b) The input is already sorted and in-place

c) It requires additional storage

d) It requires additional space

35. What is the worst case complexity of selection sort?
a) O(nlogn)

b) O(logn)

c) O(n)

d) O(n?)

36. What is the advantage of selection sort over other sorting techniques?
a) It requires no additional storage space

b) It is scalable

c) It works best for inputs which are already sorted

d) It is faster than any other sorting technique

98

37. What is the disadvantage of selection sort?
a) It requires auxiliary memory

b) It is not scalable

c) It can be used for small keys

d) It takes linear time to sort the elements

38. What is the best case complexity of selection sort?
a) O(nlogn)

b) O(logn)

c) O(n)

d) O(n?)

39. The given array is arr = {3,4,5,2,1}. The number of iterations in bubble sort and selection sort

respectively are,
a) 5and 4
b)4and 5
Cc) 2 and 4
d)2and 5

99

40. The complexity of the sorting algorithm measures the
be sorter.

A. average time

B. running time

C. average-case complexity

D. case-complexity

100

Module — 2
Linear Data Structures

Stacks: Primitive operations

Implementation of stacks using Arrays

Applications of stacks arithmetic expression conversion and evaluation
Queues: Primitive operations; Implementation of queues using Arrays
Applications of linear queue

Circular queue

Double ended queue (deque)

N O -

» A stack is a basic data structure that can be logically thought of as a linear structure
represented by a real physical stack or pile, a structure where insertion and deletion of items
takes place at one end called top of the stack.

» The basic concept can be illustrated by thinking of your data set as a stack of plates or
books where you can only take the top item off the stack in order to remove things from it.

» The basic implementation of a stack is also called a LIFO (Last In First Out).

» There are basically three operations that can be performed on stacks. They are

1) inserting an item into a stack (push).
2) deleting an item from the stack (pop).
3) displaying the contents of the stack (peek or top).

103

PUSH: It is the term used to insert an element into a
stack.

POP: It is the term used to delete an element from a
stack.

Additional Operations:
Display: It displays all the elements in the stack.

Traverse: Visit each element of the stack from top to
bottom or vice versa.

Search: Check whether a specific element is present in
the stack or not.

=N WH O,

« Two standard error messages of stack are

— Stack Overflow: If we attempt to add new element beyond the maximum size, we will
encounter a stack overflow condition.

— Stack Underflow: If we attempt to remove elements beyond the base of the stack, we
will encounter a stack underflow condition.

PUSH (STACK, TOP, MAXSTR, ITEM): This procedure pushes an ITEM onto a stack
1. If TOP = MAXSIZE, then Print: OVERFLOW, and Return.

2. Set TOP :=TOP + 1 [Increases TOP by 1]
3. Set STACK [TOP] := ITEM. [Insert ITEM in TOP position]

4. Return

POP (STACK, TOP, ITEM): This procedure deletes the top element of STACK and
assign it to the variable ITEM
1. If TOP =0, then Print: UNDERFLOW, and Return.

2. Set ITEM := STACK][TOP]
3.Set TOP :=TOP - 1 [Decreases TOP by 1]

4. Return

« There are many ways of implementing stack ADT, below are the commonly used methods:

» Static array/list based implementation
» Dynamic array/list based implementation

» Linked lists implementation

stack =[] #stack is a list, stack is an empty list

append() function to push element in the stack
stack.append(‘a’)
stack.append('b")
stack.append('c’)

print(‘Initial stack’)
print(stack)

pop() fucntion to pop element from stack in LIFO order
print("\nElements poped from stack:")

print(stack.pop())

print(stack.pop())

print(stack.pop())

print('Stack after elements are popped:')
print(stack) #Display the elements of stack

#Stack implementation using list
top=0
mymax=5
def createStack():
stack=[] #stackisa list
return stack

def isEmpty(stack):
return len(stack)==0

def Push(stack,item):
stack.append(item)
print("'Pushed to stack", item)

def Pop(stack):
if isEmpty(stack):
return "stack underflow"
return stack.pop()

#create a stack object
stack=createStack()
while True:

print("1.Push™)
print("2.Pop")
print("3.Display")
print("4.Quit")
ch=int(input("Enter your choice:"))
if ch==1:
if top < mymax:
item=input("Enter any elements:")
Push(stack, item)
top +=1
else:
print("Stack overflow")
elif ch==2:
print(Pop(stack))
elif ch==3:
print(stack)
else:
break

1. Stack is used by compilers to check for balancing of parentheses.

2. Stack is used to evaluate a prefix and postfix expression.
3. Stack is used to convert an infix expression into postfix/prefix form.

4. In recursion, all intermediate arguments and return values are stored on the processor’s
stack.

5. During a function call the return address and arguments are pushed onto a stack and on
return they are popped off.

6. Depth first search (DFS) uses a stack data structure to find an element from a graph.
7. Page-visited history in a web browser.

8. Undo sequence in a text editor.

9. Matching tags in HTML and XML.

Let n be the number of elements in the stack. The complexities of stack operations with this
representation can be given as:

Space Complexity (for n push operations) O(n)
Time Complexity of Push() 0O(1)
Time Complexity of Pop() 0O(1)
Time Complexity of Size() 0O(1)
Time Complexity of IsEmptyStack() O(1)
Time Complexity of IsFullStackf) 0O(1)
Time Complexity of DeleteStackQ 0O(1)

Algebraic Expression Conversion

1. Infix to Postfix / Prefix

2. Prefix to Infix / Postfix

3. Postfix to Infix / Prefix

Infix Expression: (A+ B)/(C - D)
Postfix Expression:AB+CD -/

Prefix Expression: /+ AB-CD

Procedure to convert from infix expression to postfix expression is as follows:

1. Scan the infix expression from left to right.
2. a) If the scanned symbol is left parenthesis, push it onto the stack.

b) If the scanned symbol is an operand, then place directly in the postfix expression
(output).

c) If the symbol scanned is a right parenthesis, then go on popping all the items from the
stack and place them in the postfix expression till we get the matching left parenthesis.

d) If the scanned symbol is an operator, then go on removing all the operators from the
stack and place them in the postfix expression, if and only if the precedence of the operator
which is on the top of the stack is greater than (or equal) to the precedence of the scanned
operator and push the scanned operator onto the stack otherwise, push the scanned operator
onto the stack.

Convert the following infix expression A+ B * C - D/ E * H into its equivalent postfix

expression.
Symbol | Postfix string Stack Remarks
A A
- A -
B AB +
" AB i
C ABC -
= ABC*+ :
D ABC*+D -
/ ABC*+D -/
E ABC*+DE -/
. ABC*+DE/ - ¥
H ABC*+DE/H - ¥
End of The input is now empty. Pop the output symbols from the
string ABC*+DE/H*- stack until it is empty.

Infix to Postfix Conversion

Convert ((A - (B + C)) * D) 1 (E + F) infix expression to postfix form:

SYMBOL POSTFIX STRING STACK REMARKS
((
(((
A A ((
- A ({_
(A ((-(
B AB (C-(
+ A B ((-(+
C ABC ((-(+
) ABC+ ((-
) ABC+ - (
= ABC+ - (*
D ABC+-D (*
) ABC+-D*
1 ABC+-D* t
(ABC+-D* r(
E ABC+-D*E +(
+ ABC+-D*E T+
F ABC+-D*EF t{+
) ABC+-D*EF+ 1
End of The input is now empty. Pop the output symbols
string ABC+-D*EF +1 from the stack until it is empty.

Convert the following infix expression A + B * C - D / E * H into its equivalent postfix

expression.
SYMBOL | POSTFIX STRING STACK REMARKS
A A
+ A +
B AB -
* AB + *
C ABC B
_ A B |: * + -
D ABC*+D -
/ ABC*+D -/
E ABC*+DE -/
* ABC*+DE/ - *
H ABC*+DE/H - %
End of The input is now empty. Pop the output symbols from
string ABC*+DE/H*- the stack until it is empty.

Convert the infix expression A + B - C into prefix expression.

PREFIX
SYMBOL STRING STACK REMARKS
C C
- cl-
B BC|-
+ BC|-+
A ABC|-+
End of - + A B C| The input is now empty. Pop the output symbols from the
string stack until it is empty.

Convert the infix expression A1 B*C-D + E/ F/ (G + H) into prefix expression.

SYMBOL PREFIX STRING STACK REMARKS

))

H H)

+ H) +

G GH) +

(+GH

/ +GH /

F F+GH /

/ F+GH //

E EF+GH //

- //EF+GH +

D D//EF+GH -

: D//EF+GH + -

C CD//EF+GH + -

* CD//EF+GH +-*

B BCD//EF+GH + - *

1 BCD//EF+GH +-%1

A ABCD//EF+GH +-%1
End of +-*1tABCD//EF+ GH| The input is now empty. Pop the output
string symbols from the stack until it is empty.

Convert the following postfix expression ABC*DEF ™~ /G ¥ -H * + into its
equivalent infix expression.

Symbol

A

B

End of
string

Stack
(a1 [[T]
lafe | | | |
(afefcl | |

aleo] | | |

(Ale=o o] | |

[A]e=c) JoJe | |

[~ J*c) o e [F |

|a e [o e~] |

| a |8=c) |ore~en | |

| a |(B*c) |oi(E~F) |G | |

| A |(B*C) |((D/(E~F)=G) | |

[A JuB=c) - ((D/(E~F)*a)) | |

[A Jue=c) - (ore~F*6)) [n]

[A]we=c) - (o/E~M)*e) *H) | |

I (A + (((B=C) - ((D/(E~F))™G)) = H))

Remarks
Push A
Push B

Push C

Pop two operands and place the
operator in between the operands and
push the string.

Push D
Push E

Push F

Pop two operands and place the
operator in between the operands and
push the string.

Pop two operands and place the
operator in between the operands and
push the string.

Push G

Pop two operands and place the
operator in between the operands and
push the string.

Pop two operands and place the
operator in between the operands and
push the string.

Push H

Pop two operands and place the
operator in between the operands and
push the string.

The input is now empty. The string formed is infix.

Convert the following postfix expression ABC*DEF~/G*-H?* + into its
equivalent prefix expression.

Symbol
A

B

*

-+

End of
string

Stack
tal 1 T [}
talel [[}
alefc] [|
al=ec] | [|

(A[*scfo] | |

[(Al*ec|ofe] |

al=scio]e]|F |

[Al*ec [of~er | |
| A[*BCc [/D~eF | |

[a]*Bc [/~eF [|
| A|*BC [*/D~EFG | |

| A |-*Bc*/D~EFG | |

| A |- *BC*/D~EFG

[v]]

| A [* =BCc*/D~EFGH | |

| +A*-*BC*/D~EFGH | |

Remarks
Push A
Push B

Push C

Pop two operands and place the operator
in front the operands and push the string.

Push D
Push E

Push F

Pop two operands and place the operator
in front the operands and push the string.

Pop two operands and place the operator
in front the operands and push the string.

Push G

Pop two operands and place the operator
in front the operands and push the string.

Pop two operands and place the operator
in front the operands and push the string.

Push H

Pop two operands and place the operator
in front the operands and push the string.

The input is now empty. The string formed is prefix.

Convert the following prefix expression + A*-*BC* /D ™~ EF G H into its equivalent
infix expression.

Symbol

H

A

=+

End of
string

Stack
N I
tmlel | [|
tlsfr] [|
(Hiclrlel| |
HlsjeEn | |

(H]c [~ Jof |

[H |G [(orE~F) | |

[H [(orE~F)*G) | |

[0 Jeore~my=e) Jc []
[H_[(o/(E~FM*G) Jc [B []

[H J(ore~m*6) [(8*c) | |

[H J((B*C)-({D/(E~F))*G)) | |

[(((B*C)-((D/(E~F))*G))*H) |

[(((B*C)-((D/(E~F))*G))*H)]]

|

| (A+(((B*C)-((D/(E~F))*G))*H)) |

Remarks

Push H
Push G
Push F

Push E

Pop two operands and place the operator
in between the operands and push the
string.

Push D

Pop two operands and place the operator

in between the operands and push the

string.
Pop two operands and place the operator

in between the operands and push the
string.

Push C

Push B

Pop two operands and place the
operator in front the operands and push

the string.
Pop two operands and place the operator

in front the operands and push the
string.

Pop two operands and place the
operator in front the operands and push

the string.
Push A

Pop two operands and place the
operator in front the operands and push

the string.

The input is now empty. The string formed is infix.

Convert the following prefix expression + A*¥ - *BC* /D ™ E F G H into its equivalent
postfix expression.

Symbol Stack Remarks
H il 1]] Push H
G [Hle] | | | Push G
F [n]c|F| | | Push F
E [H]e|F]e]| | Push E

Pop two operands and place the operator

= | H | G | EF™ | | after the operands and push the string.
D [H]c|[er~ D] | Push D
P Pop two operands and place the operator
/ | s [G I DEF™/ ‘ | after the operands and push the string.
— Pop two operands and place the operator
% | i1 IDEF s | | after the operands and push the string.
G | H |DEF~/G* [C | | Push C
B [H [DEF~/G* [c e | | Push B
Pop two operands and place the operator
» | i |DEFA”G* | e |] after the operands and push the string.
P Pop two operands and place the operator
- | H |EC*DEF f6*- |] after the operands and push the string.

Pop two operands and place the operator
after the operands and push the string.

#

BC*DEF~/G*-H* | |

A | BC*DEF~/G*-H* [A] | Push A

Pop two operands and place the operator
& | ABC*DEF*/G*-H*+] | after the operands and push the string.
End of

string The input is now empty. The string formed is postfix.

Evaluate the postfix expression: 6523 +8*+3 +*

Symbol | Operand1 | Operand 2 | Value | Stack Remarks
6 6
5 6.5
2 6;5,2

The first four symbols are
placed on the stack.

Next a “+”" isread. so 3 and 2
+ 2 3 5 6, 5,5 are popped from the stack and
their sum 5. is pushed

8 2 3 5 6.5.5.8 | Next 8 is pushed
Now a “*’ is seen. so 8 and 5
. 5 8 40 6.5.40 | are popped as 8 * 5 =40 is
pushed
Next, a *+’ 1s seen, so 40 and
+ 5 40 45 6. 45 5 are popped and 40 + 5 = 45
is pushed
3 5 40 45 6.45,3 | Now, 3 is pushed

Next, “+* pops 3 and 45 and
pushes 45 + 3 = 48 is pushed

Finally, a “** is seen and 48
* 6 48 288 | 288 and 6 are popped, the result 6
* 48 =288 is pushed

akowbeE

https://en.wikibooks.org/wiki/Data Structures/Stacks and Queues

https://www.docdroid.net/ZPfHmMS5/data-structures-and-algorithms-narasimha-karumanchi-pdf

https://www.geeksforgeeks.orqg/stack-data-structure/

https://www.hackerearth.com/practice/data-structures/stacks/basics-of-stacks/tutorial/

https://en.wikipedia.org/wiki/Stack (abstract data type)

https://en.wikibooks.org/wiki/Data_Structures/Stacks_and_Queues
https://www.docdroid.net/ZPfHmS5/data-structures-and-algorithms-narasimha-karumanchi-pdf
https://www.docdroid.net/ZPfHmS5/data-structures-and-algorithms-narasimha-karumanchi-pdf
https://www.docdroid.net/ZPfHmS5/data-structures-and-algorithms-narasimha-karumanchi-pdf
https://www.docdroid.net/ZPfHmS5/data-structures-and-algorithms-narasimha-karumanchi-pdf
https://www.docdroid.net/ZPfHmS5/data-structures-and-algorithms-narasimha-karumanchi-pdf
https://www.docdroid.net/ZPfHmS5/data-structures-and-algorithms-narasimha-karumanchi-pdf
https://www.docdroid.net/ZPfHmS5/data-structures-and-algorithms-narasimha-karumanchi-pdf
https://www.docdroid.net/ZPfHmS5/data-structures-and-algorithms-narasimha-karumanchi-pdf
https://www.docdroid.net/ZPfHmS5/data-structures-and-algorithms-narasimha-karumanchi-pdf
https://www.docdroid.net/ZPfHmS5/data-structures-and-algorithms-narasimha-karumanchi-pdf
https://www.docdroid.net/ZPfHmS5/data-structures-and-algorithms-narasimha-karumanchi-pdf
https://www.docdroid.net/ZPfHmS5/data-structures-and-algorithms-narasimha-karumanchi-pdf
https://www.docdroid.net/ZPfHmS5/data-structures-and-algorithms-narasimha-karumanchi-pdf
https://www.geeksforgeeks.org/stack-data-structure/
https://www.geeksforgeeks.org/stack-data-structure/
https://www.geeksforgeeks.org/stack-data-structure/
https://www.geeksforgeeks.org/stack-data-structure/
https://www.geeksforgeeks.org/stack-data-structure/
https://www.hackerearth.com/practice/data-structures/stacks/basics-of-stacks/tutorial/
https://www.hackerearth.com/practice/data-structures/stacks/basics-of-stacks/tutorial/
https://www.hackerearth.com/practice/data-structures/stacks/basics-of-stacks/tutorial/
https://www.hackerearth.com/practice/data-structures/stacks/basics-of-stacks/tutorial/
https://www.hackerearth.com/practice/data-structures/stacks/basics-of-stacks/tutorial/
https://www.hackerearth.com/practice/data-structures/stacks/basics-of-stacks/tutorial/
https://www.hackerearth.com/practice/data-structures/stacks/basics-of-stacks/tutorial/
https://en.wikipedia.org/wiki/Stack_(abstract_data_type)

* A gueue Is a data structure where items are inserted at one end
called the rear and deleted at the other end called the front.

* Another name for a queue Is a “FIFO” or “First-In-first-out”
list.

 Operations of a Queue:

» enqueue: which inserts an element at the end of the queue.
» dequeue: which deletes an element at the front of the queue.

Initially the queue is empty.

LI i & = s !
] BESHT TEM A o
F R
Now, insert 11 to the queue. Then queue status will be:
L1] i = = -1
1A REAR —m REAR |+ 1 = 1
FR:HMT — I
F R
Next, insert 22 to the queue. Then the queue status is:
L 1] i = == -
11 | == cromy — o

"
»

Now, delete an element 11.

1) i = = -
REAR — &
=2 *F FRO>NT == FRCONT + 1 = 1
F R

Next insert another element, say 66 to the queue. We cannot insert 66 to the queue as it signals queue is
full. The queue status is as follows:

L1 1 = == -4

= F -4 4 i P

REAR — 5

FRONT =

L
i

 \arious operations of Queue are:
» InsertQ(): inserts an element at the end of queue Q.
> deleteQ(): deletes the first element of Q.
» displayQ(): displays the elements in the queue.

* There are two problems associated with linear queue. They are:
» Time consuming: linear time to be spent in shifting the elements to the beginning of

the queue.
» Signaling queue full: even If the queue IS having vacant

position.

It is used to schedule the jobs to be processed by the CPU.

« When multiple users send print jobs to a printer, each printing job is kept in the

printing queue. Then the printer prints those jobs according to first in first out
(FIFO) basis.

« Breadth first search uses a queue data structure to find an element from a graph.

« A circular queue is one in which the insertion of new element is done at the very
first location of the queue if the last location of the queue is full.

« Suppose If we have a Queue of n elements then after adding the element at t
last index i.e. (n-1)", as queue is starting with 0 index, the next element will
Inserted at the very first location of the queue which was not possible in t
simple linear queue.

€
De
€

« The Basic Operations of a circular queue are

» InsertionCQ: Inserting an element into a circular queue results in Rear =
(Rear + 1) % MAX, where MAX is the maximum size of the array.

» DeletionCQ : Deleting an element from a circular queue results in Front =
(Front + 1) % MAX, where MAX is the maximum size of the array.

» TraversCQ: Displaying the elements of a circular Queue.
 Circular Queue Empty: Front=Rear=0.

Let us consider a circular queue, which can hold maximum (MAX) of six elements. Initially the
queue is empty.

F R

vy

1 Capemie E oy
+ MAX — &
FRZ>NT — REAR = 1
CiIINT = I

= =

e ullar Guewne

=
11
1 FROMT — 0, REAR = 5
- REFAR — REAR 9% & — 5
COUMT = S
<33 33
-3 =

e unlar Quewne

Now, delete two elements 11, 22 from the circular queue. The circular queue status is as follows:

" o
5
1 FROMT — (FRONMT + 1) % 6 — 2
-+ REAR — 5
COUNT — COUNT - 1L — 3

E == ‘F\\

= =

F

e ular Quewns

?

- FROMT — =
REAR — {REAR 4+ 1) 9% & — O
COLIMT — CEyUMT 4 1 — -
e == v__
= = F

CEar wnllaer Craneane

Again, insert 77 and 88 to the circular queue. The status of the Circular queue is:

L1}
=
=4 =1 FTF
- == i
FROMT — 2, REAR — X
REAR —m REAR " & — &
CErIlNT = &

s =3 K
i EK "

A il Quewme

« It is a special queue like data structure that supports insertion and deletion at
both the front and the rear of the queue.

« Such an extension of a queue is called a double-ended queue, or deque, which
IS usually pronounced ""deck' to avoid confusion with the dequeue method of
the regular queue, which is pronounced like the abbreviation "'D.Q."

* |tis also often called a head-tail linked list.

emqueuns r o] 44)
-

dequeues front{33)

11|22 E“““E“E—ﬁ“':'[ggz' 33 (11|22
55|11 |22 E““_'.::E“E—rm“ﬂﬁﬁj 11|22

degueus_rean{44]
>

33

11

22

44

b4

11

22

44

There are two variations of deque. They are:
— Input restricted deque (IRD)
— Output restricted deque (ORD)

An Input restricted deque is a deque, which allows insertions at one end but
allows deletions at both ends of the list.

An output restricted deque Is a deque, which allows deletions at one end but
allows insertions at both ends of the list.

A priority queue Is a collection of elements that each element
has been assigned a priority and such that order in which
elements are deleted and processed comes from the following
riles:

— An element of higher priority iIs processed before any element of
lower priority.

— Two element with the same priority are processed according to the
order in which they were added to the queue.

* Inserting new elements.

« Removing the largest or smallest element.
 Priority Queue Usages are:
Simulations: Events are ordered by the time at which they should be executed.

Job scheduling in computer systems: Higher priority jobs should be executed
first.

Constraint systems: Higher priority constraints should be satisfied before
lower priority constraints.

Module — 3
Linked ListS

Introduction to Linked list

Advantages and Disadvantages of Linked List
Types of Linked List

Single Linked List

Applications of Linked List

Circular Single Linked list

Double Linked List

141

A linked list is a collection of data in which each element contains the location of
the next element—that is, each element contains two parts: data and link.

null pointer

Alinked list [J—> [&— [¢}—— [ef— 4
scores data link data link data link data link
An empty
linked list X A node =
data link

SCOTCS

142

« Both an array and a linked list are representations of a list of items in memory.
The only difference is the way in which the items are linked together. The Figure
below compares the two representations for a list of five integers.

scores [1]
scores [2]
scores [3]
scores [4]

scores [5]

a. Array representation

SCOTrcCs

66

72

74

85

96

SCOrcs

I—) 66

72

L.
I—> 96
I_>

85

74

QUL

b. I.inked list representation

143

A data structure that can shrink or grow during program execution.

The size of a dynamic data structure is not necessarily known at compilation
time, In most programming languages.
Efficient insertion and deletion of elements.

The data in a dynamic data structure can be stored in non-contiguous (arbitrary)
locations.

Linked list is an example of a dynamic data structure.

144

« Unused locations In array Is often a wastage of space

 Linked lists offer an efficient use of memory
— Create nodes when they are required
— Delete nodes when they are not required anymore
— We don’t have to know 1n advance how long the list should be

145

Linked lists are used to represent and manipulate polynomial. Polynomials are
expression containing terms with non zero coefficient and exponents. For
example:

P(X) — ao XN+ al Xl oo, -+ dn-1 X+ an

Represent very large numbers and operations of the large number such as
addition, multiplication and division.

Linked lists are to implement stack, queue, trees and graphs.
Implement the symbol table in compiler construction.

146

* There are four types of Linked lists:
— Single linked list

 Begins with a pointer to the first node
« Terminates with a null pointer
 Only traversed in one direction
— Circular single linked list
* Pointer in the last node points back to the first node

— Doubly linked list
* Two “start pointers” — first element and last element
 Each node has a forward pointer and a backward pointer
 Allows traversals both forwards and backwards

— Circular double linked list

« Forward pointer of the last node points to the first node and backward pointer of the
first node points to the last node

147

m Asingly linked list is a concrete data structure
consisting of a sequence of nodes

®m Each node stores

m element
m link to the next node

elem

node

> <
0 <

O <

O <«

148

A linked list allocates space for each element separately in its own block of
memory called a "node".

Each node contains two fields; a "data" field to store whatever element, and a
"next" field which is a pointer used to link to the next node.

Each node is allocated in the heap using malloc(), so the node memory continues
to exist until it is explicitly de-allocated using free().

The front of the list 1s a pointer to the “start” node.

149

S WM

1 Ik

-] — 7 o o

.ﬁ..........

The =t oxt L)
Pt e
hold= Elne
address ol
Ehe Farskt
mocde of Ehe
In=k.

,Q".. o

Each mnode
=t ore=s Ethe dat=.

siruct slink st

1

ikt data;

struct shinklist™ next;
X:

ty pedar stnct shinklist node;

node *start = NULL;

i i 2k i

Z ik = J 111}
SDhoses Ehe mmexd
mode addire=s=.

node:z

Emplhy lisk:

——————f=] aan 4
400 -7
£

The mext Faeld of
Ehe Iast node is
| B 1 BN e

data | next

shkark

MNIRLL

150

« The basic operations of a single linked list are
— Creation
— Insertion
— Deletion
— Traversing

151

Sufficient memory has to be allocated for creating a node. The information is stored in the
memory, allocated by using the malloc() function. The function getnode(), is used for creating
a node, after allocating memory for the structure of type node, the information for the item
(i.e., data) has to be read from the user, set next field to NULL and finally returns the address
of the node.

L2 F -1

s N1 p_ 4

Bl

152

class Node:
def __init__ (self, data, nextNode = None):

self.data = data
self.nextNode = nextNode
def getData(self):
return self.data
def setData(self,val):
self.data = val
def getNextNode(self):
return self.nextNode
def setNextNode(self,val):
self.nextNode = val

class LinkedList:
def _init_ (self,head = None):

self.head = head
self.size =0
def getSize(self):
return self.size
def addNode(self,data):
newNode = Node(data,self.head)
self.head = newNode
self.size+=1
return True
def printNode(self):
curr = self.head
while curr:
print(curr.data)
curr = curr.getNextNode()

skark

100

10

200

100

— 20

300

200

— 30

400

J00

—+ 40

400

155

* Inserting a node into a single linked list can be done at
— Inserting into an empty list.
— Insertion at the beginning of the list.
— Insertion at the end of the list.
— Insertion in the middle of the list.

156

The following steps are to be followed to insert a new node at the beginning of the list:

#Function to insert a new node at the beginning
def push(self, new_data):
Allocate the Node & Put in the data

new_node = Node(new_data)

#Make next of new Node as head
new_node.next = self.head
Move the head to point to new Node

self.head = new_node

157

00

500 :
-
™ o 200 ——M 20
100 200
L |5 [100

— 30

400

200

—» 40

400

158

The following steps are followed to insert a new node at the end of the list:
This function is defined in Linked List class

Appends a new node at the end. This method is defined inside LinkedL.ist class
shown above

def append(self, new_data):
Create a new node, Put in the data, Set next as None
new_node = Node(new_data)

159

If the Linked List is empty, then make the
new node as head
If self.head i1s None:
self.head = new_node
return
#EIse traverse till the last node
last = self.head
while last.next:
last = last.next
Change the next of last node
last.next = new_node

sikark

100

10

200

100

— 20

300

200

— 30

300

400— 40 (500
400
L’ 50 | X

200

161

« The following steps are followed, to insert a new node after the given previous node in the
list:

def insertAfter(self, prev_node, new_data):

#check if the given prev_node exists

If prev_node is None:
print(“The given previous node must in Linked List.”)
return

#Create new node & Put in the data

new_node = Node(new_data)

Make next of new Node as next of prev_node

new_node.next = prev_node.next
#Make next of prev_node as new_node
prev_node.next = new_node

162

shkark

100

prey

A
10 |200— 20
100 200

snn'";'L:: 30 |400—M 40

J00

200

vl

new node

400

163

« Another primitive operation that can be done in a singly linked list is the deletion of
a node. Memory is to be released for the node to be deleted. A node can be deleted
from the list from three different places namely.

— Deleting a node at the beginning.
— Deleting a node at the end.
— Deleting a node at intermediate position.

164

200

5 T L

--------- » 10 200 | 20 300—m 30 [400—» 40 | X
477 qpo 200 300 400

temp

165

« The following steps are followed to delete a node at the end of the
list:

— If list is empty then display ‘Empty List’ message.

— If the list is not empty, follow the steps given below:
temp = prev = start; while(temp -> next = NULL)

{

prev = temp;

temp = temp -> next;
by

prev -> next = NULL; free(temp);

166

skart

167

e = d

> 40
400

300

200

100

e e

100

« The following steps are followed, to delete a node from an intermediate position in the list:
Given a reference to the head of a list and a position, delete the node at a given position
def deleteNode(self, position):

If linked list i1s empty

If self.nead == None:
return

Store head node

temp = self.head

168

If head needs to be removed

If position == 0:
self.head = temp.next
temp = None
return

Find previous node of the node to be deleted
for i in range(position -1):
temp = temp.next
If temp is None:
break

If position is more than number of nodes
If temp is None:
return
If temp.next is None:
return
Node temp.next is the node to be deleted
store pointer to the next of node to be deleted
next = temp.next.next
Unlink the node from linked list
temp.next = None
temp.next=next

Find previous node of the node to be deleted
for i in range(position -1):
temp = temp.next
If temp is None:
break

If position is more than number of nodes
If temp is None:

return
If temp.next is None:

return

shark

40

400

400

—_-—
1
1

' 300

20

[= == === = =———

Ly

1
S e |

200

100

Ry,

100

110

« To display the information, you have to traverse (move) a linked list, node by node from
the first node, until the end of the list is reached. Traversing a list involves the following
steps:

— Assign the address of start pointer to a temp pointer.
— Display the information from the data field of each node.

173

« A double linked list is a two-way list in which all nodes will have two links. This helps
In accessing both successor node and predecessor node from the given node position. It
provides bi-directional traversing. Each node contains three fields:

— Left link.
— Data.
— Right link.

« The left link points to the predecessor node and the right link points to the successor
node. The data field stores the required data.

174

STAL K

100

W

sh=ark

The start
point er
haold=s the

address of

the frst

node of the

list.

Stores the
previous node

address.
___,,--".'-'
x 10 |Z200
100 |
¥

Stores the data.

HEAP

,.7"' 100 | 20 | 300 H" zo0| 30 | X
. 200 300 o
oy -

Stores the next
node addres=s.

The right Field of

the last node is

NMIR L.

175

Creation

Insertion

Deletion

Traversing

The beginning of the double linked list is stored in a "start" pointer which points to the
first node. The first node’s left link and last node’s right link is set to NULL.

176

« The following steps

class Node(object):

are to be followed

def _init__ (self, data, prev, next):

self.data = data
self.prev = prev
self.next = next

class DoubleL.ist(object):
head = None
tail = None

to create ‘n’ number of nodes:

177

strruct diinkhist

1
shruct diink st e
ik dakba;
siruct diink st *mghic;
¥*r

ty pedaer siruck diink st o de;
nade *stark = NHULL;

node: =it data | right

e e i
Emphy h=sik= MITIL I

178

skart

100

10

200

100

Ty

100

20

300

200

Iy

200

30

300

179

« The following steps are to be followed to insert a new node at the beginning of the list:

« Get the new node using getnode(). newnode=getnode();
* [f the list is empty then start = newnode.

 If the list IS not empty, follow the steps given below:
newnode -> right = start; start -> left = newnode; start = newnode;

180

shart

200

100

Iy

400

400 [T
¥

— ™ 400 10
100

_— X | 40 1|1||1|J

20

300

200

il

200

30

300

181

The following steps are followed to insert a new node at the end of the list:
Get the new node using getnode()

newnode=getnode();

If the list is empty then start = newnode.
If the list is not empty follow the steps given below: temp = start;
while(temp -> right != NULL) temp =temp -> right;
temp -> right = newnode; newnode -> left = temp;

120

s rk

100

—> —
X i0 00 ion | zo 300 | 00 30 | 400
100 00 200
™ 200| 40 X

4010

183

* The following steps are followed, to insert a new node in an intermediate position in the
list:
* Get the new node using getnode(). newnode=getnode();

* Ensure that the specified position is in between first node and last node. If not, specified
position is invalid. This is done by countnode() function.

e Store the starting address (which is in start pointer) in temp and prev pointers. Then
traverse the temp pointer upto the specified position followed by prev pointer.

* After reaching the specified position, follow the steps given below: newnode -> left =

temp;
newnode -> right = temp -> right; temp -> right -> left = newnode; temp -> right = newnode;

184

si=rk

1010

100

1D

400

t

100

40

200

4200 | 20 | 300
200
00| 30 X

200

185

siart
200

300

200

100

186

« The following steps are followed to delete a node at the end of the list:
 If list 1s empty then display ‘Empty List’ message
* If the list is not empty, follow the steps given below:

temp = start;

while(temp -> right '= NULL)
{

temp = temp -> right;

¥

temp -> left -> right = NULL; free(temp);

187

skart

100

/¥,
wo| 20 | X | 42nn 3n I

» X | 10 |200

1s

100 200 300

188

300

200

10 |300 [

- X

skark
100

100

189

« The following steps are followed, to traverse a list from left to right:
» Iflist 1s empty then display ‘Empty List’ message.

 If the list is not empty, follow the steps given below: temp = start;
while(temp '= NULL)

{

print temp -> data; temp = temp -> right;

}

130

« The following steps are followed, to traverse a list from right to left:

» Iflist 1s empty then display ‘Empty List’ message.

« If the list is not empty, follow the steps given below: temp = start;
while(temp -> right I= NULL) temp =temp -> right; while(temp '= NULL)
{

print temp -> data; temp =temp -> left;

}

191

« The major disadvantage of doubly linked lists (over singly linked lists) is that they require
more space (every node has two pointer fields instead of one). Also, the code to manipulate
doubly linked lists needs to maintain the prev fields as well as the next fields; the more

fields that have to be maintained, the more chance there is for errors.

« The major advantage of doubly linked lists is that they make some operations (like the

removal of a given node, or a right-to-left traversal of the list) more efficient.

192

« |tis just asingle linked list in which the link field of the last node points back to the address
of the first node.

« A circular linked list has no beginning and no end. It Is necessary to establish a special
pointer called start pointer always pointing to the first node of the list.

 Circular linked lists are frequently used instead of ordinary linked list because many
operations are much easier to implement. In circular linked list no null pointers are used,

hence all pointers contain valid address.

193

s rik

100

The basic operations in a circular single linked list are:

 Creation
*Insertion
*Deletion
*Traversing

vy

10

200

100

— 20

200

200

— 30

400

200

—* 40

100

400

194

* The following steps are to be followed to create ‘n’ number of nodes:

(et the new node using getnode().
newnode = getnode();

 If the list Is empty, assign new node as start. start = newnode;
 If the list Is not empty, follow the steps given below: temp = start;
while(temp -> next '= NULL) temp = temp -> next;

temp -> next = newnode;

* Repeat the above steps ‘n’ times. newnode -> next = start;

195

» The following steps are to be followed to insert a new node at the beginning of the circular
list:

» (Get the new node using getnode().

newnode = getnode();

 [f the list is empty, assign new node as start. start = newnode;

newnode -> next = start;

 If the list is not empty, follow the steps given below: last = start;
while(last -> next != start) last = last -> next;

newnode -> next = start; start = newnode;

last -> next = start;

196

sikark

500 o
-~
“® 0 |200
100
—— 3 100
500

s 20

300

200

I 30

400

300

= 40

5!][4_

400

197

» The following steps are followed to insert a new node at the end of the list:
« (et the new node using getnode(). newnode = getnode();

 |f the list Is empty, assign new node as start. start = newnode;

newnode -> next = start;

 [f the list is not empty follow the steps given below: temp = start;
while(temp -> next = start) temp = temp -> next;

temp -> next = newnode; newnode -> next = start;

198

siark

100

10

200

100

— 20

200

200

— 30

400—M 40

00

200

400

100

200

199

The following steps are followed, to delete a node at the beginning of the list:
If the list is empty, display a message ‘Empty List’.

If the list is not empty, follow the steps given below: last = temp = start;
while(last -> next !=start) last = last -> next;

start = start -> next; last -> next = start;

After deleting the node, if the list is empty then start = NULL.

140

200
i fe===s=EFEeE==
eeforerp 10 1200;

[P R BT
47 100
temp

300

—p 30

400

300

4D

200

400

201

« The following steps are followed to delete a node at the end of the list:
 If the list 1s empty, display a message ‘Empty List’.

 If the list is not empty, follow the steps given below: temp = start;
prev = start;

while(temp -> next != start)

{

prev = temp;

temp = temp -> next;

}

prev -> next = start;

« After deleting the node, if the list is empty then start = NULL.

202

slart

203

= — e — -

i
400

300

200

100

:ﬂ 10 |200— 20 |300— 30

100

* The following steps are followed, to traverse a list from left to right:
* If list 1s empty then display ‘Empty List’ message.

* If the list is not empty, follow the steps given below: temp = start;
do

{

printf("%d ", temp -> data); temp = temp -> next;
} while(temp != start);

204

* The major advantage of circular lists (over non-circular lists) Is
that they eliminate some extra-case code for some operations
(like deleting last node).

* Also, some applications lead naturally to circular list
representations.

* For example, a computer network might best be modeled using
a circular list.

205

¥

A polynomial is of the form:

1

o =
E L |
Where, c;is the coefficient of the it term and n is the degree of the polynomial Some examples are:
5x2+ 3x +1
5x4— 8x3+ 2x2+ 4x1 + 9x0
The computer implementation requires implementing polynomials as a list of pairs of coefficient and exponent.
Each of these pairs will constitute a structure, so a polynomial will be represented as a list of structures. A linked list
structure that represents polynomials 5x4— 8x3 + 2x2 + 4x1 + 9x0 illustrated.

sh=arik

Coeflfxc ient Exponent
500 j'//
S| 4 |100™-8(3 (Zoo | 2 | 2 3nn—h|-| 1 -lllll-.lﬂ o | X

S0 100 200 00 400

206

* To add two polynomials, if we find terms with the same exponent
In the two polynomials, then we add the coefficients; otherwise, we
copy the term of larger exponent into the sum and go on. When we
reach at the end of one of the polynomial, then remaining part of
the other Is copied Into the sum.

* To add two polynomials follow the following steps:

— Read two polynomials.
— Add them.
— Display the resultant polynomial.

207

Module — 3
Linked ListS

Basic Tree Concepts, Binary Trees
Representation of Binary Trees
Operations on a Binary Tree

Binary Tree Traversals
Threaded Binary Trees
Basic Graph Concepts
Graph Traversal Techniques: DFS and BFS

* Trees are non linear data structure that can be represented in a
hierarchical manner.

— A tree contains a finite non-empty set of elements.

—Any two nodesin the tree are connected with a
relationship of parent-child.

— Every individual elements in a tree can have any number of sub trees.

-~ ~

Left Right

Sub < > Sub

Tree Tree
. _J

Root : The basic node of all nodes Iin the tree. All operations on the tree are
performed with passing root node to the functions.

Child : a successor node connected to a node is called child. A node in binary tree
may have at most two children.

Parent : a node iIs said to be parent node to all its child nodes.
Leaf : a node that has no child nodes.

Siblings : Two nodes are siblings if they are children to the same parent node.

Ancestor : a node which is parent of parent node (A Is ancestor
node to D,E and F).

Descendent : a node which is child of child node (D, E and F
are descendent nodes of node A)

L_evel : The distance of a node from the root node, The root Is at
level — 0,(B and C are at Level 1 and D, E, F have Level 2 (
highest level of tree Is called height of tree)

Degree . The number of nodes connected to a particular parent
node.

* Abinary tree is a hierarchy of nodes, where every parent node has
at most two child nodes. There iIs a unique node, called the root,
that does not have a parent.

« ADbinary tree can be defined recursively as
* Root node

o Left subtree: left child and all 1ts descendants
* Right subtree: right child and all its descendants

« Afull tree is a binary tree in which
— Number of nodes at level | is 21-1
— Total nodes in a full tree of height n is
« A complete tree of height n is a binary tree
— Number of nodes at level 1 I n—1is2l-1
— Leaf nodes at level n occupy the leftmost positions in the tree

full tree complete tree

A binary tree is defined recursively: it consists of a root, a left
subtree, and a right subtree.

To traverse (or walk) the binary tree is to visit each node In the
binary tree exactly once.

Tree traversals are naturally recursive.

Standard traversal orderings:
* preorder

* Inorder

* postorder

* level-order

* |In Preorder, the root Is visited
before (pre)

the subtrees traversals.
* |In Inorder, the root iIs visited In-

between left

and right subtree traversal.
* |n Preorder, the root Is visited after

(pre)
the subtrees traversals.

Preorder Traversal:

1. Visitthe root
2. Traverse left subtree
3. Traverse right subtree

Inorder Traversal:

1. Traverse left subtree
2. Visit the root

3. Traverse right subtree

Postorder Traversal:

1. Traverse left subtree
2. Traverse right subtree
3. Visit the root

« Assume: visiting a node

IS printing Its data
*Preorder: 1582637
111012 14 20 27 22 30
*lnorder: 2367810 11
12 14 15 20 22 27 30
*Postorder: 376210 14
12 11 8 22 30 27 20 15

void preorder(tree *tree) {
If (tree->IsEmpty()) return; visit(tree->getRoot()); preOrder(tree->getLeftSubtree());

preOrder(tree->getRightSubtree());
}

void inOrder(Tree *tree){
if (tree->isEmpty()) return; inOrder(tree->getLeftSubtree()); visit(tree->getRoot());
InOrder(tree->getRightSubtree());

}

void postOrder(Tree *tree){
If (tree->1SEmpty()) return; postOrder(tree->getLeftSubtree()); postOrder(tree->getRightSubtree(

)); Visit(tree->getRoot());
by

« A threaded Dbinary tree
defined as:

« "A binary tree is threaded by making all
right child pointers that would normally
be null point to the Inorder successor of
the node, and all left child pointers that
would normally be null point to the
Inorder predecessor of the node

« Graphs are collections of nodes connected by edges — G = (V,E) where V is a set of
nodes and E a set of edges.

« Graphs are useful in a number of applications including

— Shortest path problems
— Maximum flow problems
« Graphs unlike trees are more general for they can have connected components.

« Directed Graphs: A directed graph edges allow travel in one direction.

« Undirected Graphs: An undirected edges allow graph travel in either direction.

FIGURE 8.1A

The graph G = ({1; 2: 8; 4, 8} {{1; 2%
{1, 3} {2, 3}, {2, 4}, {3, 5}, {4, 51D

FIGURE 8.1B

The directed graph G = ({1, 2, 3, 4, 5}, {(1, 2),
1, 3), (2, 1), (3, 2), (4, 3), (4, 5),
5, 2), (5.4)D)

« Aqgraph is an ordered pair G=(V,E) with a set of vertices or nodes and the edges that
connect them.

» Asubgraph of a graph has a subset of the vertices and edges.

« The edges indicate how we can move through the graph.
« Apath is a subset of E that is a series of edges between two nodes.

« Agraph is connected if there is at least one path between every pair of nodes.

The length of a path in a graph is the number of edges in the path.

A complete graph is one that has an edge between every pair of nodes.

A weighted graph is one where each edge has a cost for traveling between the nodes.
A cycle is a path that begins and ends at the same node.

An acyclic graph is one that has no cycles.

An acyclic, connected graph is also called an unrooted tree

 For an undirected graph, the matrix will be symmetric along the diagonal.

« For a weighted graph, the adjacency matrix would have the weight for edges in the
graph, zeros along the diagonal, and infinity (o) every place else.

F
The graph G=({1,2, 3
{1, 3} {2, 3} {2, 4},

URE 8.1A

o {{1, 2},

, 0}, {4, 5}})

0 1 1 0 0
1 0 1 il 0
1 1 0 0 1|
0 1 0 0 |
0 0 1 | 0

FIGURE 8.2A
The adjacency matrix for the graph in Fig. 8.1(a)

FIGURE 8.1B 5 0 1 0 1 0
The directed graph G = ({1, 2, 3, 4, 5}, {(1, 2),

(1, 3); (2; 1) (35 2)s (44 3), (4, B), FIGURE 8.2B
(5’ 2)’ (5’4)}) The adjacency matrix for the digraph in Fig. 8.1(b)

A list of pointers, one for each node of the graph.

These pointers are the start of a linked list of nodes that can be reached by one edge of
the graph.

For a weighted graph, this list would also include the weight for each edge.

URE 8.1A |°® — [2 |—= | 4

FIG
3; 4, 0): {1 2%
3, 5}, {4, 5}}) FIGURE 8.3A

The adjacency list for the graph in Fig. 8.1(a)

The graph G = ({1, 2,
{1, 3} {2, 3} {2, 4},

FIGURE 8.1B 5 p—— 2 A a
The directed graph G = ({1, 2, 3, 4, 5}, {(1, 2),
(1, 3); (2, 1) (3; 2); (4, 3), (4, B), s o e

(5’ 2)! (5’4)}) The adjacency list for the graph im
Fig. 8.1(b)

« Some algorithms require that every vertex of a graph be visited exactly once.

« The order in which the vertices are visited may be important, and may depend upon the
particular algorithm.

 The two common traversals:
- depth-first
- breadth-first

We follow a path through the graph until we reach a dead end.

We then back up until we reach a node with an edge to an unvisited node.

We take this edge and again follow it until we reach a dead end.

This process continues until we back up to the starting node and it has no edges to
unvisited nodes.

 Consider the following graph:

FIGURE 8.4
A graph

* The order of the depth-first traversal of this graph starting at node
1 would be:
1,2,3,4,7,5,6,8,9

From the starting node, we follow all paths of length one.

Then we follow paths of length two that go to unvisited nodes.
We continue increasing the length of the paths until there are no unvisited nodes along

any of the paths.

» Consider the following graph:

FIGURE 8.4 @ = p
A graph

* The order of the breadth-first traversal of this graph starting at
node 1 would be: 1,2,8,3,7, 4,5,9,6

Module — 5
Binary Trees and Hashing

Binary Search Trees - Properties and Operations
Balanced Search Trees — AVL Trees

M — way Search Trees

B Trees

Hashing — Hash Table, Hash Function

Collisions
Applications of Hashing

In a BST, each node stores some information including a unigue key value, and perhaps
some assocliated data. A binary tree is a BST Iiff, for every node n in the tree:

All keys in n's left sub-tree are less than the key in n, and

All keys In n's right sub-tree are greater than the key in n.

In other words, binary search trees are binary trees in which all values in the node’s left
sub-tree are less than node value all values in the node’s right sub-tree are greater than

node value.

180

Binary Search Tree

241

A BST is a binary tree of nodes ordered in the following way:

I. Each node contains one key (also unique)

Il. The keys in the left sub-tree are < (less) than the key in its parent node
lii. The keys in the right sub-tree > (greater) than the key in its parent node
Iv. Duplicate node keys are not allowed.

242

* A naive algorithm for inserting a node into a BST Is that, we start from
the root node, If the node to insert is less than the root, we go to left
child, and otherwise we go to the right child of the root.

* We then insert the node as a left or right child of the leaf node based on
node Is less or greater than the leaf node. We note that a new node Is
always inserted as a leaf node.

243

« A recursive algorithm for inserting a node into a BST is as follows. Assume we insert a
node N to tree T. if the tree is empty, the we return new node N as the tree. Otherwise,
the problem of inserting is reduced to inserting the node N to left of right sub trees of T,
depending on N is less or greater than T.
A definition is as follows.

Insert(N, T)

N If T is empty
Insert(N, T.left) IFN<T
Insert(N, T.right) f N>T

244

 Searching for a node is similar to inserting a node. \We start from root,
and then go left or right until we find (or not find the node). A recursive
definition of search is as follows. If the node Is equal to root, then we
return true. If the root is null, then we return false. Otherwise we
recursively solve the problem for T.left or T.right, dependingon N < T
or N > T. Arecursive definition is as follows.

« Search should return a true or false, depending on the node is found or
not.

245

« Search(N, T) = false if T is empty Searching for a node Is similar to inserting a node.
We start from root, and then go left or right until we find (or not find the node).

A recursive definition of search is as follows. If the node is equal to root, then we return
true. If the root is null, then we return false. Otherwise we recursively solve the

problem for T.left or T.right, depending on N < T or N > T. A recursive definition is as
follows.

Search should return a true or false, depending on the node is found or not.
Search(N, T) = False if T is empty

=Trueif T=N

=search(N, T.left) If N<T

=search(N, T.right) if N>T

186

A BST Is a connected structure. That Is, all nodes in a tree are connected to some other
node. For example, each node has a parent, unless node is the root. Therefore deleting a

node could affect all sub trees of that node. For example, deleting node 5 from the tree
could result in losing sub trees that are rooted at 1 and 9.

/ N\
5 45
F A Y N\
1 = q°7
55 N /
8 15 46
/

247

« A self-balancing (or height-balanced) binary search tree Is any node-based binary
search tree that automatically keeps its height (maximal number of levels below the
root) small in the face of arbitrary item insertions and deletions.

« AVL Trees: An AVL tree Is another balanced binary search tree. Named after their
Inventors, Adelson-Velskii and Landis, they were the first dynamically balanced trees
to be proposed. Like red-black trees, they are not perfectly balanced, but pairs of sub-
trees differ in height by at most 1, maintaining an O(logn) search time. Addition and

deletion operations also take O(logn) time.

248

Definition of an AVL tree: An AVL tree is a binary search tree which has the
following properties:

I. The sub-trees of every node differ in height by at most one.
li. Every sub-tree is an AVL tree.

Balance requirement for an AVL tree: the left and right sub-trees differ by at most 1 in
height.

249

Balancs
regurement
foran AV
tree: the left
and right
sub-trees
differ by at
most I in
height.

For example. here are some trees:

Y es this is an AVI tree. Examination shows that eac? left sub-tree has a height 1 greater than
cach nght sub-tree._

No this is notan AV L tree. Sub-tree with root 8 has height 4 and sub-ftree with root 1 8 has height
=2

190

« To implement our AVL tree we need to keep track of a balance factor for each node in
the tree. We do this by looking at the heights of the left and right subtrees for each node.
More formally, we define the balance factor for a node as the difference between the
height of the left subtree and the height of the right subtree.

balanceFactor = height(leftSubTree)—height(rightSubTree)

 Using the definition for balance factor given above we say that a subtree is left-heavy if
the balance factor is greater than zero. If the balance factor is less than zero then the
subtree is right heavy. If the balance factor is zero then the tree is perfectly in balance.

251

252

Multiday tree of order 5

« A multiway tree is a tree that can have more than two children. A multiway tree of order
m (or an m-way tree) is one in which a tree can have m children.

As with the other trees that have been studied, the nodes in an m-way tree will be made up
of key fields, in this case m-1 key fields, and pointers to children.,

253

e m-way search tree is a m-way tree in which:
I. Each node has m children and m-1 key fields
Il. The keys in each node are in ascending order.
ll. The keys in the first i children are smaller than the ith key
Iv. The keys in the last m-i children are larger than the ith key

e 4-way search tree

50 s0 80

30 35 58 59 S3 70 73 100

52 54 &1 s2

57

55 56

254

« An extension of a multi-way search tree of order m is a B- tree of order m. This type of
tree will be used when the data to be accessed/stored is located on secondary storage
devices because they allow for large amounts of data to be stored in a node.

« A B-tree of order m is a multi-way search tree in which:

\2

The root has at least two sub-trees unless it is the only node in the tree.

Each non-root and each non-leaf node have at most m nonempty children and at least
m/2 nonempty children.

The number of keys in each non-root and each non-leaf node is One less than the
number of its nonempty children.

All leaves are on the same level.

255

o Start at the root and determine which pointer to follow based on a
comparison between the search value and key fields in the root
node.

* Follow the appropriate pointer to a child node.

« Examine the key fields in the child node and continue to follow the
appropriate pointers until the search value is found or a leaf node iIs
reached that doesn't contain the desired search value.

256

« The condition that all leaves must be on the same level forces a characteristic behavior
of B-trees, namely that B-trees are not allowed to grow at the their leaves; instead they
are forced to grow at the root.

« When inserting into a B-tree, a value Is inserted directly into a leaf. This leads to three
common situations that can occur:

I. Akey is placed into a leaf that still has room.
li. The leaf in which a key is to be placed is full.
lii. The root of the B-tree is full.

257

Casel: A Kkey is placed into a leaf that still has room

This is the easiest of the cases to solve because the value is simply inserted into the correct sorted
position in the leaf node.

12

\

5 8 13 15

Inserting the number 7 results in:

12

\

258

Case2Z2: The leafin which a key is to be placed is full

In this case. the leaf node where the value should be inserted is split in WwWo. resulting in 3 new
leaf node. Half of the kevs will be moved from the fiill leaf to the new leaf The new leaf is then
incorporated into the B-tree._

The new leaf i1s incorporated by moving the middle value to the parent and a pointer to the new
Ieaf is also added to the parent. This process is continues up the tree until all of the values have

"found" a location._

Insert 6 into the following B-tree:

1=
= = 5 = 1= 1=
results in a split of the first leafnode:
12
2 =] 7 8 13 15
12
2 5 S 7 s 13 15

The new node needs to be imncorporated into the tree - this is accomplished by taking the middle
value and inserting it in the parent:

12

13

15

259

Case3: The root of the B-tree is full

The upward movement of values from case 2 means that it's possible that a value could move up
to the root of the B -free_ If the root is full. the same basic process ffom case 2 will be applied and
a new root will be created. This tvpe of split results in 2 new nodes being added to the B-tree._

Inserting 13 into the following tree:

Results in:

6 (12|20 30
21314 |5 T8 101 14 (15 (18|19 A |8 |B | =@ N BV[(H B
E(RID|N

G e

e
L
R
o
-l
<
—
L]

1l nH

13

e

A

%

5%3 IR HB

The 15 needs to be moved to the roof node but it is full. This means that the root needs to be

divided:
£ 12 15)
2131435 T(8|W|1 13 14 9119 A3 5|38 ﬁ$i335|

The 15 is inserted into the parent. which means that it becomes the new root node:

260

« The deletion process will basically be a reversal of the insertion process - rather than
splitting nodes, it's possible that nodes will be merged so that B-tree properties, namely
the requirement that a node must be at least half full, can be maintained.

 There are two main cases to be considered:
I. Deletion from a leaf
Il. Deletion from a non-leaf

261

Case 1: Deletion from a leaf

1a) If the leaf 1s at least half full afier deleting the desired value, the remaining larger values are
moved to "fill the gap".

Deleting 6 from the following tree:

%
1|8 n's
ERE: ‘ 5|67 R ARTRE e ® BoM 7'y
l i
results in:
% [
3|8 n =
E: 2 5|7 Iasuss T N L | N 7.y ‘

262

Now delete 8 from the tree:

18

15

12

g

263

Hashing is the technique used for performing almost constant time search in case of
Insertion, deletion and find operation.

Taking a very simple example of it, an array with its index as key is the example of hash
table. So each index (key) can be used for accessing the value in a constant search
time. This mapping key must be simple to compute and must helping in identifying the
associated value. Function which helps us in generating such kind of key- value
mapping Is known as Hash Function.

In a hashing system the keys are stored in an array which is called the Hash Table. A
perfectly implemented hash table would always promise an average
Insert/delete/retrieval time of O(1).

204

« A function which employs some algorithm to computes the key K for all the data
elements in the set U, such that the key K which is of a fixed size. The same key K can
be used to map data to a hash table and all the operations like insertion, deletion and
searching should be possible. The values returned by a hash function are also referred
to as hash values, hash codes, hash sums, or hashes.

hash

keys function hashes
ao
T . o1
John Smith e
' a3
Lisa Smsth a4
Bo = 9?

13
—— ==
15

265

A situation when the resultant hashes for two or more data elements in the data set U,
maps to the same location in the has table, is called a hash collision. In such a situation
two or more data elements would qualify to be stored / mapped to the same location in the
hash table.

Hash collision resolution techniques:

» Open Hashing (Separate chaining): Open Hashing, is a technique in which the data is
not directly stored at the hash key index (k) of the Hash table. Rather the data at the key
Index (k) in the hash table is a pointer to the head of the data structure where the data is
actually stored. In the most simple and common implementations the data structure
adopted for storing the element is a linked-list.

266

keys buckets entries

Jehn Smitn | 521-1234 |

= | Sandra Dea [521-9655 |

*{ | T=aBaksr | 2152165 |

SamDos | 521-5030 |

267

In this technique a hash table with pre-identified size is considered. All items are
stored In the hash table itself. In addition to the data, each hash bucket also
maintains the three states: EMPTY, OCCUPIED, DELETED. While inserting, if a
collision occurs, alternative cells are tried until an empty bucket is found. For which
one of the following technique iIs adopted.

Liner Probing

Quadratic probing
Double hashing

268

Open Addressing

Closed Addressing

All elements would be
stored 1n the Hash table
itself No additional data
structure 1is needed.

A dditional Data structure
needs to be used to

accommodate collision
data

In cases of collisions_ a
unique hash kev must be
obtained.

Simple and effecuve
approach to collision
resoluton. Key mavy or may
not be unique.

Determining size of the
hash table. adequate enough
for storing all the data 1s
difficult.

Performmance deterioration
of closed addressing much
slower as compared to
Open addressing.

State needs be maintained
for the data (additional
work)

No state data needs to be
maintained (easier to
maintain)

Uses space efﬁciently

Expensive on space

269

A hash function maps a variable length input string to fixed length output string -- its hash
value, or hash for short. If the input is longer than the output, then some inputs must map
to the same output -- a hash collision.

Comparing the hash values for two inputs can give us one of two answers: the inputs are
definitely not the same, or there is a possibility that they are the same. Hashing as we know
It is used for performance improvement, error checking, and authentication.

In error checking, hashes (checksums, message digests, etc.) are used to detect errors caused
by either hardware or software. Examples are TCP checksums, ECC memory, and MD5
checksums on downloaded files.

Construct a message authentication code (MAC)

Digital signature

Make commitments, but reveal message later

Time-stamping

Key updating: key ishashed at specific intervals resulting in new key.

210

THANKYOU

