

INSTITUTE OF AERONAUTICAL ENGINEERING
(Autonomous)

Dundigal, Hyderabad -500 043

COMPUTER SCIENCE AND ENGINEERING

DATA STRUCTURES

by

B Padmaja

Associate Professor, CSE

Module – 1

Introduction to Data Structures,

Searching and Sorting

3

• Introduction to Data Structures

• Classification of Data Structures

• Operations on Data Structures

• Searching Techniques - Linear, Binary

• Sorting Techniques- Bubble, Selection, Insertion,

• Comparison of Sorting Algorithms

Contents

Every data structure is used to organize the large amount of data.

Every data structure follows a particular principle.

The operations in a data structure should not violate the basic principle of that data structure.

Data structure is a method of organizing large amount of data more efficiently
so that any operation on that data becomes easy.

To develop a program of an algorithm we should select an appropriate data

structure for that algorithm.
Algorithm + Data Structure = Program

4

Introduction to Data Structures

5

Classification of Data Structures

6

Classification of Data Structures

If a Data structure is organizing the data in sequential order, then
that data structure is called as Linear Data Structure.

7

Linear Data Structures

If a data structure is organizing the data in random order, then
that data structure is called as Non-Linear Data Structure.

8

Non-linear Data Structures

• Contiguous Data Structures

• Non-contiguous Data Structures

• Contiguous Data Structures - Ex. Arrays

• Non-contiguous Data Structures – Ex. Linked Lists

9

Classification of Data Structures – Organization of data

Contiguous Data Structures are of 2 types:

• Arrays: Which contains data items of all the same size.

• Structures: Which contains data items of different size.

10

Contiguous Data Structures

Non-Contiguous Data Structures:

• Linked-lists: It is a linear, one-dimensional type of non-contiguous DS.

• Trees and Graphs: It is a two-dimensional non-contiguous DS.

11

Non- Contiguous Data Structures

• Accessing each record exactly once so that certain items in the record
may be processed. Traversing:

• Finding the location of the record with a given key value, or finding
the locations of all records which satisfy one or more conditions. Searching:

• Adding a new record to the structure. Inserting:

12

Operations on Data Structures

• Removing a record from the structure. Deleting:

• Arranging the records in some logical order. Sorting:
• Combining the records in two different sorted

files into a single sorted file. Merging:

13

Operations on Data Structures

ADT separates data type declaration from representation.

ADT separates function declaration (prototype) from implementation.

ADT is a mathematical model with collection of operations
defined on that model.

14

Abstract Data Type (ADT)

Implementation of ADT:

Implement the operations of a Data

Structure using a programming

Language.

15

Abstract Data Type (ADT)

There are two basic structures we can use to implement an ADT List: arrays and

linked lists.

• Array Implémentation

• Linked List Implémentation

16

Abstract Data Type (ADT) Implementation

Input

• Every algorithm must
take zero or more

number of input values
from external.

Output

• Every algorithm must
produce an output as

result.

Definiteness

• Every
statement/instruction
in an algorithm must

be clear and
unambiguous (only one

interpretation)

Finiteness

• For all different cases,
the algorithm must

produce result within a
finite number of steps.

Effectiveness

• Every instruction must
be basic enough to be
carried out and it also

must be feasible.

An algorithm is a sequence of unambiguous instructions used for solving a
problem, which can be implemented (as a program) on a computer

Algorithm Specifications

17

Algorithm and its properties

 Problem Statement : Find the largest number in the given list of numbers?

Input : A list of positive integer numbers.

Output : The largest number in the given list of positive integer numbers.

18

Example of an Algorithm

19

Example of an Algorithm

Algorithm Code in C Programming

Step 1: Define a variable 'max' and initialize with '0'.

Step 2: Compare first number (say 'x') in the list 'L'

with 'max', if 'x' is larger than 'max', set 'max' to 'x'.

Step 3: Repeat step 2 for all numbers in the list 'L'.

Step 4: Display the value of 'max' as a result.

int findMax (L)
{
 int max = 0,i;
 for(i=0; i < listSize; i++)
 {
 if(L[i] > max)
 max = L[i];
 }
 return max;
}

• a straightforward approach to solve a problem based on the problem’s
statement and definitions of the concepts involved. Brute force

• The solution is constructed through a sequence of steps, each expanding a
partially constructed solution obtained so far. At each step the choice must be
locally optimal – this is the central point of this technique.

Greedy

General approaches to the construction of efficient
solutions to problems.

20

Approaches to Design an Algorithm

21

Approaches to Design an Algorithm

• Given an instance of the problem to be solved, split this into several smaller sub-instances
(of the same problem), independently solve each of the sub-instances and then combine
the sub-instance solutions so as to yield a solution for the original instance.

Divide-and-Conquer

• The idea behind dynamic programming is to avoid this pathology by obviating the
requirement to calculate the same quantity twice. The method usually accomplishes this
by maintaining a table of sub-instance results.

Dynamic Programming

• we start with a possible solution, which satisfies all the required conditions. Then we
move to the next level and if that level does not produce a satisfactory solution, we
return one level back and start with a new option.

Backtracking

• The purpose of a branch and bound search is to maintain the lowest-cost path to a target.
Once a solution is found, it can keep improving the solution. Branch and bound search is
implemented in depth-bounded search and depth–first search.

Branch and Bound

• An algorithm is called recursive if it solves a problem by reducing it to
an instance of the same problem with smaller input.

The function which calls by itself is called as Direct
Recursive function (or Recursive function)

22

Recursive Algorithms

Computing n!

Procedure factorial (n : nonnegative integer)

 if n= 0 then factorial(n)=1

 else factorial(n) := n * factorial(n-1)

Take n=4

 4! = 4*3! = 4 * (3 *2!) = 4*3*2*(1!) = 4*3*2*1*(0!) = 24

23

Example: Factorial of a number

24

Types of Recursion

25

Types of Recursion

• Linear Recursion: makes at most one recursive call each time it is invoked.
E.g. factorial, sum of natural numbers, GCD

• Binary Recursion: makes two recursive calls. E.g. Fibonacci series
• Multiple Recursion: makes more than two recursive calls. E.g. Combinatorial

puzzles
• Tail Recursion: A recursive function call is tail recursive when recursive call is

the last thing executed by the function. E.g. factorial of a number.

26

1. Which of the following data structure is non-linear type?

a. Strings

b. Stacks

c. Linked lists

d. Trees

2. Which of the following data structure is linear type?

a. Strings

b. Queues

c. Linked lists

d. All the above

Recap

27

Recap

3. To represent hierarchical relationship between elements, which data structure is

suitable?

a. Queues

b. Stacks

c. Trees

d. All the above

4. An algorithm that calls itself directly or indirectly is known as?

a. Sub algorithm

b. Recursion

c. Traversal algorithm

d. All the above

28

Recap

5. Which of the following are algorithmic design techniques?

a. Divide-and-conquer

b. Branch and bound

c. Dynamic programming

d. All the above

6. Which is not a property of an algorithm?

a. Generality

b. Effectiveness

c. Definiteness

d. Performance

29

Recap

7. LIFO (Last in first out) mechanism is used in which data structure?

a. Linked lists

b. Arrays

c. Queues

d. Stacks

8. FIFO (First in first out) mechanism is used in which data structure?

a. Linked lists

b. Arrays

c. Queues

d. Stacks

30

Recap

9. In which data structure, the element which is inserted first will be removed last

(FILO principle)?

a. Linked lists

b. Arrays

c. Queues

d. Stacks

10. The data structure, in which the data items are physically not next to each

other, but virtually in linear order is called a -----?

a. Arrays

b. Queues

c. Linked lists

d. Stacks

31

Recap

11. Based on organization of data, the classification of data structures are ?

a. Linear and non-linear DS

b. Primitive and non-primitive DS

c. Contiguous and non-contiguous DS

d. All the above

12. Based on arrangement of data elements in memory, the classification of data

structures are

a. Linear and non-linear DS

b. Primitive and non-primitive DS

c. Contiguous and non-contiguous DS

d. All the above

32

Recap

13. Arrays and structures follow which category of data structures?

a. Non-linear DS

b. Primitive DS

c. Contiguous DS

d. All the above

14. Linked lists is an example of which data structures?

a. Linear DS

b. Non-primitive DS

c. Non-contiguous DS

d. All the above

33

Recap

15. A list which display the relationship of adjacency between elements is said to

be?

a. Linear

b. Non-linear

c. Linked lists

d. Trees

34

Algorithm

 Definition: An algorithm is a finite sequence of instructions, each of which
has a clear meaning and can be performed with a finite amount of effort in a
finite length of time.

 Properties of an algorithm:

 Input

 Output

 Definiteness

 Finiteness

 Effectiveness

35

Practical Algorithm Design Issues

 Choosing an efficient algorithm or data structure is an important aspect of the
design process. There are three basic design goals that we should strive for in a
program:

 Design issues of an algorithm:

 Try to save time (Time Complexity)

 Try to save space (Space Complexity)

 Try to have face

36

Performance of a Program

 The performance of a program is the amount of computer memory and time
needed to run a program.

 Time Complexity:

 The time needed by an algorithm expressed as a function of the size of a
problem is called the Time Complexity of the algorithm. The time complexity
of a program is the amount of computer time it needs to run to completion.

 Space Complexity:

 The space complexity of a program is the amount of memory it needs to run to
completion. The space need by a program has the following components:

 Instruction Space

 Data Space

 Environment Stack Space

37

Classification of Algorithms

 1 (Constant running time)

 log n (logarithmic)

 n (linear)

 n log n

 n2 (Quadratic)

 n3 (Cubic)

 nk (Polynomial)

 2n (Exponential)

 If n is the number of data items to be processed or degree of polynomial or the size of the file to be

sorted or searched or the number of nodes in a graph etc.

38

Complexity of Algorithms

The complexity of an algorithm M is the function f(n) which gives the running
time and/or storage space requirement of the algorithm in terms of the size n of
the input data.

Mostly, the storage space required by an algorithm is simply a multiple of the
data size n. Complexity shall refer to the running time of the algorithm.

The function f(n), gives the running time of an algorithm, depends not only on
the size n of the input data but also on the particular data.

The complexity function f(n) for certain cases are:

 Best Case: Provides a lower bound on running time.

Average Case: Provides the expected running time.

Worst Case: Provides an upper bound on running time.

39

Asymptotic Notations

 Run time of an algorithm is described as the function of input size n. Time
Complexity is described asymptotically i.e. as the input size goes to infinity.

 Time Complexity is expressed using the highest-order term in the expression for
the exact running time. E.g. f(n) = n2 + 4n + 5, then it is written as Θ(n2)

 Big-Oh(O) – Upper bound of a function

 Big-Omega(Ω) – Lower bound of a function

 Theta(Θ) – Average bound of a function

40

Big-Oh(O) Notations

    

    0

0

 allfor 0

such that and constants positiveexist there :

nnncgnf

ncngOnf





 g(n) is asymptotic upper bound for f(n).

1 < logn < n < nlogn < n2 < n3 …. < 2n …< nn

Example: f(n) = 2n + 3

 2n + 3 ≤ 10n

Then f(n) = O(n)

 2n + 3 ≤ 7n Ɐ n ≥ 1

Then f(n) = O(n)

 2n + 3 ≤ 2n +3n Ɐ n ≥ 1

 2n + 3 ≤ 5n

Then f(n) = O(n)

f(n) = 2n + 3

 2n + 3 ≤ 2n2 + 3n2 Ɐ n ≥ 1

 2n + 3 ≤ 5n2

Then f(n) = O(n2)

 2n + 3 ≤ 5n3 Ɐ n ≥ 1

Then f(n) = O(n3)

 2n + 3 ≤ 5n5 Ɐ n ≥ 1

Then f(n) = O(n5)

f(n) = O(n)

41

n0

cg(n)

f(n)

Visualization of O(g(n))

42

    

    0

0

 allfor 0

such that and constants positiveexist there :

nnncgnf

ncngnf





Big-Omega(Ω) Notations

 g(n) is asymptotic lower bound for f(n).

1 < logn < n < nlogn < n2 < n3 …. < 2n …< nn

Example: f(n) = 2n + 3

 f(n) ≥ c*g(n)

 2n + 3 ≥ 1*n Ɐ n ≥ 1

Then f(n) = Ω(n) is true

 2n + 3 ≥ 1*log n Ɐ n ≥ 1

Then f(n) = Ω(log n) is true

 2n + 3 ≥ 1*n2 Ɐ n ≥ 1 is not satisfied

Then f(n) = Ω(n2) is false

43

n0

cg(n)

f(n)

Visualization of (g(n))

44

    

      021

021

 allfor 0

such that and , , constants positiveexist there :

nnngcnfngc

nccngnf





              ngnfngOnfngnf  AND

Theta(Θ) Notations

 g(n) is average or tight bound for f(n).

 1 < logn < n < nlogn < n2 < n3 …. < 2n …< nn

Example: f(n) = 2n + 3

 c1*g(n) ≤ f(n) ≤ c2*g(n)

 1*n ≤ 2n + 3 ≤ 5*n Ɐ n ≥ 1

Then f(n) = Θ(n) is true

45

n0

c2g(n)

f(n)

c1g(n)

Visualization of (g(n))

46

Big-Oh (O), Omega (Ω) and Theta (Θ) Notations

47

More Examples on Asymptotic Notations

 1 < logn < n < nlogn < n2 < n3 …. < 2n < 3n < 4n < …< nn

Example: f(n) = 2n2 + 3n + 4

 2n2 + 3n + 4 ≤ c * g(n)

 2n2 + 3n + 4 ≤ 2n2 + 3n2 + 4n2 Ɐ n ≥ 1

 2n2 + 3n + 4 ≤ 9n2

Then f(n) = O(n2) is true

Example: f(n) = 2n2 + 3n + 4

 2n2 + 3n + 4 ≥ c * g(n)

 2n2 + 3n + 4 ≥ 1* n2 Ɐ n ≥ 1

Then f(n) = Ω(n2) is true

Example: f(n) = 2n2 + 3n + 4

 c1*g(n) ≤ f(n) ≤ c2*g(n)

 1* n2 ≤ 2n2 + 3n + 4 ≤ 9n2 Ɐ n ≥ 1

Then f(n) = Θ(n2) is true

48

More Examples on Asymptotic Notations

 1 < logn < n < nlogn < n2 < n3 …. < 2n < 3n < 4n < …< nn

Example: f(n) = n2 log n + n represent the function f(n) using Big-Oh, Omega and
Theta notation.

 c1*g(n) ≤ f(n) ≤ c2*g(n)

 1* n2 log n ≤ n2 log n + n ≤ 10 * n2 log n Ɐ n ≥ 1

Then f(n) = O(n2 log n) is true

 f(n) = Ω(n2 log n) is true

 f(n) = Θ(n2 log n) is true

49

More Examples on Asymptotic Notations

 1 < logn < n < nlogn < n2 < n3 …. < 2n < 3n < 4n < …< nn

Example: f(n) = n! represent the function f(n) using Big-Oh, Omega and Theta
notation.

n! = n * (n-1) * (n-2) * (n-3) * …………* 3 * 2 * 1

We can also write as 1 * 2 * 3 * ……….* (n-2) * (n-1) * n

 c1*g(n) ≤ f(n) ≤ c2*g(n)

 1* 1 * …… * 1≤ 1 * 2 * 3 * ……….* n ≤ n * n * n * ……….* n Ɐ n ≥ 1

 1 ≤ n! ≤ nn so here g(n) is different in both sides.

Then f(n) = O(nn) is true and this is upper bound.

 f(n) = Ω(1) is true and this is lower bound.

But we are unable to find a suitable place in between upper and lower bound. So we
can’t write theta notation for this function.

50

More Examples on Asymptotic Notations

 1 < logn < n < nlogn < n2 < n3 …. < 2n < 3n < 4n < …< nn

Example: f(n) = log n! represent the function f(n) using Big-Oh, Omega and Theta notation.

n! = n * (n-1) * (n-2) * (n-3) * …………* 3 * 2 * 1

We can also write as 1 * 2 * 3 * ……….* (n-2) * (n-1) * n

 c1*g(n) ≤ f(n) ≤ c2*g(n)

 log(1* 1 * …… * 1)≤ log (1 * 2 * 3 * …….* n) ≤ log (n * n * …..* n) Ɐ n ≥ 1

 1 ≤ log n! ≤ log nn so here g(n) is different in both sides.

Then f(n) = O(log nn) is true and this is upper bound.

 f(n) = Ω(1) is true and this is lower bound.

Here we can’t write theta notation for this function.

Note: Every function may not have an average or tight bound, in that case express the
function using either upper or lower case.

51

Time Complexity Analysis of Loops

Example 1: for (i = 0; i < n; i++) ----------------------- n+1 times or n times

 {

 stmt; ------------------------ n times

 }

 Time Complexity ---------- O(n)

Example 2: for (i = 1; i > 0; i--) ----------------------- n+1 times or n times

 {

 stmt; ------------------------ n times

 }

 Time Complexity ---------- O(n)

52

Time Complexity Analysis of Loops

Example 3: for (i = 1; i < n; i=i+ 2)

 {

 stmt; ------------------------ n/2 times, so it’s a function of f(n) = n/2

 }

 Time Complexity ---------- O(n)

Example 4: for (i = 1; i < n; i=i + 20)

 {

 stmt; ---------------------- n/20 times, so it’s a function of f(n) = n/20

 }

 Time Complexity ---------- O(n)

53

Time Complexity Analysis of Loops

Example 5: for (i = 0; i < n; i++) ------------- n+1 times

 {

 for(j=0; j<n; j++) ----------- n * (n+1)

 {

 stmt; ------------- n * n times, so it’s a function of f(n) = n2

 }

 }

 Time Complexity ---------- O(n2)

54

Time Complexity Analysis of Loops

Example 6: for (i = 0; i < n; i++)

 {

 for(j=0; j<i; j++)

 {

 stmt;

 }

 }

1+2+3+4+……+n = (n(n+1)) / 2 times

f(n) = (n2+1)/2

Time Complexity O(n2)

i j no of times stmt executed

0 false stmt not executed

1 0 1 time

 1 false

2 0 2 times

 1

 2 false

3 0 3 times

 1

 2

 3 false

………………………..

n 0 n times

 1

 2

 …..

 n-1

 n false

55

Time Complexity Analysis of Loops

Example 7:

p=0;

for (i = 1;p <= n; i++)

{

 p = p+i;

}

Assume when p > n then the loop will
stop.

Since p = (k(k+1))/2

(k(k+1))/2 > n

Assume k2 > n

 k > n n

Time Complexity f(n) = O(n)

i p

1 0+1 = 1

2 1+2 = 3

3 1+2+3 = 6

4 1+2+3+4 = 10

5 1+2+3+4+5 = 15

……………………………

K 1+2+3+4+5+…..+K

56

Time Complexity Analysis of Loops

Example 8:

for (i = 1; i < n; i = i*2)

{

 stmt;

}

Assume when i > n then the loop will
stop.

Since i = 2k

 2k >= n

Take 2k = n

 k = log2n

Time Complexity f(n) = O(log2n)

i

1

1 x 2 =2

2 x 2 = 22

22 x 2 = 23

23 x 2 = 24

……………

2k-1 x 2 = 2k

57

Time Complexity Analysis of Loops

Example 9:

for (i = n; i >= 1; i = i/2)

{

 stmt;

}

Assume when i < 1 then the loop will
stop.

Since i = n / 2k

 n / 2k < 1

 So n = 2k

 k = log2n

Time Complexity f(n) = O(log2n)

i

n

n / 2

n / 22

n / 23

n / 24

……………

n / 2k

58

Time Complexity Analysis of Loops

Example 10:

for (i = 0; i * i < n; i++)

{

 stmt;

}

Till i * i < n the loop will execute,

when i * i >= n then the loop will stop.

Since i2 >= n

So i2 = n

 i = n

Time Complexity f(n) = O(n)

59

Time Complexity Analysis of Loops

Example 11: Independent loops

for (i = 0; i < n; i++)

{

 stmt; --------------- n times

}

for (j = 0; j < n; j++)

{

 stmt; --------------- n times

}

Total 2n times both the loops will run.

Time Complexity f(n) = O(n)

60

Time Complexity Analysis of Loops

Example 12: Dependent loops

p = 0;

for (i = 1; i < n; i = i*2)

{

 p++; --------------- log n times

}

for (j = 1; j < p; j = j*2)

{

 stmt; --------------- log p times = log log n times

}

Time Complexity f(n) = O(log log n)

61

Time Complexity Analysis of Loops

Example 13: Nested loops

for (i = 0; i < n; i ++) --------- n+1 times or n times

{

 for (j = 1; j < n; j = j*2) ------ n log n times

 {

 stmt; --------------- n log n times

 }

}

Total both the loops will run 2nlog n + n times

Time Complexity f(n) = O(nlog n)

62

1. The Big-Oh notation for f(x) = 5 log x is ?

a. 1

b. x

c. x2

d. X3

Ans: 5 log x ≤ x then f(x) = O(x)

2. The Big-Omega notation for f(x) = 2x4 + x2 - 4?

a. x2

b. x3

c. x

d. X4

Ans: 2x4 + x2 – 4 ≥ x4 then f(x) = Ω(x4)

Recap

63

Searching

 Definition: Searching is an operation or a technique that helps finds the place
of a given element or value in the list. Any search is said to be successful or
unsuccessful depending upon whether the element that is being searched is
found or not.

 Searching Techniques:

 Linear or Sequential Search

 Binary Search

 Fibonacci Search

 Interpolation Search

64

Linear or Sequential Search

 This is the simplest of all searching techniques. In this technique, an ordered or unordered list will

be searched one by one from the beginning until the desired element is found. If the desired
element is found in the list then the search is successful otherwise unsuccessful.

 Time Complexity of Linear Search algorithm:

 Suppose there are n elements organized sequentially on a List. The number of comparisons

required to retrieve an element from the list, purely depends on where the element is stored in

the list. If it is the first element, one comparison will do; if it is second element two

comparisons are necessary and so on. On an average you need [(n+1)/2] comparison’s to

search an element. If search is not successful, you would need ‘n’ comparisons.

The time complexity of linear search

Best case: O(1)

Average case: O(n/2)

Worst case: O(n)

65

Linear Search Algorithm

 Let array a[n] stores n elements. Determine whether element x is present or not.

 linear_search(a[n], x)

{

 index = 0; flag = 0;

 while (index < n) do

 {

 if (x == a[index])

 {

 flag = 1;

 break;

 }

 index ++;

 }

 if(flag == 1)

 printf(“Data found at %d position”, index);

 else

 printf(“data not found”);

}

66

Linear Search Example

67

Binary Search

Binary Search is used for searching an element in a sorted array.

It is a fast search algorithm with run-time complexity of O(log2 n).

Binary search works on the principle of divide and conquer.

This searching technique looks for a particular element by comparing the middle most
element of the collection.

It is useful when there are large number of elements in an array.

The time complexity of Binary search

Best case: O(1)

Average case: O(log2 n)

Worst case: O(log2 n)

index 1 2 3 4 5 6 7 8 9 10 11 12

Elements 4 7 8 9 16 20 24 38 39 45 54 77

If we are searching for x = 4 then

Low =1, high = 12, mid = 6, check 20

Low = 1, high = 5, mid = 3, check 8

Low = 1, high = 2, mid = 1, check 4, Data Found (3 comparisons)

If we are searching for x = 77

Low = 1, high = 12, mid = 6, check 20

Low= 7, high = 12, mid = 9, check 39

Low = 10, high = 12, mid = 11, check 54

Low = 12, high = 12, mid = 12, check 77, Data Found

Time Complexity of Binary search : O(log n) (4 comparisons)

Binary Search Example

69

Binary Search Algorithm

 binary_search(a[], n, x)

 {

 low = 1; high = n;

 while (low < high) do

 {

 mid = (low + high)/2;

 if (x < a[mid])

 high = mid – 1;

 else if (x > a[mid])

 low = mid + 1;

 else

 return mid;

 }

 return 0;

}

70

Sorting Techniques

Definition: Sorting allows an efficient arrangement of elements within a given data structure. It is a way in

which the elements are organized systematically for some purpose.

For example, a dictionary in which words is arranged in alphabetical order and telephone director in which

the subscriber names are listed in alphabetical order.

There are a number of many sorting techniques such as:

 Bubble sort

 Selection sort

 Insertion sort

 Quick sort

 Merge sort

 Heap sort

 Radix sort

There are two types of sorting techniques:

 Internal sorting

 External sorting

71

Bubble Sort or Exchange Sort

Bubble sort is a simple sorting algorithm. This sorting algorithm is comparison-based

algorithm in which each pair of adjacent elements is compared and the elements are swapped if

they are not in order.

This sorting technique is also known as exchange sort, which arranges values by iterating

over the list several times and in each iteration the larger value gets bubble up to the end of the

list.

Consider the array x[n] which is stored in memory as shown below:

Pass 1:
Initial Array or List

72

Bubble Sort or Exchange Sort

Pass 2:

Pass 3:

Pass 4:

Pass 5: The array will be sorted

73

Bubble Sort and Modified (Optimized) Bubble Sort Algorithm

begin BubbleSort(list)

 for all elements of list

 if list[i] > list[i+1]

 swap(list[i], list[i+1])

 end if

 end for

 return list

end BubbleSort

74

Time Complexity of Bubble Sort

In Bubble Sort, n-1 comparisons will be done in the 1st pass, n-2 in 2nd pass, n-3 in 3rd pass and so on.

So the total number of comparisons will be,

(n-1) + (n-2) + (n-3) + + 3 + 2 + 1

Sum = n(n-1)/2

i.e. O(n2)

The bubble sort method of sorting an array of size n requires (n-1) passes and (n-1) comparisons on

each pass. Thus the total number of comparisons is (n-1) * (n-1) = n2 – 2n + 1, which is O(n2).

Therefore bubble sort is very inefficient when there are more elements to sorting.

Worst Case Time Complexity: O(n2) upper bound

Best Case Time Complexity: Ω(n) lower bound (when the list is already sorted)

Average Time Complexity: O(n2) average bound

Space Complexity: O(1) because only a single additional memory space is required i.e. for temp

variable.

75

Recap

1. Where is linear searching used?

a) When the list has only a few elements

b) When performing a single search in an unordered list

c) Used all the time

d) When the list has only a few elements and When performing a single search in an unordered list

2. What is the best case for linear search?

a) O(nlogn)

b) O(logn)

c) O(n)

d) O(1)

3. What is the worst case for linear search?

a) O(nlogn)

b) O(logn)

c) O(n)

d) O(1)

76

Recap

4. What is the best case and worst case complexity of ordered linear search?

a) O(nlogn), O(logn)

b) O(logn), O(nlogn)

c) O(n), O(1)

d) O(1), O(n)

5. Which of the following is a disadvantage of linear search?

a) Requires more space

b) Greater time complexities compared to other searching algorithms

c) Not easy to understand

d) Not easy to implement

6. What is the advantage of recursive approach than an iterative approach?

a) Consumes less memory

b) Less code and easy to implement

c) Consumes more memory

d) More code has to be written

77

Recap

7. Given an input arr = {2,5,7,99,899}; key = 899; What is the level of recursion?

a) 5

b) 2

c) 3

d) 4

8. Given an array arr = {45,77,89,90,94,99,100} and key = 99; what are the mid values(corresponding

array elements) in the first and second levels of recursion?

a) 90 and 99

b) 90 and 94

c) 89 and 99

d) 89 and 94

9. What is the worst case complexity of binary search using recursion?

a) O(nlogn)

b) O(logn)

c) O(n)

d) O(n2)

78

Recap

10. What is the average case time complexity of binary search using recursion?

a) O(nlogn)

b) O(logn)

c) O(n)

d) O(n2)

11. Which of the following is not an application of binary search?

a) To find the lower/upper bound in an ordered sequence

b) Union of intervals

c) Debugging

d) To search in unordered list

12. Binary Search can be categorized into which of the following?

a) Brute Force technique

b) Divide and conquer

c) Greedy algorithm

d) Dynamic programming

79

Recap

13. Given an array arr = {5,6,77,88,99} and key = 88; How many iterations are done until the element is

found in binary search?

a) 1

b) 3

c) 4

d) 2

14. What is the time complexity of binary search with iteration?

a) O(nlogn)

b) O(logn)

c) O(n)

d) O(n2)

15. Is there any difference in the speed of execution between linear serach(recursive) vs linear

search(lterative)?

a) Both execute at same speed

b) Linear search(recursive) is faster

c) Linear search(Iterative) is faster

d) Cant be said

80

Recap

16. Is the space consumed by the linear search(recursive) and linear search(iterative) same?

a) No, recursive algorithm consumes more space

b) No, recursive algorithm consumes less space

c) Yes

d) Nothing can be said

17. What is the worst case runtime of linear search(recursive) algorithm?

a) O(n)

b) O(logn)

c) O(n2)

d) O(nx)

18. Linear search(recursive) algorithm used in _____________

a) When the size of the dataset is low

b) When the size of the dataset is large

c) When the dataset is unordered

d) Never used

81

Recap

19. Can linear search recursive algorithm and binary search recursive algorithm be performed on an

unordered list?

a) Binary search can’t be used

b) Linear search can’t be used

c) Both cannot be used

d) Both can be used

20. What is an external sorting algorithm?

a) Algorithm that uses tape or disk during the sort

b) Algorithm that uses main memory during the sort

c) Algorithm that involves swapping

d) Algorithm that are considered ‘in place’

21. What is an internal sorting algorithm?

a) Algorithm that uses tape or disk during the sort

b) Algorithm that uses main memory during the sort

c) Algorithm that involves swapping

d) Algorithm that are considered ‘in place’

82

Recap

22. What is the worst case complexity of bubble sort?

a) O(nlogn)

b) O(logn)

c) O(n)

d) O(n2)

23. What is the average case complexity of bubble sort?

a) O(nlogn)

b) O(logn)

c) O(n)

d) O(n2)

24. Bubble sort is also known as -----------------

83

Selection Sort

 Selection sort is an in-place comparison sorting algorithm.

The algorithm divides the input list into two parts:

• A sorted sub-list of items which is built up from left to right at the front (left) of the list and

• A sub-list of the remaining unsorted items that occupy the rest of the list.

 Initially, the sorted sub-list is empty and the unsorted sub-list is the entire input list.

 The algorithm proceeds by finding the smallest (or largest, depending on sorting order) element

in the unsorted sub-list, exchanging (swapping) it with the leftmost unsorted element (putting it in

sorted order), and moving the sub-list boundaries one element to the right.

84

Selection Sort

85

Selection Sort Example

86

Time Complexity of Selection Sort

 The time efficiency of selection sort is quadratic, so there are a number of sorting techniques

which have better time complexity than selection sort.

 One thing which distinguishes selection sort from other sorting algorithms is that it makes the

minimum possible number of swaps, n − 1 in the worst case.

87

Selection Sort Algorithm

88

Insertion Sort

 This is an in-place comparison-based sorting algorithm. Here, a sub-list is maintained which is

always sorted.

An element which is to be inserted in this sorted sub-list, has to find its appropriate place and

then it has to be inserted there. Hence the name, insertion sort.

The array is searched sequentially and unsorted items are moved and inserted into the sorted

sub-list (in the same array).

This algorithm is not suitable for large data sets as its average and worst case complexity are of

Ο(n2), where n is the number of items.

Example:

Insertion sort works similarly as we sort cards in our hand in a card game.

We assume that the first card is already sorted then, we select an unsorted card. If the unsorted

card is greater than the card in hand, it is placed on the right otherwise, to the left. In the same

way, other unsorted cards are taken and put at their right place.

89

Insertion Sort

90

Advantages of Insertion Sort

 Efficient for (quite) small data sets, much like other quadratic sorting algorithms.

Adaptive, i.e., efficient for data sets that are already substantially sorted: the time complexity

is O(kn) when each element in the input is no more than k places away from its sorted position.

 Stable; i.e., does not change the relative order of elements with equal keys.

In-place; i.e., only requires a constant amount O(1) of additional memory space.

 Online; i.e., can sort a list as it receives it.

91

Time Complexity of Insertion Sort

 The best case input is an array that is already sorted. In this case insertion sort has a linear

running time (i.e., O(n)). During each iteration, the first remaining element of the input is only

compared with the right-most element of the sorted subsection of the array.

The simplest worst case input is an array sorted in reverse order. In these cases every iteration

of the inner loop will scan and shift the entire sorted subsection of the array before inserting the

next element. This gives insertion sort a quadratic running time (i.e., O(n2)).

The average case is also quadratic (O(n2)), which makes insertion sort impractical for sorting

large arrays.

 However, insertion sort is one of the fastest algorithms for sorting very small arrays.

92

Time Complexity of Insertion Sort

93

Insertion Sort Algorithm

94

Comparison of Time Complexities of Various Algorithms

95

Recap

25. How many passes does an insertion sort algorithm consist of?

a) N

b) N-1

c) N+1

d) N2

26. What is the average case running time of an insertion sort algorithm?

a) O(N)

b) O(N log N)

c) O(log N)

d) O(N2)

27. Any algorithm that sorts by exchanging adjacent elements require O(N2) on average.

a) True

b) False

96

Recap

28. What is the running time of an insertion sort algorithm if the input is pre-sorted?

a) O(N2)

b) O(N log N)

c) O(N)

d) O(M log N)

29. What will be the number of passes to sort the elements using insertion sort?

14, 12,16, 6, 3, 10

a) 6

b) 5

c) 7

d) 1

30. Which of the following real time examples is based on insertion sort?

a) arranging a pack of playing cards

b) database scenarios and distributes scenarios

c) arranging books on a library shelf

d) real-time systems

97

Recap

31. Which of the following options contain the correct feature of an insertion sort algorithm?

a) anti-adaptive

b) dependable

c) stable, not in-place

d) stable, adaptive

32. Which of the following sorting algorithms is the fastest for sorting small arrays?

a) Quick sort

b) Insertion sort

c) Shell sort

d) Heap sort

33. For the best case input, the running time of an insertion sort algorithm is?

a) Linear

b) Binary

c) Quadratic

d) Depends on the input

98

Recap

34. What is an in-place sorting algorithm?

a) It needs O(1) or O(logn) memory to create auxiliary locations

b) The input is already sorted and in-place

c) It requires additional storage

d) It requires additional space

35. What is the worst case complexity of selection sort?

a) O(nlogn)

b) O(logn)

c) O(n)

d) O(n2)

36. What is the advantage of selection sort over other sorting techniques?

a) It requires no additional storage space

b) It is scalable

c) It works best for inputs which are already sorted

d) It is faster than any other sorting technique

99

Recap

37. What is the disadvantage of selection sort?

a) It requires auxiliary memory

b) It is not scalable

c) It can be used for small keys

d) It takes linear time to sort the elements

38. What is the best case complexity of selection sort?

a) O(nlogn)

b) O(logn)

c) O(n)

d) O(n2)

39. The given array is arr = {3,4,5,2,1}. The number of iterations in bubble sort and selection sort

respectively are,

a) 5 and 4

b) 4 and 5

c) 2 and 4

d) 2 and 5

100

Recap

40. The complexity of the sorting algorithm measures the …… as a function of the number n of items to

be sorter.

A. average time

B. running time

C. average-case complexity

D. case-complexity

Module – 2

Linear Data Structures

1
0
2

• Stacks: Primitive operations

• Implementation of stacks using Arrays

• Applications of stacks arithmetic expression conversion and evaluation

• Queues: Primitive operations; Implementation of queues using Arrays

• Applications of linear queue

• Circular queue

• Double ended queue (deque)

Contents

103

Stacks

A stack is a basic data structure that can be logically thought of as a linear structure

represented by a real physical stack or pile, a structure where insertion and deletion of items

takes place at one end called top of the stack.

The basic concept can be illustrated by thinking of your data set as a stack of plates or

books where you can only take the top item off the stack in order to remove things from it.

The basic implementation of a stack is also called a LIFO (Last In First Out).

There are basically three operations that can be performed on stacks. They are

1) inserting an item into a stack (push).

2) deleting an item from the stack (pop).

3) displaying the contents of the stack (peek or top).

PUSH: It is the term used to insert an element into a

stack.

POP: It is the term used to delete an element from a

stack.

Additional Operations:

Display: It displays all the elements in the stack.

Traverse: Visit each element of the stack from top to

bottom or vice versa.

Search: Check whether a specific element is present in

the stack or not.

Basic Stack Operations (Stack ADT)

• Two standard error messages of stack are

– Stack Overflow: If we attempt to add new element beyond the maximum size, we will

encounter a stack overflow condition.

– Stack Underflow: If we attempt to remove elements beyond the base of the stack, we

will encounter a stack underflow condition.

Standard Error Messages in Stack

• PUSH (STACK, TOP, MAXSTR, ITEM): This procedure pushes an ITEM onto a stack

1. If TOP = MAXSIZE, then Print: OVERFLOW, and Return.

2. Set TOP := TOP + 1 [Increases TOP by 1]

3. Set STACK [TOP] := ITEM. [Insert ITEM in TOP position]

4. Return

• POP (STACK, TOP, ITEM): This procedure deletes the top element of STACK and

assign it to the variable ITEM

1. If TOP = 0, then Print: UNDERFLOW, and Return.

2. Set ITEM := STACK[TOP]

3. Set TOP := TOP - 1 [Decreases TOP by 1]

4. Return

Stack Operations

• There are many ways of implementing stack ADT, below are the commonly used methods:

 Static array/list based implementation

 Dynamic array/list based implementation

 Linked lists implementation

Stack Implementation

Dynamic implementation of stack

stack = [] #stack is a list, stack is an empty list

append() function to push element in the stack

stack.append('a')

stack.append('b')

stack.append('c')

print('Initial stack')

print(stack)

pop() fucntion to pop element from stack in LIFO order

print('\nElements poped from stack:')

print(stack.pop())

print(stack.pop())

print(stack.pop())

print('Stack after elements are popped:')

print(stack) #Display the elements of stack

Static implementation of stack

#Stack implementation using list

top=0

mymax=5

def createStack():

 stack=[] #stack is a list

 return stack

def isEmpty(stack):

 return len(stack)==0

def Push(stack,item):

 stack.append(item)

 print("Pushed to stack", item)

def Pop(stack):

 if isEmpty(stack):

 return "stack underflow"

 return stack.pop()

#create a stack object

stack=createStack()

while True:

 print("1.Push")

 print("2.Pop")

 print("3.Display")

 print("4.Quit")

 ch=int(input("Enter your choice:"))

 if ch==1:

 if top < mymax:

 item=input("Enter any elements:")

 Push(stack, item)

 top +=1

 else:

 print("Stack overflow")

 elif ch==2:

 print(Pop(stack))

 elif ch==3:

 print(stack)

 else:

 break

Applications of Stack

1. Stack is used by compilers to check for balancing of parentheses.

2. Stack is used to evaluate a prefix and postfix expression.

3. Stack is used to convert an infix expression into postfix/prefix form.

4. In recursion, all intermediate arguments and return values are stored on the processor’s

stack.

5. During a function call the return address and arguments are pushed onto a stack and on

return they are popped off.

6. Depth first search (DFS) uses a stack data structure to find an element from a graph.

7. Page-visited history in a web browser.

8. Undo sequence in a text editor.

9. Matching tags in HTML and XML.

Time Complexity of Stack

Algebraic Expression Conversion

Algebraic Expression Conversion

1. Infix to Postfix / Prefix

2. Prefix to Infix / Postfix

3. Postfix to Infix / Prefix

Infix Expression: (A + B) / (C - D)

Postfix Expression: A B + C D - /

Prefix Expression: / + A B - C D

Conversion of Infix to Postfix Expression

Procedure to convert from infix expression to postfix expression is as follows:

1. Scan the infix expression from left to right.

2. a) If the scanned symbol is left parenthesis, push it onto the stack.

b) If the scanned symbol is an operand, then place directly in the postfix expression

(output).

c) If the symbol scanned is a right parenthesis, then go on popping all the items from the

stack and place them in the postfix expression till we get the matching left parenthesis.

d) If the scanned symbol is an operator, then go on removing all the operators from the

stack and place them in the postfix expression, if and only if the precedence of the operator

which is on the top of the stack is greater than (or equal) to the precedence of the scanned

operator and push the scanned operator onto the stack otherwise, push the scanned operator

onto the stack.

Conversion of Infix to Postfix Expression

Conversion of Infix to Postfix Expression

Conversion of Infix to Postfix Expression

Conversion of Infix to Prefix Expression

Conversion of Infix to Prefix Expression

Conversion of Postfix to Infix Expression

Conversion of Postfix to Prefix Expression

Conversion of Prefix to Infix Expression

Conversion of Prefix to Postfix Expression

Evaluation of Postfix Expression

Important Links

1. https://en.wikibooks.org/wiki/Data_Structures/Stacks_and_Queues

2. https://www.docdroid.net/ZPfHmS5/data-structures-and-algorithms-narasimha-karumanchi-pdf

3. https://www.geeksforgeeks.org/stack-data-structure/

4. https://www.hackerearth.com/practice/data-structures/stacks/basics-of-stacks/tutorial/

5. https://en.wikipedia.org/wiki/Stack_(abstract_data_type)

https://en.wikibooks.org/wiki/Data_Structures/Stacks_and_Queues
https://www.docdroid.net/ZPfHmS5/data-structures-and-algorithms-narasimha-karumanchi-pdf
https://www.docdroid.net/ZPfHmS5/data-structures-and-algorithms-narasimha-karumanchi-pdf
https://www.docdroid.net/ZPfHmS5/data-structures-and-algorithms-narasimha-karumanchi-pdf
https://www.docdroid.net/ZPfHmS5/data-structures-and-algorithms-narasimha-karumanchi-pdf
https://www.docdroid.net/ZPfHmS5/data-structures-and-algorithms-narasimha-karumanchi-pdf
https://www.docdroid.net/ZPfHmS5/data-structures-and-algorithms-narasimha-karumanchi-pdf
https://www.docdroid.net/ZPfHmS5/data-structures-and-algorithms-narasimha-karumanchi-pdf
https://www.docdroid.net/ZPfHmS5/data-structures-and-algorithms-narasimha-karumanchi-pdf
https://www.docdroid.net/ZPfHmS5/data-structures-and-algorithms-narasimha-karumanchi-pdf
https://www.docdroid.net/ZPfHmS5/data-structures-and-algorithms-narasimha-karumanchi-pdf
https://www.docdroid.net/ZPfHmS5/data-structures-and-algorithms-narasimha-karumanchi-pdf
https://www.docdroid.net/ZPfHmS5/data-structures-and-algorithms-narasimha-karumanchi-pdf
https://www.docdroid.net/ZPfHmS5/data-structures-and-algorithms-narasimha-karumanchi-pdf
https://www.geeksforgeeks.org/stack-data-structure/
https://www.geeksforgeeks.org/stack-data-structure/
https://www.geeksforgeeks.org/stack-data-structure/
https://www.geeksforgeeks.org/stack-data-structure/
https://www.geeksforgeeks.org/stack-data-structure/
https://www.hackerearth.com/practice/data-structures/stacks/basics-of-stacks/tutorial/
https://www.hackerearth.com/practice/data-structures/stacks/basics-of-stacks/tutorial/
https://www.hackerearth.com/practice/data-structures/stacks/basics-of-stacks/tutorial/
https://www.hackerearth.com/practice/data-structures/stacks/basics-of-stacks/tutorial/
https://www.hackerearth.com/practice/data-structures/stacks/basics-of-stacks/tutorial/
https://www.hackerearth.com/practice/data-structures/stacks/basics-of-stacks/tutorial/
https://www.hackerearth.com/practice/data-structures/stacks/basics-of-stacks/tutorial/
https://en.wikipedia.org/wiki/Stack_(abstract_data_type)

• A queue is a data structure where items are inserted at one end

called the rear and deleted at the other end called the front.

• Another name for a queue is a “FIFO” or “First-in-first-out”

list.

• Operations of a Queue:

 enqueue: which inserts an element at the end of the queue.

 dequeue: which deletes an element at the front of the queue.

Queue

Initially the queue is empty.

Now, insert 11 to the queue. Then queue status will be:

Next, insert 22 to the queue. Then the queue status is:

Representation of Queue

Now, delete an element 11.

Next insert another element, say 66 to the queue. We cannot insert 66 to the queue as it signals queue is

full. The queue status is as follows:

Representation of Queue

• Various operations of Queue are:

 insertQ(): inserts an element at the end of queue Q.

 deleteQ(): deletes the first element of Q.

 displayQ(): displays the elements in the queue.

• There are two problems associated with linear queue. They are:

 Time consuming: linear time to be spent in shifting the elements to the beginning of

the queue.

 Signaling queue full: even if the queue is having vacant

position.

Queue Operations using Array

• It is used to schedule the jobs to be processed by the CPU.

• When multiple users send print jobs to a printer, each printing job is kept in the

printing queue. Then the printer prints those jobs according to first in first out

(FIFO) basis.

• Breadth first search uses a queue data structure to find an element from a graph.

Applications of Queue

• A circular queue is one in which the insertion of new element is done at the very

first location of the queue if the last location of the queue is full.

• Suppose if we have a Queue of n elements then after adding the element at the

last index i.e. (n-1)th , as queue is starting with 0 index, the next element will be

inserted at the very first location of the queue which was not possible in the

simple linear queue.

Circular Queue

• The Basic Operations of a circular queue are

 InsertionCQ: Inserting an element into a circular queue results in Rear =

(Rear + 1) % MAX, where MAX is the maximum size of the array.

 DeletionCQ : Deleting an element from a circular queue results in Front =

(Front + 1) % MAX, where MAX is the maximum size of the array.

 TraversCQ: Displaying the elements of a circular Queue.

• Circular Queue Empty: Front=Rear=0.

Circular Queue Operations

Let us consider a circular queue, which can hold maximum (MAX) of six elements. Initially the

queue is empty.

Circular Queue Representation using Arrays

Now, delete two elements 11, 22 from the circular queue. The circular queue status is as follows:

Insertion and Deletion Operations

Again, insert 77 and 88 to the circular queue. The status of the Circular queue is:

Insertion and Deletion Operations

• It is a special queue like data structure that supports insertion and deletion at

both the front and the rear of the queue.

• Such an extension of a queue is called a double-ended queue, or deque, which

is usually pronounced "deck" to avoid confusion with the dequeue method of

the regular queue, which is pronounced like the abbreviation "D.Q."

• It is also often called a head-tail linked list.

Double Ended Queue (DEQUE)

DEQUE Representation using Arrays

• There are two variations of deque. They are:

– Input restricted deque (IRD)

– Output restricted deque (ORD)

• An Input restricted deque is a deque, which allows insertions at one end but

allows deletions at both ends of the list.

• An output restricted deque is a deque, which allows deletions at one end but

allows insertions at both ends of the list.

Types of DEQUE

• A priority queue is a collection of elements that each element

has been assigned a priority and such that order in which

elements are deleted and processed comes from the following

riles:

– An element of higher priority is processed before any element of

lower priority.

– Two element with the same priority are processed according to the

order in which they were added to the queue.

Priority Queue

• Inserting new elements.

• Removing the largest or smallest element.

• Priority Queue Usages are:

Simulations: Events are ordered by the time at which they should be executed.

Job scheduling in computer systems: Higher priority jobs should be executed

first.

Constraint systems: Higher priority constraints should be satisfied before

lower priority constraints.

Priority Queue operations and Usage

Module – 3

Linked Lists

141

• Introduction to Linked list

• Advantages and Disadvantages of Linked List

• Types of Linked List

• Single Linked List

• Applications of Linked List

• Circular Single Linked list

• Double Linked List

Contents

142

A linked list is a collection of data in which each element contains the location of

the next element—that is, each element contains two parts: data and link.

Introduction to Linked Lists

• Both an array and a linked list are representations of a list of items in memory.

The only difference is the way in which the items are linked together. The Figure

below compares the two representations for a list of five integers.

143

Arrays vs Linked Lists

144

• A data structure that can shrink or grow during program execution.

• The size of a dynamic data structure is not necessarily known at compilation

time, in most programming languages.

• Efficient insertion and deletion of elements.

• The data in a dynamic data structure can be stored in non-contiguous (arbitrary)

locations.

• Linked list is an example of a dynamic data structure.

Linked Lists – A Dynamic Data Structure

145

• Unused locations in array is often a wastage of space

• Linked lists offer an efficient use of memory

– Create nodes when they are required

– Delete nodes when they are not required anymore

– We don’t have to know in advance how long the list should be

Advantages of Linked Lists

146

• Linked lists are used to represent and manipulate polynomial. Polynomials are
expression containing terms with non zero coefficient and exponents. For
example:

 P(x) = a0 Xn + a1 Xn-1 + …… + an-1 X + an

• Represent very large numbers and operations of the large number such as

addition, multiplication and division.

• Linked lists are to implement stack, queue, trees and graphs.

• Implement the symbol table in compiler construction.

Applications of Linked Lists

147

• There are four types of Linked lists:
– Single linked list

• Begins with a pointer to the first node

• Terminates with a null pointer

• Only traversed in one direction

– Circular single linked list
• Pointer in the last node points back to the first node

– Doubly linked list
• Two “start pointers” – first element and last element

• Each node has a forward pointer and a backward pointer

• Allows traversals both forwards and backwards

– Circular double linked list
• Forward pointer of the last node points to the first node and backward pointer of the

first node points to the last node

Types of Linked Lists

 A singly linked list is a concrete data structure
consisting of a sequence of nodes

 Each node stores

 element

 link to the next node

next

elem node

A B C D



148

Single Linked List

149

• A linked list allocates space for each element separately in its own block of

memory called a "node".

• Each node contains two fields; a "data" field to store whatever element, and a

"next" field which is a pointer used to link to the next node.

• Each node is allocated in the heap using malloc(), so the node memory continues

to exist until it is explicitly de-allocated using free().

• The front of the list is a pointer to the “start” node.

Single Linked List

150

Single Linked List

151

• The basic operations of a single linked list are

– Creation

– Insertion

– Deletion

– Traversing

Operations on Single Linked List

Sufficient memory has to be allocated for creating a node. The information is stored in the

memory, allocated by using the malloc() function. The function getnode(), is used for creating

a node, after allocating memory for the structure of type node, the information for the item

(i.e., data) has to be read from the user, set next field to NULL and finally returns the address

of the node.

152

Creating a node for Single Linked List

class Node:
 def __init__(self, data, nextNode = None):
 self.data = data
 self.nextNode = nextNode
 def getData(self):
 return self.data
 def setData(self,val):
 self.data = val
 def getNextNode(self):
 return self.nextNode
 def setNextNode(self,val):
 self.nextNode = val

Single Linked List

class LinkedList:
 def __init__(self,head = None):
 self.head = head
 self.size = 0
 def getSize(self):
 return self.size
 def addNode(self,data):
 newNode = Node(data,self.head)
 self.head = newNode
 self.size+=1
 return True
 def printNode(self):
 curr = self.head
 while curr:
 print(curr.data)
 curr = curr.getNextNode()

Single Linked List

155

Creating a Single Linked List with N nodes

156

• Inserting a node into a single linked list can be done at

– Inserting into an empty list.

– Insertion at the beginning of the list.

– Insertion at the end of the list.

– Insertion in the middle of the list.

Inserting a node into a Single Linked List

157

The following steps are to be followed to insert a new node at the beginning of the list:

 #Function to insert a new node at the beginning

 def push(self, new_data):

 # Allocate the Node & Put in the data

 new_node = Node(new_data)

 #Make next of new Node as head

 new_node.next = self.head

 # Move the head to point to new Node

 self.head = new_node

Inserting a node at the beginning

158

Inserting a node at the beginning

159

• The following steps are followed to insert a new node at the end of the list:

This function is defined in Linked List class

Appends a new node at the end. This method is defined inside LinkedList class

shown above

def append(self, new_data):

 # Create a new node, Put in the data, Set next as None

 new_node = Node(new_data)

Inserting a node at the end

 # If the Linked List is empty, then make the

 new node as head
 if self.head is None:
 self.head = new_node
 return
 #Else traverse till the last node
 last = self.head
 while last.next:
 last = last.next
 # Change the next of last node
 last.next = new_node

Inserting a node at the end

161

Inserting a node at the end

162

• The following steps are followed, to insert a new node after the given previous node in the
list:

 def insertAfter(self, prev_node, new_data):

 #check if the given prev_node exists

 if prev_node is None:

 print(“The given previous node must in Linked List.”)

 return

 #Create new node & Put in the data

 new_node = Node(new_data)

 # Make next of new Node as next of prev_node

 new_node.next = prev_node.next

#Make next of prev_node as new_node

 prev_node.next = new_node

Inserting a node at intermediate position

163

Inserting a node at intermediate position

164

• Another primitive operation that can be done in a singly linked list is the deletion of

a node. Memory is to be released for the node to be deleted. A node can be deleted

from the list from three different places namely.

– Deleting a node at the beginning.

– Deleting a node at the end.

– Deleting a node at intermediate position.

Deletion of a node

165

• The following steps are followed, to delete a node at the beginning of the list:

Deleting a node at the beginning

166

• The following steps are followed to delete a node at the end of the
list:

– If list is empty then display ‘Empty List’ message.

– If the list is not empty, follow the steps given below:

temp = prev = start; while(temp -> next != NULL)

{

prev = temp;

temp = temp -> next;

}

prev -> next = NULL; free(temp);

Deleting a node at the end

167

Deleting a node at the end

168

• The following steps are followed, to delete a node from an intermediate position in the list:

 # Given a reference to the head of a list and a position, delete the node at a given position

 def deleteNode(self, position):

 # If linked list is empty

 if self.head == None:

 return

 # Store head node

 temp = self.head

Deleting a node at intermediate position

 # If head needs to be removed

 if position == 0:
 self.head = temp.next
 temp = None
 return
 # Find previous node of the node to be deleted
 for i in range(position -1):
 temp = temp.next
 if temp is None:
 break

Deleting a node at intermediate position

 # If position is more than number of nodes
 if temp is None:
 return
 if temp.next is None:
 return
 # Node temp.next is the node to be deleted
 store pointer to the next of node to be deleted
 next = temp.next.next
 # Unlink the node from linked list
 temp.next = None
 temp.next=next

Deleting a node at intermediate position

Find previous node of the node to be deleted
 for i in range(position -1):
 temp = temp.next
 if temp is None:
 break

 # If position is more than number of nodes
 if temp is None:
 return
 if temp.next is None:
 return

Deleting a node at intermediate position

110

Deleting a node at intermediate position

173

• To display the information, you have to traverse (move) a linked list, node by node from

the first node, until the end of the list is reached. Traversing a list involves the following

steps:

– Assign the address of start pointer to a temp pointer.

– Display the information from the data field of each node.

Traversal and displaying a list

174

• A double linked list is a two-way list in which all nodes will have two links. This helps
in accessing both successor node and predecessor node from the given node position. It
provides bi-directional traversing. Each node contains three fields:

– Left link.

– Data.

– Right link.

• The left link points to the predecessor node and the right link points to the successor
node. The data field stores the required data.

Double Linked list

175

Double Linked list

176

• Creation

• Insertion

• Deletion

• Traversing

 The beginning of the double linked list is stored in a "start" pointer which points to the

first node. The first node’s left link and last node’s right link is set to NULL.

Operations on Double Linked list

177

• The following steps are to be followed to create ‘n’ number of nodes:

 class Node(object):

 def __init__(self, data, prev, next):

 self.data = data

 self.prev = prev

 self.next = next

 class DoubleList(object):

 head = None

 tail = None

Creating a Double Linked list with n nodes

178

Structure of a Double Linked list

179

Double Linked list with N nodes

180

• The following steps are to be followed to insert a new node at the beginning of the list:

• Get the new node using getnode(). newnode=getnode();

• If the list is empty then start = newnode.

• If the list is not empty, follow the steps given below:

newnode -> right = start; start -> left = newnode; start = newnode;

Insert a node at the beginning

181

Insert a node at the beginning

120

• The following steps are followed to insert a new node at the end of the list:
• Get the new node using getnode()

 newnode=getnode();

• If the list is empty then start = newnode.

• If the list is not empty follow the steps given below: temp = start;
 while(temp -> right != NULL) temp = temp -> right;
 temp -> right = newnode; newnode -> left = temp;

Insert a node at the end

183

Insert a node at the end

184

• The following steps are followed, to insert a new node in an intermediate position in the
list:

• Get the new node using getnode(). newnode=getnode();
• Ensure that the specified position is in between first node and last node. If not, specified

position is invalid. This is done by countnode() function.
• Store the starting address (which is in start pointer) in temp and prev pointers. Then

traverse the temp pointer upto the specified position followed by prev pointer.
• After reaching the specified position, follow the steps given below: newnode -> left =

temp;
newnode -> right = temp -> right; temp -> right -> left = newnode; temp -> right = newnode;

Insert a node at intermediate position

185

Insert a node at intermediate position

186

Delete a node at beginning

187

• The following steps are followed to delete a node at the end of the list:
• If list is empty then display ‘Empty List’ message

• If the list is not empty, follow the steps given below:

temp = start;

while(temp -> right != NULL)
{
temp = temp -> right;
}
temp -> left -> right = NULL; free(temp);

Delete a node at the end

188

Delete a node at the end

189

Delete a node at intermediate position

130

• The following steps are followed, to traverse a list from left to right:

• If list is empty then display ‘Empty List’ message.

• If the list is not empty, follow the steps given below: temp = start;

while(temp != NULL)

{

print temp -> data; temp = temp -> right;

}

Traversing a linked list from L to R

191

• The following steps are followed, to traverse a list from right to left:

• If list is empty then display ‘Empty List’ message.

• If the list is not empty, follow the steps given below: temp = start;

while(temp -> right != NULL) temp = temp -> right; while(temp != NULL)

{

print temp -> data; temp = temp -> left;

}

Traversing a linked list from R to L

192

• The major disadvantage of doubly linked lists (over singly linked lists) is that they require

more space (every node has two pointer fields instead of one). Also, the code to manipulate

doubly linked lists needs to maintain the prev fields as well as the next fields; the more

fields that have to be maintained, the more chance there is for errors.

• The major advantage of doubly linked lists is that they make some operations (like the

removal of a given node, or a right-to-left traversal of the list) more efficient.

Advantages and Disadvantages of Double Linked list

193

• It is just a single linked list in which the link field of the last node points back to the address
of the first node.

• A circular linked list has no beginning and no end. It is necessary to establish a special
pointer called start pointer always pointing to the first node of the list.

• Circular linked lists are frequently used instead of ordinary linked list because many
operations are much easier to implement. In circular linked list no null pointers are used,
hence all pointers contain valid address.

Circular Single Linked list

The basic operations in a circular single linked list are:

• Creation

•Insertion

•Deletion

•Traversing

194

Circular Single Linked list Operations

195

• The following steps are to be followed to create ‘n’ number of nodes:

• Get the new node using getnode().
newnode = getnode();

• If the list is empty, assign new node as start. start = newnode;

• If the list is not empty, follow the steps given below: temp = start;

while(temp -> next != NULL) temp = temp -> next;

temp -> next = newnode;

• Repeat the above steps ‘n’ times. newnode -> next = start;

Circular Single Linked list with n nodes

196

• The following steps are to be followed to insert a new node at the beginning of the circular
list:

• Get the new node using getnode().

newnode = getnode();

• If the list is empty, assign new node as start. start = newnode;

newnode -> next = start;

• If the list is not empty, follow the steps given below: last = start;

while(last -> next != start) last = last -> next;

newnode -> next = start; start = newnode;

last -> next = start;

Inserting a node at the beginning

197

Inserting a node at the beginning

198

• The following steps are followed to insert a new node at the end of the list:

• Get the new node using getnode(). newnode = getnode();

• If the list is empty, assign new node as start. start = newnode;

newnode -> next = start;

• If the list is not empty follow the steps given below: temp = start;

while(temp -> next != start) temp = temp -> next;

temp -> next = newnode; newnode -> next = start;

Inserting a node at the end

199

Inserting a node at the end

140

• The following steps are followed, to delete a node at the beginning of the list:
• If the list is empty, display a message ‘Empty List’.
• If the list is not empty, follow the steps given below: last = temp = start;
 while(last -> next != start) last = last -> next;
 start = start -> next; last -> next = start;

• After deleting the node, if the list is empty then start = NULL.

Deleting a node at the beginning

201

Deleting a node at the beginning

202

• The following steps are followed to delete a node at the end of the list:

• If the list is empty, display a message ‘Empty List’.

• If the list is not empty, follow the steps given below: temp = start;

prev = start;

while(temp -> next != start)

{

prev = temp;

temp = temp -> next;

}

prev -> next = start;

• After deleting the node, if the list is empty then start = NULL.

Deleting a node at the end

203

Deleting a node at the end

204

• The following steps are followed, to traverse a list from left to right:

• If list is empty then display ‘Empty List’ message.

• If the list is not empty, follow the steps given below: temp = start;

do

{

printf("%d ", temp -> data); temp = temp -> next;

} while(temp != start);

Traversing a circular single linked list
from left to right

205

• The major advantage of circular lists (over non-circular lists) is

that they eliminate some extra-case code for some operations

(like deleting last node).

• Also, some applications lead naturally to circular list

representations.

• For example, a computer network might best be modeled using

a circular list.

Advantages of Circular Lists

A polynomial is of the form:

Where, ci is the coefficient of the ith term and n is the degree of the polynomial Some examples are:

5x2 + 3x + 1

5x4 – 8x3 + 2x2 + 4x1 + 9x0

The computer implementation requires implementing polynomials as a list of pairs of coefficient and exponent.

Each of these pairs will constitute a structure, so a polynomial will be represented as a list of structures. A linked list

structure that represents polynomials 5x4 – 8x3 + 2x2 + 4x1 + 9x0 illustrated.

206

Applications of Linked Lists:

Representing Polynomials

207

• To add two polynomials, if we find terms with the same exponent
in the two polynomials, then we add the coefficients; otherwise, we
copy the term of larger exponent into the sum and go on. When we
reach at the end of one of the polynomial, then remaining part of
the other is copied into the sum.

• To add two polynomials follow the following steps:

– Read two polynomials.

– Add them.

– Display the resultant polynomial.

Addition of Polynomials

Module – 3

Linked Lists

• Basic Tree Concepts, Binary Trees

• Representation of Binary Trees

• Operations on a Binary Tree

• Binary Tree Traversals

• Threaded Binary Trees

• Basic Graph Concepts

• Graph Traversal Techniques: DFS and BFS

CONTENTS

• Trees are non linear data structure that can be represented in a

hierarchical manner.

– A tree contains a finite non-empty set of elements.

– Any two nodes in the tree are connected with a

relationship of parent-child.

– Every individual elements in a tree can have any number of sub trees.

Tree – a Hierarchical Data Structure

An Example of a Tree

• Root : The basic node of all nodes in the tree. All operations on the tree are
performed with passing root node to the functions.

• Child : a successor node connected to a node is called child. A node in binary tree
may have at most two children.

• Parent : a node is said to be parent node to all its child nodes.

• Leaf : a node that has no child nodes.

• Siblings : Two nodes are siblings if they are children to the same parent node.

Tree – Basic Terminology

• Ancestor : a node which is parent of parent node (A is ancestor
node to D,E and F).

• Descendent : a node which is child of child node (D, E and F
are descendent nodes of node A)

• Level : The distance of a node from the root node, The root is at
level – 0,(B and C are at Level 1 and D, E, F have Level 2 (
highest level of tree is called height of tree)

• Degree : The number of nodes connected to a particular parent
node.

Tree – Basic Terminology Contd…

• A binary tree is a hierarchy of nodes, where every parent node has

at most two child nodes. There is a unique node, called the root,

that does not have a parent.

• A binary tree can be defined recursively as

• Root node

• Left subtree: left child and all its descendants

• Right subtree: right child and all its descendants

Binary Tree

a

b c

d e

g h i

l

f

j k

Binary Tree

• A full tree is a binary tree in which

– Number of nodes at level l is 2l–1

– Total nodes in a full tree of height n is

• A complete tree of height n is a binary tree

– Number of nodes at level 1 l n–1 is 2l–1

– Leaf nodes at level n occupy the leftmost positions in the tree

Full and Complete Binary Trees

Full and Complete Binary Trees

• A binary tree is defined recursively: it consists of a root, a left

subtree, and a right subtree.

• To traverse (or walk) the binary tree is to visit each node in the

binary tree exactly once.

• Tree traversals are naturally recursive.

• Standard traversal orderings:

• preorder

• inorder

• postorder

• level-order

Tree Traversals

• In Preorder, the root is visited

before (pre)

the subtrees traversals.

• In Inorder, the root is visited in-

between left

and right subtree traversal.

• In Preorder, the root is visited after

(pre)

the subtrees traversals.

Preorder Traversal:
1. Visit the root

2. Traverse left subtree

3. Traverse right subtree

Inorder Traversal:

1. Traverse left subtree

2. Visit the root

3. Traverse right subtree

Postorder Traversal:

1. Traverse left subtree

2. Traverse right subtree

3. Visit the root

Preoder, Inorder, Postorder

• Assume: visiting a node

is printing its data

•Preorder: 15 8 2 6 3 7

11 10 12 14 20 27 22 30

•Inorder: 2 3 6 7 8 10 11

12 14 15 20 22 27 30

•Postorder: 3 7 6 2 10 14

12 11 8 22 30 27 20 15

6

15

8

2

3 7

11

14

10 12

20

27

22 30

Example of Tree Traversal

void preorder(tree *tree) {

if (tree->isEmpty()) return; visit(tree->getRoot()); preOrder(tree->getLeftSubtree());

preOrder(tree->getRightSubtree());
}

void inOrder(Tree *tree){

if (tree->isEmpty()) return; inOrder(tree->getLeftSubtree()); visit(tree->getRoot());

inOrder(tree->getRightSubtree());

}

void postOrder(Tree *tree){

if (tree->isEmpty()) return; postOrder(tree->getLeftSubtree()); postOrder(tree->getRightSubtree(

)); visit(tree->getRoot());
}

Traversal Techniques

• A threaded binary tree

defined as:

• "A binary tree is threaded by making all

right child pointers that would normally

be null point to the inorder successor of

the node, and all left child pointers that

would normally be null point to the

inorder predecessor of the node

Threaded Binary Tree

• Graphs are collections of nodes connected by edges – G = (V,E) where V is a set of

nodes and E a set of edges.

• Graphs are useful in a number of applications including

– Shortest path problems

– Maximum flow problems

• Graphs unlike trees are more general for they can have connected components.

Graph Basics

• Directed Graphs: A directed graph edges allow travel in one direction.

• Undirected Graphs: An undirected edges allow graph travel in either direction.

Graph Types

• A graph is an ordered pair G=(V,E) with a set of vertices or nodes and the edges that
connect them.

• A subgraph of a graph has a subset of the vertices and edges.

• The edges indicate how we can move through the graph.

• A path is a subset of E that is a series of edges between two nodes.

• A graph is connected if there is at least one path between every pair of nodes.

Graph Terminology

• The length of a path in a graph is the number of edges in the path.

• A complete graph is one that has an edge between every pair of nodes.

• A weighted graph is one where each edge has a cost for traveling between the nodes.

• A cycle is a path that begins and ends at the same node.

• An acyclic graph is one that has no cycles.

• An acyclic, connected graph is also called an unrooted tree

Graph Terminology

• For an undirected graph, the matrix will be symmetric along the diagonal.

• For a weighted graph, the adjacency matrix would have the weight for edges in the
graph, zeros along the diagonal, and infinity (∞) every place else.

Data Structures for Graphs: Adjacency Matrix

Adjacency Matrix

Adjacency Matrix

• A list of pointers, one for each node of the graph.

• These pointers are the start of a linked list of nodes that can be reached by one edge of
the graph.

• For a weighted graph, this list would also include the weight for each edge.

Adjacency List

Adjacency List

Adjacency List

• Some algorithms require that every vertex of a graph be visited exactly once.

• The order in which the vertices are visited may be important, and may depend upon the

particular algorithm.

• The two common traversals:

- depth-first

- breadth-first

Graph Traversals

• We follow a path through the graph until we reach a dead end.

• We then back up until we reach a node with an edge to an unvisited node.

• We take this edge and again follow it until we reach a dead end.

• This process continues until we back up to the starting node and it has no edges to
unvisited nodes.

Graph Traversals: Depth First Traversal

• Consider the following graph:

• The order of the depth-first traversal of this graph starting at node
1 would be:

1, 2, 3, 4, 7, 5, 6, 8, 9

Depth First Traversal

• From the starting node, we follow all paths of length one.

• Then we follow paths of length two that go to unvisited nodes.

• We continue increasing the length of the paths until there are no unvisited nodes along

any of the paths.

Graph Traversals: Breadth First Traversal

• Consider the following graph:

• The order of the breadth-first traversal of this graph starting at
node 1 would be: 1, 2, 8, 3, 7, 4, 5, 9, 6

Breadth First Traversal Example

Module – 5

Binary Trees and Hashing

• Binary Search Trees - Properties and Operations

• Balanced Search Trees – AVL Trees

• M – way Search Trees

• B Trees

• Hashing – Hash Table, Hash Function

• Collisions

• Applications of Hashing

CONTENTS

180

• In a BST, each node stores some information including a unique key value, and perhaps

some associated data. A binary tree is a BST iff, for every node n in the tree:

• All keys in n's left sub-tree are less than the key in n, and

• All keys in n's right sub-tree are greater than the key in n.

• In other words, binary search trees are binary trees in which all values in the node’s left

sub-tree are less than node value all values in the node’s right sub-tree are greater than

node value.

Binary Search Trees (BST)

241

Binary Search Trees (BST)

242

A BST is a binary tree of nodes ordered in the following way:

i. Each node contains one key (also unique)

ii. The keys in the left sub-tree are < (less) than the key in its parent node

iii. The keys in the right sub-tree > (greater) than the key in its parent node

iv. Duplicate node keys are not allowed.

Binary Search Trees Properties

243

• A naïve algorithm for inserting a node into a BST is that, we start from

the root node, if the node to insert is less than the root, we go to left

child, and otherwise we go to the right child of the root.

• We then insert the node as a left or right child of the leaf node based on

node is less or greater than the leaf node. We note that a new node is

always inserted as a leaf node.

Inserting a node into BST

244

• A recursive algorithm for inserting a node into a BST is as follows. Assume we insert a

node N to tree T. if the tree is empty, the we return new node N as the tree. Otherwise,

the problem of inserting is reduced to inserting the node N to left of right sub trees of T,

depending on N is less or greater than T.

• A definition is as follows.

 Insert(N, T) = N if T is empty

 = insert(N, T.left) if N < T

 = insert(N, T.right) if N > T

Inserting a node into BST

245

• Searching for a node is similar to inserting a node. We start from root,

and then go left or right until we find (or not find the node). A recursive

definition of search is as follows. If the node is equal to root, then we

return true. If the root is null, then we return false. Otherwise we

recursively solve the problem for T.left or T.right, depending on N < T

or N > T. A recursive definition is as follows.

• Search should return a true or false, depending on the node is found or

not.

Searching a node into BST

• Search(N, T) = false if T is empty Searching for a node is similar to inserting a node.

We start from root, and then go left or right until we find (or not find the node).

• A recursive definition of search is as follows. If the node is equal to root, then we return

true. If the root is null, then we return false. Otherwise we recursively solve the

problem for T.left or T.right, depending on N < T or N > T. A recursive definition is as

follows.

• Search should return a true or false, depending on the node is found or not.

 Search(N, T) = False if T is empty

 = True if T = N

 = search(N, T.left) if N < T

 = search(N, T.right) if N > T

186

Searching a node into BST

• A BST is a connected structure. That is, all nodes in a tree are connected to some other

node. For example, each node has a parent, unless node is the root. Therefore deleting a

node could affect all sub trees of that node. For example, deleting node 5 from the tree

could result in losing sub trees that are rooted at 1 and 9.

247

Deleting a node into BST

248

• A self-balancing (or height-balanced) binary search tree is any node-based binary

search tree that automatically keeps its height (maximal number of levels below the

root) small in the face of arbitrary item insertions and deletions.

• AVL Trees: An AVL tree is another balanced binary search tree. Named after their

inventors, Adelson-Velskii and Landis, they were the first dynamically balanced trees

to be proposed. Like red-black trees, they are not perfectly balanced, but pairs of sub-

trees differ in height by at most 1, maintaining an O(logn) search time. Addition and

deletion operations also take O(logn) time.

AVL Trees

249

• Definition of an AVL tree: An AVL tree is a binary search tree which has the

following properties:

i. The sub-trees of every node differ in height by at most one.

ii. Every sub-tree is an AVL tree.

• Balance requirement for an AVL tree: the left and right sub-trees differ by at most 1 in

height.

AVL Trees

190

AVL Trees Example

251

• To implement our AVL tree we need to keep track of a balance factor for each node in

the tree. We do this by looking at the heights of the left and right subtrees for each node.

More formally, we define the balance factor for a node as the difference between the

height of the left subtree and the height of the right subtree.

 balanceFactor = height(leftSubTree)−height(rightSubTree)

• Using the definition for balance factor given above we say that a subtree is left-heavy if

the balance factor is greater than zero. If the balance factor is less than zero then the

subtree is right heavy. If the balance factor is zero then the tree is perfectly in balance.

Balance Factor in AVL Trees

252

Balance Factor in AVL Trees

• A multiway tree is a tree that can have more than two children. A multiway tree of order

m (or an m-way tree) is one in which a tree can have m children.

• As with the other trees that have been studied, the nodes in an m-way tree will be made up

of key fields, in this case m-1 key fields, and pointers to children.

• Multiday tree of order 5

253

Introduction to M-way Search Trees

• m-way search tree is a m-way tree in which:

i. Each node has m children and m-1 key fields

ii. The keys in each node are in ascending order.

iii. The keys in the first i children are smaller than the ith key

iv. The keys in the last m-i children are larger than the ith key

• 4-way search tree

254

Properties of M-way Search Trees

255

• An extension of a multi-way search tree of order m is a B- tree of order m. This type of

tree will be used when the data to be accessed/stored is located on secondary storage

devices because they allow for large amounts of data to be stored in a node.

• A B-tree of order m is a multi-way search tree in which:

i. The root has at least two sub-trees unless it is the only node in the tree.

ii. Each non-root and each non-leaf node have at most m nonempty children and at least

m/2 nonempty children.

iii. The number of keys in each non-root and each non-leaf node is One less than the

number of its nonempty children.

iv. All leaves are on the same level.

B-Trees

256

• Start at the root and determine which pointer to follow based on a

comparison between the search value and key fields in the root

node.

• Follow the appropriate pointer to a child node.

• Examine the key fields in the child node and continue to follow the

appropriate pointers until the search value is found or a leaf node is

reached that doesn't contain the desired search value.

Searching in a B-Trees

257

• The condition that all leaves must be on the same level forces a characteristic behavior

of B-trees, namely that B-trees are not allowed to grow at the their leaves; instead they

are forced to grow at the root.

• When inserting into a B-tree, a value is inserted directly into a leaf. This leads to three

common situations that can occur:

i. A key is placed into a leaf that still has room.

ii. The leaf in which a key is to be placed is full.

iii. The root of the B-tree is full.

Inserting into a B-Tree

258

Inserting into a B-Tree

259

Inserting into a B-Tree

260

Inserting into a B-Tree

261

• The deletion process will basically be a reversal of the insertion process - rather than

splitting nodes, it's possible that nodes will be merged so that B-tree properties, namely

the requirement that a node must be at least half full, can be maintained.

• There are two main cases to be considered:

i. Deletion from a leaf

ii. Deletion from a non-leaf

Deletion from a B-Tree

262

Deletion from a B-Tree

263

Deletion from a B-Tree

• Hashing is the technique used for performing almost constant time search in case of

insertion, deletion and find operation.

• Taking a very simple example of it, an array with its index as key is the example of hash

table. So each index (key) can be used for accessing the value in a constant search

time. This mapping key must be simple to compute and must helping in identifying the

associated value. Function which helps us in generating such kind of key- value

mapping is known as Hash Function.

• In a hashing system the keys are stored in an array which is called the Hash Table. A

perfectly implemented hash table would always promise an average

insert/delete/retrieval time of O(1).

204

Hashing

• A function which employs some algorithm to computes the key K for all the data

elements in the set U, such that the key K which is of a fixed size. The same key K can

be used to map data to a hash table and all the operations like insertion, deletion and

searching should be possible. The values returned by a hash function are also referred

to as hash values, hash codes, hash sums, or hashes.

265

Hashing Function

266

A situation when the resultant hashes for two or more data elements in the data set U,

maps to the same location in the has table, is called a hash collision. In such a situation

two or more data elements would qualify to be stored / mapped to the same location in the

hash table.

Hash collision resolution techniques:

• Open Hashing (Separate chaining): Open Hashing, is a technique in which the data is

not directly stored at the hash key index (k) of the Hash table. Rather the data at the key

index (k) in the hash table is a pointer to the head of the data structure where the data is

actually stored. In the most simple and common implementations the data structure

adopted for storing the element is a linked-list.

Collision Resolution Techniques

267

Collision Resolution Techniques

268

• In this technique a hash table with pre-identified size is considered. All items are

stored in the hash table itself. In addition to the data, each hash bucket also

maintains the three states: EMPTY, OCCUPIED, DELETED. While inserting, if a

collision occurs, alternative cells are tried until an empty bucket is found. For which

one of the following technique is adopted.

• Liner Probing

• Quadratic probing

• Double hashing

Collision Resolution Techniques: Closed Hashing

269

Open Hashing Vs. Closed Hashing

210

• A hash function maps a variable length input string to fixed length output string -- its hash

value, or hash for short. If the input is longer than the output, then some inputs must map

to the same output -- a hash collision.

• Comparing the hash values for two inputs can give us one of two answers: the inputs are

definitely not the same, or there is a possibility that they are the same. Hashing as we know

it is used for performance improvement, error checking, and authentication.

• In error checking, hashes (checksums, message digests, etc.) are used to detect errors caused

by either hardware or software. Examples are TCP checksums, ECC memory, and MD5

checksums on downloaded files.

• Construct a message authentication code (MAC)

• Digital signature

• Make commitments, but reveal message later

• Time-stamping

• Key updating: key is hashed at specific intervals resulting in new key.

Applications of Hashing

THANK YOU

