DATA STRUCTURES

III Semester: CSE / IT / ECE / ME / CE IV Semester AE / EEE								
Course Code	Category	Hours / Week			Credits	Maximum Marks		
ACSB03	Core	L	Т	Р	С	CIA	SEE	Total
		3	0	0	3	30	70	100
Contact Classes: 45	Tutorial Classes: Nil	Practical Classes: Nil Total Classes: 60				s: 60		

OBJECTIVES:

The students will try to learn:

- 1. To provide students with skills needed to understand and analyse performance trade-offs of different algorithms / implementations and asymptotic analysis of their running time and memory usage.
- 2. To provide knowledge of basic abstract data types (ADT) and associated algorithms: stacks, queues, lists, tree, graphs, hashing and sorting, selection and searching.
- 3. The fundamentals of how to store, retrieve, and process data efficiently.
- 4. To provide practice by specifying and implementing these data structures and algorithms in Python.
- 5. Understand essential for future programming and software engineering courses.

COURSE OUTCOMES:

After successful completion of the course, students will be able to:

- 1. **Carryout** the analysis of a range of algorithms in terms of algorithm analysis and express algorithm complexity using the O notation (**Understand**).
- 2. Make use of recursive algorithm design technique in appropriate contexts (Apply).
- 3. **Represent** standard ADTs by means of appropriate data structures (**Understand**).
- 4. Select appropriate sorting technique for given problem (Understand).
- 5. Select appropriate searching technique for given problem (Understand).
- 6. **Implement** standard searching and sorting algorithms; including binary search; merge sort and quick sort; and their complexities (**Apply**).
- 7. Design and **implement** linked lists, stacks and queues in Python (Apply).
- 8. Explain the use of basic data structures such as arrays, stacks, queues and linked lists in program design (Understand).
- 9. **Extend** their knowledge of data structures to more sophisticated data structures to solve problems involving balanced binary search trees, AVL Trees, B-trees and B+ trees, hashing, and basic graphs.
- 10. **Design** and implement tree structures in Python (Apply).
- 11. **Compare** and contrast the benefits of dynamic and static data structures implementations and choose appropriate data structure for specified problem domain (**Understand**).
- 12. Quickly **determine and explain** how efficient an algorithm or data structure will be, apply appropriate data structures for solving computing problems with respect to performance (**Analyze**).

MODULE - I INTRODUCTION TO DATA STRUCTURES, SEARCHING AND SORTING

Basic concepts: Introduction to data structures, classification of data structures, operations on data structures; Searching techniques: Linear search and Binary search; Sorting techniques: Bubble sort, selection sort, insertion sort and comparison of sorting algorithms.

MODULE - II	LINEAR DATA STRUCTURES
expression convers	operations, implementation of stacks using Arrays, applications of stacks arithmetic sion and evaluation; Queues: Primitive operations; Implementation of queues using as of linear queue, circular queue and double ended queue (deque).
MODULE - III	LINKED LISTS
	luction, singly linked list, representation of a linked list in memory, operations on a applications of linked lists: Polynomial representation and sparse matrix manipulation.
51	ts: Circular linked lists, doubly linked lists; Linked list representation and operations of presentation and operations of queue.
MODULE - IV	NON LINEAR DATA STRUCTURES
traversal, binary tre	pt, binary tree, binary tree representation, array and linked representations, binary tree e variants, application of trees; Graphs: Basic concept, graph terminology, graph aph traversals, Application of graphs, Priority Queue.
MODULE - V	BINARY TREES AND HASHING
Introduction to M-V	s: Binary search trees, properties and operations; Balanced search trees: AVL trees; Way search trees, B trees; Hashing and collision: Introduction, hash tables, hash s, applications of hashing.
Text Books:	
	se, "Data Structures and Algorithms using Python", Wiley Student Edition. David Julian, "Python Data Structures and Algorithms", Packt Publishers, 2017.
Reference Books:	
-	Pata Structures", Tata McGraw Hill Education, 1 st Edition, 2008. assic Data Structures", PHI Learning, 2 nd Edition, 2004.
Web References:	
1. https://www.tutor	rialspoint.com/data_structures_algorithms/algorithms_basics.htm
0 1 <i>i i i</i>	echef.com/certification/data-structures-and-algorithms/prepare
-	
3. https://www.cs.au	uckland.ac.nz/software/AlgAnim/dsToC.html rning.harvard.edu/course/data-structures-and-algorithms