

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad -500 043

COMPUTERE SCIENEC AND ENGINEERING

COURSE DESCRIPTOR

Course Title	OBJECT (OBJECT ORIENTED ANALYSIS AND DESIGN					
Course Code	ACSB10	ACSB10					
Programme	B.Tech	B.Tech					
Semester	FIVE	FIVE					
Course Type	Core						
Regulation	IARE - R18						
	Theory			Practical			
Course Structure	Lectures	Tutorials	Credits	Laboratory	Credits		
Course Structure	Lectures 3	Tutorials	Credits 3	Laboratory -	Credits -		
Course Structure Chief Coordinator	3	Tutorials - navendra, Assoc	3	-	Credits -		

I. COURSE OVERVIEW:

The Unified Modeling Language is a graphical language for visualizing, specifying, constructing and documenting the artifacts of a software intensive system. The UML gives you a standard way to write systems blueprints covering conceptual things such as business processes and system functions as well as concrete things such as classes written in a specific programming language database schemas and reusable software components. Learn what the UML is what it is not and why the UML is relevant to the process of developing software intensive systems.

II. COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites	Credits
UG	AITB01	III	Object Oriented Programming through Python	3

III. MARKS DISTRIBUTION:

Subject	SEE Examination	CIA Examination	Total Marks
Object Oriented Analysis and Design	70 Marks	30 Marks	100

IV. DELIVERY / INSTRUCTIONAL METHODOLOGIES:

×	Chalk & Talk	~	Quiz	/	Assignments	×	MOOCs
~	LCD / PPT	/	Seminars	×	Mini Project	~	Videos
×	Open Ended Exp	eriments					

V. EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIA examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into FIVE modules and each module carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each module. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The emphasis on the questions is broadly based on the following criteria:

50 %	To test the objectiveness of the concept.
50 %	To test the analytical skill of the concept OR to test the application skill of the concept.

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 20 marks for Continuous Internal Examination (CIE), 05 marks for Quiz and 05 marks for Alternative Assessment Tool (AAT).

Table 1: Assessment pattern for CIA

Component		Total Marks			
Type of Assessment	CIE Exam	Quiz	AAT	Total Walks	
CIA Marks	20	05	05	30	

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8th and 16th week of the semester respectively. The CIE exam is conducted for 20 marks of 2 hours duration consisting of five descriptive type questions out of which four questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Quiz - Online Examination

Two Quiz exams shall be online examination consisting of 25 multiple choice questions and are to be answered by choosing the correct answer from a given set of choices (commonly four). Such a question paper shall be useful in testing of knowledge, skills, application, analysis, evaluation and understanding of the students. Marks shall be awarded considering the average of two quiz examinations for every course.

Alternative Assessment Tool (AAT)

This AAT enables faculty to design own assessment patterns during the CIA. The AAT converts the classroom into an effective learning centre. The AAT may include tutorial hours/classes, seminars, assignments, term paper, open ended experiments, METE (Modeling and Experimental Tools in Engineering), five minutes video, MOOCs etc. The AAT chosen for this course is given in table 3.

Table 3: Assessment pattern for AAT

5 Minutes Video	Assignment	Tech-talk	Seminar	Open Ended Experiment
20%	30%	30%	10%	10%

VI. HOW PROGRAM OUTCOMES ARE ASSESSED:

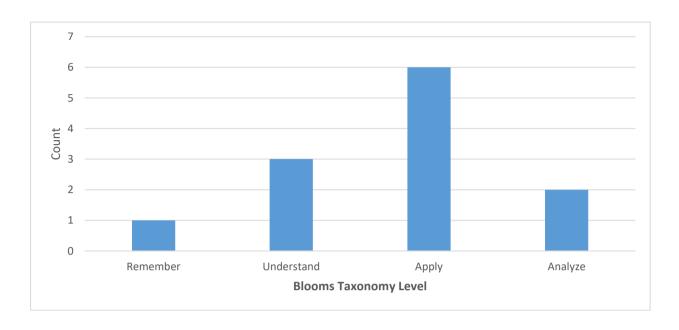
	Program Outcomes	Proficiency assessed by
PO1	Engineering knowledge: Apply the knowledge of mathematics, science,	CIA/SEE/AAT
	engineering fundamentals, and an engineering specialization to the	
	solution of complex engineering problems.	
PO2	Problem analysis : Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.	CIA/SEE/AAT
PO3	Design/development of solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.	CIA/SEE/AAT
PO 4	Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.	CIA/SEE/AAT
PO 5	Modern tool usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.	CIA/SEE/AAT

VII. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program Specific Outcomes				
PSO 1	Understand, design and analyze computer programs in the areas related to	CIA/SEE/AAT			
	Algorithms, System Software, Web design, Big data, Artificial Intelligence,				
	Machine Learning and Networking.				

	Proficiency assessed by	
PSO 3	Make use of modern computer tools for creating innovative career paths, to be	CIA/SEE/AAT
	an entrepreneur and desire for higher studies.	

VIII. COURSE OBJECTIVES:


The course should enable the students will try to learn:							
I	The basic and advanced building blocks of Unified Modeling Language for analysis and						
	design of software systems.						
II	The Object-oriented approach for analysis and design of System/Subsystem/Functional units						
	based on the given specifications through UML Diagrams						
III	III The implementation of design document of real time software applications using advanced						
	CASE tools.						

IX. COURSE OUTCOMES:

At the end of the course, the students are able to:

		Knowledge
CO No	Course Outcomes	Level (Bloom's
		Taxonomy)
CO 1	List the importance and use of basic principles in object oriented modeling	Remember
	for appropriate analysis and design of given scenarios.	
CO 2	Make use of building blocks and different views for creating conceptual	Apply
	model architectural view of system in Unified Software Development Life	
	cycle.	
CO 3	Demonstrate static and dynamic aspects of the system through UML	Understand
	diagrams for specifying structure and interaction of objects during runtime.	
CO 4	Identify basic building blocks for visualizing artifacts of an Object	Apply
	Oriented System.	
CO 5	Summarize advanced building blocks in structural and behavioral	Understand
	modeling of a software system for visualizing web of relationships.	
C0 6	Classify structural modeling of system for representing framework with	Analyze
	UML diagrams.	
C0 7	Illustrate behavioral modeling of system for conveying dynamic concepts	Understand
	of the system.	
C0 8	Categorize advanced behavioral modeling for visualizing flow control of	Analyze
	objects and activities of specified case study like next gen POS system.	
C0 9	Make use of common modeling techniques in UML for modeling	Apply
	vocabulary of real time applications.	
C0 10	Develop architectural model of a scenario for preparing blueprint of the	Apply
	entire system.	
C0 11	Model software application like Unified Library with the help of UML	Apply
	diagrams for documenting static and dynamic aspects of a system.	
C0 12	Develop a design document using UML for simple and complex scenarios	Apply
	of the specific case study.	

COURSE KNOWLEDGE COMPETENCY LEVELS

X. MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAMOUTCOMES

Course	Program Outcomes												Progra	am Spo itcome	
Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1					√								1		
CO 2	√		√	√	√										√
CO 3		√		√	√										
CO 4	√		√	√	√								V		√
CO 5		1		V	V								1		√
CO 6				√									1		√
CO 7		1		√	√								√		√
CO 8				√									1		√
CO 9	√		√	√	√								1		√
CO 10	$\sqrt{}$		V	V	V								1		√
CO 11			V	√	√								√		√
CO 12	V		V	V	V								√		√

XI. JUSTIFICATIONS FOR CO-PO MAPPING:

Course	POs /		No. of key
Outcomes	PSOs	Justification for mapping (Students will be able to)	competencies
CO 1	PO 5	Usage of CASE tool for modelling simple to complex	1
		engineering activities with understanding requirements and	
		limitations of user.	
	PSO 1	Formulate and Evaluate engineering concepts to Design	2
		next-generation computer systems for modelling simple to	
		complex engineering activities with understanding	
		requirements and limitations of user.	
CO 2	PO 1	Apply Engineering knowledge and modelling principles,	2
		building blocks and architectural views of the system with	
	DO 4	support of UML.	_
	PO 3	Design solutions for simple and complex problems by	6
		Defining and understanding customer requirements,	
		identifying various static and dynamic functions, managing	
	PO 4	design process and evaluate the outcomes as UML diagrams.	_
	PO 4	Conduct investigation of complex problems for visualizing artefacts by using basic and advanced building blocks with	5
		knowledge of process, laboratory skills, understanding	
		knowledge and ability to apply a systems approach to	
		engineering problems.	
	PO 5	Usage of CASE tool for modelling simple to complex	1
	100	engineering activities with understanding requirements and	•
		limitations of user for architectural view of system.	
	PSO 3	Make use of computational and advanced CASE tools for	2
		creating innovative career paths, to be an entrepreneur and	
		desire for higher studies.	
CO 3	PO 2	Understand the given problem and system definition,	6
		problem formulation, collecting data, modelling, solution	· ·
		development and documentation by using diagrams for static	
		and dynamic aspects of the system.	
	PO 4	Conduct investigation of complex problems for visualizing	5
		diagrams of static and dynamic aspects by using basic and	
		advanced building blocks knowledge of process, laboratory	
		skills, understanding knowledge and ability to apply a	
		systems approach to engineering problems.	
	PO 5	Usage of CASE tool for modelling simple to complex	1
		engineering activities with understanding requirements and	
		limitations of user.	
CO 4	PO 1	Apply Engineering knowledge and modelling principles, in	2
		identifying basic building blocks for visualizing artefacts of	
	DO 1	system.	2
	PO 3	Design solutions for simple and complex problems by	3
		Defining problem, understand customer requirements, identifying basic building blocks to draw UML diagrams.	
	PO 4	Conduct investigation of complex problems for visualizing	2
	104	artefacts by using basic building blocks with knowledge and	
		system approach of process.	
	PO 5	Usage of CASE tool for modelling simple to complex	1
	100	engineering activities with understanding requirements and	1
		limitations of user.	
<u> </u>		TITION OF BOOK	<u> </u>

	PSO 1	Formulate and Evaluate engineering concepts to Design	2
		next-generation computer systems in identifying basic	
		building blocks for visualizing artefacts of system.	
	PSO 3	Make use of computational and advanced CASE tools for	2
		creating innovative career paths, to be an entrepreneur and	
		desire for higher studies.	
CO 5	PO 2	Understand the given problem and system definition,	6
	102	problem formulation, collecting data, modelling, solution	U
		development and documentation for design solution by using	
		advanced building blocks of UML.	
	PO 4	Conduct investigation of complex problems for visualizing	2
		artefacts by using advanced building blocks with knowledge	_
		and system approach of process.	
	PO 5	Usage of CASE tool for modelling simple to complex	1
		engineering activities with understanding requirements and	
		limitations of user.	
	PSO 1	Formulate and Evaluate engineering concepts to Design	2
		next-generation computer systems by using advanced building	
		blocks of UML.	
	PSO 3	Make use of computational and advanced CASE tools for	2
		creating innovative career paths, to be an entrepreneur and	
		desire for higher studies.	
CO 6	PO 4	Conduct investigation of complex problems for structural	2
000	104	modelling with knowledge and system approach of process.	2
	PSO 1	Formulate and Evaluate engineering concepts to Design	2
	1001	next-generation computer systems for structural modelling.	-
	PSO 3	Make use of computational and advanced CASE tools for	2
		creating innovative career paths, to be an entrepreneur and	
		desire for higher studies.	
CO 7	PO 2	Understand the given problem and system definition,	6
		problem formulation, collecting data, modelling, solution	
		development and documentation for design solution by using	
		diagrams of behavioural modelling.	
	PO 4	Conduct investigation of complex problems for visualizing	2
		artefacts by using diagrams of behavioural modelling of	
		system with knowledge and system approach of process.	
	PO 5	Usage of CASE tool for modelling simple to complex	1
		engineering activities with understanding requirements and	
	DGC 4	limitations of user.	_
	PSO 1	Formulate and Evaluate engineering concepts to Design	2
		next-generation computer systems by using diagrams of	
	DCO 2	behavioural modelling.	
	PSO 3	Make use of computational and advanced CASE tools for	2
		creating innovative career paths, to be an entrepreneur and	
		desire for higher studies.	
CO 8	PO 4	Conduct investigation of complex problems for visualizing	2
		artefacts by using diagrams of advanced behavioural	
		modelling of system with knowledge and system approach	
		of process.	
	PSO 1	Formulate and Evaluate engineering concepts to Design	2
		next-generation computer systems for visualizing artefacts by	
		using diagrams of advanced behavioural modelling of system.	

	PSO 3	Make use of computational and advanced CASE tools for	
	1303		2
		creating innovative career paths, to be an entrepreneur and	
		desire for higher studies.	
CO 9	PO 1	Apply Engineering knowledge and modelling principles, for	2
		modelling vocabulary of system by using different common	
		modelling techniques of concepts and diagrams used in UML.	
	PO 3	Design solutions for simple and complex problems by	4
		understanding customer requirements, identifying various	
		concepts and common modelling techniques of nine diagrams,	
		managing design process and evaluate the outcomes as UML	
		diagrams.	
	PO 4	Conduct investigation of complex problems for modelling	2
		vocabulary of real-time systems by using concepts and	
		common modelling techniques with knowledge and system	
		approach of process.	
	PO 5	Usage of CASE tool for modelling simple to complex	1
		engineering activities with understanding requirements and	_
		limitations of user.	
	PSO 1	Formulate and Evaluate engineering concepts to Design	2
		next-generation computer systems for modelling vocabulary of	-
		system by using different common modelling techniques of	
		concepts and diagrams used in UML.	
	PSO 3	Make use of computational and advanced CASE tools for	2
	1000	creating innovative career paths, to be an entrepreneur and	_
00.40	70.4	desire for higher studies.	
CO 10	PO 1	Apply Engineering knowledge and modelling principles for	2
		preparing blue prints of the system by using architectural	
		modelling diagrams.	
	PO 3	Design solutions for simple and complex problems by	4
		understanding customer requirements, identifying various	
		diagrams to prepare blue prints, managing design process and	
		evaluate the outcomes as UML diagrams.	
	PO 4	Conduct investigation of complex problems for preparing	2
		blue print of entire system by architectural modelling diagrams	
		with knowledge and system approach of process.	
	PO 5	Usage of CASE tool for modelling simple to complex	1
		engineering activities with understanding requirements and	
		limitations of user.	
	PSO 1	Formulate and Evaluate engineering concepts to Design	2
		next-generation computer systems for preparing blue prints of	
		the system by using architectural modelling diagrams.	
	PSO 3	Make use of computational and advanced CASE tools for	2
		creating innovative career paths, to be an entrepreneur and	
		desire for higher studies.	
CO 11	PO 1	Apply Engineering knowledge and modelling principles , for	2
0011	101	documenting static and dynamic aspects of Library	4
		Information Management system.	
	PO 3	Design solutions for Library Information Management system	4
	103	by understanding customer requirements, identifying various	4
		static and dynamic functions, managing design process and	
		•	
		evaluate the outcomes as UML diagrams.	

	PO 4	Conduct investigation of Library Information Management	2
		System for documenting by using basic and advanced building	
		blocks with knowledge and system approach of process.	
	PO 5	Usage of CASE tool for modelling simple to complex	1
		engineering activities with understanding requirements and	
		limitations of user.	
	PSO 1	Formulate and Evaluate engineering concepts to Design	2
		next-generation computer systems for documenting static and	
		dynamic aspects of Library Information Management system.	
	PSO 3	Make use of computational and advanced CASE tools for	2
		creating innovative career paths, to be an entrepreneur and	
		desire for higher studies.	
CO 12	PO 1	Apply Engineering knowledge and modelling principles, for	2
		designing simple and complex scenarios of various case	_
		studies.	
	PO 3	Design solutions for simple and complex scenarios of various	4
		case studies by understanding customer requirements,	
		identifying various static and dynamic functions, managing	
		design process and evaluate the outcomes as UML diagrams.	
	PO 4	Conduct investigation of simple and complex scenarios of	2
		various case studies for visualizing artefacts by using basic	
		and advanced building blocks with knowledge and system	
		approach of process.	
	PO 5	Usage of CASE tool for modelling simple to complex	1
		engineering activities with understanding requirements and	
		limitations of user.	
	PSO 1	Formulate and Evaluate engineering concepts to Design	2
		next-generation computer systems for designing simple and	
		complex scenarios of various case studies.	
	PSO 3	Make use of computational and advanced CASE tools for	2
		creating innovative career paths, to be an entrepreneur and	
		desire for higher studies.	

XII. MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

G		Program Outcomes / Number of Vital Features											PSOs / No. of Vital Features			
Course Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
	3	10	10	11	1	5	3	3	12	5	12	12	6	2	2	
CO 1					1								2			
CO 2	2		6	5	1										2	
CO 3		6		5	1											
CO 4	2		3	2	1								2		2	
CO 5		6		2	1								2		2	
CO 6				2									2		2	

CO 7		6		2	1				2	2
CO 8				2					2	2
CO 9	2		4	2	1				2	2
CO 10	2		4	2	1				2	2
CO 11	2		4	2	1				2	2
CO 12	2		4	2	1				2	2

XIII. PERCENTAGE FOR KEY COMPETENCIES FOR CO-PO MAPPING:

Course	Program Outcomes/ Number of key competencies											PSOs / No. of key competencies			
Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	3	10	10	11	1	5	3	3	12	5	12	12	6	2	2
CO 1	0.0	0.0	0.0	0.0	100.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	33.3	0.0	0.0
CO 2	66.6	0.0	60.0	45.5	100.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	100.0
CO 3	0.0	60.0	0.0	45.5	100.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
CO 4	66.6	0.0	30.0	18.2	100.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	33.3	0.0	100.0
CO 5	0.0	60.0	0.0	18.2	100.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	33.3	0.0	100.0
CO 6	0.0	0.0	0.0	18.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	33.3	0.0	100.0
CO 7	0.0	60.0	0.0	18.2	100.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	33.3	0.0	100.0
CO 8	0.0	0.0	0.0	18.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	33.3	0.0	100.0
CO 9	66.6	0.0	40.0	18.2	100.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	33.3	0.0	100.0
CO 10	66.6	0.0	40.0	18.2	100.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	33.3	0.0	100.0
CO 11	66.6	0.0	40.0	18.2	100.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	33.3	0.0	100.0
CO 12	66.6	0.0	40.0	18.2	100.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	33.3	0.0	100.0

XIV. COURSE ARTICULATION MATRIX (CO-PO/PSO MAPPING)

COs and POs and COs and PSOs on the scale of 0 to 3, 0 being no correlation, 1 being the low correlation, 2 being medium correlation and 3 being high correlation.

$0 - 0 \le \mathbf{C} \le 5\%$ —No correlation;	2 − 40 % < C < 60%−Moderate.
1 − 5 < C < 40% − Low/ Slight;	$3-60\% \le C < 100\%$ — Substantial /High

Course Outcomes	Program Outcomes									Program Specific Outcomes					
Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	1	-	-	-	3	-	-	-	-	-	-	-	1	-	
CO 2	3	-	3	2	3	-	-	-	-	-	-	-	-	-	3
CO 3	-	3	-	2	3	-	-	-	-	-	-	-	-	-	
CO 4	3	-	1	1	3	-	-	-	-	-	-	-	1	-	3
CO 5	-	3	-	1	3	-	-	-	-	-	-	-	1	-	3
CO 6	-	-	-	1	-	-	-	-	-	-	-	-	1	-	3
CO 7	-	3	-	1	3	-	-	-	-	-	-	-	1	-	3
CO 8	-	-	-	1	-	-	-	-	-	-	-	-	1	-	3
CO 9	3	-	2	1	3	-	-	-	-	-	-	-	1	-	3
CO 10	3	-	2	1	3	-	-	-	-	-	-	-	1	-	3
CO 11	3	-	2	1	3	-	-	-	-	-	-	-	1	-	3
CO 12	3	-	2	1	3	-	-	-	-	-	-	-	1	-	3
TOTAL	18	9	12	13	30								10		30
AVERAGE	3.0	3.0	2.0	1.1	3.0								1.0		3.0

3 = High; 2 = Medium; 1 = Low

XV.ASSESSMENT METHODOLOGIES-DIRECT

CIE Exams	PO 1,PO 2, PO 3,PO 4, PO 5,PSO 1, PSO 3	are r	PO 1,PO 2, PO 3,PO 4 PO 5,PSO 1, PSO 3		PO 1,PO 2, PO 3,PO 4 PO 5,PSO 1, PSO 3		PO 1,PO 2, PO 3,PO 4, PO 5,PSO 1, PSO 3
Laboratory Practices	1	Student Viva	-	Mini Project	-	Certification	-
Term Paper	PO 5,PSO 1 PSO 3	5 Minutes Video	PO 5	Tech talk		Open Ended Experiments	PO 12

XVI. ASSESSMENT METHODOLOGIES-INDIRECT

~	Early Semester Feedback	~	End Semester OBE Feedback					
×	Assessment of Mini Projects by Expert	Assessment of Mini Projects by Experts						

XVII. SYLLABUS

MODULE-I INTRODUCTION TO UML

Introduction to UML: Importance of modeling, principles of modeling, object oriented modeling, conceptual model of the UML, architecture, software development life cycle; Classes, relationships, common mechanisms and diagrams.

MODULE-II ADVANCED BEHAVIORAL MODELING

Advanced classes, advanced relationships, interfaces, types and roles, packages, terms, concepts; Class and Object Diagrams: Terms, concepts, common modeling techniques for class and object diagrams.

MODULE-III ARCHITECTURAL MODELING

Basic Behavioral Modeling - I: Interactions, Interaction diagrams.

Basic Behavioral Modeling-II: Use cases, Use case Diagrams, Activity Diagrams.

MODULE-IV | ADVANCED BEHAVIORAL MODELING

Events and signals, state machines, processes and threads, time and space, state chart and state chart diagrams. Case study: The next gen POS system.

MODULE-V ARCHITECTURAL MODELING

Component, Component diagrams, Deployment, Deployment diagrams; Case Study: The Unified Library Application.

Text Books:

- 1. Grady Booch, James Rumbaugh, Ivar Jacobson, "The Unified Modeling Language User Guide", Pearson Education, 2nd Edition, 2004.
- 2. Craig Larman, "Applying UML and Patterns: An Introduction to Object Oriented Analysis and Design and Iterative Development", Pearson Education, 3rd Edition, 2005.

Reference Books:

- 1. MeilirPage-Jones: Fundamentals of Object Oriented Design in UML, Pearson Education, 1st Edition, 2006.
- 2. Hans-Erik Eriksson, Magnus Penker, Brian Lyons, David Fado, "UML 2 Toolkit", WILEY-Dreamtech India Pvt. Ltd., Pearson Education, 3rd Edition, 2005.

Web References:

- 1. https://www.tutorialspoint.com/uml/uml_overview.html
- 2. https://www.utdallas.edu/~chung/OOAD/M03 1 StructuralDiagrams.ppt
- 3. https://onedrive.live.com/download?cid=99CBBF765926367

E-Text Books:

- 1. https://www.utdallas.edu/UML2.0/Rumbaugh
- 2. https://www.utdallas.edu/~chung/SP/applying-uml-and-patterns.pdf

XVIII. COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

Lecture No	Topics to be covered	Course Outcomes	Reference
1	Introduction to UML	CO 1	T1:1.1

Lecture No	Topics to be covered	Course Outcomes	Reference
2	Importance of modeling, and principles of modeling	CO 1	T1:1.2
3	Object Oriented Modeling,	CO 2	T1:1.3-1.4
4	Conceptual model of the UML	CO 2	T1:2.3
5	Architecture of UML	CO 2	T1:2.4
6	Software Development Life Cycle – Unified Model	CO 2	T1:2.5
7-8	Classes	CO 3,CO 4	T1:4.1
9-10	Relationships	CO 3,CO 4	T1:5.1
11	Common mechanisms	CO 3,CO 4	T1:6.1
12-13	Diagrams	CO 3,CO 4	T1:7.1.1
14	Advanced Classes and Advanced Relationships	CO 5	T1:8.1.1
15	Interfaces, types and roles,	CO 5	T1:11.4
16	Packages, terms, concepts	CO 5	T1:12.5
17-18	Class Diagrams- Terms, concepts and common modeling techniques	CO 6,CO 9	T1:13.1
19-20	Object Diagrams: Terms, concepts and common modeling techniques	CO 6,CO 9	T1:13.3
21	Interactions: Interactions, concepts and common modeling techniques	CO 7, CO 9	T1:14.1
22-23	Interaction Diagrams: Terms, concepts, uses and common modeling techniques	CO7, CO 9	T1:14.3
24-25	Use cases: Use case diagrams Terms, concepts, uses and common modeling techniques	CO 7,CO 9	T1:16.1
26-27	Activity Diagrams: Terms, concepts, uses and common modeling techniques	CO 7,CO 9	T1:16.4
28	Events and signals, State machines	CO 8	T1:20.5
29	Processes and threads, Time and space	CO 8	T1:21.4
30-31	State Chart: Terms, concepts, uses and common modeling techniques	CO 8, CO 9	T1:22.1
32-33	State chart diagrams: Terms, concepts, uses and common modeling techniques	CO 8, CO 9	T1:22.4
34	Case study: The next gen POS system	CO 12	T1:22.7
35	Component : Terms and concepts	CO 10	T1:29.1
36-37	Component diagrams: Terms, concepts, uses and common modeling techniques	CO 9,CO10	T1:29.3
38	Deployment: Terms and concepts	CO 10	T1:30.1
39-40	Deployment diagrams: Terms, concepts, uses and common modeling techniques	CO 9,CO 10	T1:30.7

Lecture No	Topics to be covered	Course Outcomes	Reference
41-43	Case Study: The Unified Library Application.	CO 11	T1:30.9
44-45	Case Study: Real-Time applications	CO 12	T1:30.9

Prepared by: Dr. C Raghavendra, Associate Professor

HOD, CSE