INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad - 500 043

COMPUTER SCIENCE AND ENGINEERING

DEFINITIONS AND TERMINOLOGY QUESTION BANK

Course Name	:	OBJECT OREINTED ANALYSIS AND DESIGN
Course Code	:	ACSB10
Program	;	B.Tech
Semester	:	FIVE
Branch	:	COMPUTER SCIENCE AND ENGINEERING
Section	:	A, B, C & D
Academic Year	:	2020 - 2021
Course Faculty	:	Dr. C Raghavendra, Associate Professor Dr. M Mohana Roopa, Professor Mr. G Chandra Sekhar, Assistant Professor Mr. R M Noorullah, Associate Professor Ms. N Shalini, Assistant Professor

COURSE OBJECTIVES:

The	The course should enable the students to:					
Ι	The basic and advanced building blocks of Unified Modeling Language for analysis and					
	design of software systems.					
II	The Object-oriented approach for analysis and design of System/Subsystem/Functional units					
	based on the given specifications through UML Diagrams.					
III	The implementation of design document of real time software applications using advanced					
111	CASE tools					

DEFINITIONS AND TERMINOLOGY QUESTION BANK

S. No	Question	Answer	Blooms Level	СО
		UNIT - I		
1	Define Model?	A model is a simplification of reality.	Remember	CO 1
2	What is Analysis and Design?	Analysis: Basically, it is the process of determining what needs to be done before how it should be done. In order to accomplish this, the developer refers the existing systems and documents. So, simply it is an art of discovery.	Remember	CO 1
3	What is meant by Design?	Design: It is the process of adopting/choosing the one among the many, which best accomplishes the users needs. So, simply, it is compromising mechanism.	Remember	CO 1

4	What are the steps involved	Before getting into the design the designer should	Remember	CO 1
	in designing?	go through the SRS prepared by the System		
		Analyst.		
		• The main tasks of design are Architectural		
		Design and Detailed Design.		
		• In Architectural Design we find what the main		
		modules in the problem domain are.		
		• In Detailed Design we find what should be		
		done within each module.		
5	What are the main	Objects, messages, class, inheritance and	Remember	CO 1
	underlying concepts of	polymorphism are the main concepts of object		
	object orientation?	orientation.		
6	Define persistent objects?	Persistent refers to an object's ability to transcend	Remember	CO 1
		time or space. A persistent object stores/saves its		
		state in a permanent storage system without losing		
		the information represented by the object.		
7	What are non-persistent	A non-persistent object is said to be transient or	Remember	CO 1
	objects?	ephemeral. By default objects are considered as		
		non-persistent.		
8	What are models And meta	Model: It is a complete description of something	Remember	CO 1
	models?	(i.e. system).		
		Meta model: It describes the model elements,		
		syntax and semantics of the notation that allows		
		their manipulation.		~~
9	What is UML?	The Unified Modeling Language is a visual	Remember	CO 1
		language for specifying, constructing and		
10		documenting the artifacts of systems.	D	<i>co</i> o
10	What is Inception?	Inception is the initial short step to establish a	Remember	CO 2
11		common vision and basic scope for the Project.	D 1	<u> </u>
11	What artifacts may start in	Some sample artifacts are Vision and Business	Remember	CO 2
	Inception?	Case, Use-Case Model, Supplementary Specification, Glossary, Risk List & Risk		
	0	· ·	0	
		Management Plan, Prototypes and proof-of	\sim	
12	What is Object-Oriented	concepts etc. During object-oriented design (or simply, object	Domomhor	CO 1
12	Design?	design) there is an emphasis on defining software	Remember	CO I
	Design	objects and how they collaborate to fulfill the		
	-7.	requirements.		
13	What the main advantages	High level of abstraction	Remember	CO 1
15	of object oriented	• Seamless transition among different phases of	Remember	001
	development?	software development		
		 Encouragement of good programming techniques 		
		 Promotion of reusability 		
14	What is object oriented	Object oriented system development methodology	Remember	CO 1
14	system development	is a way to develop software by building self-	Remember	
	methodology?	contained		
		modules or objects that can be easily replaced,		
		modified and reused.		
15	Define class diagram.	The main static structure analysis diagram for the	Remember	CO 2
15	Serine cluss diagram.	system, it represents the class structure of a system	Remember	002
		including the relationships between class and		
		increasing the relationships between clubb and		

16	Define activity diagram.	A variation or special case of a state machine in which the states are activities representing the performance of operations and the transitions are	Remember	CO 2
17	What is interaction diagram? Mention its types.	triggered by the completion of the operations. Interaction diagrams are diagrams that describe how groups of objects collaborate to get the job done. Interaction diagrams capture the behavior of the single use case, showing the pattern of interaction among objects. Types: Sequence diagram, Collaboration diagram	Remember	CO 2
18	What is sequence diagram?	It is an easy and intuitive way of describing the behavior of a system by viewing the interaction between the system and its environment	Remember	CO 2
19	What is collaboration diagram?	It represents a collaboration, which is a set of objects related in a particular context, and interaction, which is a set of messages exchanged among the objects with in collaboration to achieve a desired outcome.	Remember	CO 2
20	Define state chart diagram.	It shows a sequence of states that an object goes through during its life in response to events. A state is represented as a round box, which may contain one or more compartments. The compartments are all optional.	Remember	CO 2
21	Define component diagram.	A component diagram shows the organization and dependencies among a set of components. A component diagram is used to model the static implementation view of a system. This involves modeling the physical thing that reside on a mode, such as executable, libraries, files and documents.	Remember	CO 2
22	Define deployment diagram	Deployment diagram shows the configuration of run time processing elements and the software components, processes and objects that live in them.	Remember	CO 2
23	What is UP?	A software development process describes an approach to building, deploying and possibly maintaining software. The unified process has emerged as a popular iterative software development process for building object oriented system.	Remember	CO 2
24	What is iteration?	A key practice in both the UP and most other modern methods is iterative development. In this lifecycle approach, development is organized into a series of short, fixed length mini projects called iterations	Remember	CO 2
25	What are the phases of unified process?	 Inception Elaboration Construction Transition 	Remember	CO 2
26	What is Composition?	Composition, also known as composite aggregation, is a strong kind of whole-part aggregation and is useful to show in some models.	Remember	CO 2
27	What is UML activity diagram?	A UML activity diagram shows sequential and parallel activities in a process, they are useful for modeling business processes, workflows, data flows and complex algorithms.	Remember	CO 2

28	What is Generalization?	Generalization is the activity of identifying commonality among concepts and defining superclass (general concept) and subclass	Remember	CO 2
29	What is Aggregation?	(specialized concept) relationships. Aggregation is a vague kind of association in the UML that loosely suggests whole-part relationships (as do many ordinary associations).	Remember	CO 2
30	What is message and method?	Message: Message essentially are non-specific function calls Method: Methods are similar to functions, procedures or subroutines in more traditional programming languages	Remember	CO 2
		UNIT-II		
1	Define Encapsulation?	Encapsulation is property in which data is accumulated and restricted to a particular area only.	Remember	CO 4
2	Define Interface?	Interface defines service to each class.	Remember	CO 4
3	Expand the term OMT	Object Modeling Techniques	Understand	CO 3
4	Define Use case Driven?	It refers to the Utilization of use cases as an effective element for narrating the behavior of any system.	Remember	CO 3
5	Expand the term CASE	Computer Aided Software Engineering	Understand	CO 3
6	Define Forward Engineering.	Building code from Model is known as Forward Engineering	Remember	CO 3
7	Define Reverse Engineering.	Building Model from Code is known as Reverse Engineering	Remember	CO 3
8	What is Design View?	It consists of Classes interfaces and Collaborations that forms the actual definition of a Problem and its solution.	Remember	CO 3
11	Define Class?	Class is a collection of objects that share common attributes and operations.	Remember	CO 4
12	Which diagrams are used to represent Design view of UML architecture?	Class and object diagrams are used to represent Design view of UML architecture.	Remember	CO 4
13	What are constraints of object diagrams?	New, destroy and transient are constraints of object diagrams.	Remember	CO 4
14	What is Class?	A Class is a blueprint that is used to create Object. The Class defines what object can do.	Remember	CO 4
15	What is Class Diagram?	CLASS DIAGRAM gives an overview of a software system by displaying classes, attributes, operations, and their relationships. This Diagram includes the class name, attributes, and operation in separate designated compartments.	Remember	CO 3
16	What is artifact?	An artifact is a classifier that represents some physical entity, piece of information that is used or is produced by a software development process, or by deployment and operation of a system	Remember	CO 2
17	What is Node?	A Node is a deployment target which represents computational resource upon which artifacts may be deployed for execution.	Remember	CO 2

18	What is Device?	A device is a subclass of node which represents a physical computational resource with processing capability upon which artifacts may be deployed	Remember	CO 2
		for execution.		
19	What is Deployment specification?	A deployment specification is an artifact that specifies a set of deployment properties that determine execution parameters of a component artifact that is deployed on a node.	Remember	CO 2
20	What are Artifact Manifestation	Manifestation is an abstraction relationship which represents the concrete physical rendering of one or more model elements by an artifact or utilization of the model elements in the construction or generation of the artifact.	Remember	CO 2
		UNIT-III		
1	Which diagram emphasize on structural organization?	Collaboration diagram	Remember	CO 7
2	Define Use case?	Use case describes a set of actions that are to be performed by a system.	Remember	CO 7
3	What are common modeling techniques of use cases?	To model context of a system, To model requirements of a system	Remember	CO 7
4	What are branches in activity diagram?	Branches are a notational convenience, semantically equivalent to multiple transitions with guards	Remember	CO 7
5	Define Fork in activity diagram.	A fork may have one incoming transitions and two or more outgoing transitions	Remember	CO 7
6	Define action state.	Action states are atomic and cannot be decomposed	Remember	CO 8
7	Which diagrams are Isomorphs in nature?	Interaction diagrams	Remember	CO 7
8	Name interaction diagrams	Sequence and collaboration diagrams	Remember	CO 7
9	Which diagrams are used to represent use case view of UML architecture?	Use Case Diagrams are used to represent use case view of UML architecture.	Remember	CO 2
10	Which diagrams are used to represent component view of UML architecture?	Component Diagrams are used to represent component view of UML architecture.	Remember	CO 2
11	Which diagrams are used to represent Deployment view of UML architecture?	Deployment Diagram are used to represent Deployment view of UML architecture.	Remember	CO 2
12	What are Actors?	An actor is something with behavior, such as a person (identified by role), computer system, or organization; for example, a cashier.	Remember	CO 7
13	What are three kinds of Actors?	Primary actor, Supporting actor, offstage actor.	Remember	CO 7
14	What tests can help find useful use Cases?	 The Boss Test The EBP Test The Size Test 	Remember	CO 7
15	Which diagrams are used to represent Logical view of UML architecture?	Interaction and activity diagrams are used to represent Logical view of UML architecture.	Remember	CO 2
16	What is an Activity Diagram?	An activity diagram visually presents a series of actions or flow of control in a system similar to a flowchart or a data flow diagram.	Remember	CO 7

17	What are key parts of sequence diagram	Participant and messages	Remember	CO 7
18	Define scenario.	A Scenario is a specific sequence of actions that illustrates behavior	Remember	CO 7
19	What is an time event?	This refers to an event that stops the flow for a time; an hourglass depicts it.	Remember	CO 8
20	Define Merge Event	A merge event brings together multiple flows that are not concurrent.	Remember	CO 8
21	What is Interrupting Edge	An event, such as a cancellation, that interrupts the flow denoted with a lightning bolt.	Remember	CO 8
22	Define Swimlanes.	Swimlanes group related activities into one column.	Remember	CO 7
23	What are the Benefits of activity diagrams?	 Demonstrate the logic of an algorithm. Describe the steps performed in a UML use case. Illustrate a business process or workflow between users and the system. 	Remember	CO 7
24	Define the basic components of an activity diagram.	• Basic components of activity diagrams are: Action, Decision node, Control flows, Start node and End node	Remember	CO 7
25	What decision symbol in activity diagram represents?	This symbol represents the branching or merging of various flows with the symbol acting as a frame or container.	Remember	CO 7
26	Define the importance of Activity symbol in activity diagram.	It indicates the activities that make up a modeled process. These symbols, which include short descriptions within the shape, are the main building blocks of an activity diagram.	Remember	CO 7
		UNIT-IV		
1	Define call Events?	Call event is the receipt of a request to invoke an operation.	Remember	CO 8
2	Define source state?	It is the state affected by the Transition.	Remember	CO 8
3	Define signal event.	A signal event represents a named object that is dispatched (thrown) asynchronously by one object and then received (caught) by another.	Remember	CO 8
4	Define Signal?	A signal signifies named objects which are transmitted or received among several objects.	Remember	CO 8
5	Define Abstract Product?	Declares an interface for a type of product object	Remember	CO 8
6	What is transition?	A transition is said to have occurred when an object moves from one state to another.	Remember	CO 8
7	What is activity?	Activity refers to the actions that are performed when an object is in particular state.	Remember	CO 7
8	Define event trigger.	An event is the specification of a significant occurrence that has a location in time and space. In the context of state machines, an event is an occurrence of a stimulus that can trigger a state transition.	Remember	CO 8
9	Define component.	A component is a physical and replaceable part of a system that conforms to and provides the realization of a set of interfaces. Graphically, a component is rendered as a rectangle with tabs.	Remember	CO 10

10	Define node.	A node is a physical element that exists at run time and represents a computational resource, generally having at least some memory and, often, processing capability. Graphically, a node is rendered as a	Remember	CO 10
11	Define Action.	cube. An action is an executable atomic computation. Actions may include operation calls the creation or destruction of another object, or the sending of a signal to an object. An action is atomic, meaning that it cannot be interrupted by an event and therefore runs to completion.	Remember	CO 8
12	How signals are modeled?	As stereo typed classes	Remember	CO 8
13	What are contents of state chart diagram?	state chart diagrams contain branches, forks, joins, action states, activity states, objects, initial states, final states, history states	Remember	CO 8
14	What are common modeling techniques of state chart diagrams?	To model a reactive object.	Remember	CO 9
15	Define Component.	A component is a physical and replaceable part of a system that conforms to and provides the realization of a set of interfaces.	Remember	CO 10
16	What are Domain Objects?	Software objects representing domain concepts	Remember	CO 10
17	What is POS system?	A POS system is a computerized application used (in part) to record sales and handle payments; it is typically used in a retail store	Remember	CO 12
18	What hardware are used in POS?	Computer and Barcode Scanner	Remember	CO 12
19	What are service applications in POS?	Third Party Ytax calculator and Inventory Control	Remember	CO 12
20	What are the goals of cashier in POS?	process sales, handle returns, cash in, cash out	Remember	CO 12
21	What are the goals of system administrator in POS?	manage users, manage security, manage system tables	Remember	CO 12
22	What are the goals of manager in POS?	start up, shut down	Remember	CO 12
23	What are the goals of sales activity system in POS?	analyze sales data	Remember	CO 12
		UNIT-V		
1	Define Active class?	Active class possesses objects which consist of processes and threads.	Remember	CO 5
2	Define Component?	Components bind several classes, interfaces and collaborations by physical representation.	Remember	CO 10
3	Describe Node?	Node is an element which holds certain locations in the memory sometimes along with processing capabilities.	Remember	CO 10
4	What is interface?	An interface (small circle or semi-circle on a stick) describes a group of operations used (required) or created (provided) by components. A full circle represents an interface created or provided by the component. A semi-circle represents a required interface, like a person's input.	Remember	CO 2

—			D 1	00.10
5	What is Port?	Ports are represented using a square along the edge	Remember	CO 10
		of the system or a component. A port is often used		
		to help expose required and provided interfaces of a		
		component	D	GO 10
6	Define Component Diagram?	A Component diagrams shows the organization and	Remember	CO 10
		dependencies among a set of components. A		
		component diagrams are used to model the static		
		implementation view of a system.		
7	Define Deployment diagram.	Deployment Diagram shows the configuration of	Remember	CO 10
		run-time processing elements and the software		
		components, processes, and objects that live in		
		them.		
8		The basic element of a deployment diagram is node .	Remember	CO 10
	deployment diagram? And	Types are:		
	give its types.	1. Device node		
		2. Execution environment node (EEN)		
9	Define Component.	A component represents a modular part of a system	Remember	CO 10
		that encapsulates its contents and whose		
		manifestation is replaceable within its environment.		
10	What is the use of	Deployment diagrams are used to visualize the	Remember	CO 10
	Deployment diagram?	topology of the physical components of a system,		
		where the software components are deployed.		
11	What Deployment diagram	Deployment diagrams are used to describe the static	Remember	CO 10
	consists of?	deployment view of a system. Deployment diagrams		
		consist of nodes and their relationships.		
12	Define the purpose of	The purpose of Deployment diagram is:	Remember	CO 10
	Deployment diagram.	• Visualize the hardware topology of a system.		
		• Describe the hardware components used to deploy		
		software components.		
		• Describe the runtime processing nodes.		
13	What type of parameters the	An efficient deployment diagram is very important	Remember	CO 10
10	deployment diagram controls?	as it controls the following parameters –		0010
		• Performance	0	
		Scalability		
	~	Maintainability		
	0			
1 /	Where to Use Deplement	Portability Deployment diagrams are mainly used by system	Domontar	CO 10
14	Where to Use Deployment	Deployment diagrams are mainly used by system		CO 10
	diagrams?	engineers. These diagrams are used to describe the		
		physical components (hardware), their distribution,		
15	What are used of Deplement	and association.	Doment	CO 10
15	What are uses of Deployment	Usage of deployment diagrams can be described as	Remember	CO 10
	diagrams?	follows:		
		• To model the hardware topology of a system.		
		• To model embedded system.		
		• To model hardware details for a client/server		
		system.		
		• To model hardware details of a distributed		
		application.		
		• Forward and reverse engineering.		
16	Where to use Component	Component diagrams are used to visualize the	Remember	CO 10
	diagrams?	organization and relationships among components in		
		a system. These diagrams are also used to make		
		executable systems.		
	•		•	

17	Define the benefits of	The benefits of component diagram are:	Remember	CO 10
	component diagram.	• Imagine the system's physical structure.		
		• Pay attention to the system's components and how		
		they relate.		
		• Emphasize the service behavior as it relates to the		
		interface.		
17	What is Connector?	A Connector is a relation between ports of	Remember	CO 2
		components. If one port provides interface required		
		by the other port, they can be linked together.		
18	Define the structure of a	A component is represented with classifier rectangle	Remember	CO 10
	component.	stereotypes as		
		<< component >>. Component details are hidden for		
		the outside world. The name of a component is		
		placed at the center of a rectangle.		
19	What are Interfaces in	The interface is a named set of public features. It	Remember	CO 10
	component diagram?	separates the specification of functionality from its		
		implementation by a class diagram or a subsystem.		
20	What are the advantages of	Advantages of interfaces are:	Remember	CO 2
	interfaces?	• It increases the flexibility and extensibility of a		
		class.		
		• It decreases the implementation dependencies.		
21	What are the advantages of	Disadvantages of interfaces are:	Remember	CO 2
	interfaces?	• Extra flexibility leads to complex classes.		
		• Too many interfaces make systems hard to		
		understand.		
22	What are Subsystems?	It is a logical construct which is used to break down	Remember	CO 2
		an extensive system into smaller systems which are		
		known as subsystems.		~~
23	What is the use of	Component diagrams are used to describe the		CO 10
	Component diagram?	working and behavior of various components of a	1000	
		system.		

TON FO

RLIBER

Signature of the Faculty

HOD, CSE