2 000

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)
DUNDIGAL, HYDERABAD - 500 043

COMPUTERE SCIENCE AND ENGINEERING

Course Title OBJECT ORIENTED ANALYSIS AND DESIGN
Course Code ACSB10
Programme B.Tech
Semester FIVE
Course Type Core
Regulation IARE - R18
Lecture Numbers 1-45
Topic Covered All
Dr. C Raghavendra, Associate Professor
Course Faculty Dr. M Mohana Roopa, Professor
Mr. G Chandra Sekhar, Assistant Professor

COURSE OBJECTIVES:

The course should enable the students to:

The basic building blocks of Unified Modeling Language for analysis and design of software
systems.

The Object-oriented approach for analysis and design of System /Subsystem /Functional units
based on the given specifications through UML Diagrams.

The implementation of design document of real time software applications using advanced
CASE tools.

COURSE OUTCOMES:
At the end of course, the students are able to:
CO1 | List the importance and use of basic principles in object oriented modeling for appropriate
analysis and design of given scenarios.
CO 2 | Make use of building blocks and different views for creating conceptual model of system in
Unified Software Development Life cycle.
CO 3 | Demonstrate static and dynamic aspects of the system through UML diagrams for
specifying structure and interaction of objects during runtime.
CO 4 | ldentify basic building blocks for visualizing artifacts of an Object Oriented System.
CO5 | Summarize advanced building blocks in structural and behavioral modeling of a robust
software system for visualizing web of relationships.
CO 6 | Classify structural modeling of System for representing framework with UML diagrams.

1

CO 7 | llustrate behavioral modeling of System for conveying dynamic concepts of the system.

CO 8 | Categorize advanced behavioral modeling for visualizing flow control of objects and
activities of specified case study like next gen POS system.

CO9 | Make use of common modeling techniques in UML for modeling vocabulary of real time
applications.

CO 10 | Develop architectural model of a scenario for preparing blueprint of the entire system.

CO 11 | Model software application like Unified Library with the help of UML diagrams for
documenting static and dynamic aspects of a system.

CO 12 | Develop a design document using UML for a simple and complex scenario of the specific
case study.

SYLLABUS:

OBJECT ORIENTED ANALYSIS AND DESIGN

V Semester: CSE/IT

Course Code Category Hours / Week Credits Maximum Marks
L T P C CIA | SEE | Total
ACSB10 Core
3 - - 3 30 70 100
Contact Classes: 45 | Tutorial Classes: Nil Practical Classes: Nil Total Classes: 45

CO1

CO2

CO3

CO4
CO5

CO6
CO7
co8

CO9

Cco 10
Co11

CO12

COURSE OBJECTIVES:

Students will try to learn:

. The basic building blocks of Unified Modeling Language for analysis and design of software
systems.

I1. The Object-oriented approach for analysis and design of System /Subsystem /Functional units based
on the given specifications through UML Diagrams.

I11. The implementation of design document of real time software applications using advanced CASE
tools.

COURSE OUTCOMES:

List the importance and use of basic principles in object oriented modeling for appropriate
analysis and design of given scenarios.

Make use of building blocks and different views for creating conceptual model of system in
Unified Software Development Life cycle.

Demonstrate static and dynamic aspects of the system through UML diagrams for
specifying structure and interaction of objects during runtime.

Indentify basic building blocks for visualizing artifacts of an Object Oriented System.

Summarize advanced building blocks in structural and behavioral modeling of a robust
software system for visualizing web of relationships.
Classify structural modeling of System for representing framework with UML diagrams.

Illustrate behavioral modeling of System for conveying dynamic concepts of the system.

Categorize advanced behavioral modeling for visualizing flow control of objects and
activities of specified case study like next gen POS system.

Make use of common modeling techniques in UML for modeling vocabulary of real time
applications.

Develop architectural model of a scenario for preparing blueprint of the entire system.

Model software application like Unified Library with the help of UML diagrams for
documenting static and dynamic aspects of a system.

Develop a design document using UML for a simple and complex scenario of the specific
case study.

MODULE-I INTRODUCTION TO UML Classes: 10

Introduction to UML: Importance of modeling, principles of modeling, object oriented modeling,
conceptual model of the UML, architecture, software development life cycle; Classes, relationships,
common mechanisms and diagrams.

MODULE-II ADVANCED BEHAVIORAL MODELING Classes: 09

Advanced classes, advanced relationships, interfaces, types and roles, packages, terms, concepts;
Class and Object Diagrams: Terms, concepts, common modeling techniques for class and object
diagrams.

MODULE-IIl | ARCHITECTURAL MODELING Classes: 08

Basic Behavioral Modeling - I: Interactions, Interaction diagrams.

Basic Behavioral Modeling-11: Use cases, Use case Diagrams, Activity Diagrams.

MODULE-IV | ADVANCED BEHAVIORAL MODELING Classes: 09

Events and signals, state machines, processes and threads, time and space, state chart and state chart
diagrams. Case study: The next gen POS system

MODULE-V | ARCHITECTURAL MODELING Classes: 09

Component, Component diagrams, Deployment, Deployment diagrams; Case Study: The Unified Library
Application.

Text Books:

1. Grady Booch, James Rumbaugh, Ivar Jacobson, “The Unified Modeling Language User Guide”,
Pearson Education, 2" Edition, 2004.

2. Craig Larman, “Applying UML and Patterns: An Introduction to Object Oriented Analysis and Design
and Iterative Development”, Pearson Education, 3" Edition, 2005.

Reference Books:

1. MeilirPage-Jones: Fundamentals of Object Oriented Design in UML, Pearson Education, 1% Edition,
2006.

2. Hans-Erik Eriksson, Magnus Penker, Brian Lyons, David Fado, “UML 2 Toolkit”, WILEY-
Dreamtech India Pvt. Ltd., Pearson Education, 3" Edition, 2005.

Web References:

1. https://www.tutorialspoint.com/uml/uml_overview.html
2. https://www.utdallas.edu/~chung/OOAD/MO03_1_StructuralDiagrams.ppt
3. https://onedrive.live.com/download?cid=99CBBF765926367

E-Text Books:

1. https://www.utdallas.edu/UML2.0/Rumbaugh
2. https://www.utdallas.edu/~chung/SP/applying-uml-and-patterns.pdf

MODULE -1

Introduction to UML.: Importance of modeling, principles of modeling, object
oriented modeling, conceptual model of the UML, architecture, software
development life cycle; Classes, relationships, common mechanisms and
diagrams.

What is the UML?

“The Unified Modeling Language is a family of graphical notations, backed by a single meta-
model, that help in describing and designing software systems, particularly software systems
built using the object-oriented style.”

UML first appeared in 1997

UML is standardized. Its content is controlled by the Object Management Group (OMG), a
consortium of companies.

Unified
— UML combined the best from object-oriented software modeling methodologies that
were in existence during the early 1990’s.
— Grady Booch, James Rumbaugh, and Ivor Jacobson are the primary contributors to
UML.
Modeling
— Used to present a simplified view of reality in order to facilitate the design and
implementation of object-oriented software systems.
— All creative disciplines use some form of modeling as part of the creative process.
— UML is a language for documenting design
— Provides a record of what has been built.
— Useful for bringing new programmers up to speed.

Language
— UML is primarily a graphical language that follows a precise syntax.

— UML 2 is the most recent version
— UML is standardized. Its content is controlled by the Object Management Group
(OMG), a consortium of companies.

Why We Model

» The importance of modeling
» Four principles of modeling
» Object-oriented modeling

The Importance of Modeling

A successful software organization is one that consistently deploys quality software that meets
the needs of its users.

An organization that can develop such software in a timely and predictable fashion, with an
efficient and effective use of resources, both human and material, is one that has a sustainable
business

What, then, is a model? Simply put,

A model is a simplification of reality.

A model provides the blueprints of a system.

A good model includes those elements that have broad effect and omits those minor elements
that are not relevant to the given level of abstraction.

Why do we model? There is one fundamental reason.

We build models so that we can better understand the system we are developing.

Through modeling, we achieve four aims

NN S

Models help us to visualize a system as it is or as we want it to be.
Models permit us to specify the structure or behavior of a system.
Models give us a template that guides us in constructing a system.
Models document the decisions we have made.

Modeling is not just for big systems. Even the software equivalent of a dog house can benefit from
some modeling.
We build models of complex systems because we cannot comprehend such a system in its entirety.

Principles of Modeling

Four principles of modeling:

1.

2.
3.
4

The choice of what models to create has a profound influence on how a problem is attacked
and how a solution is shaped.

Every model may be expressed at different levels of precision.

The best models are connected to reality.

No single model is sufficient. Every nontrivial system is best approached through a small set
of nearly independent models.

Object Oriented Modeling

Two Approaches:

Traditional Approach

Objected-Oriented Approach

TRADITIONAL APPROACH

Collection of programs or functions.

A system that is designed for performing certain actions.
Algorithms + Data Structures = Programs.

TRADITIONAL APPROACH OBJECT ORIENTED SYSTEM
DEVELOPMENT

Collection of procedures(functions) Combination of data and functionality
Focuses on function and procedures, Focuses on object, classes. modules that
different styles and methodologies for can be casily replaced, modified and
cach step of process reused.
Moving from onc phase to another phase | Moving from one phase to another phase
1s complex 1S casicr.
Increases duration of project decreases duration of project
Increases complexity Reduces complexity and redundancy

An Overview of the UML
The UML is a language for

* Visualizing
* Specifying
* Constructing
* Documenting

The UML Is a Language for Documenting

A healthy software organization produces all sorts of artifacts in addition to raw executable code.
These artifacts include (but are not limited to)

* Requirements

* Architecture

* Design

* Source code

* Project plans

* Tests

* Prototypes

* Releases

Where Can the UML Be Used?

The UML is intended primarily for software-intensive systems. It has been used effectively for such
domains as

* Enterprise information systems
* Banking and financial services

* Telecommunications

* Transportation

* Defense/aerospace

* Retail

* Medical electronics

* Scientific

« Distributed Web-based services

A Conceptual Model of the UML

* A conceptual model needs to be formed by an individual to understand UML.
* UML contains three types of building blocks: things, relationships, and diagrams.
* Things
— Structural things
» Classes, interfaces, collaborations, use cases, components, and nodes.
— Behavioral things
* Messages and states.
— Grouping things

» Packages
— Annotational things
* Notes

* Relationships: Dependency, Association, Generalization and Realization.
» Diagrams: class, object, use case, sequence, collaboration, statechart, activity, component and
deployment.

Building Blocks of the UML.:

The vocabulary of the UML encompasses three kinds of building blocks:
1. Things

2. Relationships

3. Diagrams

Things in the UML

There are four kinds of things in the UML:
1. Structural things

2. Behavioral things

3. Grouping things

4. Annotational things

Structural Things
» Structural things are the nouns of UML models. These are the mostly static parts of a model,

representing elements that are either conceptual or physical. In all, there are seven kinds of
structural things.

e Classes
« Interface
* Cases

* Active Classes
* Components

* Nodes

« Collaborations

Classes:

a class is a description of a set of objects that share the same attributes, operations, relationships, and
semantics. A class implements one or more interfaces. Graphically, a class is rendered as a rectangle,
usually including its name, attributes, and operations

8

Figure : Classes

VWindow

origin
size

open()
close()
move()

display()

Interfaces
* aninterface is a collection of operations that specify a service of a class or component. An
interface rarely stands alone. Rather, it is typically attached to the class or component that
realizes the interface

Figure :Interfaces

ISpelling

Collaborations:
» Acollaboration defines an interaction. These collaborations therefore represent the
implementation of patterns that make up a system. Graphically, a collaboration is rendered as
an ellipse with dashed lines, usually including only its name

Figure:
Collaborations

/ Chain of e
\ responsibility £

Use Cases:
» A use case is realized by a collaboration. Graphically, a use case is rendered as an ellipse with
solid lines, usually including only its name

Figure :Use Cases

Place order

Active Classes:
* An active class is rendered just like a class, but with heavy lines, usually including its name,
attributes, and operations

Figure :Active Classes

EventManager

suspend()
flush()

Components:
+ A component typically represents the physical packaging of otherwise logical elements, such
as classes, interfaces, and collaborations. Graphically, a component is rendered as a rectangle
with tabs, usually including only its name.

Figure :Components

orderform.java

10

Nodes:
* A node is a physical element that exists at run time and represents a computational resource,
generally having at least some memory and, often, processing capability.
* A set of components may reside on a node and may also migrate from node to node.
Graphically, a node is rendered as a cube, usually including only its name.

Figure :Nodes

Server

Behavioral Things:

Behavioral things are the dynamic parts of UML models. These are the verbs of a model, representing
behavior over time and space. In all, there are two primary kinds of behavioral things.

1. Messages
2. States
Messages:

* Aninteraction is a behavior that comprises a set of messages exchanged among a set of
objects within a particular context to accomplish a specific purpose. Graphically, a message is
rendered as a directed line, almost always including the name of its operation.

display

States:
» A state machine is a behavior that specifies the sequences of states an object or an interaction
goes through during its lifetime in response to events, together with its responses to those
events.

VvV aiting

Grouping Things:
» Grouping things are the organizational parts of UML models. These are the boxes into which a
model can be decomposed. There is one primary kind of grouping thing, namely, packages.

11

Packages:
* A package is a general-purpose mechanism for organizing elements into groups. Graphically,
a package is rendered as a tabbed folder, usually including only its name and, sometimes, its
contents

Figure: Packages

[1]

Business rules

Annotational Things:

» Annotational things are the explanatory parts of UML models. These are the comments you
may apply to describe, illuminate, and remark about any element in a model.

* There is one primary kind of annotation thing, called a note. A note is simply a symbol for
rendering constraints and comments attached to an element or a collection of elements.

Figure: Notes

return copy
of self

Relationships in the UML
There are four kinds of relationships in the UML.:
1. Dependency 2. Association 3. Generalization 4. Realization
Dependency is a semantic relationship between two model elements in which a change to one element

(the independent one) may affect the semantics of the other element (the dependent one). Graphically,
a dependency is rendered as a dashed line, possibly directed, and occasionally including a label.

Association is a structural relationship among classes that describes a set of links, a link being a
connection among objects that are instances of the classes.

Graphically, an association is rendered as a solid line, possibly directed, occasionally including a label,
and often containing other adornments, such as multiplicity and end names

12

0..1 -

employer employee

Generalization is a specialization/generalization relationship in which the specialized element (the
child) builds on the specification of the generalized element (the parent). The child shares the
structure and the behavior of the parent. Graphically, a generalization relationship is rendered as a
solid line with a hollow arrowhead pointing to the parent.

Realization is a semantic relationship between classifiers, wherein one classifier specifies a contract
that another classifier guarantees to carry out. generalization and a dependency relationship.

UML Diagrams

* A diagram is the graphical presentation of a set of elements, most often rendered as a
connected graph of vertices (things) and paths (relationships).

» Adiagram represents an elided view of the elements that make up a system.

* Intheory, a diagram may contain any combination of things and relationships.

* In practice, a small number of common combinations arise, which are consistent with the five
most useful views that comprise the architecture of a software intensive system

The UML includes Nine kinds of diagrams:

Class diagram

Obiject diagram

Use case diagram
Sequence diagram
Collaboration diagram
Statechart diagram
Activity diagram
Component diagram
Deployment diagram

©WoNoogk~whE

1. Class diagram shows a set of classes, interfaces, and collaborations and their relationships.
These diagrams are the most common diagram found in modeling object-oriented systems.
Class diagrams address the static design view of a system. Class diagrams that include active
classes address the static process view of a system.

2. Object diagram shows a set of objects and their relationships. Object diagrams represent static
snapshots of instances of the things found in class diagrams. These diagrams address the static
design view or static process view of a system as do class diagrams.

13

3. Use case diagram shows a set of use cases and actors (a special kind of class) and their
relationships. Use case diagrams address the static use case view of a system.

4. Sequence diagram is an interaction diagram that emphasizes the time-ordering of messages;

Collaboration diagram a communication diagram is an interaction diagram that emphasizes the
structural organization of the objects or roles that send and receive messages.

6. Statechart diagram shows a state machine, consisting of states, transitions, events, and
activities. A state diagrams shows the dynamic view of an object.

7. Activity diagram shows the structure of a process or other computation as the flow of control
and data from step to step within the computation. Activity diagrams address the dynamic
view of a system.

8. Component diagram is shows an encapsulated class and its interfaces, ports, and internal
structure consisting of nested components and connectors. Component diagrams address the
static design implementation view of a system.

9. Deployment diagram shows the configuration of run-time processing nodes and the
components that live on them. Deployment diagrams address the static deployment view of an
architecture

What is Legal UML?

The UML has syntactic and semantic rules for
* Names What you can call things, relationships, and diagrams
* Scope The context that gives specific meaning to a name
* Visibility How those names can be seen and used by others
* Integrity How things properly and consistently relate to one another
* Execution What it means to run or simulate a dynamic model

Architecture

» Architecture refers to the different perspectives from which a complex system can be viewed.

» Visualizing, specifying, constructing, and documenting a software-intensive system demands
that the system be viewed from a number of perspectives.

* The architecture of a software-intensive system is best described by five interlocking views:

— Use case view: system as seen by users, analysts and testers.

— Design view: classes, interfaces and collaborations that make up the system.
— Process view: active classes (threads).

— Implementation view: files that comprise the system.

— Deployment view: nodes on which SW resides.

» Each view is a projection into the organization and structure of the system, focused on a
particular aspect of that system.

14

vocabulary
functionahty

behavior

performance
scalability
throughput

system assembly
configuration management

Design view Implementation view

(Us: i:;se)

Process view Deployment view

system topology
distribution
delivery
instaliation

Each of these five views can stand alone so that different stakeholders can focus on the issues of the
system's architecture that most concern them.

Software Development Life Cycle

* UML is involved in each phase of the software development life cycle.
* The UML development process is

Use case driven

Use case driven means that use cases are used as a primary artifact for establishing the
desired behavior of the system, for verifying and validating the system's architecture,
for testing, and for communicating among the stakeholders of the project.
Architecture-centric

Architecture-centric means that a system's architecture is used as a primary artifact for
conceptualizing, constructing, managing, and evolving the system under development.
Iterative and incremental

An iterative process is one that involves managing a stream of executable releases. An
is one that involves the continuous integration of the system's architecture to produce
these releases, with each new release embodying incremental improvements over the
other.

15

Software Development Life Cycle

Inception | Elaboration Construction Transition
Process Workflows
Business Modeling = | e
--.-__---_‘_-‘-\—
Requirements __——=—=""_1 [———
. . A
Analysis and Design - i
Implementation ”’/” -
Test — _..--"'“\/—-\“"-—
Deployment N
Supporting Workflows
Configuration and I ===
Change Management —
Project Management el e N Ly, e o) e,
Environment _—=T_—"——
preliminary | iter iter iter | iter iter iter iter
iteration(s) | #1 #2 #n | #n¥1 | #n+2 | #m | #m#1

Inception is the first phase of the process, when the seed idea for the development is brought
up to the point of being at least internally - sufficiently well-founded to warrant entering into
the elaboration phase.

Elaboration is the second phase of the process, when the product vision and its architecture
are defined. In this phase, the system's requirements are articulated, prioritized, and baselined.
A system's requirements may range from general vision statements to precise evaluation
criteria, each specifying particular functional or nonfunctional behavior and each providing a
basis for testing.

Construction is the third phase of the process, when the software is brought from an
executable architectural baseline to being ready to be transitioned to the user community. Here
also, the system's requirements and especially its evaluation criteria are constantly reexamined
against the business needs of the project, and resources are allocated as appropriate to actively
attack risks to the project.

Transition is the fourth phase of the process, when the software is turned into the hands of the
user community. Rarely does the software development process end here, for even during this
phase, the system is continuously improved, bugs are eradicated, and features that didn't make
an earlier release are added.

16

CLASSES

Classes
» A Class is a description of set of objects that share same attributes, operations, relationships
and semantics .
» Graphically, a class is rendered as a rectangle

* Every class must have a name that distinguishes it from other classes. A name is a textual
string.

* That name alone is known as a simple name;

* apath name is the class name prefixed by the name of the package in which that class lives.

Customer

Temperature sensor

Business rules::
FraudAgent

Attributes

* An attribute is a named property of a class that describes range of values that instances of the
property may hold.

» Aclass may have any number of attributes or no attributes at all. An attribute

» represents some property of the thing you are modeling that is shared by all objects of that
class.

+ Graphically, attributes are listed in a compartment just below the class name.

» Attributes may be drawn showing only their names,

Attributes

Customer

attributes
name

address
phone
birthDate

further specify an attribute by stating its class and possibly a default initial value

Attributes and Their Class

Wall

height : Float

width : Float

thickness : Float

isLoadBearing : Boolean = false

attributes

17

Operations

An operation is the implementation of a service that can be requested from any object of the
class to affect behavior.

An operation is an abstraction of something you can do to an object and that is shared by all
objects of that class.

A class may have any number of operations or no operations at all.

Operations may be drawn showing only their names.

Rectangle

operations

add ._/’/
grow ()

movwve()
isEmpty ()

Organizing attributes and relationships

When drawing a class, you don't have to show every attribute and every operation at once.
Meaning that you can choose to show only some or none of a class's attributes and operations
Explicitly specify that there are more attributes or properties than shown by ending each list
with an ellipsis ("...").

To better organize long lists of attributes and operations you prefix each group with
descriptive category by using stereotypes

FraudAgent

«constructory e———_|

new(e
new(p : Policy)
e ST

«process»
stereotype
process(o : Order) typ

'«dﬂery» *—— ——— |
isSuspect(o : Order)
isFraudulent(o : Order)

«helper» o—’-//

validateOrder(o : Order)

Responsibilities

A responsibility is a contract or an obligation of a class.

When you create a class you are making a statement that all objects of that class have the same
kind of state and behavior .

Ex: A Wall class is responsible for knowing about height, width, and thickness; a FraudAgent
class, as you might find in a credit card application, is responsible for processing orders and
determining if they are legitimate, suspect, or fraudulent; a TemperatureSensor class is

18

responsible for measuring temperature and raising an alarm if the temperature reaches a
certain point.

» Graphically, responsibilities can be drawn in a separate compartment at the bottom of the class
icon

Fig: Responsibilities

FraudAgent

Responsibilities responsibilities
-- determine the risk of a ./
customer order
-- handle customer-specific
criteria for fraud

Common modeling techniques
1. Modeling the vocabulary of a system
To model the vocabulary of a system

1) Identify those things that users to describe the problem .use crc cards and usecase based
analysis to help find these abstractions.

2) For each abstraction, identify a set of responsibilities. Make sure that each class is crisply
defined and that there is a good balance of responsibilities among all your classes.

3) Provide the attributes and operations that are needed to carry out these responsibilities for each
class

» Fig shows a set of classes drawn from a retail system, including Customer, Order, and Product.
It also includes a few other related abstractions drawn from the vocabulary of the problem,
such as Shipment (used to track orders), Invoice (used to bill orders), and Warehouse (where
products are located prior to shipment). There is also one solution-related abstraction,
Transaction, which applies to orders and shipments.

[Warenouss |

name Product
address Qrder
item

quantity

Invoice

COmmitg)
roliBack()
wasSuccessful()

ac
- track the status and location
of the shipped products

2. Modeling the Distribution of responsibilities in a System
To model the distribution of responsibilities in a System

» Identify a set of classes that work together closely to carryout some behavior.
* ldentify a set of responsibilities for each of these classes.

19

» Look at this set of classes as a whole, split classes that have too many responsibilities into
smaller abstractions, collapse tiny classes that have trivial responsibilities into larger ones, and
reallocate responsibilities so that each abstraction reasonably stands on its own.

+ Consider the ways in which those classes collaborate with one another, and redistribute their
responsibilities accordingly so that no class within a collaboration does too much or too little.

Modeling the Distribution of responsibilities in a System

Model

WVieww

Responsibilities
— manage the state of
the model Responsibilities
— render the model
on the screen
-- manage movement
Controller and resizing of the
wieww
-- intercept user events

Responsibilities
-- synchronize changes
in the model and its
views

3. Modeling Non software things

To model the distribution of responsibilities in a System
Model the thing you are abstracting as a class.

+ If you want to distinguish these things from the UML's defined building blocks, create a new
building block by using stereotypes to specify these new semantics and to give a distinctive
visual cue.

» If the thing you are modeling is some kind of hardware that itself contains software, consider
modeling it as a kind of node, as well, so that you can further expand on its structure.

Modeling Non software Things

Robot

| Accounts Receivable Agent |

processOrder()
changeOrder()
status()

Modeling Non Software things

<<Enumerati
on>>
status

<<Enumerati
on>>

<<Type>> Boolean

Int

False

Idle
True

{values range
from -2**31-1
to +2**31}

Working
error

20

4. Modeling Primitive Types

* At the other extreme, the things you model may be drawn directly from the programming
language you are using to implement a solution.

» Typically, these abstractions involve primitive types, such as integers, characters, strings, and
even enumeration types, that you might create yourself.

To model primitive types,
» Model the thing you are abstracting as a type or an enumeration, which is rendered using class
notation with the appropriate stereotype.

+ If you need to specify the range of values associated with this type, use constraints.

Fig: Modeling Primitive Types

«type»
Int
{values range from
-2"31-110 +2*31} «enumeration»
Boolean

false
frue

«enumeration»
Status

idle
working
error

Relationships

* Avrrelationship is a connection among things.

* The three most important relationships are dependencies, generalizations, and associations.

* Graphically, a relationship is rendered as a path, with different kinds of lines used to
distinguish the kinds of relationships.

Dependency
A dependency is a using relationship that states that a change in specification of one thing (for
example, class Event) may affect another thing that uses it (for example, class Window), but not
necessarily the reverse.

» Graphically, a dependency is rendered as a dashed directed line.

dependency

FilmClip
name
playOn(c : Channel)
start()

stop()
reset()

21

Generalization

* A generalization is a relationship between a general thing (called the super class or parent)and
a more specific kind of that thing (called the subclass or child).

» Generalization is sometimes called an "is-a-kind-of" relationship: one thing (like the class
BayWindow) is-a-kind-of a more general thing (for example, the class Window).

* Generalization means that objects of the child may be used anywhere the parent may appear,
but not the reverse.

* In other words, generalization means that the child is substitutable for the parent. A child
inherits the properties of its parents, especially their attributes and operations.

base class

—t Shape

origin

mowve()

generalization resize()

display(QQ
/ i S
/ e~ \\\ﬁ:\
(Rectangle Circle Polygon

cormer - Point radius - Float points : List
e -

leaf ciass

Association
* An association is a structural relationship that specifies that objects of one thing are connected
to objects of another. Given an association connecting two classes, you can navigate from an
object of one class to an object of the other class, and vice versa.
» It's quite legal to have both ends of an association circle back to the same class. This means
that, given an object of the class, you can link to other objects of the same class

There are four adornments that apply to associations.

Name

An association can have a name, and you use that name to describe the nature of the relationship. So
that there is no ambiguity about its meaning, you can give a direction to the name by providing a
direction triangle that points in the direction you intend to read the name, as shown in Figure

name direction
name

\\oWorks forb/
Person / Company

association

22

There are four adornments that apply to associations.

Role
» When a class participates in an association, it has a specific role that it plays in that
relationship;
» Avrole is just the face the class at the near end of the association presents to the class at the
other end of the association.

association

N\

Person * Company
employee employer

role name

Multiplicity
* An association represents a structural relationship among objects. In many modeling
situations, it's important for you to state how many objects may be connected across an
instance of an association.
* This "how many" is called the multiplicity of an association's role, and is written as an
expression that evaluates to a range of values or an explicit value as in Figure

multiplicity

N

1 “t *
Person g Company
employee employer

association

Aggregation
» A plain association between two classes represents a structural relationship between peers,
meaning that both classes are conceptually at the same level, no one more important than the
other.
* Sometimes, you will want to model a "whole/part™ relationship, in which one class represents
a larger thing (the "whole™), which consists of smaller things (the "parts"). This kind of
relationship is called aggregation, which represents a "has-a" relationship.

/’—|-0 Company |

whole 1 .\
aggregation
part ”
Department |

23

Common Modeling Techniques
1. Modeling simple dependencies
-To model this using relationship

1) Create a dependency pointing from the class with the operation to the class used as a parameter in
the operation.

CourseSchedule

add(c:Course) [~~~ 7777~ > Course
remove(c : Course)

/N

|
«friend» II
I
L

Iterator

2. Modeling Single Inheritance
To model inheritance relationships,

1. Given a set of classes, look for responsibilities, attributes, and operations that are common to
two or more classes.

2. Elevate these common responsibilities, attributes, and operations to a more general class. If
necessary, create a new class to which you can assign these elements (but be careful about
introducing too many levels).

3. Specify that the more-specific classes inherit from the more-general class by placing a
generalization relationship that is drawn from each specialized class to its more-general parent.

Security
presentValuel)
history(}
I I | ‘
|
CashAccount Stock Bond Property
interestRate assessments
resentValue tval
presentValue() P 0 presentValue() presentvalue()
SEmallCapStock | | LargeCapStock

24

3. Modeling Structural Relationships

To model structural relationships,

1.

2.

For each pair of classes, if you need to navigate from objects of one to objects of another,
specify an association between the two. This is a data-driven view of associations.

For each pair of classes, if objects of one class need to interact with objects of the other class
other than as parameters to an operation, specify an association between the two. This is more
of a behavior-driven view of associations.

For each of these associations, specify a multiplicity (especially when the multiplicity is not *,
which is the default), as well as role names (especially if it helps to explain the model).

If one of the classes in an association is structurally or organizationally a whole compared with
the classes at the other end that look like parts, mark this as an aggregation by adorning the
association at the end near the whole

COMMON MECHANISMS

Stereotypes, tagged values, and constraints are the mechanisms provided by the UML to add
new building blocks, create new properties, and specify new semantics.

For example, if you are modeling a network, you might want to have symbols for routers and
hubs; then use stereotyped nodes to make these things appear as primitive building blocks.
Similarly, if you are part of your project's release team, responsible for assembling, testing,
and then deploying releases, you might want to keep track of the version number and test
results for each major subsystem.

Then use tagged values to add this information to your models.

Fig: Stereotypes, Tagged Values, and constraints

slereolyﬁi 1

— «subsystem» tagged value

Billin
{version =93 2).———""/

stereotyped node

i

B

{> 10h¢!8ec line}

Building 1 Hub
Server constraint

25

stereolyped node

A note is a graphical symbol for rendering constraints or comments attached to an element or a
collection of elements. Graphically, a note is rendered as a rectangle with a dog-eared corner, together
with a textual or graphical comment.

A stereotype is an extension of the vocabulary of the UML, allowing to create new kinds of building
blocks similar to existing ones but specific to problem. Graphically, a stereotype is rendered as a name
enclosed by guillemets (<< >>) and placed above the name of another element.

A tagged value is an extension of the properties of a UML element, allowing you to create new
information in that element's specification. Graphically, a tagged value is rendered as a string enclosed
by brackets and placed below the name of another element.

A constraint is an extension of the semantics of a UML element, allowing you to add new rules or to
modify existing ones. Graphically, a constraint is rendered as a string enclosed by brackets and placed
near the associated element or connected to that element or elements by dependency relationships.

Notes
* A note that renders a comment has no semantic impact, meaning that its contents do not alter
the meaning of the model to which it is attached. Notes are used to specify things like
requirements, observations, reviews, and explanations, in addition to rendering constraints.
* A note may contain any combination of text or graphics. you can put a live URL inside a note,
or even link to or embed another document

simple text
Publish this component [™\
in the project repository

after the next design review. '|: embedded URL

agb 1/5/98
link to document
== .| See encrypt.doc for
pws details about this algorithm.

See http://iwww.gamelan.com
for an example of this applet.

Other Adornments

Adornments are textual or graphical items that are added to an element's basic notation and are used to
visualize details from the element's specification.
» For example, the basic notation for an association is a line, but this may be adorned with such
details as the role and multiplicity of each end.
* A stereotype is rendered as a name enclosed by guillemets (for example, <<name>>) and
placed above the name of another element.
* You may define an icon for the stereotype and render that icon to the right of the name or use
that icon as the basic symbol for the stereotyped item.

named stereotype

«metaclass»

{ ModelElement

named stereotype with icon

«exception» A
Underflow T

stereotyped element as icon

HumiditySensor

26

Tagged Values

A tagged value is rendered as a string enclosed by brackets and placed below the name of another
element. That string includes a name (the tag), a separator (the symbol =), and a value (of the tag).
Specify just the value if its meaning is unambiguous, such as when the value is the name of

enumeration.

tagged value

Server
~—8 {processors = 3)

Constraints

Iﬁ* {aeverOnly) 0

_L-: «lbrary ﬂ value of tag
trans.dl /

-

1

* A constraint is rendered as a string enclosed by brackets and placed near the associated

element.

» This notation is also used as an adornment to the basic notation of an element to visualize parts
of an element's specification that have no graphical cue.
» For example, some properties of associations (order and changeability) are rendered using

constraint notation.

Standard Elements

simple constraint

Portfolio

{secure}

BankAccount

) oo

| constraint across multiple elements
! {or} YR
I

Person

gender

: {female, male}
0.1

formal constraint using OCL

wife
0.1
husband

\‘(self.wife.gender = female and
self.husband.gender = male}

* The UML defines a number of standard stereotypes for classifiers, components, relationships
and other modeling elements.
* There is one standard stereotype, mainly of interest to tool builders, that lets you model
stereotypes themselves.

Stereotype

» Specifies that the classifier is a stereotype that may be applied to other elements
» The UML also specifies one standard tagged value that applies to all modeling elements.

27

Documentation
» Specifies a comment, description, or explanation of the element to which it is attached

Common Modeling Techniques

1. Modeling Comments
+ To model a comment

1) Put your comment as text in a note and place it adjacent to the element to which it refers. You can
show a more explicit relationship by connecting a note to its elements using a dependency
relationship.

2) Remember that you can hide or make visible the elements of your model as you see fit. This means
that you don't have to make your comments visible everywhere the elements to which it is attached
are visible. Rather, expose your comments in your diagrams only insofar as you need to
communicate that information in that context.

3) If your comment is lengthy or involves something richer than plain text, consider putting your
comment in an external document and linking or embedding that document in a note attached to
your model.

4) As your model evolves, keep those comments that record significant decisions that cannot be
inferred from the model itself, and unless they are of historic interest discard the others.

araquirements Security
Shall conform to corporate

framework for transaction logging, Mary: add two intermediate
in compliance with federal law. T presentValue() abs?rrart classes to >
history() i . : |
distinguish realfintangible
ﬁg secunties. walkthrough on 1271 7/97
| |] |
| CashAccount Stock | Bond Property
| |
| InterestRate + ssments
] presentValue() |,presenl\."alue{j
| presentValuea() - L h L | _ rpresentalue()

=1 See policy8-5-96 . .doc for [
details about these algorithms

2. Modeling New Building Blocks

1) Make sure there's not already a way to express what you want by using basic UML. If you have a
common modeling problem, chances are there's already some standard stereotype that will do what
you want.

2) If you're convinced there's no other way to express these semantics, identify the primitive thing in
the UML that's most like what you want to model (for example, class, interface, component, node,
association, and so on) and define a new stereotype for that thing.

3) Specify the common properties and semantics that go beyond the basic element being stereotyped
by defining a set of tagged values and constraints for the stereotype.

28

4) If you want these stereotype elements to have a distinctive visual cue, define a new icon for the

stereotype.
Registration
€ 7
: Coach E \/

%5 \——‘SCRegisler learn)

i 2

;. Team

Competition

Lunregistered]

/
< -
i - Praclice)
‘-‘(Pay fees) 52 - = 77< I
P e
e Compete)
Getl event # _____ > "’/ C ’
materials 3

g

[régistered]

@el event resull9
Returm event P 3
materials

. -
>

: Team
[finished]

3) Modeling New Properties

1) First, make sure there's not already a way to express what you want by using basic UML. If you
have a common modeling problem, chances are that there's already some standard tagged value that
will do what you want.

2) If you're convinced there's no other way to express these semantics, add this new property to an
individual element or a stereotype. The rules of generalization apply -- tagged values defined for
one kind of element apply to its children.

Fig: Modeling New Properties

«subsystem»

FieldAccess
{wversion = 2.5

status = checkedin}

-

[P

«subsysterm»
Billing
{wersion = 3.2
staitus = checkedOwut
by = egb}

“
~
~

~ -

N
| NN Pt
«subsysterm>»
wworldCurrency
{wersion = 7.5
status = checkedin }

29

[1

«subsysterm»
Accounts Pavable
{version = 3.2.1
status = checkedin}

4) To model new semantics

1. First, make sure there's not already a way to express what you want by using basic UML. If
you have a common modeling problem, chances are that there's already some standard

constraint that will do what you want.

2. If you're convinced there's no other way to express these semantics, write your new semantics
as text in a constraint and place it adjacent to the element to which it refers. You can show a
more explicit relationship by connecting a constraint to its elements using a dependency

relationship.

3. If you need to specify your semantics more precisely and formally, write your new semantics

using Object Constraint Language (OCL).

Fig: Modeling New Semantics

Department

< {Isubset}
member W™ 1 managernr

FPaerson

The above diagram shows that each Person may be a member of zero or more Departments and that
each Department must have at least one Person as a member. This diagram goes on to indicate that
each Department must have exactly one Person as a manager and every Person may be the manager of
zero or more Departments. All of these semantics can be expressed using simple UML.

DIAGRAMS

* A ssystem is a collection of subsystems organized to accomplish a purpose and described by a
set of models, possibly from different viewpoints.

* A subsystem is a grouping of elements, of which some constitute a specification of the
behavior offered by the other contained elements.

« Adiagram is just a graphical projection into the elements that make up a system.

Class diagram
Object diagram

Component diagram

Deployment diagram

30

Use case diagram

Sequence diagram
Collaboration diagram
Statechart diagram

Activity diagram

The UML's structural diagrams are roughly organized around the major groups of things you'll find
when modeling a system.

Object diagram Objects
Component diagram Components
Deployment diagram Nodes

The UML's behavioral diagrams are roughly organized around the major ways you can model the
dynamics of a system.

Use case diagram Organizes the behaviors of the system

Sequence diagram Focused on the time ordering of messages

Collaboration diagram Focused on the structural organization of objects that send and receive
messages

Statechart diagram Focused on the changing state of a system driven by events

Activity diagram Focused on the flow of control from activity to activity

Common Modeling Techniques
1. Modeling Different Views of a System

» Decide which views you need to best express the architecture of your system and to expose the
technical risks to your project. The five views of an architecture described earlier are a good
starting point.

* For each of these views, decide which artifacts you need to create to capture the essential
details of that view. For the most part, these artifacts will consist of various UML diagrams.

* As part of your process planning, decide which of these diagrams you'll want to put under
some sort of formal or semi-formal control. These are the diagrams for which you'll want to
schedule reviews and to preserve as documentation for the project.

» Allow room for diagrams that are thrown away. Such transitory diagrams are still useful for
exploring the implications of your decisions and for experimenting with changes.

2) Modeling Different Levels of Abstraction

» Consider the needs of your readers, and start with a given model.

» If your reader is using the model to construct an implementation, she'll need diagrams that are
at a lower level of abstraction, which means that they'll need to reveal a lot of detail. The
model to present a conceptual model to an end user, then use the diagrams that are at a higher
level of abstraction, which means that they'll hide a lot of detail.

31

» Depending on where you land in this spectrum of low-to-high levels of abstraction, create a
diagram at the right level of abstraction by hiding or revealing the following four categories of
things from the model.

Building blocks and relationships:
» Hide those that are not relevant to the intent of the diagram or the needs of the reader.

Adornments:
* Reveal only the adornments of these building blocks and relationships that are essential to
understanding the intent.
Flow:
» In the context of behavioral diagrams, expand only those messages or transitions that are
essential to understanding the intent.
Stereotypes:
* In the context of stereotypes used to classify lists of things, such as attributes and operations,
reveal only those stereotyped items that are essential to understanding the intent.

: OrderTaker : CreditCardAgent || : OrderFufillment || : BillingAgent

| |
| |
, sSubmitOrder | :
: processCard : :
!	
laceOrder	
: P . P triggerBill :	
: : =l	
acknowledgeOrder	
:< R	:
]	
' ! ' | See Credit Failure
: Gy : ' | for a variation of this
' ' | ! scenario.

32

3) Modeling Complex Views
To model complex views,

First, convince yourself there's no meaningful way to present this information at a higher level
of abstraction, perhaps eliding some parts of the diagram and retaining the detail in other parts.
If you've hidden as much detail as you can and your diagram is still complex, consider
grouping some of the elements in packages or in higher level collaborations, then render only
those packages or collaborations in your diagram.

If your diagram is still complex, use notes and color as visual cues to draw the reader's
attention to the points you want to make.

If your diagram is still complex, print it in its entirety and hang it on a convenient large wall.
You lose the interactivity an online version of the diagram brings, but you can step back from
the diagram and study it for common patterns.

*hkkkk

33

MODULE - 11

Advanced classes, advanced relationships, interfaces, types and roles, packages,
terms, concepts; Class and Object Diagrams: Terms, concepts, common
modeling techniques for class and object diagrams.

Advanced Classes

» Aclassifier is a mechanism that describes structural and behavioral features.
» Classifiers include classes, interfaces, datatypes, signals, components, nodes, use cases, and
subsystems.
* The UML provides a number of other kinds of classifiers to help you model.
* Interface
A collection of operations that are used to specify a service of a class or a component
+ Datatype
A type whose values have no identity, including primitive built-in types (such as numbers and
strings), as well as enumeration types (such as Boolean)
+ Signal
The specification of an asynchronous stimulus communicated between instances
* component
A physical and replaceable part of a system that conforms to and provides the realization of a
set of interfaces
* Node
A physical element that exists at run time and that represents a computational resource,
generally having at least some memory and often processing capability
* Use case
A description of a set of a sequence of actions, including variants, that a system performs that
yields an observable result of value to a particular actor
* Subsystem
A grouping of elements of which some constitute a specification of the behavior offered by
the other contained elements

class datatype signal

Shape | P “t%l“)lc»
origi! | O {values range from OffHook

move() IUnknown -2**31-1 to +2°*31}

resize()

display() use case
node

component /Proccss Inan\
egb_server \ ’/
- kemel32.dll ——
subsystem
|

«subsystem»
Customer Service
subsystem

34

Visibility - UML, you can specify any of three levels of visibility.

1. public
Any outside classifier with visibility to the given classifier can use the feature specified by
prepending the symbol +.

2. protected
Any descendant of the classifier can use the feature; specified by prepending the symbol #.

3. private

Only

Scope-

the classifier itself can use the feature; specified by prepending the symbol -.

Toolbar

currentSelection : Tool r? protected
toolCount : Integer e—

e + pickltem(i : Integer)

public Le + addTool(t : Tool)

~® + removeTool(i : integer)
e + getTool() : Tool
protected = T®# checkOrphans()

private ________+e-compack()

It specifies whether the feature appears in each instance of the classifier or whether there is

just a single instance of the feature for all instances of the classifier. In the UML, you can specify two
kinds of owner scope.

1. Instance - Each instance of the classifier holds its own value for the feature.
2. Classifier - There is just one value of the feature for all instances of the classifier.

class scope

Multipl

Figure shows, a feature that is classifier scoped is rendered by underlining the feature's name

Frame

instance scope
header : FrameHeader &~ P

feuniquelD : Long

icity

The number of instances a class may have is called its multiplicity. Multiplicity is a
specification of the range of allowable cardinalities an entity may assume.

Specify the multiplicity of a class by writing a multiplicity expression in the upper-right corner
of the class icon.

Multiplicity applies to attributes, as well. You can specify the multiplicity of an attribute by
writing a suitable expression in brackets just after the attribute name. For example, in the
figure, there are two or more consolePort instances in the instance of NetworkController.

35

~ multiplicity
singleton class

\

NetworkController

consolePort [2..*] : Port

l Controlle

Attributes
* You can Specify the visibility, scope, and multiplicity of each attribute. There's still more. You
can also

» specify the type, initial value, and changeability of each attribute.
* Inits full form, the syntax of an attribute in the UML is
+ [visibility] name [multiplicity] [: type] [= initial-value] [{property-string}].

There are three defined properties that you can use with attributes.

addOnly For attributes with a multiplicity greater than one, additional values may
be added, but once created, a value may not be removed or altered

frozen The attribute’s value may not be changed after the object is initialized.

Operations

* you can also specify the visibility and scope of each operation.

* You can also specify the parameters, return type, concurrency semantics, and other properties
of each operation.

* The name of an operation plus its parameters (including its return type, if any) is called the
operation's signature.

* Inits full form, the syntax of an operation in the UML is

[visibility] name [(parameter-list)] [: return-type] [{property-string}]

* Inan operation's signature, you may provide zero or more parameters, each of which follows
the syntax

* [direction] name : type [= default-value]

» Direction may be any of the following values

1) in 2)out 3)inout

Template Classes
- Atemplate is a parameterized element. In such languages as C++ and Ada, you can write
template classes, each of which defines a family of classes.
« Atemplate includes slots for classes, objects, and values, and these slots serve as the
template's parameters.
* The most common use of template classes is to specify containers that can be instantiated for
specific elements, making them type-safe

36

template<class Item, class Value, int Buckets> class Map {
public:
virtual Boolean bind(const Item&, constValue&);
virtual Boolean isBound(const Item&) const;
o}
Standard Elements - The UML defines four standard stereotypes that apply to classes.

1. metaclass - Specifies a classifier whose objects are all classes

2. powertype - Specifies a classifier whose objects are the children of a given parent

3. stereotype - Specifies that the classifier is a stereotype that may be applied to other elements
4. utility - Specifies a class whose attributes and operations are all class scoped

Common Modeling Techniques
1. Modeling semantics of class

» Specify the responsibilities of the class. A responsibility is a contract or obligation of a type or
class and is rendered in a note (stereotyped as responsibility) attached to the class, or in an
extra compartment in the class icon.

» Specify the semantics of the class as a whole using structured text, rendered in a note
(stereotyped as semantics) attached to the class.

» Specify the body of each method using structured text or a programming language, rendered in
a note attached to the operation by a dependency relationship.

» Specify the pre- and post conditions of each operation, plus the invariants of the class as a
whole, using structured text. These elements are rendered in notes (stereotyped as
precondition, post condition, and invariant) attached to the operation or class by a
dependency relationship.

» Specify a state machine for the class. A state machine is a behavior that specifies the
sequences of states an object goes through during its lifetime in response to events, together
with its responses to those events.

» Specify a collaboration that represents the class. A collaboration is a society of roles and other
elements that work together to provide some cooperative behavior that's bigger than the sum
of all the elements. A collaboration has a structural part, as well as a dynamic part, so you can
use collaborations to specify all dimensions of a class's semantics.

» Specify the pre- and postconditions of each operation, plus the invariants of the class as a
whole, using a formal language such as OCL.

Advanced Relationships
* A relationship is a connection among things. In object-oriented modeling, the four most
important relationships are dependencies, generalizations, associations, and realizations.

» Graphically, a relationship is rendered as a path, with different kinds of lines used to
distinguish the different relationships.

37

[Controller J [EmbeddedAgent]

muitiple inheritance 3)
e
\~“‘ — p—
S — association navigation

«interface» {
URL StreamHandler SetTopController \
e -
authorizationLevel \{ PowerManager J
openConnection() <& ~ - " 1 startUpQ
parse URL() \ shutDown() «friend» |
setURL() l connect() <~ - >= — - | Channellterator]
toExternalForm())

{

realization stereotyped dependency

Dependency
» Adependency is a using relationship, specifying that a change in the specification of one thing
may affect another thing that uses it but not necessarily the reverse. Graphically, a dependency
is rendered as a dashed line, directed to the thing that is depended on.

Eight Stereotypes that apply to dependency relationships among classes and objects

bind the source instatiates the target template

derive the source may be computed from target

friend the source is given special visibility into target

instanceOf source object is an instance of the target classifier

instantiate source object creates instance of the target

powertype target is a powertype of the source

refine source is at a finer degree of abstraction than target

use the semantics of the source element depends on the semamtics of the public
part of the target

» Two stereotypes that apply to dependency relationships among packages.

— access — source package is granted the right to reference the elements of the target
package.

— import — a kind of access, but only public content.
» Two stereotypes that apply to dependency relationships among use case.
— extend — target use case extends the behavior of source.

— include — source use case explicitly incorporates the behavior of another use case at a
location specified by the source

» Three stereotypes when modeling interactions among objects.
— become — target is the same object of source at later time
— call — source operation invoke the target operation
— copy — target is an exact, but different, copy of source
* In the context of state machine
— send — source operation sends the target event
» In the context of organizing the elements of your system into subsystem and model

— trace — target is an historical ancestor of the source (model relationship among
elements in different models)

38

Generalization
A generalization is a relationship between a general thing (called the superclass or parent) and a more
specific kind of that thing (called the subclass or child).

There is the one stereotype.
» Implementation: Specifies that the child inherits the implementation of the parent but does
not make public nor support. Its interfaces, thereby violating substitutability

The four constraints that may be applied to generalization relationships.

1.Complete - Specifies that all children in the generalization have been specified in the model and
that no additional children are permitted

2.Incomplete - Specifies that not all children in the generalization have been specified and that
additional children are permitted

3.Disjoint - Specifies that objects of the parent may have no more than one of the children as a type

4.0verlapping - Specifies that objects of the parent may have more than one of the children as a type

Association
* An association is a structural relationship, specifying that objects of one thing are connected to
object of another.
» Basic adornments: name, role, multiplicity, aggregation.
» Advanced adornments: navigation, qualification, various flavors of aggregation

Navigation
- Given a plain, unadorned association between two classes, such as Book and Library, it's
possible to navigate from objects of one kind to objects of the other kind.

association navigation

-

1 \
User } >|I Password
owner /

association

Visibility
- An association between two classes, objects of one class can see and navigate to objects of the
other, unless otherwise restricted by an explicit statement of navigation

association

- -

- e 1 -
T | - Q‘
| UserGroup [= User [i 2| Password
+ user + owner ;\key
)

o o

b N/

association visibility

39

Qualification: A form of aggregation with strong ownership and coincident lifetime of the parts by the
whole.

qualifier association

: 2 * 0.1
WorkDesk joblD : Int | Q‘

* Interface specifier : An interface is a collection of operations that are used to specify a
service of a class or a component; every class may realize many interfaces.

Returnedltem

interface specifier

\ association

worker : IEmployee | »

1
Person
supervisor : IManager
e
interface specifier interface specifier

Composition
* Inacomposite aggregation, an object may be a part of only one composite at a time.
* For example, in a windowing system, a Frame belongs to exactly one Window. In a composite
aggregation, the whole is responsible for the disposition of its parts, which means that the
composite must manage the creation and destruction of its parts.

//—‘-0 Window |
whole 1 \

composition

part *

\|o Frame |

Constraints
implicit: The relationship is not manifest but, rather, is only conceptual.

ordered: the set of objects at one end of an association are in an explicit order.
changeable: links between objects may be changed.

add Only: new links may be added from an object on the opposite end of association.
frozen: a link added may not be modified or deleted.

Xor: over a set of associations, exactly one is man fest for each associated object.

o gk~ wbdE

40

Realization
+ Avrealization is a semantic relationship between classifiers in which one classifier specifies a
contract that anther classifier guarantees to carry out.
* Use in two circumstances:
— Inthe context of interfaces.
— Inthe context of collaborations.

— Rendering as: E

Common Modeling Techniques
1. Modeling Webs of Relationships

* Apply use cases and scenarios to drive your discovery of the relationships among a set of
abstractions.

* In general, start by modeling the structural relationships that are present. These reflect the
static view of the system and are therefore fairly tangible.

* Next, identify opportunities for generalization/specialization relationships; use multiple
inheritance sparingly.

* Only after completing the preceding steps should you look for dependencies; they generally
represent more-subtle forms of semantic connection.

» For each kind of relationship, start with its basic form and apply advanced features only as
absolutely necessary to express your intent.

* Remember that it is both undesirable and unnecessary to model all relationships among a set
of abstractions in a single diagram or view. Rather, build up your system's relationships by
considering different views on the system. Highlight interesting sets of relationships in
individual diagrams.

Interfaces, Types and Roles

* An interface is a collection of operations that are used to specify a service of a class or a
component. Graphically, an interface is rendered (represented) as a circle; in its expanded
form, an interface may be rendered as a stereotyped class(a class with stereotype interface)

Names

+ Every interface must have a name that distinguishes it from other interfaces

* Two naming mechanism:

* Asimple name (only name of the interface).

* A path name is the interface name prefixed by the name of the package in which that interface
lives represented.

Operations:
* To distinguish an interface from a class, prepend an ‘I’ to every interface name.
» Operations in an interface may be adorned with visibility properties, concurrency properties,
stereotypes, tagged values, and constraints.
» Interface don't have attributes. interfaces span model boundaries and it doesn't have direct
instances.

41

stereotype

e «interface»
URLStreamHandler

openConnection()
parse URL()
setURLY()

toExternalFormy() — operations

Understanding an Interface

* In the UML, you can supply much more information to an interface in order to make it
understandable and approachable.

» First, you may attach pre- and postconditions to each operation and invariants to the class or
component as a whole. By doing this, a client who needs to use an interface will be able to
understand what the interface does and how to use it, without having to dive into an
implementation.

* We can attach a state machine to the interface. You can use this state machine to specify the
legal partial ordering of an interface's operations.

* We can attach collaborations to the interface. You can use collaborations to specify the
expected behavior of the interface through a series of interaction diagrams.

Interface relationships

* An interface may participate in generalization, association, dependency and realization
relationships. Realization is a semantic relationship between two classifiers in which one
classifier specifies a contract that another classifier guarantees to carry out.

Types and Roles

Type:
* A type is a stereotype of a class used to specify a domain of objects, together with the
operations applicable to the object of that type.
» To distinguish a type from an interface or a class, prepend a ‘T’ to every type.

Role

» Arrole names(indicates) a behavior of an entity participating in a particular context. Or, a role
is the face that an abstraction presents to the world.

» For example, consider an instance of the class Person. Depending on the context, that Person
instance may play the role of Mother, Comforter, PayerOfBills, Employee, Customer,
Manager, Pilot, Singer, and so on.

* When an object plays a particular role, it presents a face to the world, and clients that interact
with it expect a certain behavior depending on the role that it plays at the time.

Common Modeling Techniques
1. Modeling the Seams in a Systemeling the Seams in a System

» Within the collection of classes and components in your system, draw a line around those that
tend to be tightly coupled relative to other sets of classes and components.

+ Refine your grouping by considering the impact of change. Classes or components that tend to
change together should be grouped together as collaborations.

42

Consider the operations and the signals that cross these boundaries, from instances of one set
of classes or components to instances of other sets of classes and components.

Package logically related sets of these operations and signals as interfaces.

For each such collaboration in your system, identify the interfaces it relies on (imports) and
those it provides to others (exports). You model the importing of interfaces by dependency
relationships, and you model the exporting of interfaces by realization relationships.

For each such interface in your system, document its dynamics by using pre- and
postconditions for each operation, and use cases and state machines for the interface as a
whole.

2. Modeling Static and Dynamic Types
To model a dynamic type

Specify the different possible types of that object by rendering each type as a class stereotyped
as type (if the abstraction requires structure and behavior) or as interface (if the abstraction
requires only behavior).

Model all the roles the class of the object may take on at any point in time. You can do so in
two ways:

v First, in a class diagram, explicitly type each role that the class plays in its association
with other classes. Doing this specifies the face instances of that class put on in the
context of the associated object.

v' Second, also in a class diagram, specify the class-to-type relationships using
generalization.

In an interaction diagram, properly render each instance of the dynamically typed class.
Display the role of the instance in brackets below the object's name.

To show the change in role of an object, render the object once for each role it plays in the
interaction, and connect these objects with a message stereotyped as become.

For example, Figure shows the roles that instances of the class Person might play in the
context of a human resources system.

«type»
«type» Employee «type»
Candidate W Retiree
I Person l

Fig: Modeling Static Types

Figure shows the dynamic nature of a person's type. In this fragment of an interaction diagram, p (the
Person object) changes its role from Candidate to Employee.

Fig: Modeling Dynamic Types

6 . «become»

p : Person > p : Person
[Candidate] [Employee]

5.1 hire&

‘ : HRDepartment

43

Packages

“A package is a general-purpose mechanism for organizing elements into groups.” Graphically, a
package is rendered as a tabbed folder.

name

Sensor fusion o—//

Names

Every package must have a name that distinguishes it from other packages. A name is a textual
string.

That name alone is known as a simple name; a path name is the package name prefixed by the
name of the package in which that package lives

We may draw packages adorned with tagged values or with additional compartments to
expose their details.

Fig: Simple and Extended Package

" Client I
simple names
—1 + OrderForm

+ TrackingForm
- Order

Business rules

extended packages

enclosing package name

] package name
Sensors:Vision path names

{version = 2.24}

Visibility

You can control the visibility of the elements owned by a package just as you can control the
visibility of the attributes and operations owned by a class.

Typically, an element owned by a package is public, which means that it is visible to the
contents of any package that imports the element's enclosing package.

Conversely, protected elements can only be seen by children, and private elements cannot be
seen outside the package in which they are declared.

We specify the visibility of an element owned by a package by prefixing the element's name
with an appropriate visibility symbol.

Importing and Exporting

Suppose you have two classes named A and B sitting side by side. Because they are peers, A
can see B and B can see A, so both can depend on the other. Just two classes makes for a
trivial system, so you really don't need any kind of packaging.

In the UML, you model an import relationship as a dependency adorned with the stereotype
import

Actually, two stereotypes apply here—import and access— and both specify that the source
package has access to the contents of the target.

44

* Import adds the contents of the target to the source's namespace

» Access does not add the contents of the target

* The public parts of a package are called its exports.

» The parts that one package exports are visible only to the contents of those packages that
explicitly import the package.

* Import and access dependencies are not transitive

Fig: Importing and Exporting

Server l
+ Database Client |
. LoggingService e + OrderForm

i + TrackingForm

exports - Order
v
'
Policies | | «<import»
e+ OrderRules ’
- GUI::wWindow < — — —t
import
cul | . «irngcit»///
o+ VVindow :
e+ Form < — — —1
EventHandler

Generalization

* There are two kinds of relationships you can have between packages: import and access
dependencies used to import into one package elements exported from another and
generalizations, used to specify families of packages

» Generalization among packages is very much like generalization among classes.

» Packages involved in generalization relationships follow the same principle of substitutability
as do classes. A specialized package (such as WindowsGUI) can be used anywhere a more
general package (such as GUI) is used.

GUI

+ Window
+ Form
EventHandler

generalization

WindowsGUI

+ GUI:Window

+ Form

GUI:EventHandler
+VBForm

MacGUI

« All of the UML's extensibility mechanisms apply to packages. Most often, you'll use tagged
values to add new package properties (such as specifying the author of a package) and
stereotypes to specify new kinds of packages (such as packages that encapsulate operating
system services).

45

1. facade : : Specifies a package that is only a view on some other package

2. framework : Specifies a package consisting mainly of patterns
3. stub . Specifies a package that serves as a proxy for the public contents of another
package
4. subsystem : Specifies a package representing an independent part of the entire system being
modeled
5. system : Specifies a package representing the entire system being modeled

Common Modeling Techniques

1. Modeling Groups of Elements

» Scan the modeling elements in a particular architectural view and look for clumps defined by
elements that are conceptually or semantically close to one another.

» Surround each of these clumps in a package.

» For each package, distinguish which elements should be accessible outside the package. Mark
them public, and all others protected or private. When in doubt, hide the element.

» Explicitly connect packages that build on others via import dependencies.

* Inthe case of families of packages, connect specialized packages to their more general part via
generalizations

Fig: Modeling Groups of Elements

User Services

T
I
: «import»

| v~

Business Services

T
I
: «import»

| N\~

Data Services

46

2. Modeling Architectural Views

» ldentify the set of architectural views that are significant in the context of your problem. In
practice, this typically includes a design view, a process view, an implementation view, a
deployment view, and a use case view.

* Place the elements (and diagrams) that are necessary and sufficient to visualize, specify,
construct, and document the semantics of each view into the appropriate package

* As necessary, further group these elements into their own packages.

» There will typically be dependencies across the elements in different views. So, in general, let
each view at the top of a system be open to all others at that level

Fig: Modeling Architectural Views

Fig: Modeling techniques for Class and Object diagram

Design View Implementation View
Use Case View
Process View Deployment View

Class diagram

Class diagram
» Aclass diagram is a diagram that shows a set of classes, interfaces, and collaborations and
their relationships. Graphically, a class diagram is a collection of vertices and arcs.

Common properties
» It shows the same common properties as all other diagrams .

Contents
Class diagram contain the following things
1. Classes
2. Interfaces
3. Collaboration
4. Dependency ,Generalization, association

Class diagrams may also contain packages or subsystems, both of which are used to group elements of
your model into larger chunks

47

Common Uses of a class diagram:

Class diagrams to model the static design view of a system. This view primarily supports the
functional requirements of a systeme the services the system should provide to its end users.

1. To model the vocabulary of a system

1. Modeling the vocabulary of a system involves making a decision about which
abstractions

2. Part of the system under consideration and which fall outside its boundaries. You use
class

3. Diagrams to specify these abstractions and their responsibilities.

2. To Model simple collaboration

1. Acollaboration is a society of classes, interfaces, and other elements that work together
to provide some cooperative behavior that's bigger than the sum of all the elements.

2. For example, when you're modeling the semantics of a transaction in a distributed
system, you can't just stare at a single class to understand what's going on.

3. To model a logical database schema
1. Think of a schema as the blueprint for the conceptual design of a database.
2. In many domains, you'll want to store persistent information in a relational database or
in an object-oriented database.
3. You can model schemas for these databases using class diagrams

Common Modeling Techniques (Class diagram)

1. To model a collaboration
1. Identify the mechanism you want to model .
2. For each mechanism identify the classes ,interfaces and collaboration .
3. Use scenarios to walk through these things .
4. Be sure to populate these elements with their contents .

Figure: Modeling Simple Collaborations

1 -
PathAgent CollisionSensor

Responsibilities
-- seek path

i I

I SteeringMotor } | MainMotor

DY =

Motor

move(d : Direction; s : Speed)
stop()

resetCounter()

Status status()

Integer distance()

48

3. Modeling a logical database schema
To model a schema

1. Identify those classes in the model whose state must transcend the lifetime of their application.

2. Create class diagram that contain these classes and mark them as persistent .

3. Explain structural details of these classes .

4. Watch for common pattern that complicate physical database design .

5. Consider the behavior of these classes by expending operations .

6. Use tools to transform logical design to physical design .

Fig: Modeling a Logical Database
School Department o1
name : Name
address : String name : Name
phone : Number < 1% add'ﬂStFUCth(J
addstudent() removelnstructor() <
removeStudent() getinstructor() 1.*
getstudent() eetAlllnstructors)
getAllStudents()
addDepartment() 1.*%
removeDepartment()
getDepartment()
getAllDepartments()
¢ 1
* 1.*% 1.*% 0.1 chairperson
Student Course Instructor

name : Name * * name: Name * 1..* name:Name

studentld : Number courseld : Number

Forward Engineering

- It is the process of transforming a model into code through a mapping to an implementation
language .

To forward engineer a class diagram

1) Identify the rules for mapping to your implantation language.

2) Depending upon the semantics of the language you have to constrain.
3) Use tagged values to specify your tagged values.

4) Use tools to forward engineer your models.

Reverse Engineering

-transforming code to uml model.

To reverse engineer a class diagram
1) Identify the rules for mapping from your language.
2) Use tools point to code you would like to reverse engineer.
3) Use tool, create a class diagram by querying the model

49

Hints and Tips (class diagram)

When you create class diagrams in the UML, remember that every class diagram is just a graphical
presentation of the static design view of a system.

No single class diagram need capture everything about a system's design view. Collectively, all the
class diagrams of a system represent the system's complete static design view; individually, each
represents just one aspect.

A well-structured class diagram

e Is focused on communicating one aspect of a system's static design view.

e Contains only elements that are essential to understanding that aspect.

e Provides detail consistent with its level of abstraction, with only those adornments that are
essential to understanding.

¢ Is not so minimalist that it misinforms the reader about important semantics.

When you draw a class diagram

* Give it a name that communicates its purpose.

* Lay out its elements to minimize lines that cross.

» Organize its elements spatially so that things that are semantically close are laid out physically
close.

» Use notes and color as visual cues to draw attention to important features of your diagram.

» Try not to show too many kinds of relationships. In general, one kind of relationship will tend
to dominate each class diagram.

Object diagram

e It shows set of objects and their relationships ata pointin time .

e Object diagrams are used to model the static design view or static process view of a
system.

¢ An object diagram covers a set of instances of the things found in a class diagram. An
object diagram,

o therefore, expresses the static part of an interaction, consisting of the objects that
collaborate but without any of the messages passed among them.

e An object diagram is a diagram that shows a set of objects and their relationships at a
point in time. Graphically, an object diagram is a collection of vertices and arcs.

Contents: commonly it contains
1. objects
2. links

Like all other diagrams, object diagrams may contain notes and constraints.

50

Common modeling techniques
1. Modeling object structures

To model object structures

1) Identify the mechanism you would like to model.

2) For each mechanism, identify classes, interfaces, other elements.

3) Consider one scenario that work through this mechanism .

4) Expose the state and attribute value of each such object to understand .
5) Similarly expose the links, instances, associations among them

r : Robot
[moving]
v 1 «global»
[w : World I : i : Element I
unassigned ———F
‘ a1l : Area | | a2 : Area l
1 w1 wall w2 - Wall d8 : Door w3:Wall |
width = 36 width = 96 width = 36 width = 96

Forward and Reverse Engineer

To reverse engineer an object diagram
1) Choose the target you want to reverse engineer.
2) Use tool or simply walkthrough a scenario.
3) Identify the set of objects that collaborate in the context.
4) As necessary to understand their semantics expose these objects.
5) Identify links among objects.
6) If your diagrams end up complicated, prune it by eliminating objects that are not germane.

51

MODULE - 111
Basic Behavioral Modeling - I: Interactions, Interaction diagrams.

Basic Behavioral Modeling-11: Use cases, Use case Diagrams, Activity Diagrams.

INTERACTIONS

An interaction is a behavior that comprises a set of messages exchanged among a set of objects within
a context to accomplish a purpose. A message is a specification of a communication between objects
that conveys information with the expectation that activity will ensue.

Fig: Messages, Links, and Sequencing

message o

sequence lllll}l]b()(11 getLastCheckpoint()
;o -

f
1 : getPostionAtTime(t)

—p . |
. AirTrafficPl p : FlightPlan
e (@ J
\ object \ \ object
link

Context
» Interaction can find wherever objects are linked to one another.
» Interaction can find in the collaboration of objects that exist in the context of your system or
subsystem.
» Italso find interactions in the context of an operation.
« Finally, you'll find interactions in the context of a class.

Object and Roles:

* The objects that participate in an interaction are either concrete things or prototypical things.

» A concrete thing, an object represents something in the real world. For example, p, an instance
of the class Person, might denote a particular human.

* A prototypical thing, p might represent any instance of Person.

« Alink is a semantic connection among objects.
* Ingeneral, a link is an instance of an association.

52

» Following fig. shows, wherever a class has an association to another class, there may be a link
between the instances of the two classes; wherever there is a link between two objects, one
object can send a message to the other object.

class class
association

— c B - 55
Person = \ Company
employee employerL— > = |
+ setCompensation(s - Salary)
+assign(d - Department) e e
__message
assign(development)
—— -
_Person * : Company
I \
A \

named object \ Sirsic anonymous object

Following five standard stereotypes you can use
» association — corresponding object is visible by association.

o self — dispatches of operation.
* global — represents enclosing scope.
* local — local scope

* parameter — parameter visibility.

Messages

* A message is the specification of a communication among objects that conveys information
with the expectation that activity will ensue.

* The receipt of a message instance may be considered an instance of an event.

* When you pass a message, the action that results is an executable statement that forms an
abstraction of a computational procedure.

* An action may result in a change in state.

« UML can model several kind of actions:

» call -invoke an operation Return - return a value to the caller

* Send - send signal to an object Create - creates an object

» Destroy - destroys an object

Following figure shows visual distinction among different kind of messages

object
\\
I c.: Client]‘Q:Plgnnigggggigggm
A acreate»

create . TicketAgent

B

— i ==
actual parameter setltinerary(i)

1
P calculateRoute()
1

)
)
)
)
)
)
)
call — !]
' ; return value ! —T\\ call ;
| retum - (local invocation) |
' route : "
e a ’ :
destro s
destroy — e < ¥ >< send :
-)
: notify() <y
)
1

53

Sequencing

* When an object passes a message to another object (in effect, delegating some action to the
receiver), the receiving object might in turn send a message to another object, which might
send a message to yet a different object, and so on. This stream of messages forms a sequence.
Any sequence must have a beginning.

* Most commonly, you can specify a procedural or nested flow of control, rendered using a
filled solid arrowhead, as Figure shows. In this case, the message findAt is specified as the
first message nested in the second message of the sequence (2.1).

Procedural Sequence

sequence number message
—an ¥
/ ®
2 : clickAt(p) 2.2 : putRecentPick(l)
B °
- View c . Controller — : Cache

| 2

2.1 1= findAt(p) nested flow of control

Figure below shows, a flat flow of control, rendered using a stick arrowhead, to model the
nonprocedural progression of control from step to step.
In this case, the message assertCall is specified as the second message in the sequence.

message SeqUENce numoer

;i

[

sequence number

1: liftHandset{) 2 assertCall)
> "
c: Caller : Telephone — : Exchan
flat flow of canfrol

54

Creation , Modification and Destruction :

* To specify if an object or link enters and/or leaves during an interaction you can attach one of
the following constraints to the element:
* New — Specifies that the instance or link is created during execution of the enclosing

Interaction
* Destroyed — Specifies that the instance or link is destroyed prior to completion of
execution of the enclosing interaction
* Transient — Specifies that the instance or link is created during execution of the
enclosing

interaction but is destroyed before completion of execution

* When you model an interaction, you typically include both objects (each one playing a
specific role) and messages (each one representing the communication between objects, with
some resulting action).

* You can visualize those objects and messages involved in an interaction in two ways:

1. by emphasizing the time ordering of its messages
2. by emphasizing the structural organization of the objects that send and receive messages.

* Inthe UML, the first kind of representation is called a sequence diagram; the second kind of
representation is called a collaboration diagram.
* Both sequence diagrams and collaboration diagrams are kinds of interaction diagrams.

Common Modeling Techniques

1. Modeling a flow control
To model a flow of control

» Set the context for the interaction, whether it is the system as a whole, a class, or an individual
operation.

» Set the stage for the interaction by identifying which objects play a role; set their initial
properties, including their attribute values, state, and role.

« If your model emphasizes the structural organization of these objects, identify the links that
connect them, relevant to the paths of communication that take place in this interaction.
Specify the nature of the links using the UML's standard stereotypes and constraints, as
necessary.

Modeling a flow control contd..

* Intime order, specify the messages that pass from object to object. As necessary, distinguish
the different kinds of messages; include parameters and return values to convey the necessary
detail of this interaction.

» Also to convey the necessary detail of this interaction, adorn each object at every moment in
time with its state and role.

55

This figure is an example of a sequence diagram, which emphasizes the time order of messages.

Eg. Flow of control by time

p : StockCuote Publisher i 51 : StockCuoteSubscriber | | 52 : StockQuoteSubscriber

: attach(s1) : :
- . :
i ! ttach(s2 i
:_-. : attach(s2) :
| notity() : |
| update() ._
E* getState() ' :
' | .)
’ ey ™
I ! =) I
:i 1 g |
|

Figure is semantically equivalent to the previous one but it is drawn as a collaboration diagram, which
emphasizes the structural organization of the objects. This figure shows the same flow of control, but it
also provides a visualization of the links among these objects. Eg. Flow of control by organization

3 * notify() s1 : StockQuoteSubscriber

4: uw'
/: attach(s1)

p : StockQuotePublisher

6 : getState()

wﬁate()
V\

2 : attach(s2)
7 : getState() s2 : StockQuoteSubscriber

INTERACTION DIAGRAMS

Interaction diagrams are not only important for modeling the dynamic aspects of a system, but
also for constructing executable systems through forward and reverse engineering.

An interaction diagram shows an interaction, consisting of a set of objects and their
relationships, including the messages that may be dispatched among them.

A sequence diagram is an interaction diagram that emphasizes the time ordering of messages.
A Collaboration diagram is an interaction diagram that emphasizes the structural organization
of the objects that send and receive messages.

56

Common Properties
* Aninteraction diagram is just a special kind of diagram and shares the same common
properties as do all other diagrams
* Aname and graphical contents that are a projection into a model.
Contents
Interaction diagrams commonly contain
* Objects
* Links
* Messages

Sequence Diagrams
» Describe the flow of messages, events, actions between objects
» Show concurrent processes and activations
» Show time sequences that are not easily depicted in other diagrams
» Typically used during analysis and design to document and understand the logical flow of
your system.
» A sequence diagram emphasizes the time ordering messages
» Sequence Diagram Key Parts
» participant: object or entity that acts in the diagram
» —diagram starts with an unattached "found message" arrow
* message: communication between participant objects
* the axes in a sequence diagram:
» — horizontal: which object/participant is acting
» —vertical: time (down -> forward in time)

SEQUENCE DIAGRAM

objects

| p : ODBCProxy |

I c : Client .
; {transient}

«create», _ 3
——— | - Transaction

setActions(a, d, 0) |

setValues(d, 3.4)

time setValues(a, "CO'>I:::|
sommifled & T lifeline
- —-—-—--—-=-=-=-- i

«destroy» >:< focus of control /

57

Fig: Sequence Diagram (make a phone call)

Caller Phone Recipient
N Picks up .
Dial tone
————————————————— ;
Dial - Ring i

Sy SRS Picks up

Collaboration Diagrams

» A collaboration diagram emphasizes the organization of the objects that participate in an
interaction.

* In the collaboration diagram, the method call sequence is indicated by some numbering
technique.

* The number indicates how the methods are called one after another.

» Collaboration diagrams have two features that distinguish them from sequence diagrams.

» First, there is the path. To indicate how one object is linked to another, you can attach a path
stereotype to the far end of a link (such as <<local>>, indicating that the designated object is
local to the sender).

« Second, there is the sequence number. To indicate the time order of a message, you prefix the
message with a number (starting with the message numbered 1), increasing monotonically for
each new message in the flow of control (2, 3, and so on).

58

Fig: COLLABORATION DIAGRAM

ject
ciclenf| °Mec

1 : wcreate»
link —w= 2: setActions(a, d, o) path stereotype
3: adestroy»

«local» message

. Transaction "/ «global»
.’— E
{transient}
object 2.1 : setValues(d, 3.4)
2.2 : setValues(a, "CO")

e

sequence

p: ODBDProx

Common Modeling Techniques

1. Modeling flow control by Time ordering

Set the context for the interaction, whether it is a system, subsystem, operation, or class, or one
scenario of a use case or collaboration.

Set the stage for the interaction by identifying which objects play a role in the interaction. Lay
them out on the sequence diagram from left to right, placing the more important objects to the
left and their neighboring objects to the right.

Set the lifeline for each object. In most cases, objects will persist through the entire interaction.
For those objects that are created and destroyed during the interaction, set their lifelines, as
appropriate, and explicitly indicate their birth and death with appropriately stereotyped
messages

Starting with the message that initiates this interaction, lay out each subsequent message from
top to bottom between the lifelines, showing each message's properties (such as its
parameters), as necessary to explain the semantics of the interaction.

If you need to visualize the nesting of messages or the points in time when actual computation
is taking place, adorn each object's lifeline with its focus of control.

If you need to specify time or space constraints, adorn each message with a timing mark and
attach suitable time or space constraints.

If you need to specify this flow of control more formally, attach pre- and postconditions to
each message.

59

Eg. Modeling Flows of Control by Time Ordering

s : Caller | I : Switch r: Caller

:_ liftReceiver i
i
|]
setDial Tone() 1
{dialing.executionTime < 30 sec}) ;
* dialDigit{d 1
git(d) routeCall{s, n) .
dialing 0
]
]
mﬂc : Gonvarsation| '
[] ring0) ;

liftRecaiver

connect{r, s) —
conngct{r) [conngcl(s)
.‘ h.\‘ j_.F.I___ s
"

. e

_ _] | ’

I .] T N L]
s

]

*. | Callers s and r may IL i
exchange information

after both are connected

2. Modeling Flows of control by organization

» Set the context for the interaction, whether it is a system, subsystem, operation, or class, or one
scenario of a use case or collaboration.

» Set the stage for the interaction by identifying which objects play a role in the interaction. Lay
them out on the collaboration diagram as vertices in a graph, placing the more important
objects in the center of the diagram and their neighboring objects to the outside.

» Set the initial properties of each of these objects. If the attribute values, tagged values, state, or
role of any object changes in significant ways over the duration of the interaction, place a
duplicate object on the diagram, update it with these new values, and connect them by a
message stereotyped as become or copy (with a suitable sequence number).

» Specify the links among these objects, along which messages may pass.

- Lay out the association links first; these are the most important ones, because they
represent structural connections.
- Lay out other links next, and adorn them with suitable path stereotypes (such as
global and local) to explicitly specify how these objects are related to one another.

« Starting with the message that initiates this interaction, attach each subsequent message to the
appropriate link, setting its sequence number, as appropriate. Show nesting by using Dewey
decimal numbering.

» If you need to specify time or space constraints, adorn each message with a timing mark and
attach suitable time or space constraints.

» If you need to specify this flow of control more formally, attach pre- and post conditions to
each message.

60

Fig: Modeling Flows of control by organization

2 addStudenlt(s)
— -

| r - RegistrarAgent i |I - School

1: «creates
3. register()

clocales

s : Student |_{s_elf}_ s . Student

registered = False | s
«becomens

3.2 - add(s) /\\33 add(s)

|c1 Cuurse] |cz Cﬁurse|

1 getSchedule()

regislered = True

| {association} I {association}

Use Cases

» A use case is a description of a set of sequences of actions, including variants, that a system
performs to yield an observable result of value to an actor.

» Graphically, a use case is rendered as an ellipse.

Names

» Every use case must have a name that distinguishes it from other use cases. A name is a
textual string.

* name alone is known as a simple name; a path name is the use case name prefixed by the
name of the package in which that use case lives.

* A use case is typically drawn showing only its name.

Fig: Simple and Path Names

e neme
Validate user
Sensors::
Calibrate location
path name
Note

* A use case name may be text consisting of any number of letters, numbers, and most
punctuation marks and may continue over several lines
Use Cases and Actors
* An actor represents a coherent set of roles that users of use cases play when interacting with
these use cases.
* An actor represents a role that a human, a hardware device, or eve another system plays with a
system.

As Figure indicates, actors are rendered as stick figures. You can define general kinds of actors (such
as Customer) and specialize them (such as CommercialCustomer) using generalization relationships.

61

Fig: Actors

O

actor

O Customer

j: /< generalization

Commercial
Customer

actor

Use Cases and Flow of Events

A use case describes what a system (or a subsystem, class, or interface) does but it does not specify
how it does it. When you model, it's important that you keep clear the separation of concerns between
this outside and inside view.

For example, in the context of an ATM system, you might describe the use case ValidateUser in
the following way:

Main flow of events:

* The use case starts when the system prompts the Customer for a PIN number. The Customer
can now enter a PIN number via the keypad. The Customer commits the entry by pressing the
Enter button. The system then checks this PIN number to see if it is valid. If the PIN number is
valid, the system acknowledges the entry, thus ending the use case.

Exceptional flow of events:

* The Customer can cancel a transaction at any time by pressing the Cancel button, thus
restarting the use case. No changes are made to the Customer's account.

Exceptional flow of events:

* The Customer can clear a PIN number anytime before committing it and reenter a new PIN
number.

Exceptional flow of events:

» If the Customer enters an invalid PIN number, the use case restarts. If this happens three times
in a row, the system cancels the entire transaction, preventing the Customer from interacting
with the ATM for 60 seconds.

62

Use Cases and Scenarios

A Scenario is a specific sequence of actions that illustrates behavior.
» Scenarios are to use cases as instances are to classes, meaning that a scenario is basically one
instance of a use case.

Use Cases and Collaborations
» A use case captures the intended behavior of the system (or subsystem, class, or interface) you
are developing, without having to specify how that behavior is implemented.
* That's an important separation because the analysis of a system (which specifies behavior)
should, as much as possible, not be influenced by implementation issues (which specify how
that behavior is to be carried out)

As Figure shows, you can explicitly specify the realization of a use case by a collaboration.

Fig: Use Cases and Collaborations

use case
collaboration

Place ,""__"*~\

order

o N s
~ -
o -

realization

Organizing Use Cases
It is also possible to organize use cases by specifying generalization, include, and extend relationships
among them.

* Apply these relationships in order to factor common behavior (by pulling such behavior from
other use cases that it includes) and in order to factor variants (by pushing such behavior into
other use cases that extend it).

* Aninclude relationship between use cases means that the base use case explicitly incorporates
the behavior of another use case at a location specified in the base.

» An extend relationship between use cases means that the base use case implicitly incorporates
the behavior of another use case at a location specified indirectly by the extending use case.

63

Fig: Generalization, Include, and Extend

extension point extend relationship

aextend»
[(set priority) Place
\ Extonsionpointsg: JSSE=SSTSm=ETTT rush order

Place order

mclude relatlonshlp «mclude» o

rack Check password
order /

«mclude» Validate
user

generalization

Reh@

/

Common Modeling Techniques
1. Modeling the Behavior of an Element
To model the behavior of an element,

» Identify the actors that interact with the element. Candidate actors include groups that require
certain behavior to perform their tasks or that are needed directly or indirectly to perform the
element's functions.

» Organize actors by identifying general and more specialized roles.

» For each actor, consider the primary ways in which that actor interacts with the element.
Consider also interactions that change the state of the element or its environment or that
involve a response to some event.

» Consider also the exceptional ways in which each actor interacts with the element.

» Organize these behaviors as use cases, applying include and extend relationships to factor
common behavior and distinguish exceptional behavior

Fig: Modeling the Behavior of an Element

BEin
///—\—\ custormenr
\Eo_me)\ T - minchudes

Ve Vai:date
CUStoner r
winclude» = /l’/
Track —— - —
orderr —

wincludes =

Ship crde?\\ .
- R wcesctemcl > Ship
Extension points '< ————————— Ppartial order
moteniaws ready

64

Use Case Diagrams
* A use case diagram is a diagram that shows a set of use cases and actors and their
relationships.

Common Properties
* A use case diagram is just a special kind of diagram and shares the same common properties
as do all other diagrams.
« aname and graphical contents that are a projection into a model.

Contents
Use case diagrams commonly contain
* Use cases
« Actors
» Dependency, generalization, and association relationships
Like all other diagrams, use case diagrams may contain notes and constraints.

Common Modeling Techniques

1. Modeling the Context of a System
To model the context of a system,

+ ldentify the actors that surround the system by considering which groups require help from the
system to perform their tasks; which groups are needed to execute the system's functions;
which groups interact with external hardware or other software systems; and which groups
perform secondary functions for administration and maintenance.

» Organize actors that are similar to one another in a generalization/specialization hierarchy.

* Where it aids understandability, provide a stereotype for each such actor.

» Populate a use case diagram with these actors and specify the paths of communication from
each actor to the system's use cases.

* Fig: Modeling the Context of a System — Credit card validation system

Credit Card Validation System

Pedoh

card transaction

/ Retail institution

Customer

/7 K \\wz{m?sbm
O (D

I I Reconcile
transactions O
Individual Corporale 7<
N

cusltomer customer

Sponsoring

lanage financial institution

customer account

2. Modeling the Requirements of a System
To model the requirements of a system,

» Establish the context of the system by identifying the actors that surround it.

» For each actor, consider the behavior that each expects or requires the system to provide.

* Name these common behaviors as use cases.

» Factor common behavior into new use cases that are used by others; factor variant behavior
into new use cases that extend more main line flows.

* Model these use cases, actors, and their relationships in a use case diagram.

» Adorn these use cases with notes that assert nonfunctional requirements; you may have to
attach some of these to the whole system.

Fig: Modeling the Requirements of a System

Credit Card Validation Systam

P;D

card transaction

>0

Customer Report on

account status

7 process
customer bill
Retail institution ¥

>0

Detect

-O

card fraud
Hac-:mmlﬁ
:ransiﬂ_'m/

——

Sponsoring
financial institution

Manage
Manage network outage

customer accound

3. Forward and Reverse Engineering
Forward engineering is the process of transforming a model into code through a mapping to

an implementation language

To forward engineer a use case diagram
» For each use case in the diagram, identify its flow of events and its exceptional flow of events.
» Depending on how deeply you choose to test, generate a test script for each flow, using the
flow's preconditions as the test's initial state and its postconditions as its success criteria.
» As necessary, generate test scaffolding to represent each actor that interacts with the use case.
Actors that push information to the element or are acted on by the element may either be
simulated or substituted by its real-world equivalent.

66

» Use tools to run these tests each time you release the element to which the use case diagram

applies.
To reverse engineer a use case diagram,

+ ldentify each actor that interacts with the system.

» For each actor, consider the manner in which that actor interacts with the system, changes the
state of the system or its environment, or responds to some event.

* Trace the flow of events in the executable system relative to each actor. Start with primary
flows and only later consider alternative paths.

» Cluster related flows by declaring a corresponding use case. Consider modeling variants using
extend relationships, and consider modeling common flows by applying include relationships.

* Render these actors and use cases in a use case diagram, and establish their relationships.

Activity Diagrams

» Activity diagrams are one of the five diagrams in the UML for modeling the dynamic aspects
of systems.

* An activity diagram shows the flow from activity to activity.

* Activity diagrams can use to model the dynamic aspects of a system. It involves modeling the
sequential (and possibly concurrent) steps in a computational process.

» With an activity diagram, you can also model the flow of an object as it moves from state to
state at different points in the flow of control.

Activity diagrams commonly contain
» Activity states and action states
* Transitions
* Objects

Action States and Activity States
* Action states are atomic and cannot be decomposed
— meaning that events may occur, but the work of the action state is not interrupted.
Finally, the work of an action state is generally considered to take insignificant
execution time.Work of the action state is not interrupted.
» Activity states can be further decomposed
— Their activity being represented by other activity diagrams
— Activity states are not atomic, meaning that they may be interrupted and, in general,
are considered to take some duration to complete. They may be interrupted.

Fig: Action States

simple action

C Bid plan '5/

action state

expression

(index := lookup(e) + 7; 9/

67

Fig: Activity States

activity state Do construction()\ entry action

> enlry / setLock() 'jL/

s §
| Process bill (b)
S R

submachine

Transitions

» Triggerless transitions may have guard conditions, meaning that such a transition will fire only if
that condition is met; guard conditions.

* When the action or activity of a state completes, flow of control passes immediately to the next
action or activity state. You specify this flow by using transitions to show the path from one
action or activity state to the next action or activity state.

start state

~.

\".

action state Select site
\ — triggerless fransition
{Comwssnon archltect

stop state %\ —
Branching

* Branches are a notational convenience, semantically equivalent to multiple transitions with
guards.

* Include a branch, which specifies alternate paths taken based on some Boolean expression.

* A branch may have one incoming transition and two or more outgoing ones.

* On each outgoing transition, place a Boolean expression, which is evaluated only once on

entering the branch.
Release work _
order guard jpressmn

brallth [materials not ready)
—
guard expression Reschedule
. [materials ready]
—

(Assign tasks)

68

Forking and Joining
» Use a synchronization bar to specify the forking and joining of parallel flows of control
* Asynchronization bar is rendered as a thick horizontal or vertical line.
Fork
» A fork may have one incoming transitions and two or more outgoing transitions
— each transition represents an independent flow of control
— conceptually, the activities of each of outgoing transitions are concurrent
» either truly concurrent (multiple nodes)
» orsequential yet interleaved (one node)

Join
* Ajoin may have two or more incoming transitions and one outgoing transition
— above the join, the activities associated with each of these paths continues in parallel
— at the join, the concurrent flows synchronize
» each waits until all incoming flows have reached the join, at which point one
flow of control continues on below the join

For example, consider the concurrent flows involved in controlling an audio-animatronic device that
mimics human speech and gestures.

Figure - Forking and Joining

@repare for spe ech/,l fork

7 -

f\/; Decompress _)

N/ /
(Synch mouth{)}- (Stream audio(})

R v.

R —v.
C Cleanup)

Swimlanes
* Inthe UML, each group is called a swimlane because, visually, each group is divided from its

neighbor by a vertical solid line.

» A swimlane specifies a locus of activities.

» Each swimlane has a name unique within its diagram. A swimlane really has no deep
semantics, except that it may represent some real-world entity.

» Each swimlane represents a high-level responsibility for part of the overall activity of an
activity diagram.

69

* swimlane may eventually be implemented by one or more classes. In an activity diagram
partitioned into swimlanes, every activity belongs to exactly one swimlane, but transitions

may cross lanes.

Customer &,
/R
U equest product

\
N

Sales &

Ly ———————
\‘< Process order)

Warehouse ¢
\

\\\

Fig: Swimlanes

g

\ Pull materials)
V4
(Ship ?rder)

v

\/

\l/
(\Receuve Dfde() < Bill customer)
Y]
i Yy
(_Paytn)

e Close order j

/\y

®

Object Flow

In addition to showing the flow of an object through an activity diagram, you can also show how its
role, state and attribute values change. As shown in the figure, you represent the state of an object by
naming its state in brackets below the object's name. Similarly, you can represent the value of an
object's attributes by rendering them in a compartment below the object's name.

= swimlane

70

Custommeer Salaes VWWarehouse

CF:eq Lest oo uc:D

_“-.ﬁ

"o

Process aorder —;“I

-_——

—]
H \ ‘—S'C Pull materials)
o 2 Cryrcder -

O Oyrdder "
i progress]]— L A
T ?:;“-I: Ship order]

bhject Flomww
~

I
NP ~ T >
o - O rdder *
(Receive order) T et > 1,/|/- > e |
- H
' : T object b
state 7
'::_ F’ag.:_l:nll_ = [-—— - — — — - —

[—
= e
E== Al C'OS;';MH —
[=ici] Object [Flows |

Common Modeling Techniques
1. Modeling a Workflow - To model a workflow,

Establish a focus for the workflow. For nontrivial systems, it's impossible to show all
interesting workflows in one diagram.

Select the business objects that have the high-level responsibilities for parts of the overall
workflow. These may be real things from the vocabulary of the system, or they may be more
abstract. In either case, create a swimlane for each important business object.

Identify the preconditions of the workflow's initial state and the postconditions of the
workflow's final state. This is important in helping you model the boundaries of the workflow.

Beginning at the workflow's initial state, specify the activities and actions that take place over
time and render them in the activity diagram as either activity states or action states.

For complicated actions, or for sets of actions that appear multiple times, collapse these into
activity states, and provide a separate activity diagram that expands on each.

Render the transitions that connect these activity and action states. Start with the sequential
flows in the workflow first, next consider branching, and only then consider forking and
joining.

If there are important objects that are involved in the workflow, render them in the activity
diagram, as well. Show their changing values and state as necessary to communicate the intent
of the object flow.

71

Figure : Modeling a Workflow

Customer Telesales Accounting Warehouse

J

C Request return

_/

Eet return numbe)

A/

C Ship item
v/

i:ltem |

[returned] il e

[e ——— G
3 Receive item

B et ENTES)

o ZK Restock item)
]

C—< >

: i:ltem

Credit Iaccount [available]
®

2. Modeling an Operation - To model an operation
» Collect the abstractions that are involved in this operation. This includes the operation's
parameters (including its return type, if any), the attributes of the enclosing class, and certain
neighboring classes.

* ldentify the preconditions at the operation's initial state and the postconditions at the
operation's final state. Also identify any invariants of the enclosing class that must hold during
the execution of the operation.

« Beginning at the operation's initial state, specify the activities and actions that take place over
time and render them in the activity diagram as either activity states or action states.

» Use branching as necessary to specify conditional paths and iteration.

* Only if this operation is owned by an active class, use forking and joining as necessary to
specify parallel flows of control.

72

Figure : Modeling an Operation

[slope = |.slope] P

else

\‘return Point(0,0

))=@®

G: = (l.delta - delta) / (slope - l.slope);)

W

(y = (slope * x) + delta;)

\V/
Getu m Pnjnt{x.yD

.

73

Module - IV
Events and signals, state machines, processes and threads, time and space.
state chart and state chart diagrams. Case study: The next gen POS system.

Events and signals
* Anevent is the specification of a significant occurrence that has a location in time and space.
* In the context of state machines, an event is an occurrence of a stimulus that can trigger a state
transition.
* A signal is a kind of event that represents the specification of an asynchronous stimulus
communicated between instances.

Kinds of Events
» Events may be external or internal. External events are those that pass between the system and
its actors.
» For example, the pushing of a button and an interrupt from a collision sensor are both
examples of external events.
» Internal events are those that pass among the objects that live inside the system. An overflow
exception is an example of an internal event.

Fig: Event

event declaration

k‘ «signal»
OffHook
Olﬂ.*look / dropConnection()
/ Active
event
Fig: Signal
- MovementAgent
signal
/ position
k' «signah velocity
Collsion send»
parameters < ---------- - moveTo)

force : Float | send dependency

74

1. Signal Event

» Assignal event represents a named object that is dispatched (thrown) asynchronously by one
object and then received (caught) by another. Exceptions are an example of internal signal.

* Asignal event is an asynchronous event

» Signal events may have instances, generalization relationships, attributes and operations.
Attributes of a signal serve as its parameters.

« Asignal event may be sent as the action of a state transition in a state machine or the sending
of a message in an interaction.

» Signals are modeled as stereotyped classes and the relationship between an operation and the
events by using a dependency relationship, stereotyped as send.

Fig: Signals
: MovementAgent
signal
position
k' «signal» _— velocity
et « »
parameters Collision <_ " !v 2 | mOVETO()

_Tforce : Float send dependency

2. Call Events
» Just as a signal event represents the occurrence of a signal, a call event represents the dispatch
of an operation.
* Whereas a signal is an asynchronous event, a call event is, in general, synchronous.
« It means when an object invokes an operation on another object that has a state machine,
control passes from the sender to the receiver, the transition is triggered by the event, the
operation is completed, the receiver transitions to a new state, and control returns to the

sender.
evenlt
P g \\\ (,/’ 3
e startAutopilot(normal)
Manual r fr——,f{ Automalic

parameter N —

Figure: Call Events

3. Time and Change Events
* Atime event is an event that represents the passage of time. In the UML you model a time
event by using the keyword after followed by some expression that evaluates to a period of
time.
* Achange event is an event that represents a change in state or the satisfaction of some
condition. In the UML you model a change event by using the keyword when followed by
some Boolean expression.

75

/when (11:49PM) ! selfTest()

change event Q

Idle time event

>
after (2 seconds) f’
f dropConnection()

Active

4. Sending and Receiving Events
» Signal events and call events involve at least two objects: the object that sends the signal or
invokes the operation, and the object to which the event is directed.
+ Signals are asynchronous, and asynchronous calls are themselves signals, the semantics of
events interact with the semantics of active objects and passive objects.

Signals and Active Classes.

active class

KeypadManager

signals
Signals

pushButton(b : button)

powerUp

powerDown

Common Modeling Techniques

1. Modeling a Family of Signals
To model a family of signals,
» Consider all the different kinds of signals to which a given set of active objects may respond.
* Look for the common kinds of signals and place them in a generalization/specialization
hierarchy using inheritance.
* Look for the opportunity for polymorphism in the state machines of these active objects.

76

Fig: Modelinng Families of
Signals

sl
IRk o S v

T —

e N -
cmEgrale wxSmigrEl
Collision HardwareFault

sensor - Integer
crmigariealss eemicgriealss ooy riealis P e
BatteryFault rMowvernentEault WisionFauit RangingfFault
I
s icy el
rAGTOrSTall

2. Modeling Exceptions

» For each class and interface, and for each operation of such elements, consider the exceptional
conditions that may be raised.

* Arrange these exceptions in a hierarchy. Elevate general ones, lower specialized ones, and
introduce intermediate exceptions, as necessary.

» For each operation, specify the exceptions that it may raise. You can do so explicitly (by
showing send dependencies from an operation to its exceptions) or you can put this in the
operation's specification.

Modeling Exceptions

«exception»
Exception

setHandler()
firstHandler()
lastHandler()

AN
L
«exception>»
Duplicate
ffffff -
. item : Overflow .
Set ===t . A~ ‘ «exception»

Underflow

addiS S s e 2 %sendws 0 ., .
remove()—— — - | - — — — — — — — — — - - — - D - —— —

State Machines

Terms and Concepts
* A state machine is a behavior that specifies the sequences of states an object goes through
during its lifetime in response to events, together with its responses to those events.
« Astate is a condition or situation during the life of an object during which it satisfies some
condition, performs some activity, or waits for some event.

States

A state is a condition or situation during the life of an object during which it satisfies some condition,
performs some activity, or waits for some event. An object remains in a state for a finite amount of
time.

77

A state has several parts.

Entry/exit actions Actions executed on entering and exiting the state, respectively
Internal Transitions Transitions that are handled without causing a change in state
Substates The nested structure of a state, involving disjoint (sequentially active)

or concurrent (concurrently active) substates

Deferred A list of events that are not handled in that state but, rather, are
events postponed and queued for handling by the object in another state

Fig: shows, you represent a state as a rectangle with rounded corners.

7 shutDown 4 B 1
initial state final state

keyPress

Idle Running

finished

name name

state

Initial and Final States
Figure shows, there are two special states that may be defined for an object's state machine.

First, there's the initial state, which indicates the default starting place for the state machine or substate.
An initial state is represented as a filled black circle.

Second, there's the final state, which indicates that the execution of the state machine or the enclosing
state has been completed. A final state is represented as a filled black circle surrounded by an unfilled

circle.

Transitions
A transition is a relationship between two states indicating that an object in the first state will perform

certain actions and enter the second state when a specified event occurs and specified conditions are
satisfied. A transition has five parts.

Event The event whose reception by the object in the source state makes the transition
trigger eligible to fire, providing its guard condition is satisfied

78

Guard A Boolean expression that is evaluated when the transition is triggered by the

condition reception of the event trigger; if the expression evaluates True, the transition is
eligible to fire; if the expression evaluates False, the transition does not fire and if
there is no other transition that could be triggered by that same event, the event is
Lost

Action An executable atomic computation that may directly act on the object that owns the
state machine, and indirectly on other objects that are visible to the object

Target The state that is active after the completion of the transition
state
Transitions
time event
send signal

afler (2 seconds) / send c.isAlive

self-transition

/ event trigger

noise

triggerless transition

Searching

event frigger with parameters

guard condition O
contact
Tracking Engaging
Event Trigger

* Anevent is the specification of a significant occurrence that has a location in time and space.
An event is an occurrence of a stimulus that can trigger a state transition.
» Assignal or a call may have parameters whose values are available to the transition, including
expressions for the guard condition and action.
Guard
» A guard condition is rendered as a Boolean expression enclosed in square brackets and placed
after the trigger event.
* A guard condition is evaluated only after the trigger event for its transition occurs.
Action
* An action is an executable atomic computation. Actions may include operation calls the
creation or destruction of another object, or the sending of a signal to an object.

targetAl(p) [isThreat] /
t.addTargel(p)

action

79

Common Modeling Techniques

1.

Modeling the Lifetime of an Object

 Set the context for the state machine, whether it is a class, a use case, or the system as a
whole.

+ Establish the initial and final states for the object. To guide the rest of your model, possibly
state the pre- and postconditions of the initial and final states, respectively.

» Decide on the events to which this object may respond.

« Starting from the initial state to the final state, lay out the top-level states the object may be
in. Connect these states with transitions triggered by the appropriate events. Continue by
adding actions to these transitions.

 Identify any entry or exit actions (especially if you find that the idiom they cover is used in
the state machine).

» Expand these states as necessary by using substates.

» Check that all actions mentioned in the state machine are sustained by the relationships,
methods, and operations of the enclosing object.

» Check that all actions mentioned in the state machine are sustained by the relationships,
methods, and operations of the enclosing object.

» Trace through the state machine, either manually or by using tools, to check it against
expected sequences of events and their responses. Be especially diligent in looking for
unreachable states and states in which the machine may get stuck.

« After rearranging your state machine, check it against expected sequences again to ensure
that you have not changed the object's semantics.

Fig: Modeling the Lifetime of An
Object

Initalizing
.T j after (10 seconds) [/ selfTest

alarm(s)

attention

Checking

Calling
entry
callCenter(s}

entry f setAlarmm
aexit f clearAlarnm

attention

Processes and Threads

Terms and Concepts

A process is a heavyweight flow that can execute concurrently with other processes.

A thread is a lightweight flow that can execute concurrently with other threads within the
same process.

An active object is an object that owns a process or thread and can initiate control activity.
Processes and threads are rendered as stereotyped active classes.

An active class is a class whose instances are active objects.

80

Flow of Control

In a sequential system, there is a single flow of control. i.e, one thing, and one thing only, can
take place at a time.

In a concurrent system, there is multiple simultaneous flow of control i.e, more than one thing
can take place at a time.

Classes and Events

Active classes are just classes which represents an independent flow of control

Active classes share the same properties as all other classes.

When an active object is created, the associated flow of control is started; when the active
object is destroyed, the associated flow of control is terminated

two standard stereotypesthat apply to active classes are, <<process>>— Specifies a
heavyweight flow that can execute concurrently with other processes. (heavyweight means, a
thing known to the OS itself and runs in an independent address space) <<thread>>—
Specifies a lightweight flow that can execute concurrently with other threads within the same
process (lightweight means, known to the OS itself.)

All the threads that live in the context of a process are peers of one another.

Communication

In a system with both active and passive objects, there are four possible combinations of
interaction.

First, a message may be passed from one passive object to another.

Second, a message may be passed from one active object to another.

In inter-process communication there are two possible styles of communication. First, one
active object might synchronously call an operation of another. Second, one active object
might asynchronously send a signal or call an operation of another object.

a synchronous message is rendered as a full arrow and an asynchronous message is rendered
as a half arrow.

Third, a message may be passed from an active object to a passive object.

Fourth, a message may be passed from a passive object to an active one.

Synchronization

Synchronization means arranging the flow of controls of objects so that mutual exclusion will
be guaranteed.

Three approaches are there to handle synchronization:

Sequential — Callers must coordinate outside the object so that only one flow is in the object at
atime

Guarded — multiple flow of control is sequentialized with the help of object’s guarded
operations. in effect it becomes sequential.

Concurrent — multiple flow of control is guaranteed by treating each operation as atomic
synchronization are rendered in the operations of active classes with the help of constraints

81

Fig: Synchronization

name

\\

— Buffer attributes

size : Integer o operations

add() {concurrent}

remove() {concurrem

synchronization property

Common Modeling Techniques

1.

Modeling Multiple Flows of Control

Identify the opportunities for concurrent action and vreify each flow as an active class.
Generalize common sets of active objects into an active class.

Capture these static decisions in class diagrams, explicitly highlighting each active class.
Capture these static decisions in class diagrams, explicitly highlighting each active class.
Consider how each group of classes collaborates with one another dynamically. Capture those
decisions in interaction diagrams. Explicitly show active objects as the root of such flows.
Identify each related sequence by identifying it with the name of the active object. Pay close
attention to communication among active objects. Apply synchronous and asynchronous
messaging, as appropriate.

Pay close attention to synchronization among these active objects and the passive objects with
which they collaborate. Apply sequential, guarded, or concurrent operation semantics, as
appropriate.

Modeling Flows of Control

I c : CNNNewsFeed I

s1 : postValue()

| c1: postBreakingStory()
I s : StockTicker I—I al : Analyst 2 2

s2:postAlert() + m1 : postAlert()
I m: AIenManagerl—l TradingManagerl

i2:postAlert() *

| i : Indexwatcher

a2 : Analyst

1=
i1 : postvalue()

2. Modeling Interprocess Communication

Model the multiple flows of control.
Consider which of these active objects represent processes and which represent threads.
Model messaging using asynchronous communication. model remote procedure calls using

synchronous communication.
Informally specify the underlying mechanism for communication by using notes, or more

formally by using collaborations.

82

Modeling Interprocess
Communication

S Zaem ~ . _Server
', T S~
P A > «process»
F4 s planTn;B' r : ReservationAgent r2: make()
+ Client {location = reservation server} \
«pProcess»
t: TripPlanner / «pProcess»
{location = chent} r3 :postResults() t : TicketingManager
{location « airfine server
r1 : make()
Communicates

«process» across Beans
h : HotelAgent messaging services

{location = hotel server}

Time and Space

Terms and Concepts
* Atime expression is an expression that evaluates to an absolute or relative value of time.
* A timing constraint is a semantic statement about the relative or absolute value of time.
Graphically, a timing constraint is rendered as for any constraint.
* Location is the placement of a component on a node. Graphically, location is rendered as a
tagged value.

* Real time systems are, by their very name, time-critical systems.

» Events may happen at regular or irregular times; the response to an event must happen at
predictable absolute times or at predictable times relative to the event itself.

* The passing of messages represents the dynamic aspect of any system, so when you model the
time-critical nature of a system with the UML, you can give a name to each message in an
interaction to be used as a timing mark

Time

{every ims} & —— 2
c1 : lestKeys() timing constraint

= I - - ~
IC - MIDIController l [: KeyCollection l_l
{executionTime < 10ns}
$ c2 : testKey()
timing constraint
| k: Key
lv c3 : add(k)
| b : MIDIEventBuffer +<—I t MIDITransmilterl

t1 : remove()
{every 1 ms}

timing constraint

83

Common Modeling Techniques
1. Modeling Timing Constraints

. For each event in an interaction, consider whether it must start at some absolute time.
Model that real time property as a timing constraint on the message.

* For each interesting sequence of messages in an interaction, consider whether there is an
associated maximum relative time for that sequence. Model that real time property as a
timing constraint on the sequence.

* For each time critical operation in each class, consider its time complexity. Model those
semantics as timing constraints on the operation

Modeling Timing Constraint

{a.startTime every 1 ms}

s : SyslemAgent p. ServerPage ¢ Camera |

| |
- a.refresh() j :

— b:getimage(y - - - - {getimage executionTime is

i L proportional to image size.}

|
{b.executionTime | < 100ns}

2. Modeling the Distribution of Objects

» For each interesting class of objects in your system, consider its locality of reference. In other
words, consider all its neighbors and their locations. A tightly coupled locality will have
neighboring objects close by

* Next consider patterns of interaction among related sets of objects. Co-locate sets of objects
that have high degrees of interaction, to reduce the cost of communication. Partition sets of
objects that have low degrees of interaction.

* Next consider the distribution of responsibilities across the system. Redistribute your objects
to balance the load of each node.

» Consider also issues of security, volatility, and quality of service, and redistribute your objects
as appropriate.

84

Fig: Modeling the Distribution of Objects

o : Order | | s [Sales

{location = Workstation} {location = Workstation}

a : ObserverAgent
{location = Server}

l p_: Product I

{location = Server}

p : ProductTable
{location = DataVWarehouse}

3. Modeling Objects that Migrate

» Select an underlying mechanism for physically transporting objects across nodes.

* Render the allocation of an object to a node by explicitly indicating its location as a tagged
value.

» Using the become and copy stereotyped messages, render the allocation of an object to a new
node.

» Consider the issues of synchronization (keeping the state of cloned objects consistent) and
identity (preserving the name of the object as it moves).

Fig: Modeling Objects that

Migrate
1: bid()
t : TravelAgent —» | : Auctioneer
{location = United sarver) (lecation = United server}
| 1.1: «becomen
\ 2 - bid()
t: TravelAgent > Auctioneer
/ {location = SAS server) (location = SAS server)
i : ltinerary 2.1: «become»
{location = client sarver} 3 : bid()
\ t: TravelAgent P | - Auctioneer
{location = TWA server} (lecation = TWA server)
\ +3.1 - «become»
4 : tenderBid
rBid0 t: TravelAgent

{ocation = chent server}

85

Statechart Diagrams

Terms and Concepts
» A statechart diagram shows a state machine, emphasizing the flow of control from state to
state.
* A state machine is a behavior that specifies the sequences of states an object goes through
during its lifetime in response to events, together with its responses to those events.
* Asstate is a condition or situation in the life of an object during which it satisfies some
condition, performs some activity, or waits for some event.

Contents - Statechart diagrams commonly contain

v' Simple states and composite states

v' Transitions, including events and actions

» A statechart diagram is basically a projection of the elements found in a state machine.

» statechart diagrams contain branches, forks, joins, action states, activity states, objects, initial
states, final states, history states.

Common uses
+ A statechart diagram will use to model some dynamic aspect of a system.
» Itisalso used in the context of virtually any modeling element.
* Typically, use statechart diagrams in the context of the system as a whole, a subsystem, or a
class.
» It can also be used to attach a statechart diagrams to use cases.

Common Modeling Technique
1. Modeling Reactive Objects - To model a reactive object,

* Choose the context for the state machine, whether it is a class, a use case, or the system as a
whole.

» Choose the initial and final states for the object. To guide the rest of your model, possibly state
the pre- and post-conditions of the initial and final states, respectively.

» Decide on the stable states of the object by considering the conditions in which the object may
exist for some identifiable period of time. Start with the high-level states of the object and only
then consider its possible substates.

» Decide on the meaningful partial ordering of stable states over the lifetime of the object.

» Decide on the events that may trigger a transition from state to state. Model these events as
triggers to transitions that move from one legal ordering of states to another.

» Attach actions to these transitions (as in a Mealy machine) and/or to these states (as in a
Moore machine).

» Consider ways to simplify your machine by using substates, branches, forks, joins, and history
states.

86

Fig: Modeling Reactive Objects

put(c) [c == /']

put(c) [c == '<7] / return true

e
LWaiting

U [GettingToken put(c) [c == =]
put(c) [c /= "<7]
/ return false U
[GettingBody
put(c) [c /= "=7]
/ token.append(c): return false U

put(c) [c /= ;7]
/ body.append(c); return false

2. Forward and Reverse Engineering

» Forward engineering(the creation of code from a model) is possible for statechart diagrams,
especially if the context of the diagram is a class.

» The forward engineering tool must generate the necessary private attributes and final static
constants.

* Reverse engineering (the creation of a model from code) is theoretically possible, but
practically not very useful. The choice of what constitutes a meaningful state is in the eye of
the designer.

* Reverse engineering tools have no capacity for abstraction and therefore cannot automatically
produce meaningful statechart diagrams.

A well-structured statechart diagram

* Is focused on communicating one aspect of a system's dynamics.

« Contains only those elements that are essential to understanding that aspect.

* Provides detail consistent with its level of abstraction (expose only those features that are essential to
understanding).

* Uses a balance between the styles of Mealy and Moore machines.
When you draw a statechart diagram

* Give it a name that communicates its purpose.

Start with modeling the stable states of the object, then follow with modeling the legal
transitions from state to state. Address branching, concurrency, and object flow as secondary
considerations, possibly in separate diagrams.

Lay out its elements to minimize lines that cross.

Case study: The next gen POS system

* A POS system is a computerized application used (in part) to record sales and handle
payments; it is typically used in a retail store.

87

It includes hardware components such as a computer and bar code scanner, and software to run
the system. It interfaces to various service applications, such as a thirdparty tax calculator and
inventory control.

These systems must be relatively fault-tolerant; that is, even if remote services are temporarily
unavailable (such as the inventory system), they must still be capable of capturing sales and
handling at least cash payments (so that the business is not crippled).

A POS system increasingly must support multiple and varied client-side terminals and
interfaces. These include a thin-client Web browser terminal, a regular personal computer with
something like a Java Swing graphical user interface, touch screen input, wireless PDAs, and
so forth.

Each client will desire a unique set of logic to execute at certain predictable points in scenarios
of using the system, such as when a new sale is initiated or when a new line item is added.
Therefore, will need a mechanism to provide this flexibility and customization.

User-Level Goals

The users (and external systems) need a system to fulfill these goals:
Cashier: process sales, handle returns, cash in, cash out

System administrator: manage users, manage security, manage system tables
Manager: start up, shut down

Sales activity system: analyze sales data

Administrator Manager

«actorn
Sales Activity wacton
System Payment
- Authortzation Tax«gzg;;tor
Cashier Calls upon Calls upon Service
services services
» NextGen POS »
«actor»

«acton Human «acton
Accounting Resources Inventory
System Store System System System

88

MODULE -V
Component, Component diagrams, Deployment, Deployment diagrams; Case Study: The
Unified Library Application.

Component

* A component is a physical and replaceable part of a system that conforms to and provides the
realization of a set of interfaces. Graphically, a component is rendered as a rectangle with tabs.
Names
* A component name must be unique within its enclosing package

fraudagent.dll

simple names

Realizes
FraudAgent
FraudPolicy
PatternSearch

agent.java

extended components

system::dialog.dil
{version = 2.0.1.75}

Components and Classes

» There are some significant differences between components and classes.

» Classes represent logical abstractions; components represent physical things that live in the
world of bits. In short, components may live on nodes, classes may not.

« Components represent the physical packaging of otherwise logical components and are at a
different level of abstraction.

» Classes may have attributes and operations directly. In general, components only have
operations that are reachable only through their interfaces.

B
fraudagent.dll component
&
- e - : = g ~
- - 1 ~ s
[« : N\
FraudAgent l \:/ [PatternSearch

I FraudPolicy I

classes

89

Components and Interfaces

An interface is a collection of operations that are used to specify a service of a class or a
component. The relationship between component and interface is important. All the most
common component-based operating system facilities (such as COM+, CORBA, and
Enterprise Java Beans) use interfaces as the glue that binds components together.

An interface that a component realizes is called an export interface, meaning an interface that
the component provides as a service to other components. A component may provide many
export interfaces.

The interface that a component uses is called an import interface, meaning an interface that the
component conforms to and so builds on.

A component may conform to many import interfaces.

A component may both import and export interfaces.

Fig: Components and Interfaces

iconic form

image.java component.java
/ ImageObserver

dependency interface realization

expanded form

«interface»
ImageObserver

image.java

V

- —> abort : int {final static}
error : int {final static}

imageUpdate() : Boolean

Binary Replaceability

The basic intent of every component-based operating system facility is to permit the assembly
of systems from binary replaceable parts.

This means that you can create a system out of components and then evolve that system by
adding new components and replacing old ones, without rebuilding the system.

Interfaces are the key to making this happen. When you specify an interface, you can drop into
the executable system any component that conforms to or provides that interface.

You can extend the system by making the components provide new services through other
interfaces, which, in turn, other components can discover and use. These semantics explain the
intent behind the definition of components in the UML.

90

Kinds of Components

Three kinds of components may be distinguished
» First, there are deployment components.
» Second, there are work product components.
* Third are execution components.

Organizing Components
* You can organize components by grouping them in packages in the same manner in which you
organize classes.
* The UML defines five standard stereotypes that apply to components

1. executable
2. library

3. table

4, file

5. document

Common Modeling Techniques

1. Modeling Executables and Libraries
To model executables and libraries:

» Identify the partitioning of your physical system. Consider the impact of technical,
configuration management, and reuse issues.

* Model any executables and libraries as components, using the appropriate standard elements.
If your implementation introduces new kinds of components, introduce a new appropriate
stereotype.

« If it's important for you to manage the seams in your system, model the significant interfaces
that some components use and others realize.

* As necessary to communicate your intent, model the relationships among these executables,
libraries, and interfaces. Most often, you'll want to model the dependencies among these parts
in order to visualize the impact of change.

Fig: Modeling Executables and Libraries

animator.exe
{version =501} - - - - - - - -~
0 <
I W

render.dil L

raytrce.dll

91

2. Modeling Tables, Files, and Documents
To model tables, files, and documents,

Identify the ancillary components that are part of the physical implementation of your system.
Model these things as components. If your implementation introduces new kinds of artifacts,
introduce a new appropriate stereotype.

As necessary to communicate your intent, model the relationships among these ancillary
components and the other executables, libraries, and interfaces in your system.

Most often, you'll want to model the dependencies among these parts in order to visualize the
impact of change.

animator.hip

diog.dil

animator.exe
{version = S.0.118 — — — — — — — — >

TN vwrfrme.dil

render.dll

[shapes.tbl

3. Modeling an API
To model an API,

Identify the programmatic seams in your system and model each seam as an interface,
collecting the attributes and operations that form this edge.

Expose only those properties of the interface that are important to visualize in the given
context; otherwise, hide these properties, keeping them in the interface's specification for
reference, as necessary.

Model the realization of each API only insofar as it is important to show the configuration of a
specific implementation.

92

Fig: Modeling an API

animator.exe :
{version = 5.0.1} IScripts
IRendering
IApplication IModels

4. Modeling Source Code
To model source code,

» Depending on the constraints imposed by your development tools, model the files used to store
the details of all your logical elements, along with their compilation dependencies.

« If it's important for you to bolt these models to your configuration management and version
control tools, you'll want to include tagged values, such as version, author, and check in/check
out information, for each file that's under configuration management.

» As far as possible, let your development tools manage the relationships among these files, and
use the UML only to visualize and document these relationships.

Fig: Modeling Source Code

render_ b render. cpp
{version = 5.3} {wersion = 5.3.7}

—

rengine . h —
{wersion = 4.6}

[)
Il
3 =~ colortab.h
oy . b S~ . {warsion = 4.1}
{wersion = 4_1}
.

93

Component Diagrams

» A component diagram shows a set of components and their relationships. Graphically, a
component diagram is a collection of vertices and arcs.

Contents
Component diagrams commonly contain
* Components
* Interfaces
» Dependency, generalization, association, and realization relationships Like all other diagrams,
component diagrams may contain notes and constraints.

Common uses
* Component diagrams used to model the static implementation view of a system.
Typically use component diagrams in one of four ways.
To model source code
To model executable releases
To model physical databases
To model adaptable systems

PN E

Common Modeling Techniques

1. Modeling Source Code
To model a system's source code:

» Either by forward or reverse engineering, identify the set of source code files of interest and
model them as components stereotyped as files.

» For larger systems, use packages to show groups of source code files.

» Consider exposing a tagged value indicating such information as the version number of the
source code file, its author, and the date it was last changed. Use tools to manage the value of
this tag.

* Model the compilation dependencies among these files using dependencies. Again, use tools
to help generate and manage these dependencies.

signal.h signal.h signal h
{wersion = 3.5} {wrersion =40} frersion = 4.1}

wparents

aparents

E
. - T~ signal.c
interp . cpp - = = {uersioprnp: a_ay

irc.h . -

~ e dewvice.cpp

2. Modeling an Executable Release
To model an executable release
» Identify the set of components you'd like to model. Typically, this will involve some or all the
components that live on one node, or the distribution of these sets of components across all the
nodes in the system.

94

Consider the stereotype of each component in this set. For most systems, you'll find a small
number of different kinds of components (such as executables, libraries, tables, files, and
documents). You can use the UML's extensibility mechanisms to provide visual cues for these
stereotypes.

For each component in this set, consider its relationship to its neighbors. Most often, this will
involve interfaces that are exported (realized) by certain components and then imported (used)
by others. If you want to expose the seams in your system, model these interfaces explicitly. If
you want your model at a higher level of abstraction, elide these relationships by showing only
dependencies among the components.

path.dll collision._dll

=S R =S

1 driver.dll

i,'i {version = 8.1.3.2}

ISelfTest

3. Modeling a Physical Database
To model a physical database:

Identify the classes in your model that represent your logical database schema.

Select a strategy for mapping these classes to tables. You will also want to consider the
physical distribution of your databases. Your mapping strategy will be affected by the location
in which you want your data to live on your deployed system.

To visualize, specify, construct, and document your mapping, create a component diagram that
contains components stereotyped as tables.

Where possible, use tools to help you transform your logical design into a physical design.

school.db

l | 1

course department instructor school student

95

4. Modeling Adaptable Systems

Consider the physical distribution of the components that may migrate from node to node. You
can specify the location of a component instance by marking it with a location tagged value,
which you can then render in a component diagram (although, technically speaking, a diagram
that contains only instances is an object diagram).

If you want to model the actions that cause a component to migrate, create a corresponding
interaction diagram that contains component instances. You can illustrate a change of location
by drawing the same instance more than once, but with different values for its location tagged
value.

Figure: Modeling a Physical Database

The school database
on Server B replicates
the database on Server A.

: school.db : school.db
{location = Server A} {location = Server B}
CCOPY »
R e

5. Forward and Reverse Engineering
To forward engineer a component diagram:

For each component, identify the classes or collaborations that the component implements.
Choose the target for each component. Your choice is basically between source code (a form
that can be manipulated by development tools) or a binary library or executable (a form that
can be dropped into a running system).

Use tools to forward engineer your models.

To reverse engineer a component diagram,

Choose the target you want to reverse engineer. Source code can be reverse engineered to
components and then classes. Binary libraries can be reverse engineered to uncover their
interfaces. Executables can be reverse engineered the least.

Using a tool, point to the code you'd like to reverse engineer. Use your tool to generate a new
model or to modify an existing one that was previously forward engineered.

Using your tool, create a component diagram by querying the model. For example, you might
start with one or more components, then expand the diagram by following relationships or
neighboring components. Expose or hide the details of the contents of this component diagram
as necessary to communicate your intent.

96

Figure : Reverse Engineering

DataObject DataBinding
Pare n@o'&‘rbrun_d" HyperLink

ContainedControls
SelectedControls

PropertyBag

DataObjectFiles
AsyncProperty

DataBindings

AmbientProperties

Deployment

* A node is a physical element that exists at run time and represents a computational resource,
generally having at least some memory and, often, processing capability. Graphically, a node
is rendered as a cube.

» Every node must have a name that distinguishes it from other nodes.

* A name is a textual string. That name alone is known as a simple name; a path name is the
node name prefixed by the name of the package in which that node lives.

* A node is typically drawn showing only its name, as in. Just as with classes, you may draw
nodes adorned with tagged values or with additional compartments to expose their details.

simple names sales

Deploys
pos.exe
contacts.exe

kiosk_7

extended nodes

server::backup
{remoteAdministrationOnly}

Nodes and Components
There are some significant differences between nodes and components.
+ Components are things that participate in the execution of a system; nodes are things that
execute components.
« Components represent the physical packaging of otherwise logical elements; nodes represent
the physical deployment of components.

97

Connections

* The most common kind of relationship you'll use among nodes is an association. In this
context, an association represents a physical connection among nodes, such as an Ethernet

sales

-
s,
pe

pos.exe

node

contacts.exe

/

components

connection, a serial line, or a shared bus, as Figure .

kiosk

console

—y

«10-T Ethernet»

connection

/
/

>
i e
server

l 1

,,:;;:;;5’

- \

RAID farm

Common Modeling Techniques

1. Modeling Processors and Devices
To model processors and devices:

* Identify the computational elements of your system's deployment view and model each as a

node.

» If these elements represent generic processors and devices, then stereotype them as such. If
they are kinds of processors and devices that are part of the vocabulary of your domain, then

specify an appropriate stereotype with an icon for each.

* Aswith class modeling, consider the attributes and operations that might apply to each node.

98

Modeling Processors and Devices

«10-T Ethermnet»

\ «processor»
server 1
«RS-232»

RAID farm

console

2. Modeling the Distribution of Components

To model the distribution of components:

» For each significant component in your system, allocate it to a given node.

» Consider duplicate locations for components. It's not uncommon for the same kind of
component (such as specific executables and libraries) to reside on multiple nodes
simultaneously.

* Render this allocation in one of three ways.

* Don't make the allocation visible, but leave it as part of the backplane of your modele that is,
in each node's specification.

* Using dependency relationships, connect each node with the components it deploys.

» List the components deployed on a node in an additional compartment.

Modeling the Distribution of Components

: kiosk «10-T Ethernet»

Deploys o
user.exe \
/ S : server : RAID farm

processorSpeed = 300 mHz
memory = 128 meg

c : console Deploys
—1 2
De_ploys «RS-232» dbadmin.exe
admin.exe tktmstr.exe
config.exe

Deployment Diagrams

A deployment is a diagram that shows the configuration of run time processing nodes and the
components that live on them. Graphically, a deployment diagram is a collection of vertices and arcs.

Contents
Deployment diagrams commonly contain
* Nodes
» Dependency and association relationships

99

Like all other diagrams, deployment diagrams may contain notes and constraints

Common Uses

When you model the static deployment view of a system, you'll typically use deployment diagrams in
one of three ways.
1. To model embedded systems 2. To model client/server systems 3. To model fully distributed

systems
Common Modeling Techniques
1. Modeling an Embedded System

To model an embedded system:

» Identify the devices and nodes that are unique to your system.

* Provide visual cues, especially for unusual devices, by using the UML's extensibility
mechanisms to define system-specific stereotypes with appropriate icons. At the very least,
you'll want to distinguish processors (which contain software components) and devices
(which, at that level of abstraction, don't directly contain software).

* Model the relationships among these processors and devices in a deployment diagram.
Similarly, specify the relationship between the components in your system's implementation
view and the nodes in your system's deployment view.

» As necessary, expand on any intelligent devices by modeling their structure with a more
detailed deployment diagram

Modeling an Embedded System

Ultrasonic
sonar sensor Timer Serial IO port
=]
£ \
X]
\ s N ‘

=

«Processorn Digital /O port
Pentium
motherboard —
T—

Left position encoder Right position encoder

Steering motor Drive motor

2. Modeling a Client/Server System
To model a client/server system:

100

Identify the nodes that represent your system's client and server processors.

Highlight those devices that are germane to the behavior of your system. For example, you'll
want to model special devices, such as credit card readers, badge readers, and display devices
other than monitors, because their placement in the system's hardware topology are likely to be
architecturally significant.

Provide visual cues for these processors and devices via stereotyping.

Model the topology of these nodes in a deployment diagram. Similarly, specify the
relationship between the components in your system's implementation view and the nodes in
your system's deployment view.

Modeling a Client/Server System

[servers |
clients
2+ 4.
% «Processor»
g «Processor»
: server
: caching server =

console ‘ = eploys
g;. hit eD:: haye dbadmin.exe

kiosk mnp. ox0 tktmstr.exe

g logexc.exe

3. Modeling a Fully Distributed System
To model a fully distributed system:

Identify the system's devices and processors as for simpler client/server systems.

If you need to reason about the performance of the system's network or the impact of changes
to the network, be sure to model these communication devices to the level of detail sufficient
to make these assessments.

Pay close attention to logical groupings of nodes, which you can specify by using packages.
Model these devices and processors using deployment diagrams. Where possible, use tools
that discover the topology of your system by walking your system's network.

If you need to focus on the dynamics of your system, introduce use case diagrams to specify
the kinds of behavior you are interested in, and expand on these use cases with interaction
diagrams.

Modeling a Fully Distributed System

Mote: country servers
= et
: console another wia the company’s
g : console private network
=

: console

:::::

server

101

4. Forward and Reverse Engineering
To reverse engineer a deployment diagram:

Choose the target that you want to reverse engineer. In some cases, you'll want to sweep
across your entire network; in others, you can limit your search.

Choose also the fidelity of your reverse engineering. In some cases, it's sufficient to reverse
engineer just to the level of all the system's processors; in others, you'll want to reverse
engineer the system's networking peripherals, as well.

Use a tool that walks across your system, discovering its hardware topology. Record that
topology in a deployment model.

Along the way, you can use similar tools to discover the components that live on each node,
which you can also record in a deployment model. You'll want to use an intelligent search, for
even a basic personal computer can contain gigabytes of components, many of which may not
be relevant to your system.

Using your modeling tools, create a deployment diagram by querying the model. For example,
you might start with visualizing the basic client/server topology, then expand on the diagram
by populating certain nodes with components of interest that live on them. Expose or hide the
details of the contents of this deployment diagram as necessary to communicate your intent.

Case Study: The Unified Library Application.

INTRODUCTION

Unified Library Application System emphasizes on the online reservation, issue and return of books.
This system globalizes the present library system. Using this application the member can reserve any
book from anywhere.

Overview of the unified library application system:

ROOoNoO~WONE

0.

Librarian lends books and magazines

Librarian maintains the list of all the members of library

Borrower makes reservation online

Borrower can remove reservation online

Librarian issues books to the borrower

Librarian calculates dues to be paid by the borrower

Borrower issues/returns books and/or magazines

Librarian places order about the requirements to the master librarian
Librarian updates system

Master librarian maintains librarians

TEXTUAL ANALYSIS
(&) ACTORS
i. Librarian ii. Borrower iii. Catalog iv. Master Librarian
(b) VERBS
i. Borrower:
1. Logs into the system 2.Browses / searches for books or magazines
3. Makes/removes reservation 4. Views results and reports from the

unified library application system

102

ii. Librarian:
1. Manages and validates members 2. View reports from the
system 3.1ssues books 4. Calculates dues 5. Takes books 6. Places
orders to the master librarian 7. Maintains list of books and
magazine
iii. Master Librarian
1. Maintains other librarians

THE END

103

