
1

INSTITUTE OF AERONAUTICAL ENGINEERING
(Autonomous)

DUNDIGAL, HYDERABAD – 500 043

COMPUTERE SCIENCE AND ENGINEERING

Course Title OBJECT ORIENTED ANALYSIS AND DESIGN

Course Code ACSB10

Programme B.Tech

Semester FIVE

Course Type Core

Regulation IARE - R18

Lecture Numbers 1-45

Topic Covered All

Course Faculty

Dr. C Raghavendra, Associate Professor

Dr. M Mohana Roopa, Professor

Mr. G Chandra Sekhar, Assistant Professor

COURSE OBJECTIVES:

The course should enable the students to:

I The basic building blocks of Unified Modeling Language for analysis and design of software

systems.
II The Object-oriented approach for analysis and design of System /Subsystem /Functional units

based on the given specifications through UML Diagrams.
III The implementation of design document of real time software applications using advanced

CASE tools.

COURSE OUTCOMES:

At the end of course, the students are able to:

CO 1 List the importance and use of basic principles in object oriented modeling for appropriate

analysis and design of given scenarios.

CO 2 Make use of building blocks and different views for creating conceptual model of system in

Unified Software Development Life cycle.

CO 3 Demonstrate static and dynamic aspects of the system through UML diagrams for

specifying structure and interaction of objects during runtime.

CO 4 Identify basic building blocks for visualizing artifacts of an Object Oriented System.

CO 5 Summarize advanced building blocks in structural and behavioral modeling of a robust

software system for visualizing web of relationships.

CO 6 Classify structural modeling of System for representing framework with UML diagrams.

2

CO 7 Illustrate behavioral modeling of System for conveying dynamic concepts of the system.

CO 8 Categorize advanced behavioral modeling for visualizing flow control of objects and

activities of specified case study like next gen POS system.

CO 9 Make use of common modeling techniques in UML for modeling vocabulary of real time

applications.

CO 10 Develop architectural model of a scenario for preparing blueprint of the entire system.

CO 11 Model software application like Unified Library with the help of UML diagrams for

documenting static and dynamic aspects of a system.

CO 12 Develop a design document using UML for a simple and complex scenario of the specific

case study.

3

SYLLABUS:

OBJECT ORIENTED ANALYSIS AND DESIGN

V Semester: CSE / IT

Course Code Category Hours / Week Credits Maximum Marks

ACSB10 Core
L T P C CIA SEE Total

3 - - 3 30 70 100

Contact Classes: 45 Tutorial Classes: Nil Practical Classes: Nil Total Classes: 45

COURSE OBJECTIVES:

Students will try to learn:
I. The basic building blocks of Unified Modeling Language for analysis and design of software

systems.

II. The Object-oriented approach for analysis and design of System /Subsystem /Functional units based

on the given specifications through UML Diagrams.

III. The implementation of design document of real time software applications using advanced CASE

tools.

COURSE OUTCOMES:

CO 1 List the importance and use of basic principles in object oriented modeling for appropriate

analysis and design of given scenarios.

CO 2 Make use of building blocks and different views for creating conceptual model of system in

Unified Software Development Life cycle.

CO 3 Demonstrate static and dynamic aspects of the system through UML diagrams for

specifying structure and interaction of objects during runtime.

CO 4 Indentify basic building blocks for visualizing artifacts of an Object Oriented System.

CO 5 Summarize advanced building blocks in structural and behavioral modeling of a robust

software system for visualizing web of relationships.

CO 6 Classify structural modeling of System for representing framework with UML diagrams.

CO 7 Illustrate behavioral modeling of System for conveying dynamic concepts of the system.

CO 8 Categorize advanced behavioral modeling for visualizing flow control of objects and

activities of specified case study like next gen POS system.

CO 9 Make use of common modeling techniques in UML for modeling vocabulary of real time

applications.

CO 10 Develop architectural model of a scenario for preparing blueprint of the entire system.

CO 11 Model software application like Unified Library with the help of UML diagrams for

documenting static and dynamic aspects of a system.

CO 12 Develop a design document using UML for a simple and complex scenario of the specific

case study.

4

MODULE-I

INTRODUCTION TO UML

Classes: 10

Introduction to UML: Importance of modeling, principles of modeling, object oriented modeling,

conceptual model of the UML, architecture, software development life cycle; Classes, relationships,

common mechanisms and diagrams.

MODULE-II

ADVANCED BEHAVIORAL MODELING

Classes: 09

Advanced classes, advanced relationships, interfaces, types and roles, packages, terms, concepts;

Class and Object Diagrams: Terms, concepts, common modeling techniques for class and object

diagrams.

MODULE-III

ARCHITECTURAL MODELING

Classes: 08

Basic Behavioral Modeling - I: Interactions, Interaction diagrams.

Basic Behavioral Modeling-II: Use cases, Use case Diagrams, Activity Diagrams.

MODULE-IV

ADVANCED BEHAVIORAL MODELING

Classes: 09

Events and signals, state machines, processes and threads, time and space, state chart and state chart

diagrams. Case study: The next gen POS system

MODULE-V

ARCHITECTURAL MODELING

Classes: 09

Component, Component diagrams, Deployment, Deployment diagrams; Case Study: The Unified Library

Application.

Text Books:

1. Grady Booch, James Rumbaugh, Ivar Jacobson, “The Unified Modeling Language User Guide”,

Pearson Education, 2
nd

 Edition, 2004.

2. Craig Larman, “Applying UML and Patterns: An Introduction to Object Oriented Analysis and Design

and Iterative Development”, Pearson Education, 3
rd

 Edition, 2005.

Reference Books:

1. MeilirPage-Jones: Fundamentals of Object Oriented Design in UML, Pearson Education, 1
st
 Edition,

2006.

2. Hans-Erik Eriksson, Magnus Penker, Brian Lyons, David Fado, “UML 2 Toolkit”, WILEY-

Dreamtech India Pvt. Ltd., Pearson Education, 3
rd

 Edition, 2005.

Web References:

1. https://www.tutorialspoint.com/uml/uml_overview.html

2. https://www.utdallas.edu/~chung/OOAD/M03_1_StructuralDiagrams.ppt

3. https://onedrive.live.com/download?cid=99CBBF765926367

E-Text Books:

1. https://www.utdallas.edu/UML2.0/Rumbaugh

2. https://www.utdallas.edu/~chung/SP/applying-uml-and-patterns.pdf

5

MODULE - I

Introduction to UML: Importance of modeling, principles of modeling, object

oriented modeling, conceptual model of the UML, architecture, software

development life cycle; Classes, relationships, common mechanisms and

diagrams.

What is the UML?

• “The Unified Modeling Language is a family of graphical notations, backed by a single meta-

model, that help in describing and designing software systems, particularly software systems

built using the object-oriented style.”

• UML first appeared in 1997

• UML is standardized. Its content is controlled by the Object Management Group (OMG), a

consortium of companies.

• Unified

– UML combined the best from object-oriented software modeling methodologies that

were in existence during the early 1990’s.

– Grady Booch, James Rumbaugh, and Ivor Jacobson are the primary contributors to

UML.

• Modeling

– Used to present a simplified view of reality in order to facilitate the design and

implementation of object-oriented software systems.

– All creative disciplines use some form of modeling as part of the creative process.

– UML is a language for documenting design

– Provides a record of what has been built.

– Useful for bringing new programmers up to speed.

• Language

– UML is primarily a graphical language that follows a precise syntax.

– UML 2 is the most recent version

– UML is standardized. Its content is controlled by the Object Management Group

(OMG), a consortium of companies.

Why We Model

 The importance of modeling

 Four principles of modeling

 Object-oriented modeling

The Importance of Modeling

• A successful software organization is one that consistently deploys quality software that meets

the needs of its users.

• An organization that can develop such software in a timely and predictable fashion, with an

efficient and effective use of resources, both human and material, is one that has a sustainable

business

6

What, then, is a model? Simply put,

• A model is a simplification of reality.

• A model provides the blueprints of a system.

• A good model includes those elements that have broad effect and omits those minor elements

that are not relevant to the given level of abstraction.

Why do we model? There is one fundamental reason.

We build models so that we can better understand the system we are developing.

Through modeling, we achieve four aims

1. Models help us to visualize a system as it is or as we want it to be.

2. Models permit us to specify the structure or behavior of a system.

3. Models give us a template that guides us in constructing a system.

4. Models document the decisions we have made.

 Modeling is not just for big systems. Even the software equivalent of a dog house can benefit from

some modeling.

We build models of complex systems because we cannot comprehend such a system in its entirety.

Principles of Modeling

Four principles of modeling:

1. The choice of what models to create has a profound influence on how a problem is attacked

and how a solution is shaped.

2. Every model may be expressed at different levels of precision.

3. The best models are connected to reality.

4. No single model is sufficient. Every nontrivial system is best approached through a small set

of nearly independent models.

Object Oriented Modeling

Two Approaches:

• Traditional Approach

• Objected-Oriented Approach

• TRADITIONAL APPROACH

• Collection of programs or functions.

• A system that is designed for performing certain actions.

• Algorithms + Data Structures = Programs.

7

An Overview of the UML

The UML is a language for

• Visualizing

• Specifying

• Constructing

• Documenting

The UML Is a Language for Documenting

A healthy software organization produces all sorts of artifacts in addition to raw executable code.

These artifacts include (but are not limited to)

• Requirements

• Architecture

• Design

• Source code

• Project plans

• Tests

• Prototypes

• Releases

Where Can the UML Be Used?

The UML is intended primarily for software-intensive systems. It has been used effectively for such

domains as

• Enterprise information systems

• Banking and financial services

• Telecommunications

• Transportation

• Defense/aerospace

• Retail

• Medical electronics

• Scientific

• Distributed Web-based services

8

A Conceptual Model of the UML

• A conceptual model needs to be formed by an individual to understand UML.

• UML contains three types of building blocks: things, relationships, and diagrams.

• Things

– Structural things

• Classes, interfaces, collaborations, use cases, components, and nodes.

– Behavioral things

• Messages and states.

– Grouping things

• Packages

– Annotational things

• Notes

• Relationships: Dependency, Association, Generalization and Realization.

• Diagrams: class, object, use case, sequence, collaboration, statechart, activity, component and

deployment.

Building Blocks of the UML:

The vocabulary of the UML encompasses three kinds of building blocks:

1. Things

2. Relationships

3. Diagrams

Things in the UML

There are four kinds of things in the UML:

1. Structural things

2. Behavioral things

3. Grouping things

4. Annotational things

Structural Things

• Structural things are the nouns of UML models. These are the mostly static parts of a model,

representing elements that are either conceptual or physical. In all, there are seven kinds of

structural things.

• Classes

• Interface

• Cases

• Active Classes

• Components

• Nodes

• Collaborations

Classes:

a class is a description of a set of objects that share the same attributes, operations, relationships, and

semantics. A class implements one or more interfaces. Graphically, a class is rendered as a rectangle,

usually including its name, attributes, and operations

9

Interfaces
• an interface is a collection of operations that specify a service of a class or component. An

interface rarely stands alone. Rather, it is typically attached to the class or component that

realizes the interface

Collaborations:
• A collaboration defines an interaction. These collaborations therefore represent the

implementation of patterns that make up a system. Graphically, a collaboration is rendered as

an ellipse with dashed lines, usually including only its name

Use Cases:
• A use case is realized by a collaboration. Graphically, a use case is rendered as an ellipse with

solid lines, usually including only its name

10

Active Classes:
• An active class is rendered just like a class, but with heavy lines, usually including its name,

attributes, and operations

Components:
• A component typically represents the physical packaging of otherwise logical elements, such

as classes, interfaces, and collaborations. Graphically, a component is rendered as a rectangle

with tabs, usually including only its name.

11

Nodes:
• A node is a physical element that exists at run time and represents a computational resource,

generally having at least some memory and, often, processing capability.

• A set of components may reside on a node and may also migrate from node to node.

Graphically, a node is rendered as a cube, usually including only its name.

Behavioral Things:

 Behavioral things are the dynamic parts of UML models. These are the verbs of a model, representing

behavior over time and space. In all, there are two primary kinds of behavioral things.

1. Messages

2. States

Messages:

• An interaction is a behavior that comprises a set of messages exchanged among a set of

objects within a particular context to accomplish a specific purpose. Graphically, a message is

rendered as a directed line, almost always including the name of its operation.

 display

States:
• A state machine is a behavior that specifies the sequences of states an object or an interaction

goes through during its lifetime in response to events, together with its responses to those

events.

Grouping Things:
• Grouping things are the organizational parts of UML models. These are the boxes into which a

model can be decomposed. There is one primary kind of grouping thing, namely, packages.

12

Packages:
• A package is a general-purpose mechanism for organizing elements into groups. Graphically,

a package is rendered as a tabbed folder, usually including only its name and, sometimes, its

contents

Annotational Things:

• Annotational things are the explanatory parts of UML models. These are the comments you

may apply to describe, illuminate, and remark about any element in a model.

• There is one primary kind of annotation thing, called a note. A note is simply a symbol for

rendering constraints and comments attached to an element or a collection of elements.

Relationships in the UML

There are four kinds of relationships in the UML:

1. Dependency 2. Association 3. Generalization 4. Realization

Dependency is a semantic relationship between two model elements in which a change to one element

(the independent one) may affect the semantics of the other element (the dependent one). Graphically,

a dependency is rendered as a dashed line, possibly directed, and occasionally including a label.

Association is a structural relationship among classes that describes a set of links, a link being a

connection among objects that are instances of the classes.

Graphically, an association is rendered as a solid line, possibly directed, occasionally including a label,

and often containing other adornments, such as multiplicity and end names

13

Generalization is a specialization/generalization relationship in which the specialized element (the

child) builds on the specification of the generalized element (the parent). The child shares the

structure and the behavior of the parent. Graphically, a generalization relationship is rendered as a

solid line with a hollow arrowhead pointing to the parent.

Realization is a semantic relationship between classifiers, wherein one classifier specifies a contract

that another classifier guarantees to carry out. generalization and a dependency relationship.

UML Diagrams

• A diagram is the graphical presentation of a set of elements, most often rendered as a

connected graph of vertices (things) and paths (relationships).

• A diagram represents an elided view of the elements that make up a system.

• In theory, a diagram may contain any combination of things and relationships.

• In practice, a small number of common combinations arise, which are consistent with the five

most useful views that comprise the architecture of a software intensive system

The UML includes Nine kinds of diagrams:

1. Class diagram

2. Object diagram

3. Use case diagram

4. Sequence diagram

5. Collaboration diagram

6. Statechart diagram

7. Activity diagram

8. Component diagram

9. Deployment diagram

1. Class diagram shows a set of classes, interfaces, and collaborations and their relationships.

These diagrams are the most common diagram found in modeling object-oriented systems.

Class diagrams address the static design view of a system. Class diagrams that include active

classes address the static process view of a system.

2. Object diagram shows a set of objects and their relationships. Object diagrams represent static

snapshots of instances of the things found in class diagrams. These diagrams address the static

design view or static process view of a system as do class diagrams.

14

3. Use case diagram shows a set of use cases and actors (a special kind of class) and their

relationships. Use case diagrams address the static use case view of a system.

4. Sequence diagram is an interaction diagram that emphasizes the time-ordering of messages;

5. Collaboration diagram a communication diagram is an interaction diagram that emphasizes the

structural organization of the objects or roles that send and receive messages.

6. Statechart diagram shows a state machine, consisting of states, transitions, events, and

activities. A state diagrams shows the dynamic view of an object.

7. Activity diagram shows the structure of a process or other computation as the flow of control

and data from step to step within the computation. Activity diagrams address the dynamic

view of a system.

8. Component diagram is shows an encapsulated class and its interfaces, ports, and internal

structure consisting of nested components and connectors. Component diagrams address the

static design implementation view of a system.

9. Deployment diagram shows the configuration of run-time processing nodes and the

components that live on them. Deployment diagrams address the static deployment view of an

architecture

What is Legal UML?

The UML has syntactic and semantic rules for

• Names What you can call things, relationships, and diagrams

• Scope The context that gives specific meaning to a name

• Visibility How those names can be seen and used by others

• Integrity How things properly and consistently relate to one another

• Execution What it means to run or simulate a dynamic model

Architecture

• Architecture refers to the different perspectives from which a complex system can be viewed.

• Visualizing, specifying, constructing, and documenting a software-intensive system demands

that the system be viewed from a number of perspectives.

• The architecture of a software-intensive system is best described by five interlocking views:

– Use case view: system as seen by users, analysts and testers.

– Design view: classes, interfaces and collaborations that make up the system.

– Process view: active classes (threads).

– Implementation view: files that comprise the system.

– Deployment view: nodes on which SW resides.

• Each view is a projection into the organization and structure of the system, focused on a

particular aspect of that system.

15

Each of these five views can stand alone so that different stakeholders can focus on the issues of the

system's architecture that most concern them.

Software Development Life Cycle

• UML is involved in each phase of the software development life cycle.

• The UML development process is

– Use case driven

– Use case driven means that use cases are used as a primary artifact for establishing the

desired behavior of the system, for verifying and validating the system's architecture,

for testing, and for communicating among the stakeholders of the project.

– Architecture-centric

– Architecture-centric means that a system's architecture is used as a primary artifact for

conceptualizing, constructing, managing, and evolving the system under development.

– Iterative and incremental

– An iterative process is one that involves managing a stream of executable releases. An

is one that involves the continuous integration of the system's architecture to produce

these releases, with each new release embodying incremental improvements over the

other.

16

Software Development Life Cycle

• Inception is the first phase of the process, when the seed idea for the development is brought

up to the point of being at least internally - sufficiently well-founded to warrant entering into

the elaboration phase.

• Elaboration is the second phase of the process, when the product vision and its architecture

are defined. In this phase, the system's requirements are articulated, prioritized, and baselined.

A system's requirements may range from general vision statements to precise evaluation

criteria, each specifying particular functional or nonfunctional behavior and each providing a

basis for testing.

• Construction is the third phase of the process, when the software is brought from an

executable architectural baseline to being ready to be transitioned to the user community. Here

also, the system's requirements and especially its evaluation criteria are constantly reexamined

against the business needs of the project, and resources are allocated as appropriate to actively

attack risks to the project.

• Transition is the fourth phase of the process, when the software is turned into the hands of the

user community. Rarely does the software development process end here, for even during this

phase, the system is continuously improved, bugs are eradicated, and features that didn't make

an earlier release are added.

17

CLASSES

Classes
• A Class is a description of set of objects that share same attributes, operations, relationships

and semantics .

• Graphically, a class is rendered as a rectangle

Name
• Every class must have a name that distinguishes it from other classes. A name is a textual

string.

• That name alone is known as a simple name;

• a path name is the class name prefixed by the name of the package in which that class lives.

Attributes
• An attribute is a named property of a class that describes range of values that instances of the

property may hold.

• A class may have any number of attributes or no attributes at all. An attribute

• represents some property of the thing you are modeling that is shared by all objects of that

class.

• Graphically, attributes are listed in a compartment just below the class name.

• Attributes may be drawn showing only their names,

further specify an attribute by stating its class and possibly a default initial value

18

Operations
• An operation is the implementation of a service that can be requested from any object of the

class to affect behavior.

• An operation is an abstraction of something you can do to an object and that is shared by all

objects of that class.

• A class may have any number of operations or no operations at all.

• Operations may be drawn showing only their names.

Organizing attributes and relationships

• When drawing a class, you don't have to show every attribute and every operation at once.

• Meaning that you can choose to show only some or none of a class's attributes and operations

• Explicitly specify that there are more attributes or properties than shown by ending each list

with an ellipsis ("...").

• To better organize long lists of attributes and operations you prefix each group with

descriptive category by using stereotypes

Responsibilities

• A responsibility is a contract or an obligation of a class.

• When you create a class you are making a statement that all objects of that class have the same

kind of state and behavior .

• Ex: A Wall class is responsible for knowing about height, width, and thickness; a FraudAgent

class, as you might find in a credit card application, is responsible for processing orders and

determining if they are legitimate, suspect, or fraudulent; a TemperatureSensor class is

19

responsible for measuring temperature and raising an alarm if the temperature reaches a

certain point.

• Graphically, responsibilities can be drawn in a separate compartment at the bottom of the class

icon

Common modeling techniques

1. Modeling the vocabulary of a system

To model the vocabulary of a system

1) Identify those things that users to describe the problem .use crc cards and usecase based

analysis to help find these abstractions.

2) For each abstraction, identify a set of responsibilities. Make sure that each class is crisply

defined and that there is a good balance of responsibilities among all your classes.

3) Provide the attributes and operations that are needed to carry out these responsibilities for each

class

• Fig shows a set of classes drawn from a retail system, including Customer, Order, and Product.

It also includes a few other related abstractions drawn from the vocabulary of the problem,

such as Shipment (used to track orders), Invoice (used to bill orders), and Warehouse (where

products are located prior to shipment). There is also one solution-related abstraction,

Transaction, which applies to orders and shipments.

2. Modeling the Distribution of responsibilities in a System

 To model the distribution of responsibilities in a System

• Identify a set of classes that work together closely to carryout some behavior.

• Identify a set of responsibilities for each of these classes.

20

• Look at this set of classes as a whole, split classes that have too many responsibilities into

smaller abstractions, collapse tiny classes that have trivial responsibilities into larger ones, and

reallocate responsibilities so that each abstraction reasonably stands on its own.

• Consider the ways in which those classes collaborate with one another, and redistribute their

responsibilities accordingly so that no class within a collaboration does too much or too little.

Modeling the Distribution of responsibilities in a System

3. Modeling Non software things

To model the distribution of responsibilities in a System

Model the thing you are abstracting as a class.

• If you want to distinguish these things from the UML's defined building blocks, create a new

building block by using stereotypes to specify these new semantics and to give a distinctive

visual cue.

• If the thing you are modeling is some kind of hardware that itself contains software, consider

modeling it as a kind of node, as well, so that you can further expand on its structure.

Modeling Non software Things

Modeling Non Software things

21

4. Modeling Primitive Types

• At the other extreme, the things you model may be drawn directly from the programming

language you are using to implement a solution.

• Typically, these abstractions involve primitive types, such as integers, characters, strings, and

even enumeration types, that you might create yourself.

To model primitive types,

• Model the thing you are abstracting as a type or an enumeration, which is rendered using class

notation with the appropriate stereotype.

• If you need to specify the range of values associated with this type, use constraints.

Fig: Modeling Primitive Types

Relationships

• A relationship is a connection among things.

• The three most important relationships are dependencies, generalizations, and associations.

• Graphically, a relationship is rendered as a path, with different kinds of lines used to

distinguish the kinds of relationships.

Dependency
A dependency is a using relationship that states that a change in specification of one thing (for

example, class Event) may affect another thing that uses it (for example, class Window), but not

necessarily the reverse.

• Graphically, a dependency is rendered as a dashed directed line.

22

Generalization

• A generalization is a relationship between a general thing (called the super class or parent)and

a more specific kind of that thing (called the subclass or child).

• Generalization is sometimes called an "is-a-kind-of" relationship: one thing (like the class

BayWindow) is-a-kind-of a more general thing (for example, the class Window).

• Generalization means that objects of the child may be used anywhere the parent may appear,

but not the reverse.

• In other words, generalization means that the child is substitutable for the parent. A child

inherits the properties of its parents, especially their attributes and operations.

Association
• An association is a structural relationship that specifies that objects of one thing are connected

to objects of another. Given an association connecting two classes, you can navigate from an

object of one class to an object of the other class, and vice versa.

• It's quite legal to have both ends of an association circle back to the same class. This means

that, given an object of the class, you can link to other objects of the same class

There are four adornments that apply to associations.

Name
An association can have a name, and you use that name to describe the nature of the relationship. So

that there is no ambiguity about its meaning, you can give a direction to the name by providing a

direction triangle that points in the direction you intend to read the name, as shown in Figure

23

There are four adornments that apply to associations.

Role
• When a class participates in an association, it has a specific role that it plays in that

relationship;

• A role is just the face the class at the near end of the association presents to the class at the

other end of the association.

Multiplicity
• An association represents a structural relationship among objects. In many modeling

situations, it's important for you to state how many objects may be connected across an

instance of an association.

• This "how many" is called the multiplicity of an association's role, and is written as an

expression that evaluates to a range of values or an explicit value as in Figure

Aggregation
• A plain association between two classes represents a structural relationship between peers,

meaning that both classes are conceptually at the same level, no one more important than the

other.

• Sometimes, you will want to model a "whole/part" relationship, in which one class represents

a larger thing (the "whole"), which consists of smaller things (the "parts"). This kind of

relationship is called aggregation, which represents a "has-a" relationship.

24

Common Modeling Techniques

1. Modeling simple dependencies

-To model this using relationship

1) Create a dependency pointing from the class with the operation to the class used as a parameter in

the operation.

2. Modeling Single Inheritance

To model inheritance relationships,

1. Given a set of classes, look for responsibilities, attributes, and operations that are common to

two or more classes.

2. Elevate these common responsibilities, attributes, and operations to a more general class. If

necessary, create a new class to which you can assign these elements (but be careful about

introducing too many levels).

3. Specify that the more-specific classes inherit from the more-general class by placing a

generalization relationship that is drawn from each specialized class to its more-general parent.

25

3. Modeling Structural Relationships

To model structural relationships,

1. For each pair of classes, if you need to navigate from objects of one to objects of another,

specify an association between the two. This is a data-driven view of associations.

2. For each pair of classes, if objects of one class need to interact with objects of the other class

other than as parameters to an operation, specify an association between the two. This is more

of a behavior-driven view of associations.

3. For each of these associations, specify a multiplicity (especially when the multiplicity is not *,

which is the default), as well as role names (especially if it helps to explain the model).

4. If one of the classes in an association is structurally or organizationally a whole compared with

the classes at the other end that look like parts, mark this as an aggregation by adorning the

association at the end near the whole

COMMON MECHANISMS

• Stereotypes, tagged values, and constraints are the mechanisms provided by the UML to add

new building blocks, create new properties, and specify new semantics.

• For example, if you are modeling a network, you might want to have symbols for routers and

hubs; then use stereotyped nodes to make these things appear as primitive building blocks.

• Similarly, if you are part of your project's release team, responsible for assembling, testing,

and then deploying releases, you might want to keep track of the version number and test

results for each major subsystem.

• Then use tagged values to add this information to your models.

Fig: Stereotypes, Tagged Values, and constraints

26

 A note is a graphical symbol for rendering constraints or comments attached to an element or a

collection of elements. Graphically, a note is rendered as a rectangle with a dog-eared corner, together

with a textual or graphical comment.

A stereotype is an extension of the vocabulary of the UML, allowing to create new kinds of building

blocks similar to existing ones but specific to problem. Graphically, a stereotype is rendered as a name

enclosed by guillemets (<< >>) and placed above the name of another element.

A tagged value is an extension of the properties of a UML element, allowing you to create new

information in that element's specification. Graphically, a tagged value is rendered as a string enclosed

by brackets and placed below the name of another element.

A constraint is an extension of the semantics of a UML element, allowing you to add new rules or to

modify existing ones. Graphically, a constraint is rendered as a string enclosed by brackets and placed

near the associated element or connected to that element or elements by dependency relationships.

Notes
• A note that renders a comment has no semantic impact, meaning that its contents do not alter

the meaning of the model to which it is attached. Notes are used to specify things like

requirements, observations, reviews, and explanations, in addition to rendering constraints.

• A note may contain any combination of text or graphics. you can put a live URL inside a note,

or even link to or embed another document

Other Adornments

Adornments are textual or graphical items that are added to an element's basic notation and are used to

visualize details from the element's specification.

• For example, the basic notation for an association is a line, but this may be adorned with such

details as the role and multiplicity of each end.

• A stereotype is rendered as a name enclosed by guillemets (for example, <<name>>) and

placed above the name of another element.

• You may define an icon for the stereotype and render that icon to the right of the name or use

that icon as the basic symbol for the stereotyped item.

27

Tagged Values

A tagged value is rendered as a string enclosed by brackets and placed below the name of another

element. That string includes a name (the tag), a separator (the symbol =), and a value (of the tag).

Specify just the value if its meaning is unambiguous, such as when the value is the name of

enumeration.

Constraints
• A constraint is rendered as a string enclosed by brackets and placed near the associated

element.

• This notation is also used as an adornment to the basic notation of an element to visualize parts

of an element's specification that have no graphical cue.

• For example, some properties of associations (order and changeability) are rendered using

constraint notation.

Standard Elements

• The UML defines a number of standard stereotypes for classifiers, components, relationships

and other modeling elements.

• There is one standard stereotype, mainly of interest to tool builders, that lets you model

stereotypes themselves.

Stereotype
• Specifies that the classifier is a stereotype that may be applied to other elements

• The UML also specifies one standard tagged value that applies to all modeling elements.

28

Documentation
• Specifies a comment, description, or explanation of the element to which it is attached

Common Modeling Techniques

1. Modeling Comments
• To model a comment

 1) Put your comment as text in a note and place it adjacent to the element to which it refers. You can

show a more explicit relationship by connecting a note to its elements using a dependency

relationship.

 2) Remember that you can hide or make visible the elements of your model as you see fit. This means

that you don't have to make your comments visible everywhere the elements to which it is attached

are visible. Rather, expose your comments in your diagrams only insofar as you need to

communicate that information in that context.

3) If your comment is lengthy or involves something richer than plain text, consider putting your

comment in an external document and linking or embedding that document in a note attached to

your model.

4) As your model evolves, keep those comments that record significant decisions that cannot be

inferred from the model itself, and unless they are of historic interest discard the others.

2. Modeling New Building Blocks

 1) Make sure there's not already a way to express what you want by using basic UML. If you have a

common modeling problem, chances are there's already some standard stereotype that will do what

you want.

2) If you're convinced there's no other way to express these semantics, identify the primitive thing in

the UML that's most like what you want to model (for example, class, interface, component, node,

association, and so on) and define a new stereotype for that thing.

3) Specify the common properties and semantics that go beyond the basic element being stereotyped

by defining a set of tagged values and constraints for the stereotype.

29

 4) If you want these stereotype elements to have a distinctive visual cue, define a new icon for the

stereotype.

3) Modeling New Properties

1) First, make sure there's not already a way to express what you want by using basic UML. If you

have a common modeling problem, chances are that there's already some standard tagged value that

will do what you want.

 2) If you're convinced there's no other way to express these semantics, add this new property to an

individual element or a stereotype. The rules of generalization apply -- tagged values defined for

one kind of element apply to its children.

Fig: Modeling New Properties

30

4) To model new semantics
1. First, make sure there's not already a way to express what you want by using basic UML. If

you have a common modeling problem, chances are that there's already some standard

constraint that will do what you want.

2. If you're convinced there's no other way to express these semantics, write your new semantics

as text in a constraint and place it adjacent to the element to which it refers. You can show a

more explicit relationship by connecting a constraint to its elements using a dependency

relationship.

3. If you need to specify your semantics more precisely and formally, write your new semantics

using Object Constraint Language (OCL).

Fig: Modeling New Semantics

The above diagram shows that each Person may be a member of zero or more Departments and that

each Department must have at least one Person as a member. This diagram goes on to indicate that

each Department must have exactly one Person as a manager and every Person may be the manager of

zero or more Departments. All of these semantics can be expressed using simple UML.

DIAGRAMS

• A system is a collection of subsystems organized to accomplish a purpose and described by a

set of models, possibly from different viewpoints.

• A subsystem is a grouping of elements, of which some constitute a specification of the

behavior offered by the other contained elements.

• A diagram is just a graphical projection into the elements that make up a system.

Static parts of a system Dynamic parts of a system.

Class diagram Use case diagram

Object diagram Sequence diagram

Component diagram Collaboration diagram

 Deployment diagram Statechart diagram

 Activity diagram

31

The UML's structural diagrams are roughly organized around the major groups of things you'll find

when modeling a system.

Class diagram Classes, interfaces, and collaborations

Object diagram Objects

Component diagram Components

 Deployment diagram Nodes

The UML's behavioral diagrams are roughly organized around the major ways you can model the

dynamics of a system.

Class diagram Classes, interfaces, and collaborations

Use case diagram Organizes the behaviors of the system

Sequence diagram Focused on the time ordering of messages

Collaboration diagram Focused on the structural organization of objects that send and receive

messages

Statechart diagram Focused on the changing state of a system driven by events

Activity diagram Focused on the flow of control from activity to activity

Common Modeling Techniques

1. Modeling Different Views of a System

• Decide which views you need to best express the architecture of your system and to expose the

technical risks to your project. The five views of an architecture described earlier are a good

starting point.

• For each of these views, decide which artifacts you need to create to capture the essential

details of that view. For the most part, these artifacts will consist of various UML diagrams.

• As part of your process planning, decide which of these diagrams you'll want to put under

some sort of formal or semi-formal control. These are the diagrams for which you'll want to

schedule reviews and to preserve as documentation for the project.

• Allow room for diagrams that are thrown away. Such transitory diagrams are still useful for

exploring the implications of your decisions and for experimenting with changes.

2) Modeling Different Levels of Abstraction

• Consider the needs of your readers, and start with a given model.

• If your reader is using the model to construct an implementation, she'll need diagrams that are

at a lower level of abstraction, which means that they'll need to reveal a lot of detail. The

model to present a conceptual model to an end user, then use the diagrams that are at a higher

level of abstraction, which means that they'll hide a lot of detail.

32

• Depending on where you land in this spectrum of low-to-high levels of abstraction, create a

diagram at the right level of abstraction by hiding or revealing the following four categories of

things from the model.

Building blocks and relationships:

• Hide those that are not relevant to the intent of the diagram or the needs of the reader.

Adornments:
• Reveal only the adornments of these building blocks and relationships that are essential to

understanding the intent.

Flow:
• In the context of behavioral diagrams, expand only those messages or transitions that are

essential to understanding the intent.

Stereotypes:
• In the context of stereotypes used to classify lists of things, such as attributes and operations,

reveal only those stereotyped items that are essential to understanding the intent.

33

3) Modeling Complex Views
To model complex views,

• First, convince yourself there's no meaningful way to present this information at a higher level

of abstraction, perhaps eliding some parts of the diagram and retaining the detail in other parts.

• If you've hidden as much detail as you can and your diagram is still complex, consider

grouping some of the elements in packages or in higher level collaborations, then render only

those packages or collaborations in your diagram.

• If your diagram is still complex, use notes and color as visual cues to draw the reader's

attention to the points you want to make.

• If your diagram is still complex, print it in its entirety and hang it on a convenient large wall.

You lose the interactivity an online version of the diagram brings, but you can step back from

the diagram and study it for common patterns.

34

MODULE - II

Advanced classes, advanced relationships, interfaces, types and roles, packages,

terms, concepts; Class and Object Diagrams: Terms, concepts, common

modeling techniques for class and object diagrams.

Advanced Classes

• A classifier is a mechanism that describes structural and behavioral features.

• Classifiers include classes, interfaces, datatypes, signals, components, nodes, use cases, and

subsystems.

• The UML provides a number of other kinds of classifiers to help you model.

• Interface
 A collection of operations that are used to specify a service of a class or a component

• Data type
A type whose values have no identity, including primitive built-in types (such as numbers and

strings), as well as enumeration types (such as Boolean)

• Signal
 The specification of an asynchronous stimulus communicated between instances

• component
A physical and replaceable part of a system that conforms to and provides the realization of a

set of interfaces

• Node
 A physical element that exists at run time and that represents a computational resource,

generally having at least some memory and often processing capability

• Use case
A description of a set of a sequence of actions, including variants, that a system performs that

yields an observable result of value to a particular actor

• Subsystem
 A grouping of elements of which some constitute a specification of the behavior offered by

the other contained elements

35

Visibility - UML, you can specify any of three levels of visibility.

1. public

 Any outside classifier with visibility to the given classifier can use the feature specified by

prepending the symbol +.

2. protected

 Any descendant of the classifier can use the feature; specified by prepending the symbol #.

 3. private

 Only the classifier itself can use the feature; specified by prepending the symbol -.

Scope- It specifies whether the feature appears in each instance of the classifier or whether there is

just a single instance of the feature for all instances of the classifier. In the UML, you can specify two

kinds of owner scope.

1. Instance - Each instance of the classifier holds its own value for the feature.

2. Classifier - There is just one value of the feature for all instances of the classifier.

• Figure shows, a feature that is classifier scoped is rendered by underlining the feature's name

Multiplicity
• The number of instances a class may have is called its multiplicity. Multiplicity is a

specification of the range of allowable cardinalities an entity may assume.

• Specify the multiplicity of a class by writing a multiplicity expression in the upper-right corner

of the class icon.

• Multiplicity applies to attributes, as well. You can specify the multiplicity of an attribute by

writing a suitable expression in brackets just after the attribute name. For example, in the

figure, there are two or more consolePort instances in the instance of NetworkController.

36

Attributes
• You can Specify the visibility, scope, and multiplicity of each attribute. There's still more. You

can also

• specify the type, initial value, and changeability of each attribute.

• In its full form, the syntax of an attribute in the UML is

• [visibility] name [multiplicity] [: type] [= initial-value] [{property-string}].
•

There are three defined properties that you can use with attributes.

changeable There are no restrictions on modifying the attribute's value.

addOnly For attributes with a multiplicity greater than one, additional values may

be added, but once created, a value may not be removed or altered

frozen The attribute's value may not be changed after the object is initialized.

Operations
• you can also specify the visibility and scope of each operation.

• You can also specify the parameters, return type, concurrency semantics, and other properties

of each operation.

• The name of an operation plus its parameters (including its return type, if any) is called the

operation's signature.

• In its full form, the syntax of an operation in the UML is

 [visibility] name [(parameter-list)] [: return-type] [{property-string}]

• In an operation's signature, you may provide zero or more parameters, each of which follows

the syntax

• [direction] name : type [= default-value]
• Direction may be any of the following values

 1) in 2) out 3) inout

Template Classes
- A template is a parameterized element. In such languages as C++ and Ada, you can write

template classes, each of which defines a family of classes.

• A template includes slots for classes, objects, and values, and these slots serve as the

template's parameters.

• The most common use of template classes is to specify containers that can be instantiated for

specific elements, making them type-safe

37

template<class Item, class Value, int Buckets> class Map {

 public:

 virtual Boolean bind(const Item&, constValue&);

 virtual Boolean isBound(const Item&) const;
 ... };

Standard Elements - The UML defines four standard stereotypes that apply to classes.

1. metaclass - Specifies a classifier whose objects are all classes

2. powertype - Specifies a classifier whose objects are the children of a given parent

3. stereotype - Specifies that the classifier is a stereotype that may be applied to other elements

4. utility - Specifies a class whose attributes and operations are all class scoped

Common Modeling Techniques

1. Modeling semantics of class

• Specify the responsibilities of the class. A responsibility is a contract or obligation of a type or

class and is rendered in a note (stereotyped as responsibility) attached to the class, or in an

extra compartment in the class icon.

• Specify the semantics of the class as a whole using structured text, rendered in a note

(stereotyped as semantics) attached to the class.

• Specify the body of each method using structured text or a programming language, rendered in

a note attached to the operation by a dependency relationship.

• Specify the pre- and post conditions of each operation, plus the invariants of the class as a

whole, using structured text. These elements are rendered in notes (stereotyped as

precondition, post condition, and invariant) attached to the operation or class by a

dependency relationship.

• Specify a state machine for the class. A state machine is a behavior that specifies the

sequences of states an object goes through during its lifetime in response to events, together

with its responses to those events.

• Specify a collaboration that represents the class. A collaboration is a society of roles and other

elements that work together to provide some cooperative behavior that's bigger than the sum

of all the elements. A collaboration has a structural part, as well as a dynamic part, so you can

use collaborations to specify all dimensions of a class's semantics.

• Specify the pre- and postconditions of each operation, plus the invariants of the class as a

whole, using a formal language such as OCL.

Advanced Relationships

• A relationship is a connection among things. In object-oriented modeling, the four most

important relationships are dependencies, generalizations, associations, and realizations.

• Graphically, a relationship is rendered as a path, with different kinds of lines used to

distinguish the different relationships.

38

Dependency
• A dependency is a using relationship, specifying that a change in the specification of one thing

may affect another thing that uses it but not necessarily the reverse. Graphically, a dependency

is rendered as a dashed line, directed to the thing that is depended on.

Eight Stereotypes that apply to dependency relationships among classes and objects

bind the source instatiates the target template

derive the source may be computed from target

friend the source is given special visibility into target

instanceOf source object is an instance of the target classifier

instantiate source object creates instance of the target

powertype target is a powertype of the source

refine source is at a finer degree of abstraction than target

use the semantics of the source element depends on the semamtics of the public

part of the target

• Two stereotypes that apply to dependency relationships among packages.

– access – source package is granted the right to reference the elements of the target

package.

– import – a kind of access, but only public content.

• Two stereotypes that apply to dependency relationships among use case.

– extend – target use case extends the behavior of source.

– include – source use case explicitly incorporates the behavior of another use case at a

location specified by the source

• Three stereotypes when modeling interactions among objects.

– become – target is the same object of source at later time

– call – source operation invoke the target operation

– copy – target is an exact, but different, copy of source

• In the context of state machine

– send – source operation sends the target event

• In the context of organizing the elements of your system into subsystem and model

– trace – target is an historical ancestor of the source (model relationship among

elements in different models)

39

Generalization
A generalization is a relationship between a general thing (called the superclass or parent) and a more

specific kind of that thing (called the subclass or child).

There is the one stereotype.
• Implementation: Specifies that the child inherits the implementation of the parent but does

not make public nor support. Its interfaces, thereby violating substitutability

The four constraints that may be applied to generalization relationships.

1.Complete - Specifies that all children in the generalization have been specified in the model and

that no additional children are permitted

2.Incomplete - Specifies that not all children in the generalization have been specified and that

additional children are permitted

3.Disjoint - Specifies that objects of the parent may have no more than one of the children as a type

4.Overlapping - Specifies that objects of the parent may have more than one of the children as a type

Association
• An association is a structural relationship, specifying that objects of one thing are connected to

object of another.

• Basic adornments: name, role, multiplicity, aggregation.

• Advanced adornments: navigation, qualification, various flavors of aggregation

Navigation
- Given a plain, unadorned association between two classes, such as Book and Library, it's

possible to navigate from objects of one kind to objects of the other kind.

Visibility
- An association between two classes, objects of one class can see and navigate to objects of the

other, unless otherwise restricted by an explicit statement of navigation

40

Qualification: A form of aggregation with strong ownership and coincident lifetime of the parts by the

whole.

• Interface specifier : An interface is a collection of operations that are used to specify a

service of a class or a component; every class may realize many interfaces.

Composition
• In a composite aggregation, an object may be a part of only one composite at a time.

• For example, in a windowing system, a Frame belongs to exactly one Window. In a composite

aggregation, the whole is responsible for the disposition of its parts, which means that the

composite must manage the creation and destruction of its parts.

Constraints
1. implicit: The relationship is not manifest but, rather, is only conceptual.

2. ordered: the set of objects at one end of an association are in an explicit order.

3. changeable: links between objects may be changed.

4. add Only: new links may be added from an object on the opposite end of association.

5. frozen: a link added may not be modified or deleted.

6. Xor: over a set of associations, exactly one is man fest for each associated object.

41

Realization
• A realization is a semantic relationship between classifiers in which one classifier specifies a

contract that anther classifier guarantees to carry out.

• Use in two circumstances:

– In the context of interfaces.

– In the context of collaborations.

– Rendering as:

Common Modeling Techniques

1. Modeling Webs of Relationships

• Apply use cases and scenarios to drive your discovery of the relationships among a set of

abstractions.

• In general, start by modeling the structural relationships that are present. These reflect the

static view of the system and are therefore fairly tangible.

• Next, identify opportunities for generalization/specialization relationships; use multiple

inheritance sparingly.

• Only after completing the preceding steps should you look for dependencies; they generally

represent more-subtle forms of semantic connection.

• For each kind of relationship, start with its basic form and apply advanced features only as

absolutely necessary to express your intent.

• Remember that it is both undesirable and unnecessary to model all relationships among a set

of abstractions in a single diagram or view. Rather, build up your system's relationships by

considering different views on the system. Highlight interesting sets of relationships in

individual diagrams.

Interfaces, Types and Roles

• An interface is a collection of operations that are used to specify a service of a class or a

component. Graphically, an interface is rendered (represented) as a circle; in its expanded

form, an interface may be rendered as a stereotyped class(a class with stereotype interface)

Names
• Every interface must have a name that distinguishes it from other interfaces

• Two naming mechanism:

• A simple name (only name of the interface).

• A path name is the interface name prefixed by the name of the package in which that interface

lives represented.

Operations:
• To distinguish an interface from a class, prepend an ‘I’ to every interface name.

• Operations in an interface may be adorned with visibility properties, concurrency properties,

stereotypes, tagged values, and constraints.

• Interface don't have attributes. interfaces span model boundaries and it doesn't have direct

instances.

42

Understanding an Interface

• In the UML, you can supply much more information to an interface in order to make it

understandable and approachable.

• First, you may attach pre- and postconditions to each operation and invariants to the class or

component as a whole. By doing this, a client who needs to use an interface will be able to

understand what the interface does and how to use it, without having to dive into an

implementation.

• We can attach a state machine to the interface. You can use this state machine to specify the

legal partial ordering of an interface's operations.

• We can attach collaborations to the interface. You can use collaborations to specify the

expected behavior of the interface through a series of interaction diagrams.

Interface relationships

• An interface may participate in generalization, association, dependency and realization

relationships. Realization is a semantic relationship between two classifiers in which one

classifier specifies a contract that another classifier guarantees to carry out.

Types and Roles

Type:
• A type is a stereotype of a class used to specify a domain of objects, together with the

operations applicable to the object of that type.

• To distinguish a type from an interface or a class, prepend a ‘T’ to every type.

Role
• A role names(indicates) a behavior of an entity participating in a particular context. Or, a role

is the face that an abstraction presents to the world.

• For example, consider an instance of the class Person. Depending on the context, that Person

instance may play the role of Mother, Comforter, PayerOfBills, Employee, Customer,

Manager, Pilot, Singer, and so on.

• When an object plays a particular role, it presents a face to the world, and clients that interact

with it expect a certain behavior depending on the role that it plays at the time.

Common Modeling Techniques

1. Modeling the Seams in a Systemeling the Seams in a System

• Within the collection of classes and components in your system, draw a line around those that

tend to be tightly coupled relative to other sets of classes and components.

• Refine your grouping by considering the impact of change. Classes or components that tend to

change together should be grouped together as collaborations.

43

• Consider the operations and the signals that cross these boundaries, from instances of one set

of classes or components to instances of other sets of classes and components.

• Package logically related sets of these operations and signals as interfaces.

• For each such collaboration in your system, identify the interfaces it relies on (imports) and

those it provides to others (exports). You model the importing of interfaces by dependency

relationships, and you model the exporting of interfaces by realization relationships.

• For each such interface in your system, document its dynamics by using pre- and

postconditions for each operation, and use cases and state machines for the interface as a

whole.

2. Modeling Static and Dynamic Types
To model a dynamic type

• Specify the different possible types of that object by rendering each type as a class stereotyped

as type (if the abstraction requires structure and behavior) or as interface (if the abstraction

requires only behavior).

• Model all the roles the class of the object may take on at any point in time. You can do so in

two ways:

 First, in a class diagram, explicitly type each role that the class plays in its association

with other classes. Doing this specifies the face instances of that class put on in the

context of the associated object.

 Second, also in a class diagram, specify the class-to-type relationships using

generalization.

• In an interaction diagram, properly render each instance of the dynamically typed class.

Display the role of the instance in brackets below the object's name.

• To show the change in role of an object, render the object once for each role it plays in the

interaction, and connect these objects with a message stereotyped as become.

• For example, Figure shows the roles that instances of the class Person might play in the

context of a human resources system.

Fig: Modeling Static Types

Figure shows the dynamic nature of a person's type. In this fragment of an interaction diagram, p (the

Person object) changes its role from Candidate to Employee.

Fig: Modeling Dynamic Types

44

Packages

“A package is a general-purpose mechanism for organizing elements into groups.” Graphically, a

package is rendered as a tabbed folder.

Names
• Every package must have a name that distinguishes it from other packages. A name is a textual

string.

• That name alone is known as a simple name; a path name is the package name prefixed by the

name of the package in which that package lives

• We may draw packages adorned with tagged values or with additional compartments to

expose their details.

Visibility

• You can control the visibility of the elements owned by a package just as you can control the

visibility of the attributes and operations owned by a class.

• Typically, an element owned by a package is public, which means that it is visible to the

contents of any package that imports the element's enclosing package.

• Conversely, protected elements can only be seen by children, and private elements cannot be

seen outside the package in which they are declared.

• We specify the visibility of an element owned by a package by prefixing the element's name

with an appropriate visibility symbol.

Importing and Exporting

• Suppose you have two classes named A and B sitting side by side. Because they are peers, A

can see B and B can see A, so both can depend on the other. Just two classes makes for a

trivial system, so you really don't need any kind of packaging.

• In the UML, you model an import relationship as a dependency adorned with the stereotype

import

• Actually, two stereotypes apply here—import and access— and both specify that the source

package has access to the contents of the target.

45

• Import adds the contents of the target to the source's namespace

• Access does not add the contents of the target

• The public parts of a package are called its exports.

• The parts that one package exports are visible only to the contents of those packages that

explicitly import the package.

• Import and access dependencies are not transitive

Generalization

• There are two kinds of relationships you can have between packages: import and access

dependencies used to import into one package elements exported from another and

generalizations, used to specify families of packages

• Generalization among packages is very much like generalization among classes.

• Packages involved in generalization relationships follow the same principle of substitutability

as do classes. A specialized package (such as WindowsGUI) can be used anywhere a more

general package (such as GUI) is used.

• All of the UML's extensibility mechanisms apply to packages. Most often, you'll use tagged

values to add new package properties (such as specifying the author of a package) and

stereotypes to specify new kinds of packages (such as packages that encapsulate operating

system services).

46

1. facade : : Specifies a package that is only a view on some other package

2. framework : Specifies a package consisting mainly of patterns

3. stub : Specifies a package that serves as a proxy for the public contents of another

package

4. subsystem : Specifies a package representing an independent part of the entire system being

modeled

5. system : Specifies a package representing the entire system being modeled

Common Modeling Techniques

1. Modeling Groups of Elements
• Scan the modeling elements in a particular architectural view and look for clumps defined by

elements that are conceptually or semantically close to one another.

• Surround each of these clumps in a package.

• For each package, distinguish which elements should be accessible outside the package. Mark

them public, and all others protected or private. When in doubt, hide the element.

• Explicitly connect packages that build on others via import dependencies.

• In the case of families of packages, connect specialized packages to their more general part via

generalizations

47

2. Modeling Architectural Views
• Identify the set of architectural views that are significant in the context of your problem. In

practice, this typically includes a design view, a process view, an implementation view, a

deployment view, and a use case view.

• Place the elements (and diagrams) that are necessary and sufficient to visualize, specify,

construct, and document the semantics of each view into the appropriate package

• As necessary, further group these elements into their own packages.

• There will typically be dependencies across the elements in different views. So, in general, let

each view at the top of a system be open to all others at that level

Fig: Modeling techniques for Class and Object diagram

Class diagram

Class diagram

• A class diagram is a diagram that shows a set of classes, interfaces, and collaborations and

their relationships. Graphically, a class diagram is a collection of vertices and arcs.

 Common properties

• It shows the same common properties as all other diagrams .

 Contents

Class diagram contain the following things

1. Classes

2. Interfaces

3. Collaboration

4. Dependency ,Generalization, association

Class diagrams may also contain packages or subsystems, both of which are used to group elements of

your model into larger chunks

48

Common Uses of a class diagram:

Class diagrams to model the static design view of a system. This view primarily supports the

functional requirements of a system• the services the system should provide to its end users.

1. To model the vocabulary of a system

1. Modeling the vocabulary of a system involves making a decision about which

abstractions

2. Part of the system under consideration and which fall outside its boundaries. You use

class

3. Diagrams to specify these abstractions and their responsibilities.

2. To Model simple collaboration

1. A collaboration is a society of classes, interfaces, and other elements that work together

to provide some cooperative behavior that's bigger than the sum of all the elements.

2. For example, when you're modeling the semantics of a transaction in a distributed

system, you can't just stare at a single class to understand what's going on.

3. To model a logical database schema

1. Think of a schema as the blueprint for the conceptual design of a database.

2. In many domains, you'll want to store persistent information in a relational database or

in an object-oriented database.

3. You can model schemas for these databases using class diagrams

Common Modeling Techniques (Class diagram)

1. To model a collaboration

1. Identify the mechanism you want to model .

2. For each mechanism identify the classes ,interfaces and collaboration .

3. Use scenarios to walk through these things .

4. Be sure to populate these elements with their contents .

Figure: Modeling Simple Collaborations

49

3. Modeling a logical database schema
To model a schema

1. Identify those classes in the model whose state must transcend the lifetime of their application.

2. Create class diagram that contain these classes and mark them as persistent .

3. Explain structural details of these classes .

4. Watch for common pattern that complicate physical database design .

5. Consider the behavior of these classes by expending operations .

6. Use tools to transform logical design to physical design .

Fig: Modeling a Logical Database

Forward Engineering

 - It is the process of transforming a model into code through a mapping to an implementation

language .

To forward engineer a class diagram

1) Identify the rules for mapping to your implantation language.

2) Depending upon the semantics of the language you have to constrain.

3) Use tagged values to specify your tagged values.

4) Use tools to forward engineer your models.

Reverse Engineering
-transforming code to uml model.

To reverse engineer a class diagram

1) Identify the rules for mapping from your language.

2) Use tools point to code you would like to reverse engineer.

3) Use tool, create a class diagram by querying the model

50

Hints and Tips (class diagram)

When you create class diagrams in the UML, remember that every class diagram is just a graphical

presentation of the static design view of a system.

No single class diagram need capture everything about a system's design view. Collectively, all the

class diagrams of a system represent the system's complete static design view; individually, each

represents just one aspect.

A well-structured class diagram

 Is focused on communicating one aspect of a system's static design view.

 Contains only elements that are essential to understanding that aspect.

 Provides detail consistent with its level of abstraction, with only those adornments that are

essential to understanding.

 Is not so minimalist that it misinforms the reader about important semantics.

When you draw a class diagram

• Give it a name that communicates its purpose.

• Lay out its elements to minimize lines that cross.

• Organize its elements spatially so that things that are semantically close are laid out physically

close.

• Use notes and color as visual cues to draw attention to important features of your diagram.

• Try not to show too many kinds of relationships. In general, one kind of relationship will tend

to dominate each class diagram.

Object diagram

 It shows set of objects and their relationships at a point in time .

 Object diagrams are used to model the static design view or static process view of a

system.

 An object diagram covers a set of instances of the things found in a class diagram. An

object diagram,

 therefore, expresses the static part of an interaction, consisting of the objects that

collaborate but without any of the messages passed among them.

 An object diagram is a diagram that shows a set of objects and their relationships at a

point in time. Graphically, an object diagram is a collection of vertices and arcs.

Contents: commonly it contains
1. objects

2. links

Like all other diagrams, object diagrams may contain notes and constraints.

51

Common modeling techniques

1. Modeling object structures

To model object structures

1) Identify the mechanism you would like to model.

2) For each mechanism, identify classes, interfaces, other elements.

3) Consider one scenario that work through this mechanism .

4) Expose the state and attribute value of each such object to understand .

5) Similarly expose the links, instances, associations among them

Forward and Reverse Engineer
To reverse engineer an object diagram

1) Choose the target you want to reverse engineer.

2) Use tool or simply walkthrough a scenario.

3) Identify the set of objects that collaborate in the context.

4) As necessary to understand their semantics expose these objects.

5) Identify links among objects.

6) If your diagrams end up complicated, prune it by eliminating objects that are not germane.

52

MODULE - III

Basic Behavioral Modeling - I: Interactions, Interaction diagrams.

Basic Behavioral Modeling-II: Use cases, Use case Diagrams, Activity Diagrams.

INTERACTIONS

An interaction is a behavior that comprises a set of messages exchanged among a set of objects within

a context to accomplish a purpose. A message is a specification of a communication between objects

that conveys information with the expectation that activity will ensue.

Fig: Messages, Links, and Sequencing

Context
• Interaction can find wherever objects are linked to one another.

• Interaction can find in the collaboration of objects that exist in the context of your system or

subsystem.

• It also find interactions in the context of an operation.

• Finally, you'll find interactions in the context of a class.

Object and Roles:

• The objects that participate in an interaction are either concrete things or prototypical things.

• A concrete thing, an object represents something in the real world. For example, p, an instance

of the class Person, might denote a particular human.

• A prototypical thing, p might represent any instance of Person.

Links
• A link is a semantic connection among objects.

• In general, a link is an instance of an association.

53

• Following fig. shows, wherever a class has an association to another class, there may be a link

between the instances of the two classes; wherever there is a link between two objects, one

object can send a message to the other object.

Following five standard stereotypes you can use

• association – corresponding object is visible by association.

• self – dispatches of operation.

• global – represents enclosing scope.

• local – local scope

• parameter – parameter visibility.

Messages

• A message is the specification of a communication among objects that conveys information

with the expectation that activity will ensue.

• The receipt of a message instance may be considered an instance of an event.

• When you pass a message, the action that results is an executable statement that forms an

abstraction of a computational procedure.

• An action may result in a change in state.

• UML can model several kind of actions:

• call - invoke an operation Return - return a value to the caller

• Send - send signal to an object Create - creates an object

• Destroy - destroys an object

Following figure shows visual distinction among different kind of messages

54

Sequencing

• When an object passes a message to another object (in effect, delegating some action to the

receiver), the receiving object might in turn send a message to another object, which might

send a message to yet a different object, and so on. This stream of messages forms a sequence.

Any sequence must have a beginning.

• Most commonly, you can specify a procedural or nested flow of control, rendered using a

filled solid arrowhead, as Figure shows. In this case, the message findAt is specified as the

first message nested in the second message of the sequence (2.1).

Procedural Sequence

Figure below shows, a flat flow of control, rendered using a stick arrowhead, to model the

nonprocedural progression of control from step to step.

In this case, the message assertCall is specified as the second message in the sequence.

55

Creation , Modification and Destruction :

• To specify if an object or link enters and/or leaves during an interaction you can attach one of

the following constraints to the element:

• New – Specifies that the instance or link is created during execution of the enclosing

Interaction

• Destroyed – Specifies that the instance or link is destroyed prior to completion of

 execution of the enclosing interaction

• Transient – Specifies that the instance or link is created during execution of the

enclosing

 interaction but is destroyed before completion of execution

• When you model an interaction, you typically include both objects (each one playing a

specific role) and messages (each one representing the communication between objects, with

some resulting action).

• You can visualize those objects and messages involved in an interaction in two ways:

 1. by emphasizing the time ordering of its messages

 2. by emphasizing the structural organization of the objects that send and receive messages.

• In the UML, the first kind of representation is called a sequence diagram; the second kind of

representation is called a collaboration diagram.

• Both sequence diagrams and collaboration diagrams are kinds of interaction diagrams.

Common Modeling Techniques

1. Modeling a flow control
To model a flow of control

• Set the context for the interaction, whether it is the system as a whole, a class, or an individual

operation.

• Set the stage for the interaction by identifying which objects play a role; set their initial

properties, including their attribute values, state, and role.

• If your model emphasizes the structural organization of these objects, identify the links that

connect them, relevant to the paths of communication that take place in this interaction.

Specify the nature of the links using the UML's standard stereotypes and constraints, as

necessary.

Modeling a flow control contd..

• In time order, specify the messages that pass from object to object. As necessary, distinguish

the different kinds of messages; include parameters and return values to convey the necessary

detail of this interaction.

• Also to convey the necessary detail of this interaction, adorn each object at every moment in

time with its state and role.

56

This figure is an example of a sequence diagram, which emphasizes the time order of messages.

Eg. Flow of control by time

Figure is semantically equivalent to the previous one but it is drawn as a collaboration diagram, which

emphasizes the structural organization of the objects. This figure shows the same flow of control, but it

also provides a visualization of the links among these objects. Eg. Flow of control by organization

INTERACTION DIAGRAMS

• Interaction diagrams are not only important for modeling the dynamic aspects of a system, but

also for constructing executable systems through forward and reverse engineering.

• An interaction diagram shows an interaction, consisting of a set of objects and their

relationships, including the messages that may be dispatched among them.

• A sequence diagram is an interaction diagram that emphasizes the time ordering of messages.

• A Collaboration diagram is an interaction diagram that emphasizes the structural organization

of the objects that send and receive messages.

57

Common Properties
• An interaction diagram is just a special kind of diagram and shares the same common

properties as do all other diagrams

• A name and graphical contents that are a projection into a model.

Contents
Interaction diagrams commonly contain

• Objects

• Links

• Messages

Sequence Diagrams
• Describe the flow of messages, events, actions between objects

• Show concurrent processes and activations

• Show time sequences that are not easily depicted in other diagrams

• Typically used during analysis and design to document and understand the logical flow of

your system.

• A sequence diagram emphasizes the time ordering messages

• Sequence Diagram Key Parts
• participant: object or entity that acts in the diagram

• – diagram starts with an unattached "found message" arrow

• message: communication between participant objects

• the axes in a sequence diagram:

• – horizontal: which object/participant is acting

• – vertical: time (down -> forward in time)

SEQUENCE DIAGRAM

58

Fig: Sequence Diagram (make a phone call)

Collaboration Diagrams
• A collaboration diagram emphasizes the organization of the objects that participate in an

interaction.

• In the collaboration diagram, the method call sequence is indicated by some numbering

technique.

• The number indicates how the methods are called one after another.

• Collaboration diagrams have two features that distinguish them from sequence diagrams.

• First, there is the path. To indicate how one object is linked to another, you can attach a path

stereotype to the far end of a link (such as <<local>>, indicating that the designated object is

local to the sender).

• Second, there is the sequence number. To indicate the time order of a message, you prefix the

message with a number (starting with the message numbered 1), increasing monotonically for

each new message in the flow of control (2, 3, and so on).

59

Fig: COLLABORATION DIAGRAM

Common Modeling Techniques

1. Modeling flow control by Time ordering
• Set the context for the interaction, whether it is a system, subsystem, operation, or class, or one

scenario of a use case or collaboration.

• Set the stage for the interaction by identifying which objects play a role in the interaction. Lay

them out on the sequence diagram from left to right, placing the more important objects to the

left and their neighboring objects to the right.

• Set the lifeline for each object. In most cases, objects will persist through the entire interaction.

For those objects that are created and destroyed during the interaction, set their lifelines, as

appropriate, and explicitly indicate their birth and death with appropriately stereotyped

messages

• Starting with the message that initiates this interaction, lay out each subsequent message from

top to bottom between the lifelines, showing each message's properties (such as its

parameters), as necessary to explain the semantics of the interaction.

• If you need to visualize the nesting of messages or the points in time when actual computation

is taking place, adorn each object's lifeline with its focus of control.

• If you need to specify time or space constraints, adorn each message with a timing mark and

attach suitable time or space constraints.

• If you need to specify this flow of control more formally, attach pre- and postconditions to

each message.

60

Eg. Modeling Flows of Control by Time Ordering

2. Modeling Flows of control by organization

• Set the context for the interaction, whether it is a system, subsystem, operation, or class, or one

scenario of a use case or collaboration.

• Set the stage for the interaction by identifying which objects play a role in the interaction. Lay

them out on the collaboration diagram as vertices in a graph, placing the more important

objects in the center of the diagram and their neighboring objects to the outside.

• Set the initial properties of each of these objects. If the attribute values, tagged values, state, or

role of any object changes in significant ways over the duration of the interaction, place a

duplicate object on the diagram, update it with these new values, and connect them by a

message stereotyped as become or copy (with a suitable sequence number).

• Specify the links among these objects, along which messages may pass.

- Lay out the association links first; these are the most important ones, because they

represent structural connections.

- Lay out other links next, and adorn them with suitable path stereotypes (such as

global and local) to explicitly specify how these objects are related to one another.

• Starting with the message that initiates this interaction, attach each subsequent message to the

appropriate link, setting its sequence number, as appropriate. Show nesting by using Dewey

decimal numbering.

• If you need to specify time or space constraints, adorn each message with a timing mark and

attach suitable time or space constraints.

• If you need to specify this flow of control more formally, attach pre- and post conditions to

each message.

61

Fig: Modeling Flows of control by organization

Use Cases

• A use case is a description of a set of sequences of actions, including variants, that a system

performs to yield an observable result of value to an actor.

• Graphically, a use case is rendered as an ellipse.

Names
• Every use case must have a name that distinguishes it from other use cases. A name is a

textual string.

• name alone is known as a simple name; a path name is the use case name prefixed by the

name of the package in which that use case lives.

• A use case is typically drawn showing only its name.

Fig: Simple and Path Names

Note
• A use case name may be text consisting of any number of letters, numbers, and most

punctuation marks and may continue over several lines

Use Cases and Actors
• An actor represents a coherent set of roles that users of use cases play when interacting with

these use cases.

• An actor represents a role that a human, a hardware device, or eve another system plays with a

system.

As Figure indicates, actors are rendered as stick figures. You can define general kinds of actors (such

as Customer) and specialize them (such as CommercialCustomer) using generalization relationships.

62

Fig: Actors

Use Cases and Flow of Events

A use case describes what a system (or a subsystem, class, or interface) does but it does not specify

how it does it. When you model, it's important that you keep clear the separation of concerns between

this outside and inside view.

For example, in the context of an ATM system, you might describe the use case ValidateUser in

the following way:

Main flow of events:

• The use case starts when the system prompts the Customer for a PIN number. The Customer

can now enter a PIN number via the keypad. The Customer commits the entry by pressing the

Enter button. The system then checks this PIN number to see if it is valid. If the PIN number is

valid, the system acknowledges the entry, thus ending the use case.

Exceptional flow of events:

• The Customer can cancel a transaction at any time by pressing the Cancel button, thus

restarting the use case. No changes are made to the Customer's account.

Exceptional flow of events:

• The Customer can clear a PIN number anytime before committing it and reenter a new PIN

number.

Exceptional flow of events:

• If the Customer enters an invalid PIN number, the use case restarts. If this happens three times

in a row, the system cancels the entire transaction, preventing the Customer from interacting

with the ATM for 60 seconds.

63

Use Cases and Scenarios

A Scenario is a specific sequence of actions that illustrates behavior.

• Scenarios are to use cases as instances are to classes, meaning that a scenario is basically one

instance of a use case.

Use Cases and Collaborations
• A use case captures the intended behavior of the system (or subsystem, class, or interface) you

are developing, without having to specify how that behavior is implemented.

• That's an important separation because the analysis of a system (which specifies behavior)

should, as much as possible, not be influenced by implementation issues (which specify how

that behavior is to be carried out)

As Figure shows, you can explicitly specify the realization of a use case by a collaboration.

Fig: Use Cases and Collaborations

Organizing Use Cases

It is also possible to organize use cases by specifying generalization, include, and extend relationships

among them.

• Apply these relationships in order to factor common behavior (by pulling such behavior from

other use cases that it includes) and in order to factor variants (by pushing such behavior into

other use cases that extend it).

• An include relationship between use cases means that the base use case explicitly incorporates

the behavior of another use case at a location specified in the base.

• An extend relationship between use cases means that the base use case implicitly incorporates

the behavior of another use case at a location specified indirectly by the extending use case.

64

Fig: Generalization, Include, and Extend

Common Modeling Techniques

1. Modeling the Behavior of an Element
To model the behavior of an element,

• Identify the actors that interact with the element. Candidate actors include groups that require

certain behavior to perform their tasks or that are needed directly or indirectly to perform the

element's functions.

• Organize actors by identifying general and more specialized roles.

• For each actor, consider the primary ways in which that actor interacts with the element.

Consider also interactions that change the state of the element or its environment or that

involve a response to some event.

• Consider also the exceptional ways in which each actor interacts with the element.

• Organize these behaviors as use cases, applying include and extend relationships to factor

common behavior and distinguish exceptional behavior

Fig: Modeling the Behavior of an Element

65

Use Case Diagrams

• A use case diagram is a diagram that shows a set of use cases and actors and their

relationships.

Common Properties
• A use case diagram is just a special kind of diagram and shares the same common properties

as do all other diagrams.

• a name and graphical contents that are a projection into a model.

Contents
Use case diagrams commonly contain

• Use cases

• Actors

• Dependency, generalization, and association relationships

Like all other diagrams, use case diagrams may contain notes and constraints.

Common Modeling Techniques

1. Modeling the Context of a System
To model the context of a system,

• Identify the actors that surround the system by considering which groups require help from the

system to perform their tasks; which groups are needed to execute the system's functions;

which groups interact with external hardware or other software systems; and which groups

perform secondary functions for administration and maintenance.

• Organize actors that are similar to one another in a generalization/specialization hierarchy.

• Where it aids understandability, provide a stereotype for each such actor.

• Populate a use case diagram with these actors and specify the paths of communication from

each actor to the system's use cases.

• Fig: Modeling the Context of a System – Credit card validation system

66

2. Modeling the Requirements of a System
To model the requirements of a system,

• Establish the context of the system by identifying the actors that surround it.

• For each actor, consider the behavior that each expects or requires the system to provide.

• Name these common behaviors as use cases.

• Factor common behavior into new use cases that are used by others; factor variant behavior

into new use cases that extend more main line flows.

• Model these use cases, actors, and their relationships in a use case diagram.

• Adorn these use cases with notes that assert nonfunctional requirements; you may have to

attach some of these to the whole system.

Fig: Modeling the Requirements of a System

3. Forward and Reverse Engineering
 Forward engineering is the process of transforming a model into code through a mapping to

an implementation language

To forward engineer a use case diagram
• For each use case in the diagram, identify its flow of events and its exceptional flow of events.

• Depending on how deeply you choose to test, generate a test script for each flow, using the

flow's preconditions as the test's initial state and its postconditions as its success criteria.

• As necessary, generate test scaffolding to represent each actor that interacts with the use case.

Actors that push information to the element or are acted on by the element may either be

simulated or substituted by its real-world equivalent.

67

• Use tools to run these tests each time you release the element to which the use case diagram

applies.

To reverse engineer a use case diagram,
• Identify each actor that interacts with the system.

• For each actor, consider the manner in which that actor interacts with the system, changes the

state of the system or its environment, or responds to some event.

• Trace the flow of events in the executable system relative to each actor. Start with primary

flows and only later consider alternative paths.

• Cluster related flows by declaring a corresponding use case. Consider modeling variants using

extend relationships, and consider modeling common flows by applying include relationships.

• Render these actors and use cases in a use case diagram, and establish their relationships.

Activity Diagrams

• Activity diagrams are one of the five diagrams in the UML for modeling the dynamic aspects

of systems.

• An activity diagram shows the flow from activity to activity.

• Activity diagrams can use to model the dynamic aspects of a system. It involves modeling the

sequential (and possibly concurrent) steps in a computational process.

• With an activity diagram, you can also model the flow of an object as it moves from state to

state at different points in the flow of control.

Activity diagrams commonly contain
• Activity states and action states

• Transitions

• Objects

Action States and Activity States
• Action states are atomic and cannot be decomposed

– meaning that events may occur, but the work of the action state is not interrupted.

Finally, the work of an action state is generally considered to take insignificant

execution time.Work of the action state is not interrupted.

• Activity states can be further decomposed

– Their activity being represented by other activity diagrams

– Activity states are not atomic, meaning that they may be interrupted and, in general,

are considered to take some duration to complete. They may be interrupted.

Fig: Action States

68

Fig: Activity States

Transitions
• Triggerless transitions may have guard conditions, meaning that such a transition will fire only if

that condition is met; guard conditions.

• When the action or activity of a state completes, flow of control passes immediately to the next

action or activity state. You specify this flow by using transitions to show the path from one

action or activity state to the next action or activity state.

Branching
• Branches are a notational convenience, semantically equivalent to multiple transitions with

guards.

• Include a branch, which specifies alternate paths taken based on some Boolean expression.

• A branch may have one incoming transition and two or more outgoing ones.

• On each outgoing transition, place a Boolean expression, which is evaluated only once on

entering the branch.

69

Forking and Joining
• Use a synchronization bar to specify the forking and joining of parallel flows of control

• A synchronization bar is rendered as a thick horizontal or vertical line.

Fork
• A fork may have one incoming transitions and two or more outgoing transitions

– each transition represents an independent flow of control

– conceptually, the activities of each of outgoing transitions are concurrent

• either truly concurrent (multiple nodes)

• or sequential yet interleaved (one node)

Join
• A join may have two or more incoming transitions and one outgoing transition

– above the join, the activities associated with each of these paths continues in parallel

– at the join, the concurrent flows synchronize

• each waits until all incoming flows have reached the join, at which point one

flow of control continues on below the join

For example, consider the concurrent flows involved in controlling an audio-animatronic device that

mimics human speech and gestures.

Figure - Forking and Joining

Swimlanes
• In the UML, each group is called a swimlane because, visually, each group is divided from its

neighbor by a vertical solid line.

• A swimlane specifies a locus of activities.

• Each swimlane has a name unique within its diagram. A swimlane really has no deep

semantics, except that it may represent some real-world entity.

• Each swimlane represents a high-level responsibility for part of the overall activity of an

activity diagram.

70

• swimlane may eventually be implemented by one or more classes. In an activity diagram

partitioned into swimlanes, every activity belongs to exactly one swimlane, but transitions

may cross lanes.

Fig: Swimlanes

Object Flow
In addition to showing the flow of an object through an activity diagram, you can also show how its

role, state and attribute values change. As shown in the figure, you represent the state of an object by

naming its state in brackets below the object's name. Similarly, you can represent the value of an

object's attributes by rendering them in a compartment below the object's name.

71

Common Modeling Techniques

1. Modeling a Workflow - To model a workflow,

• Establish a focus for the workflow. For nontrivial systems, it's impossible to show all

interesting workflows in one diagram.

• Select the business objects that have the high-level responsibilities for parts of the overall

workflow. These may be real things from the vocabulary of the system, or they may be more

abstract. In either case, create a swimlane for each important business object.

• Identify the preconditions of the workflow's initial state and the postconditions of the

workflow's final state. This is important in helping you model the boundaries of the workflow.

• Beginning at the workflow's initial state, specify the activities and actions that take place over

time and render them in the activity diagram as either activity states or action states.

• For complicated actions, or for sets of actions that appear multiple times, collapse these into

activity states, and provide a separate activity diagram that expands on each.

• Render the transitions that connect these activity and action states. Start with the sequential

flows in the workflow first, next consider branching, and only then consider forking and

joining.

• If there are important objects that are involved in the workflow, render them in the activity

diagram, as well. Show their changing values and state as necessary to communicate the intent

of the object flow.

72

Figure : Modeling a Workflow

2. Modeling an Operation - To model an operation

• Collect the abstractions that are involved in this operation. This includes the operation's

parameters (including its return type, if any), the attributes of the enclosing class, and certain

neighboring classes.

• Identify the preconditions at the operation's initial state and the postconditions at the

operation's final state. Also identify any invariants of the enclosing class that must hold during

the execution of the operation.

• Beginning at the operation's initial state, specify the activities and actions that take place over

time and render them in the activity diagram as either activity states or action states.

• Use branching as necessary to specify conditional paths and iteration.

• Only if this operation is owned by an active class, use forking and joining as necessary to

specify parallel flows of control.

73

Figure : Modeling an Operation

74

Module - IV

Events and signals, state machines, processes and threads, time and space.

state chart and state chart diagrams. Case study: The next gen POS system.

Events and signals

• An event is the specification of a significant occurrence that has a location in time and space.

• In the context of state machines, an event is an occurrence of a stimulus that can trigger a state

transition.

• A signal is a kind of event that represents the specification of an asynchronous stimulus

communicated between instances.

Kinds of Events
• Events may be external or internal. External events are those that pass between the system and

its actors.

• For example, the pushing of a button and an interrupt from a collision sensor are both

examples of external events.

• Internal events are those that pass among the objects that live inside the system. An overflow

exception is an example of an internal event.

75

1. Signal Event
• A signal event represents a named object that is dispatched (thrown) asynchronously by one

object and then received (caught) by another. Exceptions are an example of internal signal.

• A signal event is an asynchronous event

• Signal events may have instances, generalization relationships, attributes and operations.

Attributes of a signal serve as its parameters.

• A signal event may be sent as the action of a state transition in a state machine or the sending

of a message in an interaction.

• Signals are modeled as stereotyped classes and the relationship between an operation and the

events by using a dependency relationship, stereotyped as send.

Fig: Signals

2. Call Events

• Just as a signal event represents the occurrence of a signal, a call event represents the dispatch

of an operation.

• Whereas a signal is an asynchronous event, a call event is, in general, synchronous.

• It means when an object invokes an operation on another object that has a state machine,

control passes from the sender to the receiver, the transition is triggered by the event, the

operation is completed, the receiver transitions to a new state, and control returns to the

sender.

3. Time and Change Events

• A time event is an event that represents the passage of time. In the UML you model a time

event by using the keyword after followed by some expression that evaluates to a period of

time.

• A change event is an event that represents a change in state or the satisfaction of some

condition. In the UML you model a change event by using the keyword when followed by

some Boolean expression.

76

4. Sending and Receiving Events

• Signal events and call events involve at least two objects: the object that sends the signal or

invokes the operation, and the object to which the event is directed.

• Signals are asynchronous, and asynchronous calls are themselves signals, the semantics of

events interact with the semantics of active objects and passive objects.

Common Modeling Techniques

1. Modeling a Family of Signals
 To model a family of signals,

• Consider all the different kinds of signals to which a given set of active objects may respond.

• Look for the common kinds of signals and place them in a generalization/specialization

hierarchy using inheritance.

• Look for the opportunity for polymorphism in the state machines of these active objects.

77

2. Modeling Exceptions
• For each class and interface, and for each operation of such elements, consider the exceptional

conditions that may be raised.

• Arrange these exceptions in a hierarchy. Elevate general ones, lower specialized ones, and

introduce intermediate exceptions, as necessary.

• For each operation, specify the exceptions that it may raise. You can do so explicitly (by

showing send dependencies from an operation to its exceptions) or you can put this in the

operation's specification.

State Machines

Terms and Concepts
• A state machine is a behavior that specifies the sequences of states an object goes through

during its lifetime in response to events, together with its responses to those events.

• A state is a condition or situation during the life of an object during which it satisfies some

condition, performs some activity, or waits for some event.

States
A state is a condition or situation during the life of an object during which it satisfies some condition,

performs some activity, or waits for some event. An object remains in a state for a finite amount of

time.

78

A state has several parts.

Name A textual string that distinguishes the state from other states; a state

may be anonymous, meaning that it has no name

Entry/exit actions Actions executed on entering and exiting the state, respectively

Internal Transitions Transitions that are handled without causing a change in state

Substates The nested structure of a state, involving disjoint (sequentially active)

or concurrent (concurrently active) substates

Deferred

events

A list of events that are not handled in that state but, rather, are

postponed and queued for handling by the object in another state

Initial and Final States
Figure shows, there are two special states that may be defined for an object's state machine.

First, there's the initial state, which indicates the default starting place for the state machine or substate.

An initial state is represented as a filled black circle.

Second, there's the final state, which indicates that the execution of the state machine or the enclosing

state has been completed. A final state is represented as a filled black circle surrounded by an unfilled

circle.

Transitions
A transition is a relationship between two states indicating that an object in the first state will perform

certain actions and enter the second state when a specified event occurs and specified conditions are

satisfied. A transition has five parts.

Source state The state affected by the transition; if an object is in the source state, an outgoing

transition may fire when the object receives the trigger event of the transition and if

the guard condition, if any, is satisfied

Event

trigger

The event whose reception by the object in the source state makes the transition

eligible to fire, providing its guard condition is satisfied

79

Guard

condition

A Boolean expression that is evaluated when the transition is triggered by the

reception of the event trigger; if the expression evaluates True, the transition is

eligible to fire; if the expression evaluates False, the transition does not fire and if

there is no other transition that could be triggered by that same event, the event is

Lost

Action An executable atomic computation that may directly act on the object that owns the

state machine, and indirectly on other objects that are visible to the object

Target

state

The state that is active after the completion of the transition

Event Trigger
• An event is the specification of a significant occurrence that has a location in time and space.

An event is an occurrence of a stimulus that can trigger a state transition.

• A signal or a call may have parameters whose values are available to the transition, including

expressions for the guard condition and action.

Guard
• A guard condition is rendered as a Boolean expression enclosed in square brackets and placed

after the trigger event.

• A guard condition is evaluated only after the trigger event for its transition occurs.

Action
• An action is an executable atomic computation. Actions may include operation calls the

creation or destruction of another object, or the sending of a signal to an object.

80

Common Modeling Techniques

1. Modeling the Lifetime of an Object

• Set the context for the state machine, whether it is a class, a use case, or the system as a

whole.

• Establish the initial and final states for the object. To guide the rest of your model, possibly

state the pre- and postconditions of the initial and final states, respectively.

• Decide on the events to which this object may respond.

• Starting from the initial state to the final state, lay out the top-level states the object may be

in. Connect these states with transitions triggered by the appropriate events. Continue by

adding actions to these transitions.

• Identify any entry or exit actions (especially if you find that the idiom they cover is used in

the state machine).

• Expand these states as necessary by using substates.

• Check that all actions mentioned in the state machine are sustained by the relationships,

methods, and operations of the enclosing object.

• Check that all actions mentioned in the state machine are sustained by the relationships,

methods, and operations of the enclosing object.

• Trace through the state machine, either manually or by using tools, to check it against

expected sequences of events and their responses. Be especially diligent in looking for

unreachable states and states in which the machine may get stuck.

• After rearranging your state machine, check it against expected sequences again to ensure

that you have not changed the object's semantics.

Processes and Threads

Terms and Concepts
• A process is a heavyweight flow that can execute concurrently with other processes.

• A thread is a lightweight flow that can execute concurrently with other threads within the

same process.

• An active object is an object that owns a process or thread and can initiate control activity.

• Processes and threads are rendered as stereotyped active classes.

• An active class is a class whose instances are active objects.

81

Flow of Control
• In a sequential system, there is a single flow of control. i.e, one thing, and one thing only, can

take place at a time.

In a concurrent system, there is multiple simultaneous flow of control i.e, more than one thing

can take place at a time.

Classes and Events

• Active classes are just classes which represents an independent flow of control

• Active classes share the same properties as all other classes.

• When an active object is created, the associated flow of control is started; when the active

object is destroyed, the associated flow of control is terminated

• two standard stereotypes that apply to active classes are, <<process>> – Specifies a

heavyweight flow that can execute concurrently with other processes. (heavyweight means, a

thing known to the OS itself and runs in an independent address space) <<thread>> –

Specifies a lightweight flow that can execute concurrently with other threads within the same

process (lightweight means, known to the OS itself.)

• All the threads that live in the context of a process are peers of one another.

Communication
• In a system with both active and passive objects, there are four possible combinations of

interaction.

• First, a message may be passed from one passive object to another.

• Second, a message may be passed from one active object to another.

• In inter-process communication there are two possible styles of communication. First, one

active object might synchronously call an operation of another. Second, one active object

might asynchronously send a signal or call an operation of another object.

• a synchronous message is rendered as a full arrow and an asynchronous message is rendered

as a half arrow.

• Third, a message may be passed from an active object to a passive object.

• Fourth, a message may be passed from a passive object to an active one.

Synchronization
• Synchronization means arranging the flow of controls of objects so that mutual exclusion will

be guaranteed.

• Three approaches are there to handle synchronization:

• Sequential – Callers must coordinate outside the object so that only one flow is in the object at

a time

• Guarded – multiple flow of control is sequentialized with the help of object’s guarded

operations. in effect it becomes sequential.

• Concurrent – multiple flow of control is guaranteed by treating each operation as atomic

• synchronization are rendered in the operations of active classes with the help of constraints

82

Common Modeling Techniques

1. Modeling Multiple Flows of Control

• Identify the opportunities for concurrent action and vreify each flow as an active class.

Generalize common sets of active objects into an active class.

• Capture these static decisions in class diagrams, explicitly highlighting each active class.

• Capture these static decisions in class diagrams, explicitly highlighting each active class.

• Consider how each group of classes collaborates with one another dynamically. Capture those

decisions in interaction diagrams. Explicitly show active objects as the root of such flows.

• Identify each related sequence by identifying it with the name of the active object. Pay close

attention to communication among active objects. Apply synchronous and asynchronous

messaging, as appropriate.

• Pay close attention to synchronization among these active objects and the passive objects with

which they collaborate. Apply sequential, guarded, or concurrent operation semantics, as

appropriate.

2. Modeling Interprocess Communication

• Model the multiple flows of control.

• Consider which of these active objects represent processes and which represent threads.

• Model messaging using asynchronous communication. model remote procedure calls using

synchronous communication.

• Informally specify the underlying mechanism for communication by using notes, or more

formally by using collaborations.

83

Time and Space

Terms and Concepts
• A time expression is an expression that evaluates to an absolute or relative value of time.

• A timing constraint is a semantic statement about the relative or absolute value of time.

Graphically, a timing constraint is rendered as for any constraint.

• Location is the placement of a component on a node. Graphically, location is rendered as a

tagged value.

Time
• Real time systems are, by their very name, time-critical systems.

• Events may happen at regular or irregular times; the response to an event must happen at

predictable absolute times or at predictable times relative to the event itself.

• The passing of messages represents the dynamic aspect of any system, so when you model the

time-critical nature of a system with the UML, you can give a name to each message in an

interaction to be used as a timing mark

84

Common Modeling Techniques

1. Modeling Timing Constraints

• For each event in an interaction, consider whether it must start at some absolute time.

Model that real time property as a timing constraint on the message.

• For each interesting sequence of messages in an interaction, consider whether there is an

associated maximum relative time for that sequence. Model that real time property as a

timing constraint on the sequence.

• For each time critical operation in each class, consider its time complexity. Model those

semantics as timing constraints on the operation

2. Modeling the Distribution of Objects

• For each interesting class of objects in your system, consider its locality of reference. In other

words, consider all its neighbors and their locations. A tightly coupled locality will have

neighboring objects close by

• Next consider patterns of interaction among related sets of objects. Co-locate sets of objects

that have high degrees of interaction, to reduce the cost of communication. Partition sets of

objects that have low degrees of interaction.

• Next consider the distribution of responsibilities across the system. Redistribute your objects

to balance the load of each node.

• Consider also issues of security, volatility, and quality of service, and redistribute your objects

as appropriate.

85

3. Modeling Objects that Migrate

• Select an underlying mechanism for physically transporting objects across nodes.

• Render the allocation of an object to a node by explicitly indicating its location as a tagged

value.

• Using the become and copy stereotyped messages, render the allocation of an object to a new

node.

• Consider the issues of synchronization (keeping the state of cloned objects consistent) and

identity (preserving the name of the object as it moves).

86

Statechart Diagrams

Terms and Concepts
• A statechart diagram shows a state machine, emphasizing the flow of control from state to

state.

• A state machine is a behavior that specifies the sequences of states an object goes through

during its lifetime in response to events, together with its responses to those events.

• A state is a condition or situation in the life of an object during which it satisfies some

condition, performs some activity, or waits for some event.

Contents - Statechart diagrams commonly contain

 Simple states and composite states

 Transitions, including events and actions

• A statechart diagram is basically a projection of the elements found in a state machine.

• statechart diagrams contain branches, forks, joins, action states, activity states, objects, initial

states, final states, history states.

Common uses
• A statechart diagram will use to model some dynamic aspect of a system.

• It is also used in the context of virtually any modeling element.

• Typically, use statechart diagrams in the context of the system as a whole, a subsystem, or a

class.

• It can also be used to attach a statechart diagrams to use cases.

Common Modeling Technique

1. Modeling Reactive Objects - To model a reactive object,

• Choose the context for the state machine, whether it is a class, a use case, or the system as a

whole.

• Choose the initial and final states for the object. To guide the rest of your model, possibly state

the pre- and post-conditions of the initial and final states, respectively.

• Decide on the stable states of the object by considering the conditions in which the object may

exist for some identifiable period of time. Start with the high-level states of the object and only

then consider its possible substates.

• Decide on the meaningful partial ordering of stable states over the lifetime of the object.

• Decide on the events that may trigger a transition from state to state. Model these events as

triggers to transitions that move from one legal ordering of states to another.

• Attach actions to these transitions (as in a Mealy machine) and/or to these states (as in a

Moore machine).

• Consider ways to simplify your machine by using substates, branches, forks, joins, and history

states.

87

 Fig: Modeling Reactive Objects

2. Forward and Reverse Engineering

• Forward engineering(the creation of code from a model) is possible for statechart diagrams,

especially if the context of the diagram is a class.

• The forward engineering tool must generate the necessary private attributes and final static

constants.

• Reverse engineering (the creation of a model from code) is theoretically possible, but

practically not very useful. The choice of what constitutes a meaningful state is in the eye of

the designer.

• Reverse engineering tools have no capacity for abstraction and therefore cannot automatically

produce meaningful statechart diagrams.

A well-structured statechart diagram

• Is focused on communicating one aspect of a system's dynamics.

• Contains only those elements that are essential to understanding that aspect.

• Provides detail consistent with its level of abstraction (expose only those features that are essential to

understanding).

• Uses a balance between the styles of Mealy and Moore machines.

When you draw a statechart diagram

• Give it a name that communicates its purpose.

• Start with modeling the stable states of the object, then follow with modeling the legal

transitions from state to state. Address branching, concurrency, and object flow as secondary

considerations, possibly in separate diagrams.

• Lay out its elements to minimize lines that cross.

Case study: The next gen POS system

• A POS system is a computerized application used (in part) to record sales and handle

payments; it is typically used in a retail store.

88

• It includes hardware components such as a computer and bar code scanner, and software to run

the system. It interfaces to various service applications, such as a thirdparty tax calculator and

inventory control.

• These systems must be relatively fault-tolerant; that is, even if remote services are temporarily

unavailable (such as the inventory system), they must still be capable of capturing sales and

handling at least cash payments (so that the business is not crippled).

• A POS system increasingly must support multiple and varied client-side terminals and

interfaces. These include a thin-client Web browser terminal, a regular personal computer with

something like a Java Swing graphical user interface, touch screen input, wireless PDAs, and

so forth.

• Each client will desire a unique set of logic to execute at certain predictable points in scenarios

of using the system, such as when a new sale is initiated or when a new line item is added.

Therefore, will need a mechanism to provide this flexibility and customization.

User-Level Goals

• The users (and external systems) need a system to fulfill these goals:

• Cashier: process sales, handle returns, cash in, cash out

• System administrator: manage users, manage security, manage system tables

• Manager: start up, shut down

• Sales activity system: analyze sales data ……….

89

MODULE - V

Component, Component diagrams, Deployment, Deployment diagrams; Case Study: The

Unified Library Application.

Component

• A component is a physical and replaceable part of a system that conforms to and provides the

realization of a set of interfaces. Graphically, a component is rendered as a rectangle with tabs.

Names
• A component name must be unique within its enclosing package

Components and Classes
• There are some significant differences between components and classes.

• Classes represent logical abstractions; components represent physical things that live in the

world of bits. In short, components may live on nodes, classes may not.

• Components represent the physical packaging of otherwise logical components and are at a

different level of abstraction.

• Classes may have attributes and operations directly. In general, components only have

operations that are reachable only through their interfaces.

90

Components and Interfaces

• An interface is a collection of operations that are used to specify a service of a class or a

component. The relationship between component and interface is important. All the most

common component-based operating system facilities (such as COM+, CORBA, and

Enterprise Java Beans) use interfaces as the glue that binds components together.

• An interface that a component realizes is called an export interface, meaning an interface that

the component provides as a service to other components. A component may provide many

export interfaces.

• The interface that a component uses is called an import interface, meaning an interface that the

component conforms to and so builds on.

• A component may conform to many import interfaces.

• A component may both import and export interfaces.

Binary Replaceability

• The basic intent of every component-based operating system facility is to permit the assembly

of systems from binary replaceable parts.

• This means that you can create a system out of components and then evolve that system by

adding new components and replacing old ones, without rebuilding the system.

• Interfaces are the key to making this happen. When you specify an interface, you can drop into

the executable system any component that conforms to or provides that interface.

• You can extend the system by making the components provide new services through other

interfaces, which, in turn, other components can discover and use. These semantics explain the

intent behind the definition of components in the UML.

91

Kinds of Components

Three kinds of components may be distinguished

• First, there are deployment components.

• Second, there are work product components.

• Third are execution components.

Organizing Components
• You can organize components by grouping them in packages in the same manner in which you

organize classes.

• The UML defines five standard stereotypes that apply to components

1. executable

2. library

3. table

4. file

5. document

Common Modeling Techniques

1. Modeling Executables and Libraries
To model executables and libraries:

• Identify the partitioning of your physical system. Consider the impact of technical,

configuration management, and reuse issues.

• Model any executables and libraries as components, using the appropriate standard elements.

If your implementation introduces new kinds of components, introduce a new appropriate

stereotype.

• If it's important for you to manage the seams in your system, model the significant interfaces

that some components use and others realize.

• As necessary to communicate your intent, model the relationships among these executables,

libraries, and interfaces. Most often, you'll want to model the dependencies among these parts

in order to visualize the impact of change.

•

92

2. Modeling Tables, Files, and Documents
To model tables, files, and documents,

• Identify the ancillary components that are part of the physical implementation of your system.

• Model these things as components. If your implementation introduces new kinds of artifacts,

introduce a new appropriate stereotype.

• As necessary to communicate your intent, model the relationships among these ancillary

components and the other executables, libraries, and interfaces in your system.

• Most often, you'll want to model the dependencies among these parts in order to visualize the

impact of change.

3. Modeling an API
To model an API,

• Identify the programmatic seams in your system and model each seam as an interface,

collecting the attributes and operations that form this edge.

• Expose only those properties of the interface that are important to visualize in the given

context; otherwise, hide these properties, keeping them in the interface's specification for

reference, as necessary.

• Model the realization of each API only insofar as it is important to show the configuration of a

specific implementation.

93

4. Modeling Source Code
To model source code,

• Depending on the constraints imposed by your development tools, model the files used to store

the details of all your logical elements, along with their compilation dependencies.

• If it's important for you to bolt these models to your configuration management and version

control tools, you'll want to include tagged values, such as version, author, and check in/check

out information, for each file that's under configuration management.

• As far as possible, let your development tools manage the relationships among these files, and

use the UML only to visualize and document these relationships.

94

Component Diagrams

• A component diagram shows a set of components and their relationships. Graphically, a

component diagram is a collection of vertices and arcs.

Contents
Component diagrams commonly contain

• Components

• Interfaces

• Dependency, generalization, association, and realization relationships Like all other diagrams,

component diagrams may contain notes and constraints.

Common uses
• Component diagrams used to model the static implementation view of a system.

• Typically use component diagrams in one of four ways.

1. To model source code

2. To model executable releases

3. To model physical databases

4. To model adaptable systems

Common Modeling Techniques

1. Modeling Source Code
To model a system's source code:

• Either by forward or reverse engineering, identify the set of source code files of interest and

model them as components stereotyped as files.

• For larger systems, use packages to show groups of source code files.

• Consider exposing a tagged value indicating such information as the version number of the

source code file, its author, and the date it was last changed. Use tools to manage the value of

this tag.

• Model the compilation dependencies among these files using dependencies. Again, use tools

to help generate and manage these dependencies.

2. Modeling an Executable Release
To model an executable release

• Identify the set of components you'd like to model. Typically, this will involve some or all the

components that live on one node, or the distribution of these sets of components across all the

nodes in the system.

95

• Consider the stereotype of each component in this set. For most systems, you'll find a small

number of different kinds of components (such as executables, libraries, tables, files, and

documents). You can use the UML's extensibility mechanisms to provide visual cues for these

stereotypes.

• For each component in this set, consider its relationship to its neighbors. Most often, this will

involve interfaces that are exported (realized) by certain components and then imported (used)

by others. If you want to expose the seams in your system, model these interfaces explicitly. If

you want your model at a higher level of abstraction, elide these relationships by showing only

dependencies among the components.

3. Modeling a Physical Database
To model a physical database:

• Identify the classes in your model that represent your logical database schema.

• Select a strategy for mapping these classes to tables. You will also want to consider the

physical distribution of your databases. Your mapping strategy will be affected by the location

in which you want your data to live on your deployed system.

• To visualize, specify, construct, and document your mapping, create a component diagram that

contains components stereotyped as tables.

• Where possible, use tools to help you transform your logical design into a physical design.

96

4. Modeling Adaptable Systems
• Consider the physical distribution of the components that may migrate from node to node. You

can specify the location of a component instance by marking it with a location tagged value,

which you can then render in a component diagram (although, technically speaking, a diagram

that contains only instances is an object diagram).

• If you want to model the actions that cause a component to migrate, create a corresponding

interaction diagram that contains component instances. You can illustrate a change of location

by drawing the same instance more than once, but with different values for its location tagged

value.

5. Forward and Reverse Engineering

To forward engineer a component diagram:

• For each component, identify the classes or collaborations that the component implements.

• Choose the target for each component. Your choice is basically between source code (a form

that can be manipulated by development tools) or a binary library or executable (a form that

can be dropped into a running system).

• Use tools to forward engineer your models.

To reverse engineer a component diagram,
• Choose the target you want to reverse engineer. Source code can be reverse engineered to

components and then classes. Binary libraries can be reverse engineered to uncover their

interfaces. Executables can be reverse engineered the least.

• Using a tool, point to the code you'd like to reverse engineer. Use your tool to generate a new

model or to modify an existing one that was previously forward engineered.

• Using your tool, create a component diagram by querying the model. For example, you might

start with one or more components, then expand the diagram by following relationships or

neighboring components. Expose or hide the details of the contents of this component diagram

as necessary to communicate your intent.

97

Deployment

• A node is a physical element that exists at run time and represents a computational resource,

generally having at least some memory and, often, processing capability. Graphically, a node

is rendered as a cube.

• Every node must have a name that distinguishes it from other nodes.

• A name is a textual string. That name alone is known as a simple name; a path name is the

node name prefixed by the name of the package in which that node lives.

• A node is typically drawn showing only its name, as in. Just as with classes, you may draw

nodes adorned with tagged values or with additional compartments to expose their details.

Nodes and Components
There are some significant differences between nodes and components.

• Components are things that participate in the execution of a system; nodes are things that

execute components.

• Components represent the physical packaging of otherwise logical elements; nodes represent

the physical deployment of components.

98

Connections

• The most common kind of relationship you'll use among nodes is an association. In this

context, an association represents a physical connection among nodes, such as an Ethernet

connection, a serial line, or a shared bus, as Figure .

Common Modeling Techniques

1. Modeling Processors and Devices
To model processors and devices:

• Identify the computational elements of your system's deployment view and model each as a

node.

• If these elements represent generic processors and devices, then stereotype them as such. If

they are kinds of processors and devices that are part of the vocabulary of your domain, then

specify an appropriate stereotype with an icon for each.

• As with class modeling, consider the attributes and operations that might apply to each node.

99

2. Modeling the Distribution of Components

To model the distribution of components:

• For each significant component in your system, allocate it to a given node.

• Consider duplicate locations for components. It's not uncommon for the same kind of

component (such as specific executables and libraries) to reside on multiple nodes

simultaneously.

• Render this allocation in one of three ways.

• Don't make the allocation visible, but leave it as part of the backplane of your model• that is,

in each node's specification.

• Using dependency relationships, connect each node with the components it deploys.

• List the components deployed on a node in an additional compartment.

Deployment Diagrams

A deployment is a diagram that shows the configuration of run time processing nodes and the

components that live on them. Graphically, a deployment diagram is a collection of vertices and arcs.

Contents
Deployment diagrams commonly contain

• Nodes

• Dependency and association relationships

100

Like all other diagrams, deployment diagrams may contain notes and constraints

Common Uses

When you model the static deployment view of a system, you'll typically use deployment diagrams in

one of three ways.

1. To model embedded systems 2. To model client/server systems 3. To model fully distributed

systems

Common Modeling Techniques

1. Modeling an Embedded System

To model an embedded system:

• Identify the devices and nodes that are unique to your system.

• Provide visual cues, especially for unusual devices, by using the UML's extensibility

mechanisms to define system-specific stereotypes with appropriate icons. At the very least,

you'll want to distinguish processors (which contain software components) and devices

(which, at that level of abstraction, don't directly contain software).

• Model the relationships among these processors and devices in a deployment diagram.

Similarly, specify the relationship between the components in your system's implementation

view and the nodes in your system's deployment view.

• As necessary, expand on any intelligent devices by modeling their structure with a more

detailed deployment diagram

2. Modeling a Client/Server System
To model a client/server system:

101

• Identify the nodes that represent your system's client and server processors.

• Highlight those devices that are germane to the behavior of your system. For example, you'll

want to model special devices, such as credit card readers, badge readers, and display devices

other than monitors, because their placement in the system's hardware topology are likely to be

architecturally significant.

• Provide visual cues for these processors and devices via stereotyping.

• Model the topology of these nodes in a deployment diagram. Similarly, specify the

relationship between the components in your system's implementation view and the nodes in

your system's deployment view.

3. Modeling a Fully Distributed System
To model a fully distributed system:

• Identify the system's devices and processors as for simpler client/server systems.

• If you need to reason about the performance of the system's network or the impact of changes

to the network, be sure to model these communication devices to the level of detail sufficient

to make these assessments.

• Pay close attention to logical groupings of nodes, which you can specify by using packages.

• Model these devices and processors using deployment diagrams. Where possible, use tools

that discover the topology of your system by walking your system's network.

• If you need to focus on the dynamics of your system, introduce use case diagrams to specify

the kinds of behavior you are interested in, and expand on these use cases with interaction

diagrams.

102

4. Forward and Reverse Engineering
 To reverse engineer a deployment diagram:

• Choose the target that you want to reverse engineer. In some cases, you'll want to sweep

across your entire network; in others, you can limit your search.

• Choose also the fidelity of your reverse engineering. In some cases, it's sufficient to reverse

engineer just to the level of all the system's processors; in others, you'll want to reverse

engineer the system's networking peripherals, as well.

• Use a tool that walks across your system, discovering its hardware topology. Record that

topology in a deployment model.

• Along the way, you can use similar tools to discover the components that live on each node,

which you can also record in a deployment model. You'll want to use an intelligent search, for

even a basic personal computer can contain gigabytes of components, many of which may not

be relevant to your system.

• Using your modeling tools, create a deployment diagram by querying the model. For example,

you might start with visualizing the basic client/server topology, then expand on the diagram

by populating certain nodes with components of interest that live on them. Expose or hide the

details of the contents of this deployment diagram as necessary to communicate your intent.

Case Study: The Unified Library Application.

INTRODUCTION

Unified Library Application System emphasizes on the online reservation, issue and return of books.

This system globalizes the present library system. Using this application the member can reserve any

book from anywhere.

Overview of the unified library application system:

1. Librarian lends books and magazines

2. Librarian maintains the list of all the members of library

3. Borrower makes reservation online

4. Borrower can remove reservation online

5. Librarian issues books to the borrower

6. Librarian calculates dues to be paid by the borrower

7. Borrower issues/returns books and/or magazines

8. Librarian places order about the requirements to the master librarian

9. Librarian updates system

10. Master librarian maintains librarians

TEXTUAL ANALYSIS
(a) ACTORS

 i. Librarian ii. Borrower iii. Catalog iv. Master Librarian

(b) VERBS

 i. Borrower:

 1. Logs into the system 2.Browses / searches for books or magazines

 3. Makes/removes reservation 4. Views results and reports from the

 unified library application system

103

 ii. Librarian:

 1. Manages and validates members 2. View reports from the

 system 3.Issues books 4. Calculates dues 5. Takes books 6. Places

 orders to the master librarian 7. Maintains list of books and

 magazine

 iii. Master Librarian

 1. Maintains other librarians

THE END

