
OBJECT ORIENTED PROGRAMMING THROUGH PYHTON

B.Tech III Sem (IARE-R18)

COMPUTER SCIENCE AND ENGINEERING

INSTITUTE OF AERONAUTICAL ENGINEERING
(Autonomous)

DUNDIGAL, HYDERABAD - 500 043

2

Introduction to Python

3

Course outcome / Topic learning outcome

Name of the Topic covered Topic Learning Outcome Course Outcome

Features of python

The basic and advanced

constructs of Python

programming for

developing object

oriented concepts

 Recall the basic

programming constructs in

implementing in Python.

List the course outcome / Topic outcome

4

Outcome achieved

Name of the topic: Features of python

Students will be able to do:

1 Recall the basic programming constructs in implementing in Python.

of Object

TO PYTHON A MODULE –I
INTRODUCTION TO PYTHON

AND OBJECT ORIENTED
CONCEPTS

Contents

• Features of Python

• Data types

• Operators in python

• Input and output

• Control Statements

• Features of object oriented programming system

• Classes and Objects

• Encapsulation

• Inheritance

• Abstraction

• Polymorphism

Guido Van Rossum

2

Brief History of Python Language

3

• Python is a general-purpose, dynamic, interpreted high-level

 programming language.
• Conceptualized in the late 1980’s.
• Created by Guido van Rossum(Netherlands) and first released in 1991.
• A descendant of ABC language.
• Open sourced from the beginning, managed by Python Software
 Foundation.
• Scalable, Object oriented and functional from the beginning.
• Python versions

First version 0.9.0 in February 1991
Version 1.0 in January 1994
 Version 2.0 in October 2000
Version 3.0 in 2008

Best Programming Language

 Features of Python Language

• Simple

• Easy to learn

• Open source

• High level language

• Dynamically typed

• Platform independent

• Portable

• Procedure and object oriented

Python Interactive Shell

• Python provides an interactive shell, which is used in between the user and

operating system

• In other words, Python provides a command line interface with the Python

shell known as Python interactive shell.

• Python commands are run using the Python interactive shell.

• User can work with Python shell in two modes: interactive mode and script

mode.

• Interactive mode allows the user to interact with the operating system. When

the user types any Python statement / expression, the interpreter displays the

results instantly.

• In script mode, user types a Python program in a file and then uses the

interpreter to execute the file. In interactive mode, user can’t save the

statements / expressions and need to retype once again to re-run them.

Interactive Mode

• When the user starts the Python IDLE the following window will
appear and it shows the interactive shell. This window shows the
primary prompt ‘>>>’ where the user types commands to run by the
interpreter.

Script Mode

• In this mode, user types a set of statements called a program in a file
and then save the program with ‘filename.py’ as extension. Then the
interpreter is used to execute the file contents. This mode is
convenient when the user wants to write and save multiple lines of
code, so that it can be easily modifiable and reusable.

Python Shell as a Simple Calculator

Flavors of Python

• Flavors of Python are nothing but different types of Python compilers
available, which are useful to integrate various programming
languages into Python. The following are some of the important and
popularly used flavors of Python.

 Cpython

 Jython

 IronPython

 Pypy

 Pythonxy

 RubyPython

 StacklessPython

 ActivePython

Built-in Data Types in Python

• Every programming language has the ability to create and manipulate
object / variable. In a program variables are used to store values so
that it can be used later. Every object / variable has an identity, type
and a value which it refers. Identity of an object is nothing but its
address in memory when it is created. Type or data type indicates is a
range of values and operations allowed on those values.

Keywords in Python

• Keywords are reserved words with predefined meaning in any
programming languages and these words can’t be used as normal
variables. One can check the number of keywords using help()
command -> keywords in Python.

Assigning values to variables

>>> a = 100 # a is integer

>>> height = 50.5 #height is float

>>> player = "Sachin" #player is string

>>> x = y = z = 10 # This statement assign 10 to x, y, z

>>> x = 5

>>> x #assigns 5 to x

>>> 5 = x #SyntaxError: can't assign to literal

Multiple Assignments

• Consider an example where multiple values are assigned to the same
variable and when the program runs, it prints different results.

Standard Data Types in Python

• Python has five standard data types, named Numbers, None,
Sequences, Sets and Mappings. Python sets the type of variable based
on the type of value assigned to it and it will automatically change the
variable type if the variable is set to some other value.

Numbers

Python supports the following numeric types.

• int - integers of unlimited length in Python 3.x .

• long - long integers of unlimited length, but exists only in Python 2.x.

• float - floating point numbers.

• complex - complex numbers.

Boolean

• True and False are Boolean literals used in Python and these are used
to represent the truth / falsity of any condition / expression.

None

• In Python None keyword is an object which is equivalent to Null. A
None can be assigned to a variable during declaration or while
evaluating an expression.

Strings

• Strings are identified as group of characters represented in quotation
marks. Python allows both a pair of single and double quotes for
writing strings. Strings written in triple quotes can span multiple lines
of text. Strings in Python are immutable data type i.e. each time a
new string object is created when one makes any changes to a string.

Strings

•Python can also manipulate strings. They can be enclosed in single
quotes (‘abc’) or double quotes (“abc”) with the same result.

Tuple

• A tuple contains a list of items enclosed in parentheses
and none of the items cannot be updated. Hence tuples
are immutable.

List

• A list contains items separated by commas and enclosed within
square brackets. A list in Python can contain heterogeneous data
types.

Sets

• In Python sets are unordered collection of objects enclosed in
parenthesis and there are basically two types of sets:

 Sets - These are mutable and can be updated with new elements once
sets are defined.

 Frozen Sets - These are immutable and cannot be updated with new
elements once frozen sets are created.

Dictionary

• In Python dictionary data type consists of key-value pairs and it is
enclosed by curly braces. Values can be assigned and accessed using
square brackets.

Mutable and Immutable Data Types

• The following table gives examples of mutable and immutable data
types in Python.

Mutable Data Types Immutable Data Types

list int, long

set float, complex

dict str

tuple

frozenset

Operators in Python

All the operators in Python are classified according to their nature and
type and they are:

• Arithmetic Operators

• Relational Operators

• Logical Operators

• Assignment Operators

• Bitwise Operators

• Boolean Operators

• Membership Operators

• Identity Operators

Arithmetic Operators

• These operators perform basic arithmetic operations like addition,
subtraction, multiplication, division etc. and these operators are
binary operators that means these operators acts on two operands.
And there are 7 binary arithmetic operators available in Python.

Operator Meaning Example Result

+ Addition 10 + 7 12

- Subtraction 10.0 - 1.5 8.5

* Multiplication 30 * 3 900

/ Float Division 5 / 2 2.5

// Integer Division 5 // 2 2

** Exponentiation 3 ** 2 9

% Remainder 10 % 3 1

Operator Priority

Parenthesis ((), []) First

Exponentiation (**) Second

Multiplication (*), Division (/, //), Modulus (%) Third

Addition (+), Subtraction (-) Fourth

Assignment Fifth

Relational Operators

• Relational operators are used for comparison and the output is either
True or False depending on the values we compare. The following
table shows the list of relational operators with example.

Operator Meaning Example Result

< Less than 5 < 7 True

> Greater than 9 > 5 True

<= Less than equal to 8 <= 8 True

>= Greater than equal

to

7 >= 9 False

== Equal to 10 == 20 False

!= Not equal to 9 != 6 True

Logical Operators

• Logical operators are used to form compound conditions which are a
combination of more than one simple condition. Each of the simple
conditions are evaluated first and based on the result compound
condition is evaluated. The result of the expression is either True or
False based on the result of simple conditions.

Operator Meaning Example Result

and Logical AND (5 > 7) and (3 < 5) False

or Logical OR (7 == 7) or (5 != 5) True

not Logical NOT not(3 <= 2) True

Assignment Operators

• These operators are used to store a value into a variable and also
useful to perform simple arithmetic operations. Assignment operators
are of two types: simple assignment operator and augmented
assignment operator. Simple assignment operators are combined with
arithmetic operators to form augmented assignment operators. The
following table shows a list of assignment operators and its use.

 Operator Meaning Example Result

= Simple assignment a = 10 10

+= Addition assignment a = 5

a += 8

13

-= Subtraction assignment b = 5

b -= 8

-3

*= Multiplication assignment a =10

a *= 8

80

/= Float Division assignment a = 10

a /= 8

1.25

//= Integer Division assignment b = 10

b //= 10

1

**= Exponentiation assignment a = 10

a %= 5

0

%= Remainder assignment b = 10

b ** = 8

100000000

Bitwise Operators

• Bitwise Operators acts on individual bits of the operands. These
operators directly act on binary numbers. If we want to use these
operators on integers then first these numbers are converted into
binary numbers and then bitwise operators act on those bits. The
following table shows the list of bitwise operators available in Python.

Operator Meaning Example Result

& Bitwise AND a = 10 = 0000 1010

b = 11 = 0000 1011

a & b = 0000 1010 = 10

a & b = 10

| Bitwise OR a = 10 = 0000 1010

b = 11 = 0000 1011

a | b = 0000 1011 = 11

a | b = 11

^ Bitwise XOR a = 10 = 0000 1010

b = 11 = 0000 1011

a ^ b = 0000 0001 = 1

a ^ b = 1

~ Bitwise Complement a = 10 = 0000 1010

~a = 1111 0101 = -11

~a = -11

<< Bitwise Left Shift a = 10

 a << 2 = 40

a << 2 = 40

>> Bitwise Right Shift a = 10

 a >> 2 = 2

a >> 2 = 2

Boolean Operators

• There are three boolean operators that act on bool type literals and
provide bool type output. The result of the boolean operators are
either True or False.

Operator Meaning Example Result

and Boolean

AND

a = True, b = False

a and b = True and

False

a and b = False

or Boolean OR a = True, b = False

a or b = True or

False

a or b = True

not Boolean

NOT

a = True

not a = not True

not a = False

Membership Operators

There are two membership operators in Python that are useful to test for
membership in a sequence.

• in: This operator returns True if an element is found in the specified
sequence, otherwise it returns False.

• not in: This operator returns True if any element is not found in the
sequence, otherwise it returns True.

Identity Operators

These operators are used to compare the memory locations of two objects.
Therefore it is possible to verify whether the two objects are same or not. In
Python id() function gives the memory location of an object. Example id(a)
returns the identity number or memory location of object a. There are two
identity operators available in Python. They are

• is: This operator is used to compare the memory location of two objects. If
they are same then it returns True, otherwise returns False.

• is not: This operator returns True if the memory locations of two objects are
not same.If they are same then it returns False.

Operator Precedence and Associativity

• An expression may contain several operators and the order in which
these operators are executed in sequence is called operator
precedence. The following table summarizes the operators in
descending order of their precedence.

Operator Name Precedence

() Parenthesis 1st

** Exponentiation 2nd

-, ~ Unary minus, bitwise complement 3rd

*, /, //, % Multiplication, Division, Floor Division, Modulus 4th

+, - Addition, Subtraction 5th

<<, >> Bitwise left shift, bitwise right shift 6th

& Bitwise AND 7th

^ Bitwise XOR 8th

| Bitwise OR 9th

>, >=, <, <=, = =, != Relational Operators 10th

=, %=, /=, //=, -=, +=, *=, **= Assignment Operators 11th

is, is not Identity Operators 12th

in, not in Membership Operators 13th

not Logical NOT 14th

or Logical OR 15th

and Logical AND 16th

Single Line and Multiline Comments

• There are two types of comments used in Python:

• Single Line Comments: These are created simply by starting a line with the hash
character (#), and they are automatically terminated by the end of line. If a line
using the hash character (#) is written after the Python statement, then it is
known as inline comment.

• Multiline Comments: When multiple lines are used as comment lines, then
writing hash character (#) in the beginning of every line is a tedious task. So
instead of writing # character in the beginning of every line, we can enclose
multiple comment lines within ''' (triple single quotes) or """ (triple double
quotes). Multi line comments are also known as block comments.

INPUT AND OUTPUT

• The purpose of a computer is to process data and return results.The data
given to the computer is called input. The results returned by the
computer are called output. So, we can say that a computer takes input,
processes that input and produces the output.

Control Structures

A control structure is a block of programming that analyzes variables and
decides which statement to execute next, based on the given parameters.
The term ‘control’ denotes the direction in which the program flows.
Usually, loops are used to execute a control statement, a certain number
of times.

Basically, control structures determine the flow of events in the program.

If statement: This is used to check a condition and executes the
operations/statements within the if block only when the given condition is
true.

Syntax:

if condition:

 True Statements

If…else statements

If…else statements: These statements are used to check a
condition and executes the operations/statements within
the if block only when the given condition is true. If the
given condition is false, the statements in the else block
will be executed.

Syntax:

if condition:

 True Statements

else:

 False Statements

If …elif… else statements

If …elif… else statements: If we want to check more than one condition we can
use the elif statements. If a condition is true then the statements within the if
block will be executed. If the condition is false, we can provide an elif
statement with a second condition and the statements within the elif block
will be executed only when the condition is true. We can provide multiple elif
statements and an else statement at the end if all the above conditions are
false.

Syntax:

if condition:

 True Statements

elif condition2:

 True Statements

 elif condition3:

 True Statements

…….

else:

 False Statements

Loops in Python

• Loops are used to repeat a set of statements/single statement, a certain
number of times. In Python, there are two loops, for loop and while loop. The
Python for loop also works as an iterator to iterate over items in
list/dictionary or characters in strings.

for Loop: It can be used to iterate over a list/string/dictionary or iterate over a
range of numbers.

Syntax:

for variable in range(starting number , ending number + 1 , step size):

 statements

 (or)

 for element in sequence:

 statements

While Loop

While Loop: This is used, whenever a set of statements should be
repeated based on a condition. The control comes out of the loop
when the condition is false. In while loop we must explicitly
increment/decrement the loop variable (if any) whereas in for, the
range function would automatically increment the loop variable.

Syntax:

while condition:

 statement(s)

 increment/decrement

Break and Continue Statement

break statement: This statement is used to terminate the loop it is
present in. Control goes outside the loop it is present in. If a break
statement is present in a nested loop, it only comes out of the
innermost loop.

 Syntax:

while condition:

 statments

 if condition:

 break

 statements

Break and Continue Statement

Continue statement: This statement is used to skip the current iteration. The loop will
not be terminated, it just won’t execute the statements below the continue
statement. The incrementing will be done in for loop. If the increment statement is
written below continue, it won’t be executed in while loop.

 Syntax:

while condition:

 statement(s)

 if condition:

 continue

 statements

Pass Statement

Pass statement: This statement is used as placeholder. For example, we
want to create a function but are not sure of its content. If we create a
function and leave it, an error will occur. To counter this error, we use
pass statement.

 Syntax:

def function(parameters):

 pass

(or)

 for elements in sequence:

 pass

(or)

 while condition:

 pass

(or)

 if condition:

 pass

Object Oriented Concepts

• Object oriented programming concept is associated with the concept
of class, objects and various other concepts like abstraction,
inheritance, polymorphism, encapsulation etc.

• Class: - Class is a user defined data type. It is a set of attributes
(variables) and methods (functions). It is created using the keyword
‘class’.

• Object: - Object is a unique instance of a class. We can use the same
class as blueprint for creating number of different objects. The class
describes what the object will be.

• Attributes: - Attributes are the member variables defined inside a
class and can be accessed by the objects by using dot operator.

• Method: - Methods are functions defined inside a class. They can be
accessed by the objects by using dot operator. All the methods in class
have self as first parameter.

Example

__init__ method

• __init__: The method init is the most important method in the class.
This is called when an instance (object) of the class is created, using
the class name as a function. The init method is called as
constructor.

• self: In class, all methods have self as their first parameter (python
adds self as argument which is well known to us) , although it isn’t
explicitly passed(passed by users). We can’t use self while we call the
method in a class. Within a method definition, self refers to the
instance calling the method.

• In an init method, attributes can be used to set the initial value of
instance’s attributes in a class.

Features of Object Oriented Programming

• Encapsulation

• Abstraction

• Inheritance

• Polymorphism

• Encapsulation: Encapsulation refers to binding data and methods
together inside a class. It keeps the data and methods safe from
outside interference and misuse. Encapsulation prevents accessing
data accidentally.

Inheritance

• Inheritance: It refers to creating a child class such that the child class
would inherit all the properties (variables and methods) of the parent
class. The parent class is called super class while the child class is
called subclass.

• We have 3 types of inheritance mainly:

• Single inheritance: Only one sub class from super class.(superclass-
>subclass)

• Hierarchical inheritance: Inheriting from super class to as many
subclasses.

• Multilevel inheritance: Inheriting properties from super class to sub
class and then other sub classes.

Abstraction and Polymorphism

• Abstraction: It refers to creating structure classes that are not
implemented. Abstract classes are like a base class and many other
classes inherit the properties of abstract class but the abstract class
itself is not implemented.

• Polymorphism: It is derived from two Greek words, poly (many) and
morph (form). Polymorphism allows us to define methods with the
same name in two different classes. If the two different classes are
parent class and child class then the parent class’s method will be
overwritten by the child class’s method. This is known as Method
Overriding.

MODULE-II
PYTHON CLASSES AND

OBJECTS

Creating A Class

CLASS

• we write a class with the attributes and actions of objects. Attributes are
represented by variables and actions are performed by methods. So, a class
contains variable and methods.

• A function written inside a class is called a method. Generally, a method is
called using one of the following two ways:

• class name.methodname()

• instancename.methodname()

• The general format of a class is given as follows:

 Class Classname(object):

 """ docstring describing the class """

 attributes def __init__(self):

 def method1():

 def method2():

Creating A CLASS(Contd..)

• A class is created with the keyword class and then writing the Classname. After
the Classname, ‘object’ is written inside the Classname.

• This ‘object’ represents the base class name from where all classes in Python are
derived.

• Even our own classes are also derived from ‘object’ class. Hence, we should
mention ‘object’ in the parentheses.

 class Student:

 #another way is:

 class Student(object):

 #the below block defines attributes

 def __init__(self):

 self.name = ‘Vishnu’

 self.age = 20

 self.marks = 900

 #the below block defines a method

Creating A CLASS(Contd..)

 def talk(self):

 print(‘Hi, I am ‘, self.name)

 print(‘My age is’, self.age)

 print(‘My marks are’, self.marks)

• To create an instance, the following syntax is used:

 instancename = Classname()

So, to create an instance (or object) to the Student class, we can write as:

 s1 = Student()

When we create an instance like this, the following steps will take place internally:

1. First of all, a block of memory is allocated on heap. How much memory is to be
allocated is decided from the attributes and methods available in the Student
class.

2. After allocating the memory block, the special method by the name
‘__init__(self)’ is called internally. This method stores the initial data into the
variables. Since this method is useful to construct the instance, it is called
‘constructor’.

Creating A CLASS(Contd..)

3. Finally, the allocated memory location address of the instance is returned
into ‘s1’ variable. To see this memory location in decimal number format,
we can use id() function as id(s1).

Program

Program 1: A Python program to define Student class and create an object to
it. Also, we will call the method and display the student’s details.

 #instance variables and instance method

 class Student:

 #this is a special method called constructor.

 def __init__(self):

 self.name = 'Vishnu'

 self.age = 20

 self.marks = 900

 #this is an instance method.

 def talk(self):

 print('Hi, I am', self.name)

Creating A CLASS(Contd..)

 print('My age is', self.age)

 print('My marks are', self.marks)

 #create an instance to Student class.

 s1 = Student()

 #call the method using the instance.

 s1.talk()

 Output:

 C:\>python cl.py

 Hi, I am Vishnu

 My age is 20

 My marks are 900

The Self Variable

• ‘self’ is a default variable that contains the memory address of the instance
of the current class.

• For example, we create an instance to Student class as:

 s1 = Student()

We use ‘self’ in two ways:

1. The ‘self’ variable is used as first parameter in the constructor as:

 def __init__(self):

In this case, ‘self’ can be used to refer to the instance variables inside the
constructor.

2. ‘self’ can be used as first parameter in the instance methods as:

 def talk(self):

 Here, talk() is instance method as it acts on the instance variables.

Constructor

• A constructor is a special method that is used to initialize the instance
variables of a class. In the constructor, we create the instance variables
and initialize them with some starting values. The first parameter of the
constructor will be ‘self’ variable that contains the memory address of the
instance. For example,

 def __init__(self):

 self.name = ‘Vishnu’

 self.marks = 900

Program 2: A Python program to create Student class with a constructor
having more than one parameter.

 #instance vars and instance method - v.20

 class Student: #this is constructor.

 def __init__(self, n ='', m=0):

 self.name = n

 self.marks = m #this is an instance method.

 def display(self):

Constructor(Contd..)

 print('Hi', self.name)

 print('Your marks', self.marks) #constructor is called without any

 arguments

 s = Student()

 s.display()

 print('------------------') #constructor is called with 2 arguments

 s1 = Student('Lakshmi Roy', 880)

 s1.display()

 print('------------------')

 Output: C:\>python cl.py

Hi

Your marks 0

Hi Lakshmi Roy

Your marks 880

Types of Variables

• The variables which are written inside a class are of 2 types:

1. Instance variables

2. Class variables or Static variables

Program 3: A Python program to understand instance variables.

 #instance vars example

 class Sample: #this is a constructor.

 def __init__(self):

 self.x = 10 #this is an instance method.

 def modify(self):

 self.x+=1 #create 2 instances

 s1 = Sample()

 s2 = Sample()

 print(‘x in s1= ‘, s1.x)

 print(‘x in s2= ‘, s2.x) #modify x in s1

 s1.modify()

Types of Variables (Contd..)

 print(‘x in s1= ‘, s1.x)

 print(‘x in s2= ‘, s2.x)

Output: C:\>python cl.py

x in s1= 10

x in s2= 10

x in s1= 11

x in s2= 10

Program 4: A Python program to understand class variables or static variables.

 #class vars or static vars example

 class Sample: #this is a class var

 x = 10 #this is a class method.

 @classmethod

 def modify(cls):

 cls.x+=1 #create 2 instances

 s1 = Sample()

 s2 = Sample()

Types of Variables (Contd..)

 print(‘x in s1= ‘, s1.x)

 print(‘x in s2= ‘, s2.x)

 #modify x in s1

 s1.modify()

 print(‘x in s1= ‘, s1.x)

 print(‘x in s2= ‘, s2.x)

 Output: C:\>python cl.py

 x in s1= 10

 x in s2= 10

 x in s1= 11

 x in s2= 11

Namespaces (Contd..)

Namespaces

A namespace represents a memory block where names are mapped (or

 linked) to objects. Suppose we write:

 n = 10 #understanding class namespace

class Student: #this is a class var

 n=10 #access class var in the class namespace

 print(Student.n) #displays 10

 Student.n+=1 #modify it in class namespace

 print(Student.n) #displays 11

Types of Methods

• The purpose of a method is to process the variables provided in the class
or in the method.

• We can classify the methods in the following 3 types:

1. Instance methods (a) Accessor methods (b) Mutator methods

2. Class methods

3. Static methods

Instance Methods

• Instance methods are the methods which act upon the instance variables
of the class. Instance methods are bound to instances (or objects) and
hence called as: instancename.method().

• Program: A Python program to store data into instances using mutator
methods and to retrieve data from the instances using accessor methods.

 #accessor and mutator methods

 class Student: #mutator method

 def setName(self, name):

 self.name = name #accessor method

Types of Methods (Contd...)

 def getName(self):

 return self.name #mutator method

 def setMarks(self, marks):

 self.marks = marks #accessor method

 def getMarks(self):

 return self.marks #create instances with some data from keyboard

 n = int(input(‘How many students? ‘))

 i=0

 while(i<n): #create Student class instance

 s = Student()

 name = input(‘Enter name: ‘)

 s.setName(name)

 marks = int(input(‘Enter marks: ‘))

 s.setMarks(marks) #retrieve data from Student class instance

 print(‘Hi’, s.getName())

Types of Methods (Contd...)

 print(‘Your marks’, s.getMarks())

 i+=1 print(‘-------------------‘)

Output: C:\>python cl.py

How many students? 2

Enter name: Vinay Krishna

Enter marks: 890

Hi Vinay Krishna

Your marks 890

Enter name: Vimala Rao

Enter marks: 750

Hi Vimala Rao

Your marks 750

Types of Methods (Contd...)

Class Methods

• These methods act on class level. Class methods are the methods which act on
the class variables or static variables. These methods are written using
@classmethod decorator above them. By default, the first parameter for class
methods is ‘cls’ which refers to the class itself.

• Program 7: A Python program to use class method to handle the common feature
of all the instances of Bird class.

 #understanding class methods

 class Bird: #this is a class var

 wings = 2 #this is a class method

 @classmethod

 def fly(cls, name):

 print(‘{} flies with {} wings’.format(name, cls.wings)) #display

 Bird.fly(‘Sparrow’)

 Bird.fly(‘Pigeon’)

Output: C:\>python cl.py Sparrow flies with 2 wings Pigeon flies with 2 wings

Types of Methods (Contd...)

Static Methods

• We need static methods when the processing is at the class level but we
need not involve the class or instances. Static methods are used when
some processing is related to the class but does not need the class or its
instances to perform any work.

Program : A Python program to create a static method that counts the
number of instances created for a class.

 class Myclass:

 #this is class var or static var n=0

#constructor that increments n when an instance is created

 def __init__(self):

 Myclass.n = Myclass.n+1

 @staticmethod def noObjects():

 print(‘No. of instances created: ‘, Myclass.n)

 obj1 = Myclass() obj2 = Myclass() obj3 = Myclass()

Myclass.noObjects()

Output: C:\>python cl.py No. of instances created: 3

Inheritance

A programmer in the software development is creating Teacher class with
setter() and getter() methods as shown in Program 1. Then he saved this
code in a file ‘teacher.py’.

Program

Program 1: A Python program to create Teacher class and store it into
teacher.py module. #this is Teacher class. save this code in teacher.py
file

 class Teacher:

 def setid(self, id):

 self.id = id

 def getid(self):

 return self.id

 def setname(self, name):

 self.name = name

 def getname(self):

 return self.name

Inheritance(Contd..)

 def setaddress(self, address):

 self.address = address

 def getaddress(self):

 return self.address

 def setsalary(self, salary):

 self.salary = salary

 def getsalary(self):

 return self.salary

Program 2: A Python program to use the Teacher class.

 #save this code as inh.py file

 #using Teacher class from teacher import Teacher

 #create instance t = Teacher()

 #store data into the instance t.setid(10)

 t.setname('Prakash')

 t.setaddress('HNO-10, Rajouri gardens, Delhi')

Inheritance(Contd..)

 t.setsalary(25000.50) #retrieve data from instance and display

 print('id=', t.getid())

 print('name=', t.getname())

 print('address=', t.getaddress())

 print('salary=', t.getsalary())

Output: C:\>python inh.py

 id= 10

 name= Prakash

 address= HNO-10, Rajouri gardens, Delhi

 salary= 25000.5

A Python program to create Student class by deriving it from the Teacher
class. #Student class - v2.0.save it as student.py

 from teacher import Teacher

 class Student(Teacher):

 def setmarks(self, marks): self.marks = marks

 def getmarks(self): return self.marks

Constructors in Inheritance

Program 6: A Python program to access the base class constructor from sub class.

#base class constructor is available to sub class

 class Father:

 def __init__(self):

 self.property = 800000.00

 def display_property(self):

 print('Father\'s property=', self.property)

 class Son(Father):

 pass #we do not want to write anything in the sub class

 #create sub class instance and display father's property

 s = Son()

 s.display_property()

 Output: C:\>python inh.py

 Father's property= 800000.0

 Super() Method

• super() is a built-in method which is useful to call the super class
constructor or methods from the sub class

Program 8: A Python program to call the super class constructor in the sub
class using super().

 #accessing base class constructor in sub class class Father:

 def __init__(self, property=0):

 self.property = property

 def display_property(self):

 print('Father\'s property=', self.property)

 class Son(Father):

 def __init__(self, property1=0, property=0):

 super().__init__(property)

 self.property1= property1

 def display_property(self):

 print('Total property of child=', self.property1 + self.property)

 #create sub class instance and display father's property

Super() Method (Contd...)

 s = Son(200000.00, 800000.00)

 s.display_property()

Output:

C:\>python inh.py

Total property of child= 1000000.0

Types of Inheritance

There are mainly 2 types of inheritance available. They are:

1. Single inheritance

2. Multiple inheritance

Single Inheritance

 Deriving one or more sub classes from a single base class is called ‘single
inheritance’. In single inheritance, we always have only one base class, but
there can be n number of sub classes derived from it. For example,

Types of Inheritance (Contd..)

Multiple Inheritance

• Deriving sub classes from multiple (or more than one) base classes is
called ‘multiple inheritance’. In this type of inheritance, there will be more
than one super class and there may be one or more sub classes.

Polymorphism

Polymorphism

• Polymorphism is a word that came from two Greek words, poly means
many and morphos means forms. If something exhibits various forms, it
is called polymorphism. Let’s take a simple example in our daily life.
Assume that we have wheat flour. Using this wheat flour, we can make
burgers, rotis, or loaves of bread. It means same wheat flour is taking
different edible forms and hence we can say wheat flour is exhibiting
polymorphism. Consider Figure:

Polymorphism(Contd..)

The following topics are examples for polymorphism in Python:

• Duck typing philosophy of Python

• Operator overloading

• Method overloading

• Method overriding

Abstract classes and interfaces

• An abstract method is a method whose action is redefined in the sub
classes as per the requirement of the objects. To mark a method as
abstract, we should use the decorator @abstractmethod.

• An abstract class is a class that generally contains some abstract
methods.

Program : A Python program to create abstract class and sub classes
which implement the abstract method of the abstract class.

 #abstract class example

 from abc import ABC, abstractmethod

 class Myclass(ABC):

 @abstractmethod

 def calculate(self, x):

 pass

 #empty body, no code

 #this is sub class of Myclass

 class Sub1(Myclass):

Abstract classes and interfaces(Contd...)

 def calculate(self, x):

 print('Square value=', x*x)

 #this is another sub class for Myclass

 import math

 class Sub2(Myclass):

 def calculate(self, x):

 print('Square root=', math.sqrt(x))

 #third sub class for Myclass

 class Sub3(Myclass):

 def calculate(self, x):

 print('Cube value=', x**3)

 #create Sub1 class object and call calculate() method

 obj1 = Sub1()

 obj1.calculate(16)

 #create Sub2 class object and call calculate() method

 obj2 = Sub2()

Abstract classes and interfaces(Contd...)

 obj2.calculate(16)

 #create Sub3 class object and call calculate() method

 obj3 = Sub3()

 obj3.calculate(16)

Output:

C:\>python abs.py

Square value= 256

Square root= 4.0

Cube value= 4096

Interfaces in Python

• An interface can be defined as a specification of method headers. Since, we
write only abstract methods in the interface, there is possibility for providing
different implementations (body) for those abstract methods depending on
the requirements of objects. We have to use abstract classes as interfaces in
Python. Since an interface contains methods without body, it is not possible
to create objects to an interface.

Abstract classes and interfaces(Contd..)

 #an interface to connect to any database
 class Myclass(ABC):
 @abstractmethod
 def connect(self):
 pass
 @abstractmethod
 def disconnect(self):
 pass

Abstract classes and interfaces(Contd..)

Abstract Classes vs. Interfaces

• Python does not provide interface concept explicitly. It provides
abstract classes which can be used as either abstract classes or
interfaces.

• It is the discretion of the programmer to decide when to use an
abstract class and when to go for an interface.

• For example, take a class WholeSaler which represents a whole sale
shop with text books and stationery like pens, papers and note books
as:

 #an abstract class

 class WholeSaler(ABC):
 @abstractmethod

 def text_books(self):

 pass

 @abstractmethod

 def stationery(self):

 pass

MODULE-III
STRINGS AND FUNCTIONS

Creating Strings

String

• String is group of characters. We can create a string in Python by assigning
a group of characters to a variable. The group of characters should be
enclosed inside single quotes or double quotes as:

s1 = 'Welcome to Core Python learning'

s2 = "Welcome to Core Python learning“

• There is no difference between the single quotes and double quotes while
creating the strings. Both will work in the same manner.

• It is possible to display quotation marks to mark a sub string in a string.

s1 = 'Welcome to "Core Python" learning'

print(s1)

Creating Strings(Contd..)

• It is possible to use escape characters like \t or \n inside the
strings.

• The escape character \t releases tab space of 6 or 8 spaces and the
escape character \n throws cursor into a new line.

• Table below summarizes the escape characters that can be used in
strings:

 Escape Character

Meaning

\a Bell or alert

\b Backspace

\n New line

\t Horizontal tab space

\v Vertical tab space

\r Enter button

\x Character x

\\ Displays single\

Basic operations on strings

The following are the basic operations we can perform on strings

1.Length of string

• Length of a string represents the number of characters in a string.

• To know the length of a string, we can use the len() function.

•

• This function gives the number of characters including spaces in the
string.

str = 'Core Python'

n = len(str)

 print(n)

• The preceding lines of code will display the following output:

11

Basic operations on strings(Contd..)

2.Indexing in Strings

• Index represents the position number. Index is written using square braces
[].

• By specifying the position number through an index, we can refer to the
individual elements (or characters) of a string.

• For example, str[0] refers to the 0th element of the string and str[1] refers
to the 1st element of the string. Thus, str[i] can be used to refer to ith
element of the string.

• Here, ‘i’ is called the string index because it is specifying the position
number of the element in the string.

• When we use index as a negative number, it refers to elements in the
reverse order. Thus, str[-1] refers to the last element and str[-2] refers to
second element from last.

Basic operations on strings(Contd..)

3.Slicing the Strings

• A slice represents a part or piece of a string. The format of slicing is:

stringname[start: stop: stepsize]

• If ‘start’ and ‘stop’ are not specified, then slicing is done from 0th to n-1th
elements. If ‘stepsize’ is not written, then it is taken to be 1

• See the following example:

 str = 'Core Python'

str[0:9:1] #access string from 0th to 8th element in steps of 1

Output: Core Pyth

• Consider the following code snippet:

 str = 'Core Python'

str[::] #access string from 0th to last character

• The preceding lines of code will display the following output:

 Core Python

Basic operations on strings(Contd..)

4.Concatenation of Strings

• We can use ‘+’ on strings to attach a string at the end of another string.

• This operator ‘+’ is called addition operator when used on numbers. But,
when used on strings, it is called ‘concatenation’ operator since it joins or
concatenates the strings.

• For example:

s1='Core'

s2="Python"

s3=s1+s2 #concatenate s1 and s2

print(s3) #display the total string s3

• The output of the preceding statement is as follows:

CorePython

Basic operations on strings(Contd..)

5.Comparing Strings

• We can use the relational operators like >, >=, <, <=, == or != operators to
compare two strings.

• They return Boolean value, i.e. either True or False depending on the
strings being compared.

• For example:

s1='Box'

s2='Boy'

 if(s1==s2):

print('Both are same')

 else:

print('Not same')

• This code returns ‘Not same’ as the strings are not same.

Basic operations on strings(Contd..)

6.Removing Spaces from a String

• A space is also considered as a character inside a string.

• Sometimes, the unnecessary spaces in a string will lead to wrong results.

• For example, a person typed his name ‘Mukesh‘ (observe two spaces at
the end of the string) instead of typing ‘Mukesh’.

• If we compare these two strings using ‘==’ operator as:

if 'Mukesh '=='Mukesh':

print('Welcome')

else: print('Name not found')

• The output will be ‘Name not found’.

Basic operations on strings(Contd..)

• Hence such spaces should be removed from the strings before they are
compared.

• This is possible using rstrip(), lstrip() and strip() methods.

• The rstrip() method removes the spaces which are at the right side of the
string.

• The lstrip() method removes spaces which are at the left side of the string.

• strip() method removes spaces from both the sides of the strings.

• These methods do not remove spaces which are in the middle of the
string.

Basic operations on strings(Contd..)

7.Finding Sub Strings

• The find(), rfind(), index() and rindex() methods are useful to locate sub strings
in a string. These methods return the location of the first occurrence of the
sub string in the main string.

• The find() and index() methods search for the sub string from the beginning
of the main string.

• The rfind() and rindex() methods search for the sub string from right to left,
i.e. in backward order.

• The find() method returns -1 if the sub string is not found in the main string.

• The index() method returns ‘ValueError’ exception if the sub string is not
found. The format of find() method is: mainstring.find(substring, beginning,
ending)

Basic operations on strings(Contd..)

8.Splitting and Joining Strings

• The split() method is used to brake a string into pieces. These pieces are
returned as a list.

• For example, to brake the string ‘str’ where a comma (,) is found, we can
write:

str.split(‘,’)

• In the following example, we are cutting the string ‘str’ wherever a
comma is found. The resultant string is stored in ‘str1’ which is a list.

str = 'one,two,three,four'

str1 = str.split(',')

print(str1)

• The output of the preceding statements is as follows:

['one', 'two', 'three', 'four']

Basic operations on strings(Contd..)

• In the following example, we are taking a list comprising 4 strings and we
are joining them using a colon (:) between them.

str = ['apple', 'guava', 'grapes', 'mango']

sep =':'

str1 = sep.join(str)

print(str1)

• The output of the preceding statements is as follows:

apple:guava:grapes:mango

Basic operations on strings(Contd..)

9.Changing Case of a String

• Python offers 4 methods that are useful to change the case of a string.
They are upper(), lower(), swapcase(), title().

• The upper() method is used to convert all the characters of a string into
uppercase or capital letters.

• The lower() method converts the string into lowercase or into small
letters.

• The swapcase() method converts the capital letters into small letters and
vice versa.

• The title() method converts the string such that each word in the string
will start with a capital letter and remaining will be small letters.

String testing methods

• There are several methods to test the nature of characters in a string.
These methods return either True or False.

• For example, if a string has only numeric digits, then isdigit() method
returns True.

• These methods can also be applied to individual characters. Below table
shows the string and character testing methods:

Method Description

isalnum() This method returns True if all characters in the string are alphanumeric (A

to Z, a to z, 0 to 9) and there is at least one character; otherwise it returns

False.

isalpha() Returns True if the string has at least one character and all characters are

alphabetic (A to Z and a to z); otherwise, it returns False.

isdigit() Returns True if the string contains only numeric digits (0 to 9) and False

otherwise.

islower() Returns True if the string contains at least one letter and all characters are in

lower case; otherwise, it returns False.

String testing methods(Contd..)

 Table: String and character testing methods

Method Description

isupper() Returns True if the string contains at least one letter

and all characters are in upper case; otherwise, it

returns False.

istitle() Returns True if each word of the string starts with a

capital letter and there is at least one character in

the string; otherwise, it returns False.

isspace() Returns True if the string contains only spaces;

otherwise, it returns False.

Functions

• A function is similar to a program that consists of a group of statements
that are intended to perform a specific task.

• The main purpose of a function is to perform a specific task or work. Thus
when there are several tasks to be performed, the programmer will write
several functions.

• There are several ‘built-in’ functions in Python to perform various tasks.

• For example, to display output, Python has print() function. Similarly, to
calculate square root value, there is sqrt() function and to calculate power
value, there is power() function

Functions(Contd..)

Advantages

• Functions are important in programming because they are used to
process data

• Once a function is written, it can be reused as and when required.

• Functions provide modularity for programming. A module represents a
part of the program.

• Code maintenance will become easy because of functions.

• When there is an error in the software, the corresponding function can
be modified without disturbing the other functions in the software. Thus
code debugging will become easy.

•

• The use of functions in a program will reduce the length of the program.

Defining Functions

• We can define a function using the keyword def followed by function
name.

• After the function name, we should write parentheses () which may
contain parameters.

Syntax:

def functionname(parameter1,parameter2,….):

“””function docstring”””

function statements

Example:

def add(a,b):

“””This function finds sum of two numbers”””

c=a+b

print(c)

Calling a function

• A function cannot run on its own. It runs only when we call it. So, the next
step is to call the function using its name.

• While calling the function, we should pass the necessary values to the
function in the parentheses as:

• sum(10, 15)

• Here, we are calling the ‘sum’ function and passing two values 10 and 15 to
that function.

• When this statement is executed, the Python interpreter jumps to the
function definition and copies the values 10 and 15 into the parameters ‘a’
and ‘b’ respectively.

Calling a function(Contd..)

Example:

 A function that accepts two values and finds their sum.

#a function to add two numbers

def sum(a, b):

 """ This function finds sum of two numbers """

 c = a+b

 print('Sum=', c)

#call the function

sum(10, 15)

sum(1.5, 10.75) #call second time

Output:

C:\>python fun.py

Sum= 25

Sum= 12.25

•

•

Returning Results from a Function

• We can return the result or output from the function using a ‘return’

statement in the body of the function.

• For example,

return c #returns c value out of function

return 100 #returns 100

return lst #return the list that contains values

return x, y, c #returns 3 values

• When a function does not return any result, we need not write the return
statement in the body of the function.

Returning Multiple Values from a Function

• A function returns a single value in the programming languages like C or

Java. But in Python, a function can return multiple values.

• When a function calculates multiple results and wants to return the results,
we can use the return statement as:

return a, b, c

• we can use three variables at the time of calling the function as:

x, y, z = function()

Example:

 def sum_sub(a, b):

 c = a + b

 d = a – b

return c, d

Returning Multiple Values from a Function

Example:

A Python program to understand how a function returns two values.

#a function that returns two results

def sum_sub(a, b):

""" this function returns results of addition and subtraction of a, b """

 c = a + b

 d = a – b

 return c, d

#get the results from the sum_sub() function

 x, y = sum_sub(10, 5)

#display the results

print("Result of addition:", x)

print("Result of subtraction:", y)

 Output: C:\>python fun.py

 Result of addition: 15

Result of subtraction: 5

Functions are First Class Objects

• In Python, functions are considered as first class objects. It means we can
use functions as perfect objects.

• In fact when we create a function, the Python interpreter internally
creates an object.

• Since functions are objects, we can pass a function to another function
just like we pass an object (or value) to a function.

• The following possibilities are noteworthy:

1. It is possible to assign a function to a variable.

2. It is possible to define one function inside another function.

3. It is possible to pass a function as parameter to another function.

4. It is possible that a function can return another function.

Functions are First Class Objects(Contd..)

1. Assign a function to variable

A Python program to see how to assign a function to a variable.

#assign a function to a variable

def display(str):

 return 'Hai '+str

#assign function to variable x

 x = display("Krishna")

 print(x)

Output: C:\>python fun.py

Hai Krishna

Functions are First Class Objects(Contd..)

2.Defining one function inside another function

A Python program to know how to define a function inside another
function.

 #define a function inside another function

 def display(str):

 def message():

 return 'How are U?’

 result = message()+str

 return result

 #call display() function

 print(display("Krishna"))

 Output: C:\>python fun.py

 How are U? Krishna

Functions are First Class Objects(Contd..)

3.Pass a function as parameter to another function

A Python program to know how to pass a function as parameter to
another function.

#functions can be passed as parameters to other functions

def display(fun):

 return 'Hai '+ fun

def message():

 return 'How are U? '

#call display() function and pass message() function

 print(display(message()))

Output: C:\>python fun.py

Hai How are U?

Functions are First Class Objects(Contd..)

4.A function can return another function

A Python program to know how a function can return another function.

#functions can return other functions

def display():

 def message():

 return 'How are U?’

 return message

#call display() function and it returns message() function

#in the following code, fun refers to the name: message.

fun = display()

print(fun())

Output: C:\>python fun.py

How are U?

Formal and Actual Arguments

• When a function is defined, it may have some parameters. These
parameters are useful to receive values from outside of the function. They
are called ‘formal arguments’.

• When we call the function, we should pass data or values to the function.
These values are called ‘actual arguments’.

• In the following code, ‘a’ and ‘b’ are formal arguments and ‘x’ and ‘y’ are
actual arguments.

def sum(a, b):

#a, b are formal arguments

 c = a+b

 print(c)

#call the function x=10; y=15

 sum(x, y)

#x, y are actual arguments

Formal and Actual Arguments(Contd..)

The actual arguments used in a function call are of 4 types:

 1. Positional arguments

 2. Keyword arguments

 3. Default arguments

 4. Variable length arguments

1.Positional arguments

 These are the arguments passed to a function in correct positional order.
Here, the number of arguments and their positions in the function
definition should match exactly with the number and position of the
argument in the function call.

Formal and Actual Arguments(Contd..)

2. Keyword arguments

 Keyword arguments are arguments that identify the parameters by their
names. For example, the definition of a function that displays grocery item
and its price can be written as:

def grocery(item, price):

3.Default Arguments

 We can mention some default value for the function parameters in the
definition. Let’s take the definition of grocery() function as:

 def grocery(item, price=40.00):

• 4.Variable Length Arguments

 Sometimes, the programmer does not know how many values a function
may receive. In that case, the programmer cannot decide how many
arguments to be given in the function definition.

 The variable length argument is written with a ‘ * ’ symbol before it in the
function definition as:

def add(farg, *args):

Recursive Functions

 • A function that calls itself is known as ‘recursive function’.

• For example, we can write the factorial of 3 as:

factorial(3) = 3 * factorial(2)

 Here, factorial(2) = 2 * factorial(1)

And, factorial(1) = 1 * factorial(0)

• Now, if we know that the factorial(0) value is 1, all the preceding
statements will evaluate and give the result as:

factorial(3) = 3 * factorial(2)

 = 3 * 2 * factorial(1)

 = 3 * 2 * 1 * factorial(0)

 = 3 * 2 * 1 * 1 = 6

• From the above statements, we can write the formula to calculate
factorial of any number ‘n’ as: factorial(n) = n * factorial(n-1)

Recursive Functions (Contd..)

Example:

A Python program to calculate factorial values using recursion.

 #recursive function to calculate factorial

def factorial(n):

 """ to find factorial of n """

if n==0:

 result=1

else:

 result=n*factorial(n-1)

 return result

 #find factorial values for first 10 numbers

for i in range(1, 11):

print('Factorial of {} is {}'.format(i, factorial(i)))

MODULE-IV
Errors & Exceptions of Python

Errors in Python

• The error is something that goes wrong in the program, e.g.,
like a syntactical error.

• It occurs at compile time. Let’s see an example.
– if a<5

– File "<interactive input>", line 1

– if a < 5

– ^

• SyntaxError: invalid syntax

Errors in Python(Contd..)

Syntax Errors

• Error caused by not following the proper structure (syntax)
of the language is called syntax error or parsing error.

– >>> if a < 3

– File "<interactive input>", line 1

– if a < 3

– ^

– SyntaxError: invalid syntax

• We can notice here that a colon is missing in
the if statement.

Errors in Python(Contd..)

 Syntax errors, also known as parsing errors, are perhaps the most common kind
of error you encounter while you are still learning Python.

 The parser repeats the offending line and displays a little ‘arrow’ pointing at the
earliest point in the line where the error was detected. The error is detected at
the token preceding the arrow. File name and line number are printed so you
know where to look in case the input came from a script.

Exceptions

• Even if a statement or expression is syntactically correct, it may cause an
error when an attempt is made to execute it.

• Errors detected during execution are called exceptions and are not
unconditionally fatal.

• Most exceptions are not handled by programs, however, and result in error
messages like “cannot divide by zero” or “cannot concatenate ‘str’ and ‘int’
objects”.

Handling Exceptions

 It is possible to write programs that handle selected exceptions. Consider
the following, where a user-generated interruption is signaled by raising
the Keyboard Interrupt exception.

 First the 'try' clause is executed until an exception occurs, in which case
the rest of 'try' clause is skipped and the 'except' clause is executed
(depending on type of exception), and execution continues. If an
exception occurs which does not match the exception named in the
except clause, it is passed on to outer try statements; if no handler is
found, it is an unhandled exception and execution stops.

Handling Exceptions(Contd…)

• The last except clause (when many are declared) may omit the exception
name(s), to serve as a wildcard. This makes it very easy to mask a real
programming error. It can also be used to print an error message and then
re-raise the exception.

• The try-except statement has an optional else clause, which, when present,
must follow all except clauses. It is useful for code that must be executed if
the try clause does not raise an exception.

Raising Exceptions

• The raise statement allows the programmer to force a specified exception
to occur.

• The sole argument to raise indicates the exception to be raised.

• A simpler form of the raise statement allows one to re-raise the exception
(if you don’t want to handle it):

Raising Exceptions(Contd..)

 A simpler form of the raise statement allows one to re-raise the exception (if you
don’t want to handle it):

User-defined Exceptions

 Programs may name their own exceptions by creating a new exception
class. These are derived from the Exception class, either directly or
indirectly.

 Here, the def__init__() of Exception has been overridden. The new
behavior simply creates the value attribute.

Defining Clean-up Actions

 The try statement has another optional clause which is intended to define
clean-up actions that must be executed under all circumstances.

 A finally clause is executed before leaving the try statement, whether an
exception has occurred or not. When an exception has occurred in the try
clause and has not been handled by an except clause, it is re-raised after the
finally clause has been executed. The finally clause is also executed “on the
way out” when any other clause of the try statement is exited using
break/continue/return.

Predefined Clean-up Actions

• Some objects define standard clean-up actions to be undertaken
when the object is no longer needed, regardless of whether or not the
operation using the object succeeded or failed.

• The problem with this code is that it leaves the file open for an indefinite
amount of time after the code has finished executing.

• The ‘with’ statement allows objects like files to be used in a way that
ensures they are always cleaned up promptly and correctly.

 MODULE-V
 GRAPHICAL USER INTERFACE

• GUI in Python
• The Root window
• Fonts and colors
• Working with containers
• Canvas
• Frames
• Widgets
• Button widget
• Label Widget
• Message widget
• Text widget
• Radio button Widget
• Entry widget

.

UNIT-V GUI- SYLLABUS

GUI offers the following advantages:

• It is user-friendly. The user need not worry about any commands. Even a layman
will be able to work with the application developed using GUI.

• It adds attraction and beauty to any application by adding pictures, colors, menus,
animation, etc. For example, all websites on Internet are developed using GUI to
lure their visitors and improve their business.

GUI IN PYTHON

• It is possible to simulate the real life objects using GUI. For example, a calculator
program may actually display a real calculator on the screen. The user feels that he
is interacting with a real calculator and he would be able to use it without any
difficulty or special training. So, GUI eliminates the need of user training.

• GUI helps to create graphical components like push buttons, radio buttons, check
buttons, menus, etc. and use them effectively.

GUI IN PYTHON

• Python offers tkinter module to create graphics programs.

• The tkinter represents ‘toolkit interface’ for GUI. This is an interface for Python
programmers that enable them to use the classes of TK module of TCL/TK language.

• Let’s see what this TCL/TK is. The TCL (Tool Command Language) is a powerful
dynamic programming language, suitable for web and desktop applications,
networking, administration, testing and many more.

• It is open source and hence can be used by any one freely. TCL language uses TK
(Tool Kit) language to generate graphics.

GUI IN PYTHON

• TK provides standard GUI not only for TCL but also for many other dynamic
programming languages like Python.

• Hence, this TK is used by Python programmers in developing GUI applications
through Python’s tkinter module.

The general steps involved in basic GUI programs:

• First of all, we should create the root window. The root window is the top level
window that Provides rectangular space on the screen where we can display text,
colors, images, components, etc.

GUI IN PYTHON

• In the root window, we have to allocate space for our use. This is done by creating a
canvas or frame. So, canvas and frame are child windows in the root window.

• Generally, we use canvas for displaying drawings like lines, arcs, circles, shapes, etc.
We use Frame for the purpose of displaying components like push buttons, check
buttons, menus, etc. These components are also called ‘widgets’.

• When the user clicks on a widget like push button, we have to handle that event. It
means we have to respond to the events by performing the desired tasks.

GUI IN PYTHON

• To display the graphical output, we need space on the screen. This space that is
initially allocated to every GUI program is called ‘top level window’ or ‘root
window’.

• the root window is the highest level GUI component in any tkinter application.

• Root window by creating an object to Tk class. The root window will have a title bar
that contains minimize, resize and close options.

• When you click on close ‘X’ option, the window will be destroyed.

THE ROOT WINDOW

THE ROOT WINDOW

Program : A Python program to create root window or top level window.

FONTS AND COLORS

• A font represents a type of displaying letters and numbers. In tkinter, fonts are

 mentioned using a tuple that contains font family name, size and font style as:

FONTS AND COLORS

Program: A Python program to know the available font families.

FONTS AND COLORS

Colors in tkinter can be displayed directly by mentioning their names as: blue,
light blue, dark blue, red, light red, dark red, black, white, yellow, magenta,
cyan, etc. We can also specify colors using the hexadecimal numbers in the
format:

For example, #000000 represents black and #ff0000 represents red. In the
same way, #000fff000 represents pure green and#00ffff is cyan (green plus
blue).

• A container is a component that is used as a place where drawings or widgets can
be displayed. In short, a container is a space that displays the output to the user.

There are two important containers:

• Canvas: This is a container that is generally used to draw shapes like lines, curves,
arcs and circles.

• Frame: This is a container that is generally used to display widgets like buttons,
check buttons or menus. After creating the root window, we have to create space,
i.e. the container in the root window so that we can use this space for displaying
any drawings or widgets.

WORKING WITH CONTAINERS

CANVAS

A canvas is a rectangular area which can be used for drawing pictures like
lines, circles, polygons, arcs, etc. To create a canvas, we should create an
object to Canvas class as:

Here, ‘c’ is the Canvas class object. ‘root’ is the name of the parent window.
‘bg’ represents background color, ‘height’ and ‘width’ represent the height
and width of the canvas in pixels. A pixel (picture element) is a minute dot
with which all the text and pictures on the monitor are composed

CANVAS

Once the canvas is created, it should be added to the root window. Then only
it will be visible. This is done using the pack() method, as follows:

After the canvas is created, we can draw any shapes on the canvas. For
example, to create a line, we can use create line () method, as:

To create an oval, we can use the create oval () method. An oval is also called
ellipse.

CANVAS

A polygon represents several points connected by either straight lines or
smooth lines. To create a polygon, we can use the create polygon () method
as:

Similarly, to create a rectangle or square shaped box, we can use the create
rectangle() method as:

It is also possible to display some text in the canvas. For this purpose, we
should use the create text () method as:

CANVAS

Program : A GUI program that demonstrates the creation of various shapes in canvas.

CANVAS

CANVAS

Another important shape that we can draw in the canvas is an arc. An arc
represents a part of an ellipse or circle. Arcs can be created using the create
arc () method as:

Here, the arc is created in the rectangular space defined by the coordinates
(100, 100) and (400, 300). The width of the arc will be 3 pixels. The arc will
start at an angle 270 degrees and extend for another 180 degrees (i.e. up to
450 degrees means 450 – 360 = 90 degrees).
The outline of the arc will be in red color. ‘style’ option can be “arc” for
drawing arcs. ‘style’ can be “pie slice” and “chord”.

CANVAS

Another important shape that we can draw in the canvas is an arc. An arc
represents a part of an ellipse or circle. Arcs can be created using the create
arc () method as:

As mentioned, the option ‘start’ represents an angle of the arc where it has to
start and ‘extent’ represents the angle further which the arc should extend.
These angles should be taken in counter clock-wise direction, taking the 3 O’
clock position as 0 degrees. Thus, the 12 O’ clock position will show 90
degrees, the 9 O’ clock will be 180 and the 6 O’ clock will represent 270
degrees.

CANVAS

The value of the extent should be added to the starting angle so that we can
understand where the arc will stop. For example,

CANVAS

To display an image in the canvas with the help of create image() method.
Using this method, we can display the images with the formats
.gif,.pgm,or.ppm. We should first load the image into a file using Photo Image
class as:

Now, the image is available in ‘file1’. This image can be displayed in the canvas
using create image() method as:

CANVAS

Program: A Python program to display images in the canvas.

CANVAS

FRAME

A frame is similar to canvas that represents a rectangular area where some text
or widgets can be displayed. Our root window is in fact a frame. To create a
frame, we can create an object of Frame class as:

Here, ‘f’ is the object of Frame class. The frame is created as a child of ‘root’
window. The options ‘height’ and ‘width’ represent the height and width of
the frame in pixels. ‘bg’ represents the back ground color to be displayed and
‘cursor’ indicates the type of the cursor to be displayed in the frame.Once the
frame is created, it should be added to the root window using the pack ()
method as follows:

FRAME

Program: A GUI program to display a frame in the root window.

• A widget is a GUI component that is displayed on the screen and can perform a task
as desired by the user. We create widgets as objects.

• For example, a push button is a widget that is nothing but an object of Button class.
Similarly, label is a widget that is an object of Label class. Once a widget is created,
it should be added to canvas or frame.

• The following are important widgets in Python:

• 1 Button 4 Text 7 Radio button 10 List box

• 2 Label 5 Scrollbar 8 Entry 11 Menu

• 3 Message 6 Check button 9 Spin box

WIDGETS

WIDGETS

In general, working with widgets takes the following four steps:

1. Create the widgets that are needed in the program. A widget is a GUI
component that is represented as an object of a class. For example, a push
button is a widget that is represented as Button class object. As an
example, suppose we want to create a push button, we can create an
object to Button class as:

Here, ‘f’ is Frame object to which the button is added. ‘My Button’ is the
text that is displayed on the button.

WIDGETS

2. When the user interacts with a widget, he will generate an event. For

example, clicking on a push button is an event. Such events should be
handled by writing functions or routines. These functions are called in
response to the events. Hence they are called ‘callback handlers’ or ‘event
handlers’. Other examples for events are pressing the Enter button, right
clicking the mouse button, etc. As an example, let’s write a function that
may be called in response to button click.

Here, ‘f’ is Frame object to which the button is added. ‘My Button’ is the
text that is displayed on the button.

WIDGETS

3. When the user clicks on the push button, that ‘clicking’ event should be

linked with the ‘callback handler’ function. Then only the button widget
will appear as if it is performing some task. As an example, let’s bind the
button click with the function as:

Here, ‘b’ represents the push button. <Button-1> indicates the left mouse
button. When the user presses the left mouse button, the ‘button Click’
function is called as these are linked by bind () method in the preceding
code.

WIDGETS

4. The preceding 3 steps make the widgets ready for the user. Now, the

user has to interact with the widgets. This is done by entering text from
the keyboard or pressing mouse button. These are called events. These
events are continuously monitored by our program with the help of a loop,
called ‘event loop’. As an example, we can use the main loop() method
that waits and processes the events as:

Here, ‘root’ is the object of root window in Python GUI. The events in root
window are continuously observed by the main loop() method. It means
clicking the mouse or pressing a button on the keyboard are accepted by
main loop() and then the main loop() calls the corresponding even
handler function.

BUTTON WIDGET

A push button is a component that performs some action when clicked. These
buttons are created as objects of Button class as:

Here, ‘b’ is the object of Button class. ‘f’ represents the frame for which the
button is created as a child. It means the button is shown in the frame. The
‘text’ option represents the text to be displayed on the button. ‘width’
represents the width of the button in characters. If an image is displayed on
the button instead of text, then ‘width’ represents the width in pixels.
‘height’ represents the height of the button in textual lines. If an image is
displayed on the button, then ‘height’ represents the height of the button in
pixels.

BUTTON WIDGET

‘bg’ represents the foreground color and ‘fg’ represents the back ground color
of the button. ‘activebackground’ represents the background color when the
button is clicked. Similarly, ‘activeforeground’ represents the foreground color
when the button is clicked.
We can also display an image on the button as:

In the preceding statement, observe that the width and height of the
button are mentioned in pixels.

BUTTON WIDGET

First Create a frame and then create a push button with some options and add
the button to the frame. Then we link the mouse left button with the
buttonClick () method using bind () method as:

Here, <Button-1> represents the mouse left button that is linked
withbuttonClick() method. It means when the mouse left button is
clicked, the buttonClick() method is called. This method is called event
handler.

BUTTON WIDGET

Program: A Python program to create a push button and bind it with an event
handler function.

LABEL WIDGET

A label represents constant text that is displayed in the frame or container. A
label can display one or more lines of text that cannot be modified. A label is
created as an object of Label class as:

Here, ‘f’ represents the frame object to which the label is created as a child.
‘text’ represents the text to be displayed. ‘width’ represents the width of the
label in number of characters and ‘height’ represents the height of the label
in number of lines. ‘font’ represents a tuple that contains font name, size
and style. ‘fg’ and ‘bg’ represents the foreground and background colors for
the text.

LABEL WIDGET

Program: A Python program to display a label upon clicking a push button.

MESSAGE WIDGET

A message is similar to a label. But messages are generally used to display
multiple lines of text where as a label is used to display a single line of text. All
the text in the message will be displayed using the same font. To create a
message, we need to create an object of Message class as:

Here, ‘text’ represents the text to be displayed in the message. The ‘width’
option specifies the message width in pixels. ‘font’ represents the font for the
message. We can use options ‘fg’ for specifying foreground color and ‘bg’ for
specifying background color for the message text.

MESSAGE WIDGET

Program: A Python program to display a message in the frame.

TEXT WIDGET

Text widget is same as a label or message. But Text widget has several options
and can display multiple lines of text in different colors and fonts. It is possible
to insert text into a Text widget, modify it or delete it. We can also display
images in the Text widget. One can create a Text widget by creating an object
to Text class as:

Once the Text widget is created, we can insert any text using the insert()
method as:

TEXT WIDGET

It is possible to display an image like a photo using the image create() method
as:

Here, the tag name is ‘start’. It contains characters (or text) from 1st row
0th character till 1st row 11th character. Now, we can apply colors and font
to this tag text using the config() method as:

It is possible to mark some part of the text as a tag and provide different
colors and font for that text. For this purpose, first we should specify the tag
using the tag add() method as:

TEXT WIDGET

Program: A Python program to create a Text widget with a vertical scroll bar attached
to it. Also, highlight the first line of the text and display an image in the Text widget.

TEXT WIDGET

Program: A Python program to create a Text widget with a vertical scroll bar attached
to it. Also, highlight the first line of the text and display an image in the Text widget.

RADIO BUTTON WIDGET

A radio button is similar to a check button, but it is useful to select only one
option from a group of available options. A radio button is displayed in the
form of round shaped button. The user cannot select more than one option in
case of radio buttons. When a radio button is selected, there appears a dot in
the radio button. We can create a radio button as an object of the Radio
button class as:

The option ‘text’ represents the string to be displayed after the radio
button. ‘variable’ represents the object of IntVar class. ‘value’ represents a
value that is set to this object when the radio button is clicked. The object
of IntVar class can be created as:

RADIO BUTTON WIDGET

Program: A Python program to create radio buttons and know which button is
selected by the user.

RADIO BUTTON WIDGET

ENTRY WIDGET

Entry widget is useful to create a rectangular box that can be used to enter or
display one line of text. For example, we can display names, passwords or
credit card numbers using Entry widgets. An Entry widget can be created as an
object of Entry class as:

After typing text in the Entry widget, the user presses the Enter button. Such
an event should be linked with the Entry widget using bind() method as:

When the user presses Enter (or Return) button, the event is passed to display
() method. Hence, we are supposed to catch the event in the display method,
using the following statement:

ENTRY WIDGET

Program: A Python program to create Entry widgets for entering user name and
password and display the entered text.

ENTRY WIDGET

