NSTITUTE OF AERONAUTICAL ENGINEERING

Dundigal, Hyderabad -500 043

INFORMATION TECHNOLOGY

COURSE DESCRIPTION FORM

Course Title	DESIGN AND AN	DESIGN AND ANALYSIS OF ALGORITHMS									
Course Code	A40508	A40508									
Regulation	R15-JNTUH										
Course Structure	Lectures	Tutorials	Practicals	Credits							
	4	1	-	4							
Course	Mr. T Vishnu Vardha	an Reddy Assistant	Professor								
Coordinator											
Team of	Mr. T VishnuVardha	n Reddy Assistant l	Professor, Mr. Y St	ubba Rayudu							
Instructors	Assistant Professor										

I. COURSE OVERVIEW:

The primary objective of this course is to introduce the concept of algorithm as a precise mathematical concept, and study how to design algorithms, establish their correctness, study their efficiency and memory needs. The course consists of a strong mathematical component in addition to the design of various algorithms.

II. PREREQUISITES:

Level	Credits	Periods / Week	Prerequisites
UG	4	5	Basic Data Structures, Basic discrete mathematics.

III. COURSE ASSESSMENT METHODS:

Session Marks	University End Exam Marks	Total Marks
Mid Semester Test		
There shall be two midterm examinations.		
Each midterm examination consists of subjective type and objective type tests.		
The subjective test is for 10 marks of 60 minutes duration.		
Subjective test of shall contain 4 questions; the student has to answer 2 questions, each carrying 5 marks.		
The objective type test is for 10 marks of 20 minutes duration. It consists of 10 Multiple choice and 10 objective type questions, the student has to answer all the questions and each carries half mark.	75	100
First midterm examination shall be conducted for the first two and half units of syllabus and second midterm examination shall be conducted for the remaining portion.		
Assignment		
Five marks are earmarked for assignments.		
There shall be two assignments in every theory course. Marks shall be awarded considering the average of two assignments in each course.		

IV. EVALUATION SCHEME:

S. No	Component	Duration	Marks
1	I Mid Examination	90 minutes	20
2	I Assignment	-	5
3	II Mid Examination	90 minutes	20
4	II Assignment	-	5
5	External Examination	3 hours	75

V. COURSE OBJECTIVES:

- 1. **Calculate** performance of algorithms with respect to time and space complexity.
- 2. **Illustrating** graph and tree traversals.
- 3. **Explaining** the concepts greedy method and dynamic programming. Applying for several applications like knapsack problem, job sequencing with deadlines, and optimal binary search tree, TSP and so on respectively.
- 4. **Illustrating** the methods of backtracking and branch bound techniques to solve the problems like n-queens problem, graph coloring and TSP respectively.
- 5. **Understand** the concept of deterministic and non-deterministic algorithms.

VI. COURSE OUTCOMES:

- 1. **Analyze** the running time and space complexity of algorithms using asymptotic analysis..
- 2. **Understand** different tree traversals, graph traversals and spanning tress.
- 3. **Apply** divide and conquer to binary search, quick sort, merge sort, strassens matrix multiplication.
- 4. **Apply** greedy method to knapsack problem, job sequencing with deadlines, prims, kruskal algorithms.
- 5. **Apply** dynamic programming to optimal binary search trees,0/1 knapsack problem, All pairs shortest path problem etc.
- 6. **Apply** Backtracking ton-queen problem, sum of subsets problem, graph coloring etc.
- 7. **Apply** branch and bound to Travelling sales person problem, 0/1 knapsack problem.
- 8. **Describe** the notions of P, NP, NP-complete, and NP-hard.

VII. HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program Outcomes	Level	Proficiency assessed by
PO1	Engineering knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.	Н	Assignments, Tutorials
PO2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.	Н	Assignments
PO3	Design/development of solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.	S	Mini Projects

	Program Outcomes	Level	Proficiency assessed by
PO4	Conduct investigations of complex problems : Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.	S	Projects
PO5	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.	S	Mini Projects
PO6	The engineer and society : Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.	N	
PO7	Environment and sustainability : Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.	N	
PO8	Ethics : Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.	N	
PO9	Individual and team work : Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.	N	
PO10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.	N	
PO11	Project management and finance : Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.	N	
PO12	Life-long learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.	S	Projects

N= None S= Supportive H= Highly Related

VIII. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program Specific Outcomes	Level	Proficiency assessed by
PSO1	Professional Skills: The ability to research, understand and implement computer programs in the areas related to algorithms, system software, multimedia, web design, big data analytics, and networking for efficient analysis and design of computer-based systems of varying complexity.	Н	Lectures, Assignments
PSO2	Problem-solving Skills: The ability to apply standard practices and strategies in software project development using open-ended programming environments to deliver a quality product for business success.	Н	Projects
PSO3	Successful Career and Entrepreneurship: The ability to employ modern computer languages, environments, and platforms in creating innovative career paths, to be an entrepreneur, and a zest for higher studies.	S	Guest Lectures

IX. SYLLABUS:

UNIT I

Introduction: Algorithm, Pseudo code for expressing algorithms, Performance Analysis-Space complexity, Time complexity, Asymptotic Notation- Big oh notation, Omega notation, Theta notation and Little oh notation, Probabilistic analysis, Amortized complexity.

Sets and Disjoint set Union – Introduction, Union and find operations and algorithms, Connected Components and Spanning trees, Bi – connected components.

Divide and conquer: General method, applications-Binary search, Quick sort, Merge sort, Strassen's matrix multiplication.

UNIT II

Greedy method: General method, applications-Job sequencing with deadlines, 0/1 knapsack problem, Minimum cost spanning trees- Prim's and Kruskal's algorithms, Single source shortest path problem.

UNIT III

Dynamic Programming: General method, applications-Multi stage Graphs, Optimal binary search trees, 0/1 knapsack problem, All pairs shortest path problem, Travelling sales person problem, Reliability design.

UNIT IV

Backtracking: General method, applications-n-queen problem, sum of subsets problem, graph coloring, Hamiltonian cycles.

Branch and Bound: General method, applications - Travelling sales person problem,0/1 knapsack problem- LC Branch and Bound solution, FIFO Branch and Bound solution.

UNIT V

NP-Hard and NP-Complete problems: Basic concepts, non-deterministic algorithms, NP - Hard and NP Complete classes, NP Hard problems, Cook's theorem.

TEXT BOOKS:

 Fundamentals of Computer Algorithms, Ellis Horowitz, SatrajSahni and Rajasekharan, universities press 2008.

REFERENCES:

- 1. Introduction to the Design And Analysis of Algorithms A Levitinpearson education
- 2. Algorithm Design foundations Analysis and Internet examples, M.T.Goodrich and R Tomassia john wileyn and sons
- 3. Computer algorithms introduction to design and analysis 3e Sara base, Allen, van, Gelder, Pearson edition

X. COURSE PLAN:

The course plan is meant as a guideline. There may probably be changes.

Lecture	Course Learning Outcomes	Topics to be covered	Reference
No			
1	Define an algorithm and express	Algorithm, Pseudo code for expressing	T1:1.1-1.2
	into pseudo code	algorithm	
2-5	Define space and time	Space complexity, time complexity	T1:1.3
	complexity and	Asymptotic Notation- Big oh notation,	
	Calculate performance	Omega notation, Theta notation and Little	
		oh notation	
6-7	Define probabilistic and	Probabilistic analysis,	T1: 1.4
	amortized analysis	Amortized complexity	
8-15	Define Divide and Conquer.	Divide and conquer – general method	T1:3.1,3.3,
	Illustrate with examples those	applications	T1:3.5-3.6,
	can be solved by using divide	Binary search, Quick sort,	T1:3.8
	and conquer.	Merge sort, Strassen's matrix multiplication	

Lecture No	Course Learning Outcomes	Topics to be covered	Reference
16-17	Illustrate different tree traversal	non-recursive binary tree traversal	T1 :6.1
18-19	Explain sets, operations	Disjoint set operations, union and find algorithms	T1: 2.5
20-22	Illustrate spanning trees, DFS,BFS traversals	spanning trees, Graph traversals-Breadth first search, Depth first search	T1: 6.2
23-24	Demonstrate AND/OR graphs, Game trees	AND/OR graphs, Game trees	T1:11.3
25-26	Explaining Connected components, Bi-connected components	Connected components, Bi-connected components	T1: 6.3,6.4
27-32	Define greedy method and Demonstrate examples where greedy method can be applied.	Greedy Method: applications Job sequencing with deadlines, 0/1 knapsack problem	T1: 4.1 T1:4.3,4.5
		Minimum cost spanning trees, Single source shortest path problem	T1:4.6,4.9
33-43	Define dynamic programming Demonstrate examples where	Dynamic Programming: General method, applications	
	Dynamic Programming can be applied.	Multi stage Graphs, Optimal binary search trees ,0/1 knapsack problem, All pairs shortest path problem, Travelling sales person problem, Reliability design	T1:5.1-5.3 T1:5.5 T1:5.7-5.9
44-51	Define backtracking Demonstrate examples where backtracking can be applied	Backtracking: General method, applicationsn-queen problem, sum of subsets problem graph coloring, Hamiltonian cycles	T1: 7.1-7.5
52-59	Define Branch and Bound Demonstrate examples where Dynamic Programming can be applied.	Branch and Bound: General method, applications: Travelling sales person problem0/1 knapsack problem- LC Branch andBound solution FIFO Branch and Bound solution	T1: 8.1-8.3
60	Define NP-Hard and NP-Complete problems	NP-Hard and NP-Complete problems Basic concepts	T1:11.1
61-63	Distinguish non-deterministic and deterministic algorithms	non-deterministic algorithms, NP - Hard and NP Complete classes NP Hard problems	T1:11.1,11.
64-65	Demonstrate Cook's theorem	Cook's theorem	T1:11.2

XI. MAPPING COURSE OBJECTIVES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES:

Course Objective s	Program Outcomes											Program Specific Outcomes			
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3
I	Н	Н										S	Н	S	
II	Н	Н	S										Н	S	
III	Н	Н	S	S									S	Н	
IV	Н	S											Н	S	
V		Н			S								Н		

S= Supportive

H = Highly Related

XII. MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES:

Course	Program Outcomes										Program Specific Outcomes				
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
1	Н	S	S										Н	S	
2		Н			S								Н	S	
3	Н	Н											Н		
4	S	Н											Н	S	
5	S	Н										S	Н		
6	S	Н										S	Н		
7	S	Н										S	Н		
8	S	Н										S	Н		

S= Supportive

H = Highly Related

HOD, INFORMATION TECHNOLOGY