

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad -500 043

INFORMATION TECHNOLOGY

COURSE DESCRIPTOR

Course Title	DATABASE MANAGEMENT SYSTEMS								
Course Code	ACS00	ACS005							
Programme	B.Tech	B.Tech							
Semester	III IV								
Course Type	Core								
Regulation	IARE -	- R16							
	Theory				Practical				
Course Structure	Lectu	ires	Tutorials	Credits	Laboratory	Credits			
	3		1	4	3	2			
Chief Coordinator	Ms. K. LaxmiNarayanamma, Assistant Professor								
Course Faculty	Mr. N	Bhasy	wanth, Assistant	Professor					

I. COURSE OVERVIEW:

This course introduces the core principles and techniques required in the design and implementation of database systems. This introductory application-oriented course covers the relational database systems RDBMS - the predominant system for business, scientific and engineering applications at present. It includes Entity-Relational model, Normalization, Relational model, Relational algebra, and data access queries as well as an introduction to SQL. It also covers essential DBMS concepts such as: Transaction Processing, Concurrency Control and Recovery. It also provides students with theoretical knowledge and practical skills in the use of databases and database management systems in information technology applications.

II. COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites	Credits		
UG	ACS002	Π	Data Structures	4		

III. MARKS DISTRIBUTION:

Subject	SEE Examination	CIA Examination	Total Marks	
Database Management Systems	70 Marks	30 Marks	100	

IV. DELIVERY / INSTRUCTIONAL METHODOLOGIES:

~	Chalk & Talk	~	Quiz	~	Assignments	~	MOOCs
~	LCD / PPT	✓ Seminars		~	Mini Project	~	Videos
×	Open Ended Experi	ments					

V. EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIA examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into five units and each unit carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each unit. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The emphasis on the questions is broadly based on the following criteria:

50 %	To test the objectiveness of the concept.
50 %	To test the analytical skill of the concept OR to test the application skill of the concept.

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 25 marks for Continuous Internal Examination (CIE), 05 marks for Quiz/ Alternative Assessment Tool (AAT).

Component		Total Marks		
Type of Assessment	CIE Exam	Quiz / AAT	i otai iviai ks	
CIA Marks	25	05	30	

Table 1: Assessment pattern for CIA

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8th and 16th week of the semester respectively. The CIE exam is conducted for 25 marks of 2 hours duration consisting of two parts. Part–A shall have five compulsory questions of one mark each. In part–B, four out of five questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Quiz / Alternative Assessment Tool (AAT):

Two Quiz exams shall be online examination consisting of 25 multiple choice questions and are be answered by choosing the correct answer from a given set of choices (commonly four). Marks shall be awarded considering the average of two quizzes for every course. The AAT may include seminars, assignments, term paper, open ended experiments, five minutes video and MOOCs.

VI. HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program Outcomes (POs)	Strength	Proficiency assessed by
PO 1	Engineering knowledge: Apply the knowledge of mathematics,	3	Assignment
	science, engineering fundamentals, and an engineering		/Quiz
	specialization to the solution of complex engineering problems.		
PO 2	Problem analysis: Identify, formulate, review research	2	Seminar
	literature, and analyze complex engineering problems reaching		
	substantiated conclusions using first principles of mathematics,		
	natural sciences, and engineering sciences		
PO 3	Design / development of solutions: Design solutions for	3	Mini Project
	complex engineering problems and design system components		
	or processes that meet the specified needs with appropriate		
	consideration for the public health and safety, and the cultural,		
	societal, and environmental considerations.		
PO 5	Modern tool usage: Create, select, and apply appropriate	3	Laboratory
	techniques, resources, and modern engineering and IT tools		Practices
	including prediction and modeling to complex engineering		
	activities with an understanding of the limitations.		
PO 12	Life-long learning: Recognize the need for, and have the	2	Seminar
	preparation and ability to engage in independent and life-long		
	learning in the broadest context of technological change.		
	3 – High: 2 – Medium: 1 – Low		

3 = High; **2** = Medium; **1** = Low

VII. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program Specific Outcomes (PSOs)	Strength	Proficiency assessed by
PSO 1	Professional Skills: The ability to understand, analyze and develop computer programs in the areas related to algorithms, system software, multimedia, web design, big data analytics, and networking for efficient design of computer-based systems of varying complexity.	2	Seminar
PSO 2	Software Engineering Practices: The ability to apply standard practices and strategies in software service management using open-ended programming environments with agility to deliver a quality service for business success.	2	Assignment / Quiz
PSO 3		3	Mini Project

3 = High; **2** = Medium; **1** = Low

VIII. COURSE OBJECTIVES (COs):

The course should enable the students to:								
Ι	Discuss the basic database concepts, applications, data models, schemas and instances.							
II	Design Entity Relationship model for a database.							
III	Demonstrate the use of constraints and relational algebra operations.							
IV	Describe the basics of SQL and construct queries using SQL.							
V	Understand the importance of normalization in databases.							

IX. COURSE LEARNING OUTCOMES (CLOs):

CLO Code	CLO's	At the end of the course, the student will have the ability to:	PO's Mapped	Strength of Mapping	
ACS005.01	CLO 1	Define the terminology, features, and	PO 1	2	
		characteristics of database system			
ACS005.02	CLO 2	Differentiate database systems from file systems by	PO 1, PO	3	
		enumerating various features provided by database	2		
		systems.			
ACS005.03	CLO 3	Describe Data Models, Schemas, Instances, Three	PO 1	3	
		Schema Architecture and DBMS Component			
		Modules			
ACS005.04	CLO 4	Analyze an information storage problem and derive	PO 2, PO	3	
		an information model expressed in the form of an	3		
		entity relation diagram.			
ACS005.05	CLO 5	Model the real world database systems using Entity	PO 2, PO	2	
		Relationship Diagrams (ERD) from the	3		
		requirements specification.			
ACS005.06	CLO 6	Describe basics of the relational data model.	PO 1	3	
ACS005.07	CLO 7	Define and illustrate the Relational Data Model,	PO 1	3	
		Constraints and Schemas	_		
ACS005.08	CLO 8	Transform an information model into a relational	PO 2, PO	2	
10000000	0200	database schema and implement schema using data	3	_	
		definition language and/or utilities.			
ACS005.09	CLO 9	Formulate solutions to a broad range of query	PO 2, PO	3	
nebuus.us		problems using relational algebra.	3	5	
ACS005.10	CLO 10	Apply relational calculus to solve broad range of	PO 2, PO	3	
AC5005.10	CLO IU	query problems.	3,	5	
ACS005.11	CLO 11	Illustrate the Functional Dependencies, Inference	PO 1, PO	2	
AC5005.11	CLO II	Rules, Minimal Sets of FDs	2	2	
ACS005.12	CLO 12	Understand normalization theory and criticize a	PO 2, PO	2	
AC5005.12	CLO 12	database design and improve the design by	3	2	
		normalization.	5		
ACS005.13	CLO 13	Explain various Normal Forms and Apply to	PO 1, PO	3	
AC3003.13	CLO 15	normalize a database.	2	5	
ACS005.14	CLO 14	Understand the SQL Data definition statements to	PO 1,PO	2	
AC3003.14	CLO 14	-	2, PO 5	2	
		formulate solutions to a broad range of query and	2, 105		
1 0005 15	CL 0 15	data update problems		2	
ACS005.15	CLO 15	Use an SQL interface of a multi-user relational	PO 2 , PO 5	3	
		DBMS package to create, secure, populate,	5		
10005 16	CL 0.16	maintain, and query a database.		2	
ACS005.16	CLO 16		PO 2 , PO 5	2	
		calculations, views, sub-queries, embedded queries,	5		
	GT 0 15	manipulation, and report generation.	DO 4 DO		
ACS005.17	CLO 17	Demonstrate PL/SQL including stored procedures,		3	
		stored functions, cursors, packages.	3, PO 5, PO 12		
ACS005.18	CLO 18	Gain knowledge on transaction processing to	PO 1, PO	2	
		maintain consistency and integrity of data in	2	-	
		database systems.	-		
ACS005.19	CLO 19	Describe concurrency control techniques to	PO 1,PO 2	2	
100000.17		implement data integrity in database systems.	101,102	2	
	CLO 20	Illustrate various backup and recovery techniques	PO 1,PO 2	2	
ACS005.20	(1 () 70)				

CLO Code	CLO's	At the end of the course, the student will have the ability to:	PO's Mapped	Strength of Mapping
ACS005.21	CLO 21	Analyze transaction processing, concurrency	PO 1, PO	3
		control, Database recovery techniques	2	
ACS005.22	CLO 22	Define disk storage devices, files of records,	PO 1	3
		unordered files, ordered files and hashed files and		
		organizations		
ACS005.23	CLO 23	Familiar with basic database storage structures and	PO 1, PO	2
		access techniques- file and page organizations,	2	
		indexing methods		
ACS005.24	CLO 24	Illustrate various operations in implementing data	PO 1, PO	3
		indices using various hashing techniques.	2, PO 5	
ACS005.25	CLO 25	Possess the knowledge and skills for employability	PO 5, PO	3
		and to succeed in national and international level	12	
		competitive examinations.		

3 = High; **2** = Medium; **1** = Low

X. MAPPING COURSE LEARNING OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

(CLOs)					_	am Ot							Program Specific Outcomes (PSOs)		
(CLOS)	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO 3
CLO 1	3												1		
CLO 2	3	2													
CLO 3	3												2		
CLO 4		3	3												
CLO 5		3	3											2	1
CLO 6	3														
CLO 7	3													2	
CLO 8		2	3											2	
CLO 9		3	2											3	
CLO 10		3	2											3	
CLO 11	3	2													
CLO 12		3	2											2	
CLO 13	3	3											2		
CLO 14	3	2											2		
CLO 15		2			3										3
CLO 16		2			3									2	

(CLOs)	Program Outcomes (POs)							Program Specific Outcomes (PSOs)					
CLO 17		2	3		3					3			3
CLO 18	3	2									2		
CLO 19	3	2										2	
CLO 20	3	2										2	
CLO 21	3	2									3		
CLO 22	3										3		
CLO 23	3	2										2	
CLO 24	2	3			3								
CLO 25					3					2			3

3 = **High**; **2** = **Medium**; **1** = Low

XI. ASSESSMENT METHODOLOGIES – DIRECT

CIE Exams	PO 1, PO 2, PO 3, PO 5	SEE Exams	PO 1, PO 2, PO 3, PO 5	Assignments	PO 1	Seminars	PO 2
Laboratory Practices	PO 2	Student Viva	PO 3	Mini Project	PO 3	Certification	-
Term Paper	-						

XII. ASSESSMENT METHODOLOGIES - INDIRECT

>	Early Semester Feedback	>	End Semester OBE Feedback
×	Assessment of Mini Projects by Experts		

XIII. SYLLABUS

Unit-I	CONCEPTUAL MODELING						
	Introduction to file and database systems: Database system structure, data models, introduction to network and hierarchical models, ER model, relational model.						
Unit-II	RELATIONAL APPROACH						
joins, divisio	gebra and calculus: Relational algebra, selection and projection, set operations, renaming, n, examples of algebra queries, relational calculus, tuple relational calculus, domain culus, expressive power of algebra and calculus						
Unit-III	BASIC SQL QUERY						
	nition; Queries in SQL: updates, views, integrity and security, relational database design. pendencies and normalization for relational databases up to five normal forms.						
Unit-IV	TRANSACTION MANAGEMENT						
Transaction processing: Introduction, need for concurrency control, desirable properties of transaction, schedule and recoverability, serializability and schedules, concurrency control; Types of locks: Two phases locking, deadlock, time stamp based concurrency control, recovery techniques, concepts, immediate update, deferred update, shadow paging.							

Unit-V

DATA STORAGE AND QUERY PROCESSING

Record storage and primary file organization, secondary storage devices, operations on files, heap File, sorted files, hashing techniques, and index structures for files; Different types of indexes, B tree, B+ tree, query processing.

Text Books:

- 1. Abraham Silberschatz, Henry F. Korth, S. Sudarshan, "Database System Concepts", McGraw-Hill, 4th Edition, 2002.
- Ramez Elmasri, Shamkant B. Navathe, "Fundamental Database Systems", Pearson Education, 3rd Edition, 2003

Reference Books:

- 1. Raghu Ramakrishnan, "Database Management System", Tata McGraw-Hill Publishing Company, 3rd Edition, 2003.
- 2. Hector Garcia Molina, Jeffrey D. Ullman, Jennifer Widom, "Database System Implementation", PearsonEducation, United States 1st Edition, 2000.
- 3. Peter Rob, Corlos Coronel, "Database System, Design, Implementation and Management", Thompson Learning Course Technology, 5th Edition, 2003.

XIV. COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

Lecture No	Topics to be covered	CLOs	Reference
1-2	Introduction, Data base System Applications, Purpose of data base Systems, View of Data – Data Abstraction, Instances and Schemas Data Models,, Database Languages, Data base access for applications Programs	CLO 1	T2: 1.1- 1.5
3-4	Transaction Management component of DB architecture, Data base users, History of database systems, Database design, ER Diagrams.	CLO 2	T2: 1. 6 - 1.8,, 1.10,T1: 2.1
5-6	Entities, Attributes and entity sets, Relationships and relationship sets, Additional features of ER model, Conceptual design with ER model, Conceptual design for large enterprises	CLO 3, CLO4, CLO5	T1: 2.2-2.6
7-8	Relational Model: Introduction to the Relational Model – Integrity Constraint Over relations, Enforcing Integrity constraints – Querying relational data	CLO 6, CLO 7, CLO 8	T1: 3.1-3.7
9-10	Relational Algebra and Calculus: Relational Algebra – Selection and projection –set operations – renaming, Joins – Division	CLO 8, CLO 9	T1: 4.1, 4.2.2
11-12	Relational calculus – Tuple relational Calculus – Domain relational calculus – Expressive Power of Algebra and calculus.	CLO 10	T1:4.3, 4.4
13-14	Form of Basic SQL Query – Examples of Basic SQL Queries Comparison Operators – Aggregative Operators, NULL values , Logical connectivity's – AND, OR and NOT,,mplex Integrity Constraints in SQL	CLO 14, CLO 15	T1: 5.2-5.5
15-16	Introduction to Nested Queries – Correlated Nested Queries Set Comparison Operators – Aggregative Operators, Triggers and Active Data bases	CLO 16, CLO 17	T1: 5.6- 5.8
17-18	Introduction to Schema refinement – Problems Caused by redundancy ,Decompositions – Problem related to decomposition	CLO 11	T1: 19.1, 19.1.3
19-21	Functional dependencies, reasoning about FDS ,Lossless join Decomposition , Dependency preserving Decomposition	CLO 12	T2: 19.4- 19.8
22-25	Schema refinement in Data base Design, Normal Forms, MVDs, JDs	CLO 13, CLO 14	T2: 19.8- 199
26-29	Transaction Management: Transaction Concept-Transaction State- Implementation of atomicity and Durability, Concurrent Executions, Serializability, Recoverability, Implementation of Isolation, Testing for Serializability.	CLO 18	T2: 15.1- 15.29

Lecture No	Topics to be covered	CLOs	Reference
30-33	Concurrency Control: Lock-Based Protocols –time Stamp Based protocols-,Validation Based Protocols-Multiple Granularity	CLO 19	T2: 16.1, 16.2 T2: 16.3, 16.4
34-37	Recovery System-Failure Classification-storage Structure recovery and Atomicity-Log Based Recovery-,Recovery with, Concurrent Transactions, Buffer Management-Failure with loss of Non Volatile Storage, Advance Recovery Systems-Remote Backup Systems	CLO 20, CLO 21	T2: 17.1 - 17.10
38-39	Overview of Storage and Indexing: Data on External Storage, File Organization and Indexing – Cluster Indexes, Primary and Secondary Indices	CLO 22	T1: 8.1,8.2
40-41	Index data Structures – Hash Based Indexing ,Tree base Indexing – Comparison of File Organizations	CLO 24	T1: 8.3- 8.4
42	Tree Structured Indexing: Intuitions for tree Indexes Indexed Sequential Access Methods (ISAM)	CLO 22	T1: 10 10.2
43	B+ Trees: A Dynamic Index Structure-Search, insert, Delete operations	CLO 22	T1: 10.3 - 10.6
44	Hash Based Indexing: Static Hashing – Extendable hashing ,Linear Hashing –Extendable vs. Liner hashing	CLO 24	T1: 11.1 – 11.4
45	Query Processing	CLO 24	T1:12.1- 12.3

XV. GAPS IN THE SYLLABUS - TO MEET INDUSTRY / PROFESSION REQUIREMENTS:

Sno	Description	Proposed Action	Relevance with POs	Relevance with PSOs
1	Conversion of ER model into	Seminars	PO 2, PO 12	PSO 1
	Relational Model	/Guest		
		Lecture		
2	Practical Implementation of triggers	Assignments/	PO 3, PO 5, PO	PSO 2
	and assertions using PL/SQL	Lab	12	
		experiments		
3	Implementation of Transaction and	Assignments/	PO 2, PO 5, PO	PSO 2
	security restriction using SQL.	Lab	12	
		experiments		

Prepared by:

Ms. K.LaxmiNarayanamma, Assistant Professor

HOD, IT