

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad -500 043

ELECTRICAL AND ELECTRONICS ENGINEERING

COURSE DESCRIPTOR

Course Title	DC MA	DC MACHINES AND TRANSFORMERS							
Course Code	AEE00	AEE004							
Programme	B.Tech	B.Tech							
Semester	III	III EEE							
Course Type	Core	Core							
Regulation	IARE - R16								
	Theory Practical								
Course Structure	Lectu	res	Tutorials	Credits	Laboratory	Credits			
	3		1	4	3	2			
Chief Coordinator	Mr. P N	Mabu	hussain, Assista	nt Professor					
Course Faculty	Dr. P Sridhar, Professor Mr. P Mabuhussain, Assistant Professor Mr. K Devender Reddy, Assistant Professor								

I. COURSE OVERVIEW:

This course examines the basic theory, construction, operation, performance characteristics and application of electromechanical energy conversion devices such as DC generators and motors. It also gives an in-depth knowledge on the operation of single phase and three phase transformers and it's testing. It also focus on the auto transformers, on-load, off-load tap changers which are widely used in real time applications.

II. COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites	Credits
UG	AHS006	I	Engineering Physics	4
UG	AEE002	II	Electrical Circuits	4

III. MARKS DISTRIBUTION:

Subject	SEE Examination	CIA Examination	Total Marks	
DC Machines and Transformers	70 Marks	30 Marks	100	

IV. DELIVERY / INSTRUCTIONAL METHODOLOGIES:

~	Chalk & Talk	~	Quiz	~	Assignments	x	MOOCs
~	LCD / PPT	/	Seminars	×	Mini Project	~	Videos
~	Open Ended Experi	ments					

V. EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIA examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into five units and each unit carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each unit. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The emphasis on the questions is broadly based on the following criteria:

50 %	To test the objectiveness of the concept.
50 %	To test the analytical and application skills of the concept.

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 25 marks for Continuous Internal Examination (CIE), 05 marks for Quiz/ Alternative Assessment Tool (AAT).

Table 1: Assessment pattern for CIA

Component		Theory	Total marks	
Type of Assessment	CIE Exam	Quiz / AAT	Total marks	
CIA marks	25	05	30	

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8th and 16th week of the semester respectively. The CIE exam is conducted for 25 marks of 2 hours duration consisting of two parts. Part–A shall have five compulsory questions of one mark each. In part–B, four out of five questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Quiz / Alternative Assessment Tool (AAT):

Two Quiz exams shall be online examination consisting of 25 multiple choice questions and are be answered by choosing the correct answer from a given set of choices (commonly four). Marks shall be awarded considering the average of two quizzes for every course. The AAT may include seminars, assignments, term paper, open ended experiments, five minutes video and MOOCs.

VI. HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program Outcomes (POs)	Strength	Proficiency assessed by
PO 1	Engineering knowledge: Apply the knowledge of	2	seminars
	mathematics, science, engineering fundamentals, and an		
	engineering specialization to the solution of complex		
	engineering problems.		
PO 2	3,	3	Assignments
	literature, and analyze complex engineering problems		
	reaching substantiated conclusions using first principles of		
	mathematics, natural sciences, and engineering sciences.		
PO 4	Conduct investigations of complex problems: Use	3	Laboratory Practice
	research-based knowledge and research methods including		
	design of experiments, analysis and interpretation of data,		
	and synthesis of the information to provide valid		
	conclusions.		

 $^{3 = \}text{High}$; 2 = Medium; 1 = Low

VII. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program Specific Outcomes (PSOs)	Strength	Proficiency assessed by
PSO 1	Problem Solving: Able to utilize the knowledge of high voltage engineering in collaboration with power systems in innovative, dynamic and challenging environment, for the	-	-
	research based team work.		
PSO 2	Professional Skills: Can explore the scientific theories, ideas, methodologies and the new cutting edge technologies in renewable energy engineering, and use this erudition in their professional development and gain sufficient competence to solve the current and future energy problems universally.	-	-
PSO 3	Modern Tools in Electrical Engineering: The understanding of technologies like PLC, PMC, process controllers, transducers and HMI one can analyze, design electrical and electronics principles to install, test, maintain power system and applications.	2	METE Projects, Open ended experiments

 $^{3 = \}text{High}$; 2 = Medium; 1 = Low

VIII. COURSE OBJECTIVES (COs):

The	The course should enable the students to:							
I	Illustrate the theory of electromechanical energy conversion and the concept of co energy.							
II	Demonstrate the working principle of different types of dc machines and transformers.							
III	Analyze the losses in dc machines to improve the efficiency by conducting various tests							
IV	Outline the principle of operation, construction and testing of single phase transformers							

IX. COURSE LEARNING OUTCOMES (CLOs):

CLO Code	CLO's	At the end of the course, the student will have the ability to:	PO's Mapped	Strength of Mapping
AEE004.01	CLO 1	Solve simple and complex problems related to	PO 1, PO 2	2
AEE004.02	CLO 2	electromagnetic circuits. Describe the basic electromagnetic energy conversion process, energy storage and energy balance.	PO 1	3
AEE004.03	CLO 3	Derive the force and torque produced in singly excited, multi excited magnetic systems.	PO 2	3
AEE004.04	CLO 4	Outline the construction, operation and the windings used in DC machines.	PO 1, PO 2	3
AEE004.05	CLO 5	Illustrate the concept of armature reaction, commutation and study the characteristics and applications of DC generators.	PO 1, PO 2	3
AEE004.06	CLO 6	Examine the parallel operation of DC generators, importance of equalizer bars and load sharing.	PO 1, PO 2	2
AEE004.07	CLO 7	Study the operation, significance of back EMF, characteristics and speed control methods of DC motors.	PO 1, PO 4	3
AEE004.08	CLO 8	Classify the different types of losses occurred in DC machines.	PO 1	2
AEE004.09	CLO 9	Determine the efficiency of DC machines by conducting direct and indirect tests.	PO 2, PO 4	3
AEE004.10	CLO 10	Discuss the principles of operation, construction and EMF equation of single phase transformers.	PO 1, PO 2	2
AEE004.11	CLO 11	Explain the operation of single phase transformer under no-load and on-load along with its phasor diagrams.	PO 1,PO 2	2
AEE004.12	CLO 12	Calculate the efficiency and regulation of single phase transformers by conducting different tests.	PO 2, PO 4	2
AEE004.13	CLO 13	Examine the parallel operation of single phase transformers and analyze the load sharing.	PO 1, PO 2	3
AEE004.14	CLO 14	Summarize the different types of connections of three phase transformers.	PO 1, PO 2	2
AEE004.15	CLO 15	Demonstrate the operation of open delta connection and Scott connection with two single phase transformers.	PO 2, PO 4	3
AEE004.16		Explain the functioning of autotransformers, tap changing transformers and off-load, onload tap changers.	PO 1, PO 2	2

3 = High; 2 = Medium; 1 = Low

X. MAPPING COURSE LEARNING OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

CLOs		Program Outcomes (POs)											Program Specific Outcomes (PSOs)		
CLOS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CLO 1	2	2													
CLO 2	3														
CLO 3		3													
CLO 4	3	3													
CLO 5	3	3													
CLO 6	2	2													
CLO 7	3			3											2
CLO 8	2														
CLO 9		3		3											2
CLO 10	2	2													
CLO 11	2	2													
CLO 12		3		3											2
CLO 13	2	3													2
CLO 14	2	3													
CLO 15		3		3											2
CLO 16		3			1 1										

^{3 =} High; 2 = Medium; 1 = Low

XI. ASSESSMENT METHODOLOGIES - DIRECT

CIE Exams	PO1, PO2, PO4, PSO3	SEE Exams	PO1, PO2, PO4, PSO3	Assignments	PO1, PO2	Seminars	PO 2
Laboratory Practices	PO3, PO4	Student Viva	PO 4	Mini Project	ı	Certification	-
Term Paper	-						

XII. ASSESSMENT METHODOLOGIES - INDIRECT

~	Early Semester Feedback	>	End Semester OBE Feedback
×	Assessment of Mini Projects by Experts		

XIII. SYLLABUS

UNIT-I

ELECTROMECHANICAL ENERGY CONVERSION

Electromechanical energy conversion: Forces and torque in magnetic systems, energy balance, energy and force in a singly excited and multi excited magnetic field systems, determination of magnetic force, coenergy.

UNIT-II

DC GENERATORS

Principle of operation, construction, armature windings, lap and wave windings, simplex and multiplex windings, use of laminated armature, commutator, emf equation, types of DC generators, voltage buildup, critical field resistance and critical speed, causes for failure to self excite and remedial measures; Armature reaction: Cross magnetization and demagnetization, ampere turns per pole, compensating winding, commutation, reactance voltage, methods of improving commutation; Characteristics: Principle of parallel operation load sharing, use of equalizer bars and cross connection of field windings problems

UNIT-III

DC MOTORS AND TESTING

Principle of operation, back EMF, torque equation, condition for maximum power developed, types of DC motors, armature reaction and commutation, characteristics, methods of speed control, types of starters, numerical problems; Losses and efficiency: Types of losses, calculation of efficiency, condition for maximum efficiency

Testing of DC machines: Swinburne's test, brake test, regenerative testing, Hopkinson's test, field's test, retardation test and separation of stray losses, problems.

UNIT-IV

SINGLE PHASE TRANSFORMERS

Single phase transformers: Principle of operation, construction, types of transformers, EMF equation, concept of leakage flux and leakage reactance, operation of transformer under no load and on load, phasor diagrams, equivalent circuit, efficiency, regulation and all day efficiency; Testing of transformer: objective of testing, polarity test, measurement of resistance, OC and SC tests, back to back test, heat run test, parallel operation, problems.

UNIT-V

POLY PHASE TRANSFORMERS

Three phase transformer: Principle of operation, star to star, delta to delta, star to delta, delta to star, three phase to six phase, open delta connection, scott connection; Auto transformers: Principles of operation, equivalent circuit, merits and demerits, no load and on load tap changers, harmonic reduction in phase voltages, problems.

Text Books:

- J B Gupta, "Theory and Performance of Electrical Machines", S K Kataria & Sons publications, 14th edition, 2010.
- 2. P S Bimbra, "Electrical Machines", Khanna publications, 2nd edition, 2008.
- 3. I J Nagrath, D P Kothari, "Electrical Machines", Tata Mc Graw Hill publications, 3rd Edition, 2010.
- 4. Abhijit Chakrabarti, Sudipta Debnath, "Electrical Machines", McGrawhill education (India) private limited, 1st edition, 2015

Reference Books:

- 1. Ian McKenzie Smith, Edward Hughes, "Electrical Technology", Prentice Hall, 10th edition, 2015.
- 2. M G Say, E O Taylor, "Direct current Machines", Longman higher education, 1st edition, 1985.
- 3. M V Deshpande, "Electrical Machines", PHI learning private limited, 3rd edition, 2011.

XIV. COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

Lecture No	Topics to be covered	CLOs	Reference
1	Understand the concepts of electromechanical energy	CLO 1	T1: 2.1
	systems		
2	Analyze the forces and torques produced in magnetic field systems	CLO 3	T1:2.4
3	Solve the different problems related to magnetic field systems	CLO 1	T1:2.4
4	Solve different analytical problems related to energy balance	CLO 2	T1:2.5
5	Understand the concept of energy and force in singly excited systems	CLO 3	T1:2.7.1 - 2.7.4
6	Understand the concept of energy and force in multi excited systems	CLO 3	T1:2.10
7	Solve different analytical problems related to multi excited systems	CLO 3	T1:2.10
8	Understand the concept of magnetic force and coenergy	CLO3	T1:2.10
9	Understand principle of operation of DC generator	CLO 4	T1:4.1-4.2
10	Know the different parts in a DC machine and Understand the functioning of each component.	CLO 4	T1:4.3
11	Know the different types of windings used in DC generators	CLO 4	T1:4.4-4.9
12	Understand why the core of a DC machine is laminated and functioning of commutator	CLO 4	T1:4.3
13	Derive the equation of EMF induced in a DC generator and solve the simple problems	CLO 4	T1:4.10
14	Distinguish the different types of DC generators and know how the voltage is buildup in DC generators	CLO 4	T1:6.1-6.2
15	Understand the concept of critical field resistance and critical speed	CLO 5	T1:6.7-6.12
16	Understand the different causes for the failure of excitation in DC generators and know the remedies to solve the problem	CLO 5	T1:6.13-6.14
17	Understand the concept of armature reaction in DC generator	CLO 5	T1:5.1-5.2
18	Understand the concept of cross magnetization and demagnetization in DC generator	CLO 5	T1:5.3
19	Solve the problems on armature reaction	CLO 5	T1:5.7
20	Understand the concept of commutation, and know different methods used for improving the commutation	CLO 5	T1:5.4-5.6
21	Draw the different types of characteristics for DC generator	CLO 5	T1:6.5-6.11
22	Understand the basic principle of operating the generators in parallel	CLO 6	T1:7.1 -7.4
23	Understand the function of equalizer bar and its usage	CLO 6	T1:7.2
24	Solve the different types of numerical problems related to DC generators.	CLO 6	T1:4.1-7.4
25	Understand the basic principle of dc motor and its function	CLO 7	T1:8.2
26	Understand how the back EMF is induced in DC motor and derive the torque equation	CLO 7	T1:8.4-8.6 & T1: 8.12-8.15
27	Know different types of motors and solve simple problems	CLO 7	T1:8.7.1-8.7.5

Lecture No	Topics to be covered	CLOs	Reference
28	Understand the occurrence of armature reaction and study the commutation techniques		T1:8.16
29	Draw the performance characteristics of DC motors	CLO 7	T1:8.18-8.23
30	Understand the methods of speed control	CLO 7	T1:9.1-9.3
31	Know why starters are used and different types of starters	CLO 7	T1:9.4-97
32	Understand the differ types of losses that are occurred in a DC motor.	CLO 8	T1:10.1-10.4
33	Solve different numerical problems related to efficiency of DC motor	CLO 8	T1:10.1-10.4
34	Conduct the Swinburne's test and Brake test on DC motor and compare the two methods.	CLO 9	T1:10.7
35	Conduct the regenerative test, Hopkinson's test and determine the efficiency of DC motor	CLO 9	T1:10.8
36	Conduct the field's test on DC series motor, and retardation test on DC shunt motor.	CLO 9	T1:10.9-10.10
37	Summarize the different types of losses and separate the each loss from total losses.	CLO 9	T4:10.10
38	Solve the different types of numerical problems related to DC motors testing	CLO 9	T1:8.2-10.10
39	Explain the operation, construction and types of single phase transformer.	CLO 10	T1:1.1-1.4 & T1:1.24
40	Derive the equation of EMF induced in transformer and understand the concept of leakage flux and reactance.	CLO 10	T1:1.5-1.6
41	Discuss the operation of transformer under no load and on load with the phasor diagrams	CLO 11	T1:1.8-1.12
42	Draw the equivalent circuit of single phase transformer and study the concept of regulation and all day efficiency	CLO 11	T1:1.13-1.18
43	Solve the Numerical problems on EMF equation and draw the phasor diagrams	CLO 10	T1:1.1-1.18
44	Understand the objectives of testing, and kwon how to conduct polarity test and how to measure resistance.	CLO 12	T1:1.19.1-1.19.2
45	Conduct OC and SC tests on transformer and determine the efficiency and regulation at different loads.	CLO 12	T1:1.193-1.195
46	Conduct back to back test / heat run test and determine the efficiency and regulation.	CLO 12	T1:1.19.6
47	Solve the problems on transformer testing	CLO 12	T1:1.19.1-1.19.6
48	Understand the necessity and importance of parallel connection of transformers.	CLO 13	T1:2.11.1-2.11.4
49	Understand how the load is shared between two transformers connected in parallel.	CLO 13	T1:2.11.1-2.11.4
50	Solve the different types of numerical problems related to single phase transformers.	CLO 13	T1:1.1-2.11
51	Understand the principle of operation of three phase transformers	CLO 14	T1:2.1-2.2
52	Analyze the different connections of three phase transformers.	CLO 14	T1:2.3.1-2.3.2
53	Solve the problems on three phase transformer connections	CLO 14	T1:2.1-2.3.2
54	Analyze how a transformer can work on open delta connection.	CLO 15	T1:2.4.1-2.4.2
55	Describe how scott connection is performed to convert three phase supply to two phase and vice versa.	CLO 15	T1:2.5

Lecture No	Topics to be covered	CLOs	Reference
56	Understand the principle of operation auto transformers.	CLO 16	T1:2.12
57	Draw the equivalent circuit and explain the merits and demerits of auto transformers	CLO 16	T1: 2.12.2
58	Solve the problems on Autotransformers	CLO 16	T1: 2.12.2
59	Understand the operation of no load and on load tap changers.	CLO 16	T1:1.17.1-2.17.2
60	Know how to reduce the harmonics in phase voltages	CLO 16	T1:2.62

${\bf XV.}$ GAPS IN THE SYLLABUS - TO MEET INDUSTRY / PROFESSION REQUIREMENTS:

S No	Description	Proposed actions	Relevance with POs	Relevance with PSOs
1	Effect of magnetic inrush	MOOC courses /	PO 1, PO 2	PSO 1
	current on the performance	Laboratory Practices		
	of transformers			
2	Types of windings and	NPTEL / Industrial	PO 1, PO 2	PSO 1
	section of windings in	visits		
	transformers			
3	Cooling methods and	NPTEL / R&D	PO 1, PO 4	PSO 2
	maintenance of	Centres, Industrial		
	transformers	visits		

Prepared by:

Mr. P Mabuhussain, Assistant Professor

HOD, EEE