

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad - 500 043

ELECTRONICS AND COMMUNICATION ENGINEERING

Course Title DIGITAL DESIGN USING VERILOG HDL Course Code A40410 **R13-JNTUH** Regulation Course Structure Lectures Tutorials Practicals Credits 5 4 _ _ **Course Coordinator** Mr. D. Khalandar Basha, Associate Professor **Team of Instructors** Mr. K. Arun sai, Assistant Professor, Mr. K Sudhakar Reddy, Assistant Professor, Mr. N Nagaraju, Assistant Professor

COURSE DESCRIPTION FORM

I. COURSE OVERVIEW:

This course teaches designing digital circuits, behavioral and RTL modeling of digital circuits using Verilog HDL, verifying these models, and synthesizing RTL models to standard cell libraries and FPGAs. Students gain practical experience by designing, modeling, implementing and verifying several digital circuits

II. PREREQUISITE(S):

	Level	Credits	Periods / Week	Prerequisites
	UG	4	5	Switching Theory and Logic Design
1.1	1. A State			Good logical skills and logical analysis

III. COURSE ASSESMENT METHODS:

Sessional Marks (25 Marks)	University End Exam	Total Marks
	Marks	
Mid Semester Test	75	100
There shall be 2 midterm examinations.	P	
Each midterm examination consists of subjective type and Objective type tests.		
The subjective test is for 10 marks, with duration of 1 hour.		
The objective type test is for 10 marks with duration of 20minutes. It consists of 10 Multiple choice and 10 fill in the blanks. The student has to answer all the questions and each carries half mark.		
First midterm examination shall be conducted for the first two and half units of syllabus and second midterm examination shall be conducted for the remaining portion.		
Five marks are earmarked for assignments.		
Marks shall be awarded considering the average of two midterm examinations in		
each course reason whatsoever, will get zero marks(s).		

IV. EVALUATION SCHEME:

Mid Semester Test	25 marks
End Semester Examination	75 marks

V. COURSE OBJECTIVES:

- 1. To enable the student to Design digital circuits, Behavioral and RTL modelling of digital circuits using Verilog HDL.
- 2. To provide the student verifying the models.
- 3. To enable the student to synthesizing RTL models to standard cell libraries and FPGAs
- 4. To enable the student to gain practical experience by designing, modelling, implementing and verifying several digital circuits.
- 5. To provide student with Design Digital components and circuits that are testable, reusable and synthesizable

VI. COURSE OUTCOMES:

- 1. Describe Verilog Hardware Description Language
- 2. Lists various constructs and features in Verilog HDL
- 3. Model various designs in gate level modeling
- 4. Model various designs in data flow modeling
- 5. Model various designs in gate level modeling
- 6. Model various designs in behavioral level modeling
- 7. Model various designs in switch level modeling
- 8. Construct Test benches examine the functionality of the designs using behavioral model
- 9. Identify various Sequential Models
- 10. Design FSMs
- 11. Tests designs using various techniques
- 12. Write register transfer level (RTL) models of digital circuits.
- 13. Verify behavioral and RTL model.
- 14. Describe standard cell libraries and FPGAs
- 15. Synthesize RTL models to Standard cell libraries and FPGAs
- 16. Implement RTL models on FPGAs and testing & verification

VII. HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program Outcomes	Level	Proficiency
			assessed by
PO1	Engineering Knowledge	S	Assignments
	Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems		
PO2	Problem Analysis	S	

		Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences		
	PO3	Design/Development of Solutions	Н	Practice
		Design solutions for complex engineering problems and design		Sessions
		with appropriate consideration for the public health and safety		
		and the cultural, societal, and environmental considerations		
	PO4	Conduct Investigations of Complex Problems	S	Design
		Use research-based knowledge and research methods including		Exercises
		design of experiments, analysis and interpretation of data, and		
		synthesis of the information to provide valid conclusions		
		Modern Tool Usage	Н	Design
	PO5	Create, select, and apply appropriate techniques, resources, and		Exercises
		modern engineering and IT tools including prediction and		Seminars, Paper
		modeling to complex engineering activities with an understanding		Presentations
		of the limitations		
	DO6	The Engineer And Society	N	
	FOU	Apply reasoning informed by the contextual knowledge to assess societal health safety legal and cultural issues and the		
		consequent responsibilities relevant to the professional		
		engineering practice		
		Environment and sustainability	Ν	
	PO7	Understand the impact of the professional engineering solutions in		
		societal and environmental contexts, and demonstrate the		
		knowledge of, and need for sustainable development		
	PO8	Ethics	N	
10.1		Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice		100
1.00	PO9	Individual and Team Work	Н	Projects
- 1 march		Function effectively as an individual, and as a member or leader		
1.11	S	in diverse teams, and in multidisciplinary settings		1. A.
	PO10	Communication	S	Document
	676	Communicate effectively on complex engineering activities with		Preparation
	14 A.	the engineering community and with society at large, such as,	1.20	and
	- 12	being able to comprehend and write effective reports and design	er 14	riesentation
		documentation, make effective presentations, and give and receive		
	2011	clear instructions		
	PO11	Project management and finance	н	Seminars
		Demonstrate knowledge and understanding of the engineering and		Discussions
		management principles and apply these to one's own work, as a		
		multidisciplinary anyironments		
		nutridiscipiniary environments		
	PO12	Life-long learning	Н	Development
		Recognize the need for, and have the preparation and ability to		of Prototype,
		engage in independent and life-long learning in the broadest		Mini Projects
		context of technological change		
	Ν	= None S = Supportive H = Highly	Related	

VIII. HOW PROGRAM OUTCOMES ARE ASSESSED:

PROGRAM	SPECIFIC OUTCOMES	LEVEL	PROFICIENCY
			ASSESSED BY
PSO 1	Professional Skills: An ability to understand the	Н	Lectures and
	basic concepts in Electronics & Communication		Assignments
	Engineering and to apply them to various areas, like		
	Electronics, Communications, Signal processing,		
	VLSI, Embedded systems etc., in the design and		
	implementation of complex systems.		
PSO 2	Problem-solving skills: An ability to solve complex	S	Tutorials
	Electronics and communication Engineering		
	problems, using latest hardware and software tools,		
	along with analytical skills to arrive cost effective		
	and appropriate solutions.		
PSO 3	Successful career and Entrepreneurship: An	S	Seminars and
	understanding of social-awareness & environmental-		Projects
	wisdom along with ethical responsibility to have a		
	successful career and to sustain passion and zeal for		
	real-world applications using optimal resources as an		
	Entrepreneur.		

IX. SYLLABUS:

UNIT - I

INTRODUCTION TO VERILOG:

Verilog as HDL, Levels of design Description, Concurrency, Simulation and Synthesis, Functional verification, System Tasks, Programming Language Interface (PLI), Module, Simulation and Synthesis Tools, Test Benches.

LANGUAGE CONSTRUCTS AND CONVENTIONS:

Introduction, Keywords, Identifiers, White Space Characters, Comments, Numbers, Strings, Logic Values, Strengths, Data Types, Scalars and Vectors, Parameters, Operators.

UNIT - II

GATE LEVEL MODELING:

Introduction, AND Gate Primitive, Module Structure, Other Gate Primitives, Illustrative Examples, Tri-State gates, Array of Instances of Primitives, Design of Flip – Flops with gate primitives, Delays, Strengths and contention Resolution, Net Types, Design of Basic Circuits.

MODELING AT DATA FLOW LEVEL:

Introduction, Continuous Assignment Structures, Delays and Continuous Assignments, Assignment to vectors, Operators.

UNIT - III

BEHAVIORAL MODELING:

Introduction, Operations and Assignments, Functional Bifurcation, Initial Construct, Always Construct, assignments with Delays, Wait Construct, Multiple Always Blocks, Designs at Behavioral Level, Blocking and Non-Blocking Assignments, The case statement, Simulation Flow if and if-else constructs, assign-deassign construct, repeat construct, for loop, the disable construct, while loop, forever loop, parallel blocks, force-release construct, Event.

UNIT - IV

SWITCH LEVEL MODELLING:

Basic Transistor Switches, CMOS Switch, Bi – directional Gates, Time Delays with Switch Primitives, Instantiations with Strengths and Delays, Strength Contention with Trireg Nets.

SYSTEM TASKS, FUNCTIONS, AND COMPILER DIRECTIVES:

Parameters, Path Delays, Module Parameters, System Tasks and Functions, File – Based Tasks and Functions, Compiler Directives, Hierarchical Access, User-defined Primitives (UDP).

UNIT – V

SEQUENTIAL CIRCUIT DESCRIPTION:

Sequential Models – Feedback Model, Capacitive Model, Implicit Model, Basic Memory Components, Functional Register, Static Machine Coding, Sequential Synthesis Component Test and Verification: Test bench – Combinational Circuit Testing, Sequential Circuit Testing, Test bench Techniques, Design Verification, Assertion Verification.

TEXT BOOKS:

- 1. T. R. Padmanabhan and B. Bala Tripura Sundari, Design through Verilog HDL Wiley, 2009. (T1)
- 2. Zainalabdien Navabi, Verilog Digital System Design, TMH, 2nd Edition (T2)

REFERENCE BOOKS:

- 1. Fundamentals of Digital Logic design with Verilog Design Stephen Brown and Zvonko Vranesic, TMH, 2nd Edition, 2010. (**R1**)
- 2. Advanced Digital Logic Design using Verilog, State Machine & Synthesis for FPGA Sunggu Lee, Cengage Learning, 2012 (**R2**)
- 3. Verilog HDL Samir Palnitkar, 2nd Edition, Pearson Education, 2009. (**R3**)
- 4. Advanced Digital Design with Verilog HDL Michael D. Ciletti, PHI, 2005 (R4)

X. COURSE PLAN:

At the end of the course, the students are able to achieve the following course learning outcomes:

Lecture	CLO	Unit	Unit Course Learning Topics to be covered							
No.			Outcomes							
1-3	1	Ι	Outline the importance of	Introduction To Verilog, Need of	T1:1					
			HDL in VLSI domain	VLSI and HDLs						
4	2		Identify the various	Verilog as HDL, Levels of design	T1:2.1-2.2					
			design styles in Verilog	Description						
5-7	3		List and Memorize the	Concurrency, Simulation and	T1: 2.3-					
	1.16		features of Verilog HDL.	Synthesis Functional, Verification,	2.10					
				System Tasks, Programming						
	C - 2			Language Interface (PLI), Module,						
				Simulation and Synthesis Tools,						
		1.1	A	Test Benches.						
8-11	4		Indicates the constructs	Introduction, Keywords, Identifiers,	T1: 3.2 –					
			inVerilog HDL	White Space Characters,	3.14					
				Comments, Numbers, Strings,						
				Logic Values, Strengths, Data						
				Types, Scalars and Vectors,						
				Parameters, Operators.						
12	5	II	Discuss the constructs for	Introduction, AND Gate Primitive,	T1: 4.1 –					
			gate level modelling	Module Structure, Other Gate	4.4					
				Primitives						

	Lecture	CLO	Unit	Course Learning	Topics to be covered	Reference
	No.			Outcomes		
	13-15	6		Designs gate level models	Illustrative Examples,	T1: 4.5
	16	7		Discuss tri state gates	Tri-State Gates, Array of Instances of Primitives	T1: 4.6 – 4.7
	17-19	8		Design s flip flop using Verilog	Design of Flip – Flops with gate primitives	T1: 5.2
	20-21	9		Lists various delays in	Delays, Strengths and Contention	T1: 5.3-
				gate level modelling	Resolution, Net Types	5.5
	22-24	10		Design s Verilog modules	Design of Basic Circuits.	T1: 5.6
	25-27	11		Identify assignment	Introduction, Continuous	T1: 6.2 –
				statements in data flow	Assignment Structures, Delays and	6.5
				model along with delays	Continuous Assignments,	
				and vectors. Lists various	Assignment to Vectors. Operators	
·	29.20	10		operators	(Unary, Binary, ternary)	T1.66
·	28-30	12	TTT	Design data flow models	Examples	11:0.0 T1:7.1
	50-51	15	111	fostures of behavioral	Assignments Eunctional	11: /.1 – 75
				modeling	Bifurcation Initial Construct	7.5
				modeling	Always Construct	
·	32-33	14		Designs Verilog modules	Examples	T1·76
	34	15		Lists the delay features of	Assignments with Delays, <i>Wait</i>	T1: 7.7 –
				behavioral modelling,	Construct, Multiple Always Blocks	7.9
				wait construct		
	35-36	16		Designs Verilog modules	Designs at Behavioral Level	T1: 7.10
	37	17		Differentiate blocking	Blocking and Non-Blocking	T1: 7.11
				and non-blocking	Assignments,	
				statement		
	38	18		Illustrate Case construct	The case statement, Simulation	T1: 7.12
				and simulation flow	Flow	
100	39-40	19		Illustrate if, assign-	if and if-else constructs, assign-	T1: 8.2 –
				deassign, repeat, for,	deassign construct, repeat	8.8
1.00	S			disable, while, lorever	construct, <i>for</i> loop, the <i>atsable</i>	
	/1	20		Illustrate parallel blocks	parallel blocks, force release	T1 · 8 0
	71	20		force- release and event	construct Event	8_11
	10 C 1			constructs	construct, Event.	0.11
	42-44	21		Designs Verilog modules	Exercises	T1: 8.12
	45-47	22	IV	Outline basic switches in	Basic Transistor Switches, CMOS	T1: 10.2 –
		1.1		Verilog with delays,	Switch, Bi – directional Gates,	10.7
				strength contention	Time Delays with Switch	
		S - 1			Primitives, Instantiations with	
			100		Strengths and Delays, Strength	
	10		S - C		Contention with Trireg Nets.	
	48	23		Discuss parameter and	Parameters, Path Delays, Module	T1: 11.2 –
				path delay in benavioral	Parameters	11.4
	10.50	24		Lists system tecks and	System Tasks and Eurotions Ells	T1.115
	49-30	24		functions in Verilog	Based Tasks and Functions	11. 11.3 – 11.8
					Compiler Directives Hierarchical	11.0
					Access	
	51 -52	25		Demonstrate UDPs	User-defined Primitives (UDP).	T1: 9.4
	53-54	26	V	Classify sequential	Sequential Models – Feedback	T2: 5.1
				models	Model, Capacitive Model, Implicit	

Lecture No.	CLO	Unit	Course Learning Outcomes	Topics to be covered	Reference
				Model	
55-56	27		Demonstrate memory design in Verilog	Basic Memory Components	T2: 5.2
57-58	28		Discuss various functional register	Functional Register	T2: 5.3
59-60	29		Illustrate Static machine coding	Static Machine Coding	T2: 5.4
61-62	30		Explain sequential synthesis	Sequential Synthesis	T2: 5.5
63	31		Model Test benches for both combinational and sequential circuits	Test bench – Combinational Circuit Testing, Sequential Circuit Testing	T2: 6.1
64	32		Describe test bench techniques	Test bench Techniques	T2: 6.2
65	33		Describe design verification and assertion verification	Design Verification, Assertion Verification	T2: 6.4,6.5

XI. MAPPING COURSE OBJECTIVES LEADING TO THE ACHIEVEMENT OF PROGRAMME OUTCOMES:

ſ	Course					Pr	ogram	Outco	mes					Progr	Program Specific	
	Objectives													Outco	omes	
		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
	1	S	Η	Н			S			S				Н		
	2	Η		S						Η				S		
	3	S	Η	S			Η	S		S		S		S		
	4	Н		S						H					S	
	5	S	S	S		S						Н	S		1.1	S
	6		S			Η							S			S
-		S = Su	ıpport	ive			H = Highly Related									

XII. MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAMME OUTCOMES:

Course Outcomes	Program Outcomes											Program Specific Outcomes				
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
	1	2	3	3	5	6	7	8	9	10	11	12	13	1	2	3
1	Н		S		S						Η		S	Н		
2			S			1					S		Н	Н		
3	Н		S		S						Н			S		
4	S		S		Н								S	S		
5	S				S						Н		S	Н		
6	S		S		Н										Н	
7	Н				S						S		S		S	

