

# **INSTITUTE OF AERONAUTICAL ENGINEERING**

(Autonomous)

Dundigal, Hyderabad - 500 043

# **MECHANICAL ENGINEERING**

# **COURSE DESCRIPTION FORM**

| Course Title     | DESIGN OF HYDRAULIC AND<br>PNEUMATIC SYSTEMS |           |            |         |  |
|------------------|----------------------------------------------|-----------|------------|---------|--|
| Course Code      | BC004                                        |           |            |         |  |
|                  | Lectures                                     | Tutorials | Practicals | Credits |  |
| Course Structure | 3                                            | -         | -          | 3       |  |
| Course           | M Vijey Kumer Aget Professor                 |           | •          | •       |  |
| Coordinator      | M. Vijay Kumar, Asst.Professor               |           |            |         |  |
| Team of          | -                                            |           |            |         |  |
| Instructors      |                                              |           |            |         |  |

## I. COURSE OVERVIEW

This course provides students with an introduction to principal concepts and methods of fluid mechanics. Topics covered in the course include pressure, hydrostatics, and buoyancy; open systems and control volume analysis; mass conservation and momentum conservation for moving fluids; viscous fluid flows, flow through pipes; dimensional analysis; boundary layers, and lift and drag on objects. Students will work to formulate the models necessary to study, analyze, and design fluid systems through the application of these concepts, and to develop the problem-solving skills essential to good engineering practice of fluid mechanics in practical applications

## II. PREREQUISITE(S)

| Level | Credits | Periods/ Week | Prerequisites                          |
|-------|---------|---------------|----------------------------------------|
| UG    | 3       | 3             | Fluid mechanics and Hydraulic Machines |

#### **III. MARKS DISTRIBUTION**

| Subject                                         | SEE         | SEE CIA Examination |           |
|-------------------------------------------------|-------------|---------------------|-----------|
|                                                 | Examination |                     |           |
| DESIGN OF<br>HYDRAULIC AND<br>PNEUMATIC SYSTEMS | 70 Marks    | 30 Marks            | 100 Marks |

| Semester End Examination<br>70 Marks<br>All the Units (1, 2, 3, 4 and 5) | 70 Marks<br>(3 Hours) | 5 questions to be answered. Each question carries 14 Marks |
|--------------------------------------------------------------------------|-----------------------|------------------------------------------------------------|
|--------------------------------------------------------------------------|-----------------------|------------------------------------------------------------|

|                  | Continuous Internal Assessment (CIA) - 1 |            |                             |                            |  |  |
|------------------|------------------------------------------|------------|-----------------------------|----------------------------|--|--|
|                  |                                          |            | Continuous Internal         | Part - A                   |  |  |
|                  |                                          |            | Examination (CIE)           | 5 questions to be answered |  |  |
|                  |                                          |            | (2 hours)                   | out of 5 questions, each   |  |  |
|                  | 30 Marks                                 | Units      | [4 questions to be answered | carries 1 mark.            |  |  |
|                  | (2 Hours)                                | I, II and  | out of 5 questions from     | Part - B                   |  |  |
|                  |                                          | III (half) | Part- A & B]                | 4 questions each carry 5   |  |  |
|                  |                                          |            |                             | marks.                     |  |  |
|                  |                                          |            | Technical Seminar and       |                            |  |  |
| Average of two   |                                          |            | Term Paper                  | 5 marks                    |  |  |
| CIA Examinations | Continuous Internal Assessment (CIA) - 2 |            |                             |                            |  |  |
|                  | -                                        |            | Continuous Internal         | Part – A                   |  |  |
|                  |                                          |            | Examination (CIE)           | 5 questions to be answered |  |  |
|                  |                                          |            | (2 hours)                   | out of 5 questions, each   |  |  |
|                  | 30 Marks                                 | Units      | [4 questions to be answered | Part - B                   |  |  |
|                  | (2 Hours)                                | III (half) | out of 5 questions from     | 4 questions each carry 5   |  |  |
|                  | (2 110013)                               | IV and V   | Part- A & B]                | marks.                     |  |  |
|                  |                                          |            | Technical Seminar and       |                            |  |  |
|                  |                                          |            | Term Paper                  | 5 marks                    |  |  |
|                  |                                          |            |                             |                            |  |  |

## **IV. EVALUATION SCHEME**

| S. No | Component                        | Duration                                      | Marks          |
|-------|----------------------------------|-----------------------------------------------|----------------|
| 1     | CIE - I Examination              | 2 hour                                        | 25             |
| 2     | Technical Seminar and Term Paper | 10 minutes seminar and<br>1000 words document | 05             |
|       | TOTAL                            | 30                                            |                |
| 3     | CIE - II Examination             | 2 hour                                        | 25             |
| 4     | Technical Seminar and Term Paper | 10 minutes seminar and 1000 words document    | 05             |
|       | TOTAL                            |                                               | 30             |
|       | CIA Examination marks to be      | considered as average of ab                   | oove two CIA's |
| 5     | EXTERNAL Examination             | 3 hours                                       | 70             |
|       | GRAND TOTAL                      |                                               | 100            |

## V. COURSE OBJECTIVES

The course should enable the students to

I. Understand and study the effect of fluid properties on a flow system II. Apply the concept of fluid pressure, its measurements and applications. III. Explore the static, kinematic and dynamic behaviour of fluids. IV. Assess the fluid flow and flow parameters using measuring devices.

#### VI. COURSE OUTCOMES

#### At the end of the course the students are able to:

- I. Identify: the functional requirements of fluid dyamics.
- II. Problem analysis: Identify, formulate, review research literature
- III. Design/development of solutions: Design solutions for complex engineering problems
- IV. The engineer and society: Apply reasoning informed by the contextual knowledge

#### VII.HOW PROGRAM OUTCOMES ARE ASSESSED

|      | Program Outcomes                                                                                                                                                                                                                                                                                         | Leve<br>l | Proficiency<br>assessed by |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------------------------|
| PO1  | <b>Engineering knowledge:</b> Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems                                                                                                                   | Н         | Seminar                    |
| PO2  | <b>Problem analysis:</b> Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.                                                                 | Н         | Seminar                    |
| PO3  | <b>Design/development of solutions:</b> Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.         | Н         | Projects                   |
| PO4  | <b>Conduct investigations of complex problems:</b> Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.                                                                | S         | Projects                   |
| PO5  | <b>Modern tool usage:</b> Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.                                                                 | S         | Projects                   |
| PO6  | The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.                                                                      |           |                            |
| PO7  | <b>Environment and sustainability:</b> Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development                                                                                    |           |                            |
| PO8  | <b>Ethics:</b> Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.                                                                                                                                                                    |           |                            |
| PO9  | <b>Individual and team work</b> : Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.                                                                                                                                                  |           |                            |
| PO10 | <b>Communication:</b> Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions. |           |                            |

|                                                                         | Project management and finance: Demonstrate knowledge and                |  |  |  |  |  |
|-------------------------------------------------------------------------|--------------------------------------------------------------------------|--|--|--|--|--|
| PO11                                                                    | O11 understanding of the engineering and management principles and apply |  |  |  |  |  |
|                                                                         |                                                                          |  |  |  |  |  |
|                                                                         | projects and in multidisciplinary environments                           |  |  |  |  |  |
|                                                                         | Life-long learning: Recognize the need for, and have the preparation     |  |  |  |  |  |
| PO12 and ability to engage in independent and life-long learning in the |                                                                          |  |  |  |  |  |
|                                                                         | broadest context of technological change.                                |  |  |  |  |  |

# VIII. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED

|          | Program Specific Outcomes                                                                                                                                                                                                                        | Level | Proficiency<br>assessed by |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------------------|
| PSO      | <b>Professional Skills:</b> To produce engineering professional capable of synthesizing and analyzing mechanical system including allied engineering                                                                                             | Н     | Lectures,<br>Seminars      |
| 1        | streams.                                                                                                                                                                                                                                         |       |                            |
| PSO      | BROADNESS AND DIVERSITY: Graduates will have a broad                                                                                                                                                                                             | S     | Projects                   |
| 2        | understanding of economical, environmental, societal, health and safety<br>factors involved in infrastructural development, and shall demonstrate<br>ability to function within multidisciplinary teams with competence in<br>modern tool usage. |       |                            |
| PSO<br>3 | <b>Successful Career and Entrepreneurship:</b> To build the nation by imparting technological inputs and managerial skills to become a Technocrats.                                                                                              | S     | Guest Lectures             |

N - None

**S** - Supportive

H - Highly related

#### **IX. SYLLABUS**

| UNIT-I                                                                                                 | OIL AND HYDRAULIC SYSTEMS                                                         |  |  |  |
|--------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|--|--|--|
| Introduction, history of fluid power, I                                                                | Pascal"s law, Bramah"s Press, Bernoulli"s principle, Toricelli principle, fluid   |  |  |  |
| principle, fluid properties, viscosity,                                                                | effect of temperature, dust and decay of oils, basic systems of hydraulic,        |  |  |  |
| physical units of fluid power, units c                                                                 | of measurement, types of hydraulic fluid and selection criteria, properties of    |  |  |  |
| hydraulic fluid, physical character                                                                    | istic, maintenance of hydraulic oils, oil hydraulic element and their             |  |  |  |
| representation in the circuits, compa                                                                  | rison of mechanical, electrical, hydraulic and pneumatic systems for force        |  |  |  |
| and motion, analysis in automation.                                                                    |                                                                                   |  |  |  |
| UNIT-II                                                                                                | HYDRAULIC PUMPS                                                                   |  |  |  |
| Classification of pumps, gear pump,                                                                    | types of gear pumps, screw pump, vane pump, types of vane pumps, piston           |  |  |  |
| pump, bent axis in line piston pum                                                                     | p, internal and external gear pumps, selection and sizing specification of        |  |  |  |
| pumps, specification of pumps, pump                                                                    | o and pressure pulsation, flow rate and power of hydraulic pump, power and        |  |  |  |
|                                                                                                        | ficiencies, oil compatibility, size, noise, pump ripple, checklist; Actuators,    |  |  |  |
| design of linear actuator, cushioning                                                                  | , seals, mounting details, piston rod diameter and its effect on the pressure,    |  |  |  |
|                                                                                                        | anced circuits, sequencing and synchronizing circuits, rotary actuators.          |  |  |  |
| UNIT-III                                                                                               | HYDRAULIC POWER PACK                                                              |  |  |  |
| Element of power pack, design of hydrogeneity                                                          | draulic power pack, line pressure, discharge and motor.                           |  |  |  |
| Selection, power pack size and cap                                                                     | acity, importance of pressure relief valve and safety systems, heating and        |  |  |  |
| cooling systems for hydraulic power                                                                    |                                                                                   |  |  |  |
| UNIT-IV                                                                                                | HYDRAULIC CIRCUITS AND ACCUMULATOR                                                |  |  |  |
| Hydaulic circuits, manual or automa                                                                    | tic hydraulic system, regenerative circuit, use of check valves in hydraulic      |  |  |  |
| circuit, selection of pump, standard                                                                   | l in circuit circuit diagram representation, sequencing and synchronizing         |  |  |  |
| circuits; accumulator, low cost auton                                                                  | nation; meter-in circuit, meter-out circuit, bleed-off circuit, direction control |  |  |  |
| valves, solenoid valves, flow control and pressure control valves, pressure compensation, accumulator. |                                                                                   |  |  |  |
| UNIT-V                                                                                                 | AUTOMATION                                                                        |  |  |  |
| Hydraulic and pneumatic equipment                                                                      | t in automation, low cost automation, relay circuit, programmable logic           |  |  |  |
|                                                                                                        | maintenance and troubleshooting of hydraulic and pneumatic circuit.               |  |  |  |
|                                                                                                        | · · ·                                                                             |  |  |  |
|                                                                                                        |                                                                                   |  |  |  |

## **Text Books:**

 S. R. Majumdar, "Oil Hydraulic Systems", Tata McGraw Hill, 1st Edition, 2013.
S. R. Majumdar, "Pneumatic Systems, Principles & maintaianance", Tata McGraw Hill, 1st Edition, 2013.

#### **Reference Books:**

1. Andrew Parr, "Hydraulic & Pneumatic", Butterworth-Heinemann Ltd, 2nd Edition, 2013. 2. Antony Esponssito, "Fluid Power with applications", Prentice Hall, 5th Edition, 2015.

# COURSE PLAN

At the end of the course, the students are able to achieve the following course learning outcomes.

| Lecture<br>No. | Course learning outcomes                         | Topics to be covered                                                                                                                                         | Referene |
|----------------|--------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| 1              | Outline of various units                         | UNIT – I Introduction,                                                                                                                                       | T1,T2    |
| 2              | Explain fluid power                              | history of fluid power                                                                                                                                       | T1       |
| 3              | Determine laws                                   | Pascal"s law, Bramah"s Press,                                                                                                                                | T1       |
| 4-5            | Understand the principles                        | Toricelli principle, fluid principle,<br>fluid properties,                                                                                                   | T1       |
| 6-7            | Understand the effect of temperature effects     | viscosity, effect of temperature, dust<br>and decay of oils                                                                                                  | T1,T2    |
| 8-9            | Understand about hydraulic systems               | basic systems of hydraulic, physical<br>units of fluid power, units of<br>measurement,                                                                       | T1       |
| 10-11          | Understand the properties of hydraulic fluid     | types of hydraulic fluid and selection<br>criteria, properties of hydraulic fluid,<br>physical characteristic                                                | T1       |
|                | Understand the maintenance of oils               | maintenance of hydraulic oils, oil<br>hydraulic element and their<br>representation in the circuits,                                                         | T1       |
| 13-15          | Discuss about different systems                  | Comparison of mechanical, electrical,<br>hydraulic and pneumatic systems for<br>force and motion, analysis in<br>automation.                                 | T1,T2    |
| 16-19          | Define pump and its types                        | UNIT-II<br>Classification of pumps, gear pump,<br>types of gear pumps, screw pump,<br>vane pump, types of vane pumps,                                        | T1       |
| 20-22          | Explain the sizing of pump                       | piston pump, bent axis in line piston<br>pump, internal and external gear<br>pumps, selection and sizing<br>specification of pumps,                          | T1       |
| 23-25          | Understand the flow rate of pumps and efficiency | pump and pressure pulsation, flow<br>rate and power of hydraulic pump,<br>power and pump efficiencies,<br>pressure, flow efficiencies, oil<br>compatibility, | T1       |
| 26-28          | Discuss about actuators and effect of pressure   |                                                                                                                                                              | T1,T2    |
| 29-30          | Define elements of power pack systems            | UNIT-III<br>Element of power pack, design of<br>hydraulic power pack, line pressure,                                                                         | T1       |

|       |                                                                  | discharge and motor.                                                                                                                                              |       |
|-------|------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 31-33 | Discuss about the capacity of hydraulic systems                  | Selection, power pack size and<br>capacity, importance of pressure relief<br>valve and safety systems, heating and<br>cooling systems for hydraulic power<br>pack | T1,R1 |
| 34-36 | Define hydraulic circuits and valves                             | UNIT-IV<br>Hydraulic circuits, manual or<br>automatic hydraulic system,<br>regenerative circuit, use of check<br>valves in hydraulic circuit,                     | T2    |
| 37-40 | Understand the selection of pump                                 | selection of pump, standard in circuit,<br>circuit diagram representation,<br>sequencing and synchronizing<br>circuits;                                           | T1,T2 |
| 41-43 | Explain about different circuits                                 | accumulator, low cost automation;<br>meter-in circuit, meter-out circuit,<br>bleed-off circuit,                                                                   | T1    |
| 44-46 | Discuss the control valves in systems                            | direction control valves, solenoid<br>valves, flow control and pressure<br>control valves,                                                                        | T1    |
| 47-52 | Explain about accumulator                                        | Pressure compensation, accumulator.                                                                                                                               | T1    |
| 53-57 | Understand the hydraulic and pneumatic equipment in detailed     | UNIT-V<br>Hydraulic and pneumatic equipment<br>in automation,                                                                                                     | T1,T2 |
| 58-62 | Understand the cost automation                                   | low cost automation,<br>relay circuit,                                                                                                                            | T1,R1 |
| 63-66 | Understand the programmable logic circuits and controllers       | programmable logic circuit,<br>automation, micro controller                                                                                                       | T1    |
| 67-70 | Discuss the maintenance and troubleshooting of hydraulic systems | Maintenance and troubleshooting of hydraulic and pneumatic circuit.                                                                                               | T1,R1 |

#### XI MAPPING COURSE OBJECTIVES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES

| Course<br>Objective<br>s | Program Outcomes |         |         |         |         |         |                |         |         |          |          |          |          |          | Program Specific<br>Outcomes |  |  |
|--------------------------|------------------|---------|---------|---------|---------|---------|----------------|---------|---------|----------|----------|----------|----------|----------|------------------------------|--|--|
|                          | PO<br>1          | PO<br>2 | PO<br>3 | PO<br>4 | PO<br>5 | PO<br>6 | <b>PO</b><br>7 | PO<br>8 | PO<br>9 | PO1<br>0 | PO1<br>1 | PO1<br>2 | PSO<br>1 | PSO<br>2 | PSO<br>3                     |  |  |
| Ι                        | Н                | H       |         |         |         |         |                |         |         |          |          | S        | Н        | Н        |                              |  |  |
| II                       |                  | Н       | S       |         | S       |         |                |         |         |          |          |          | S        | Н        |                              |  |  |
| III                      | S                | Н       | S       |         |         |         |                |         |         |          |          |          | Н        |          | S                            |  |  |
| IV                       | Н                | S       |         |         |         | 1       |                |         |         |          |          |          | Н        | S        |                              |  |  |
| V                        | Н                | S       |         |         |         |         |                |         |         |          |          |          | Н        | S        | S                            |  |  |

## **S** - Supportive H - Highly related

#### XII MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES ANDPROGRAM SPECIFIC OUTCOMES

| Course<br>Objective | Program Outcomes |    |    |    |    |    |    |    |    |     |     |     |     |     | Program Specific<br>Outcomes |  |  |
|---------------------|------------------|----|----|----|----|----|----|----|----|-----|-----|-----|-----|-----|------------------------------|--|--|
|                     | PO               | PO | PO | PO | PO | PO | PO | PO | PO | PO1 | PO1 | PO1 | PSO | PSO | PSO                          |  |  |
| S                   | 1                | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 0   | 1   | 2   | 1   | 2   | 3                            |  |  |
| 1                   | Н                |    |    | S  |    |    |    |    |    |     |     |     | Н   | S   |                              |  |  |
| 2                   | S                | Н  | S  |    |    |    |    |    |    |     |     | S   | Н   |     | S                            |  |  |
| 3                   | S                | Н  |    |    | S  |    |    |    |    |     |     |     | S   |     |                              |  |  |
| 4                   | Н                |    |    | S  |    |    |    |    |    |     |     | S   | S   | S   |                              |  |  |
| 5                   | S                | Н  | S  |    | S  |    |    |    |    |     |     | S   | Н   |     | S                            |  |  |
| 6                   | Н                | S  |    | S  |    |    |    |    |    |     |     |     | S   |     |                              |  |  |
| 7                   | Н                |    | 1  |    | S  |    |    |    |    |     |     | S   | Н   | S   |                              |  |  |
| 8                   | Н                |    |    | S  |    |    |    |    |    |     |     |     | Н   | S   |                              |  |  |
| 9                   | S                | Н  | S  |    |    |    |    |    |    |     |     | S   | Н   |     | S                            |  |  |

# **S** - Supportive H - Highly related

Prepared by: M. Vijay Kumar, Assistant Professor

HOD, ME