

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad - 500 043

MECHANICAL ENGINEERING

COURSE DESCRIPTION FORM

Course Title	Design For Manufacturing of MEMS and MICRO SYSTEMS										
Course Code	BCC210										
Corres Storestores	Lectures	Tutorials	Practicals	Credits							
Course Structure	3	3 - 3									
Course Coordinator	Mr. M. Sunil Kumar, Assistant Prof	essor, Department o	of Mechanical Engin	neering							
Team of Instructors	Mr. M. Sunil Kumar, Assistant Prof	fessor, Department o	f Mechanical Engin	neering							

I. COURSE OVERVIEW

Microelectromechanical systems (MEMS) is the technology of microscope devices, particularly those moving with Parts. It merges at the nano-scale into nanoelectromechanical systems (NEMS) and nanotechnology. The fabrication of MEMS evolved from the process technology in semiconductor device fabrication, i.e. the basic techniques are deposition of material layers, patterning by photolithography and etching to produce the required shapes.

II. **PREREQUISITE(S)**

Level	Credits	Periods/ Week	Prerequisites
PG	3	3	Advanced Mechanics of Solids, Precision Engineering

III. MARKS DISTRIBUTION

Subject	SEE Examination	CIA Examination	Total Marks
Design for Manufacturing of MEMS and Microsystems	70 Marks	30 Marks	100 Marks

Semester End Examination 70 Marks All the Units (1, 2, 3, 4 and 5)	70 Marks (3 Hours)	5 questions to be answered. Each question carries 14 Marks
--	-----------------------	---

		Conti	nuous Internal Assessment (CIA) - 1
	30 Marks Units (2 Hours) I, II and III (half)		Continuous Internal Examination (CIE) (2 hours)Part - A[4 questions to be answered out of 5 questions from Part- A & B]5 questions to be ans out of 5 questions, or carries 1 mark.Part - B 	
Average of two CIA Examinations		<u> </u>	Technical Seminar and Term Paper	5 marks
		Conti	nuous Internal Assessment (<i>,</i>
	30 Marks (2 Hours)	Units III (half) IV and V	Continuous Internal Examination (CIE) (2 hours) [4 questions to be answered out of 5 questions from Part- A & B] Technical Seminar and Term Paper	Part – A 5 questions to be answered out of 5 questions, each Part – B 4 questions each carry 5 marks. 5 marks

IV. EVALUATION SCHEME

S. No	Component	Duration	Marks
1	CIE - I Examination	2 hour	25
2	Technical Seminar and Term Paper	10 minutes seminar and 1000 words document	05
	TOTAL		30
3	CIE - II Examination	2 hour	25
4	Technical Seminar and Term Paper	10 minutes seminar and 1000 words document	05
	TOTAL		30
	CIA Examination marks to be	e considered as average of ab	pove two CIA's
5	EXTERNAL Examination	70	
	GRAND TOTAL		100

V. COURSE OBJECTIVES

The course should enable the students to:

- I. Understand of modern trends in design and manufacturing using CAD/CAM.
- II. Apply advanced aspects of enabling computer aided technologies used in design.
- III. Enumerate fundamental theories and technologies in computer aided manufacturing.

VI. COURSE OUTCOMES

At the end of the course the students are able to:

- 1. Understand the operational theory of common MEMS sensors and MEMS.
- 2. Identify the situations where MEMS sensors and actuators would be ideal for applications to various products.
- 3. Apply the scaling-law to determine if MEMS devices would perform better than existing non-microscale devices.
- 4. Analyze the engineering science and physics of MEMS devices at the micro-scale including: Electrostatics, thermodynamics, piezoresistive, magnetism, microfluidics and optics.
- 5. Understand the fabrication methods used to build/construct MEMS.
- 6. Selection and sizing of tools and components for CNC.

VII. HOW PROGRAM OUTCOMES ARE ASSESSED

	Program Outcomes	Level	Proficiency assessed by
PO1	Engineering Knowledge: Capability to apply knowledge of Mathematics, Science Engineering in the field of Mechanical Engineering	Н	Technical Seminar
PO2	Problem Analysis: An ability to analyze complex engineering problems to arrive at relevant conclusion using knowledge of Mathematics, Science and Engineering.	Н	Technical Seminar
PO3	Design/ Development of solution: Competence to design a system, component or process to meet societal needs within realistic	S	Guest Lectures
PO4	Conduct investigation of complex problems: To design and conduct research oriented experiments as well as to analyze and implement data using research methodologies.	S	Projects
PO5	Modern Tool usage: An ability to formulate solve complex engineering problems using modern engineering and information technology tools.	S	Projects
PO6	The Engineer society: To utilize the engineering practices, techniques, skills to meet needs of health, safety legal, cultural and societal issues.	N	
PO7	Environment and Sustainability: To understand the impact of engineering solution in the societal context and demonstrate the knowledge for sustainable development.	N	
PO8	Ethics: An understanding and implementation of professional and Ethical responsibilities.	Ν	
PO9	Individual Team work: To function as an effective individual and as a member or leader in multi-disciplinary environment and adopt in diverse	Ν	Guest Lectures
PO10	Communication: An ability to assimilate, comprehends, communicate, give and receive instructions to present effectively with engineering community and society.	Ν	
	Program Outcomes	Level	Proficiency assessed by
PO11	Project Management and Finance: An ability to provide leadership in managing complex engineering project at multi-disciplinary environment and to become a professional engineer.	N	
PO12	Life-Long learning: Recognition of the need and an ability to engage in lifelong learning to keep abreast with technological changes.	S	Projects

VIII. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED

	Program Specific Outcomes	Level	Proficiency assessed by
PSO1	Professional Skills: To produce engineering professional capable of synthesizing and analyzing mechanical system including allied engineering streams.	Н	Technical Seminars
PSO2	Design/ Analysis: An ability to adapt and integrate current technologies in the design and manufacturing domain to enhance the employability.	S	Projects
PSO3	Successful Career and Entrepreneurship: To build the nation by imparting technological inputs and managerial skills to become a Technocrats.	S	Guest Lectures
	N - None S - Supportive H - Highly related	1	

IX. SYLLABUS:

UNIT-I OVERVIEW AND WORKING PRICIPLES OF MEMS AND MICROSYSTEMS

Overview and working principles of mems and microsystems: MEMS and microsystems, evolution of micro fabrication, microsystems and microelectronics, microsystems and miniaturization, applications of MEMS in industries, micro sensors, micro actuation, MEMS with micro actuators micro accelerometers, micro fluidies.

UNIT - II ENGINEERING SCIENCE FOR MICROSYSTEMS DESIGN AND FABRICATION

Engineering science for microsystems design and fabrication: Atomic structure of matter, ions and ionization, molecular theory of mater and intermolecular force, doping of semiconductors, diffusion Process, plasma physics, electrochemistry, quantum physics.

UNIT – III ENGINEERING SCIENCE FOR MICROSYSTEMS DESIGN AND FABRICATION

Engineering mechanics for microsystems design: Static Bending of thin Plates, mechanical vibration. Thermo mechanics fracture mechanics, thin-film mechanics, overview of finite element stress analysis

UNIT - IV THERMO FLUID ENGINEERING AND MICROSYSTEMS DESIGN

Thermo fluid engineering and microsystems design: Overview of basics of fluid mechanics in macro and meso scales, basic equations in continuum fluid dynamics, laminar fluid flow in circular conduits, computational fluid dynamics, incompressible fluid flow in micro conduits, fluid flow in sub micrometer and nano scale, overview of heat conduction in solids, heat conduction in multilayered thin films and in solids in sub micrometer scale, design considerations, process design mechanical design, mechanical design using finite element method, design of a silicon die for a micro pressure sensor.

UNIT - V MATERIALS FOR MEMS, MICROSYSTEMS AND THEIR FABRICATION

Materials for mems and microsystems and their fabrication: Substrates and Wafers, Active substrate materials, Silicon as a substrate material, Silicon Compounds, Silicon Piezoresistors, Gallium Arsenide, Quartz, Piezoelectric Crystals and Polymers, Photolithography, Ion implantation, Diffusion and oxidation, chemical and physical vapor deposition, Etching, Bulk micro manufacturing, Surface Micromachining, The LIGA Process

TEXT BOOKS

- 1. Tai-Ran Hsu, "MEMs & Microsystems: Design & Manufacture", Tata McGraw Hill, 1st Edition, 2002.
- 2. M. Maluf, "An Introduction to Microelectromechanical Systems Engineering", Artech House, 1st Edition, 2000.
- 3. Trimmer, W.S.N, "Micro robots and Micromechanical Systems Sensors & Actuators", 19th Edition, 1989

REFERENCE BOOKS

- 1. Madou, M, "Fundamentals of Microfabrication", CRC Press, 1st Edition, 1997.
- 2. Hsu, T.R, "The Finite Element Method in Thermomechanics", Alien & Unwin, London, 1stEdition,1986.
 - COURSE PLAN

At the end of the course, the students are able to achieve the following course learning outcomes.

Lecture No.	Course learning outcomes	Topics to be covered	Reference
1-3	Understand the overview of MEMS.	Unit-I OVERVIEW AND WORKING PRINCIPLES OF MEMS AND MICROSYSTEMS: MEMS and Microsystems, evolution of micro fabrication.	T1,T2
4-6	Understand the design of microsystems and miniaturization.	Microsystems and microelectronics, microsystems and miniaturization.	T1
7-9	Understand the applications of MEMS.	Applications of MEMS in industries.	T1
10-12	Understand the working of micro sensors and micro actuation.	Micro sensors, micro actuation,	T1
13-14	Understand the working of micro actuators	MEMS with micro actuators	T1,T2
15-17	Understand the applications of micro Accelerator.	Micro accelerometers	T1
18-20	Understand about micro fluidics	Micro fluidics.	T1
21-23	Understand the design of microsystems and fabrication	Unit-II ENGINEERING SCIENCE FOR MICROSYSTEMS DESIGN AND FABRICATION	T1
23-25	Understand the engineering science for micro system design.	Atomic structure of matter, ions and ionization,	T1,T2
26-28	Understand the engineering science for micro system design.	Molecular theory of mater and intermolecular force,	T1
29-30	Understand the engineering science for micro system design.	doping of semiconductors, diffusion Process.	T1
31-33	Understand the engineering science for micro system design.	Plasma physics.	T1
34-36	Understand the engineering science for micro system design.	Electrochemistry.	T1,T2
37-39	Understand the engineering science for micro system design.	Quantum physics.	T1
40-42	Understand	UNIT-III ENGINEERING SCIENCE FOR MICROSYSTEMS DESIGN AND FABRICATION	T1,R1
43-45	Understand the phenomenon of bending	Static Bending of thin Plates,	T2
46-48	Understand about the mechanical vibration.	Mechanical vibration.	T1,T2
49-51	Analyze about thermo mechanics frature mechanics.	Thermo mechanics fracture mechanics.	T1
52-54	Understand about the overview of finite element stress analysis.	thin-film mechanics, overview of finite element stress analysis.	T1
	Understand about thermo fluid engineering and micro system design and fluid mechanics.	UNIT-IV THERMO FLUID ENGINEERING AND MICRO SYSTEMS DESIGN. Overview of	T1

		basics of fluid mechanics in macro and meso scales, basic equations in continuum fluid dynamics.	
58-60	Understand the phenomenon of fluid flow and flow in micro conduits.	laminar fluid flow in circular conduits, computational fluid dynamics, incompressible fluid flow in micro conduits, fluid flow in sub micrometer and nano scale.	T1,T2
61-63	Understand the overview of heat conduction in thin films and in sub micrometer scale.	overview of heat conduction in solids, heat conduction in multilayered thin films and in solids in sub micrometer scale.	T1,R1
64-65	Understand the design consideration, process design	design considerations, process design mechanical design, mechanical design using finite element method,	T1
66-68	Illustrate the design of micro pressure sensor.	design of a silicon die for a micro pressure sensor.	T1,R1
69-71	Understand the material for MEMS and microsystems.	Unit- V MATERIALS FOR MEMS, MICROSYSTEMS AND THEIR FABRICATION Substrates and Wafers, Active substrate materials, Silicon as a substrate material, Silicon Compounds, Silicon Piezoresistors,	
72-74	Understand the material for MEMS and microsystems.	Gallium Arsenide, Quartz, Piezoelectric Crystals and Polymers, Photolithography, Ion implantation, Diffusion and oxidation,	
74-76	Illustrate the various deposition and LIGA Process	chemical and physical vapor deposition, Etching, Bulk micro manufacturing, Surface Micromachining, The LIGA Process	

XI MAPPING COURSE OBJECTIVES LEADING TO THE ACHIEVEMENT OFPROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES

Course		Program Outcomes												Program Specific Outcomes	
Objectives	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
Ι	Н	Н										S	Н	Н	
II		Н	S		S								S	Н	
III	S	Н	S										Н		S

S - Supportive

H - Highly related

XII MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES ANDPROGRAM SPECIFIC OUTCOMES

Course		Program Outcomes												Program Specific Outcomes		
Objectives	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
1	Н			S									Н	S		
2	S	Н	S									S	Н		S	
3	S	Н			S								S			
4	Н			S								S	S	S		
5	S	Н	S		S							S			S	
6	Н	S		S												

S - Supportive

H - Highly related

Prepared by:

Mr. M. Sunil Kumar, Assistant Professor

HOD, MECHANICAL ENGINEERING