

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad - 500 043

MECHANICAL ENGINEERING

COURSE DESCRIPTION FORM

Course Title	DYNAMICS O	DYNAMICS OF MACHINERY								
Course Code	A50317	A50317								
Regulations	R13-JNTUH	R13-JNTUH								
Course Structure	Lectures	Tutorials	Practicals Credits							
	4	1	-	4						
Course Coordinator	Prof. V.V.S.H. Pr	asad, Professor								
Team of Instructors	Prof. V.V.S.H. Professor	Prasad, Profes	sor, Ms. D. Kris	shnaja, Assistant						

I. COURSE OVERVIEW

Mechanical devices are designed to have mobility to perform certain functions. The theory behind the study of DOM leads us to design machines by understanding the relationship between the geometry and the movement of various parts of machine through kinematics and then considering the forces and their effects by Dynamics of machinery. This course will provide the knowledge on how to analyze the forces acting on various parts of machines and design machines to give required output. This includes relative force analysis and calculation of gyroscopic couples, analyzing forces acting on brakes and clutches, considering the effect of friction, balancing of reciprocating and rotating parts of machines by simultaneous graphical and analytical analysis and minimizing vibrations in various parts of a machine.

II. PREREQUISITE(S)

Level	Credits	Periods	Prerequisite
UG	4	4	Mathematics, Physics, Mechanics, Kinematics of Machinery.

III. MARKS DISTRIBUTION

Sessional Marks	University End Exam Marks	Total Marks
There shall be 2 midterm examinations. Each midterm examination consists of subjective type and Objective type tests. The subjective test is for 10 marks, with duration of 1 hour. Subjective test of each midterm exam shall contain 4 questions. The student has to answer 2 questions, each carrying 5 marks. The objective type test is for 10 marks with duration of 20minutes. It consists of 10 Multiple choice and 10 objective type questions. The student has to answer all the questions and each carries half mark. First midterm examination shall be conducted for the first 2 ½ units of syllabus and second midterm examination shall be conducted for the remaining 2 ½ units.	75	100
Five marks are earmarked for assignments. There shall be two assignments in every theory course. Marks shall be awarded considering the average of two assignments in each course reason whatsoever, will get zero marks(s).		

IV. EVALUATION SCHEME

S.No	Component	Duration	Marks
1	I Mid examination	90 minutes	20
2	I Assignment		05
3	II Mid examination	90 minutes	20
4	II Assignment		05
5	External examination	3 hours	75

V. COURSE OBJECTIVES

- i. Understanding the basic principles of dynamics and to determine the forces acting on machines.
- ii. Demonstrating the concept of synthesis and analysis of different machines.
- iii. **Explanation** of the working of various dynamometers, brakes, clutches and governors
- iv. Understanding the concepts of force analysis, proper balancing & minimizing vibrations.
- v. Determine the fundamental frequency of mechanical systems.

VI. COURSE OUTCOMES

After completing this course the student must demonstrate the knowledge and ability to:

- 1. Analyze the different forces acting on machines.
- 2. **Illustrate** the schematic drawing of real world machines.
- 3. Understand the basic machine components.
- 4. Compare different methods of analysis.
- 5. **Classify** various machine components
- 6. State the principles of virtual work, D'Alembert and superposition of forces.
- 7. Compare different design concepts
- 8. State the importance of different forces acting on machines.
- 9. Understand importance of Graphical methods for design.
- 10. Illustrate various analyzing techniques.
- 11. Elaborate the plan to create a machine that competes with the other manufacturers.
- 12. Construct turning moment diagrams.
- 13. Elaborate the Design of machines considering friction, vibrations and balancing properly.

VII. HOW PROGRAM OUTCOMES ARE ASSESSED

	Program outcomes	Level	Proficiency assessed by
PO1	Capability to apply the knowledge of mathematics, science and engineering in the field of mechanical engineering.	Н	Assignments and Tutorials
PO2	An ability to analyze complex engineering problems to arrive at relevant conclusion using knowledge of mathematics, science and engineering.	Н	Tutorials
PO3	Competence to design a system, component or process to meet societal needs within realistic constraints.	S	Exams
PO4	To design and conduct research oriented experiments as well as to analyze and implement data using research methodologies.	S	Mini Projects
PO5	An ability to formulate solve complex engineering problem using modern engineering and information Technology tools.	Н	Assignments, Exams
PO6	To utilize the engineering practices, techniques, skills to meet needs of the health, safety, legal, cultural and societal issues.	Ν	Assigning Mini Projects
PO7	To understand impact of engineering solutions in the societal context and demonstrate the knowledge for sustainable development.	S	Assignments
PO8	An understanding and implementation of professional and ethical responsibilities.	Н	
PO9	To function as an effective individual and as a member or leader in multi disciplinary environment and adopt in diverse teams.	S	Assignments, Tutorials and Exams
PO10	An ability to assimilate, comprehend, communicate, give & receive instructions to present effectively with engineering community and society.	S	
PO11	An ability to provide leadership in managing complex engineering projects at multidisciplinary environment and to become a Technocrat.	Н	Mini Projects
PO12	Recognition of the need and an ability to engage in lifelong learning to keep abreast with technological changes.	S	

N - None

S - Supportive

H – Highly Related

VIII. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED

	Program Specific Outcomes	Level	Proficiency Assessed by
PSO 1 PSO 2	 Professional Skills: To produce engineering professional capable of synthesizing and analyzing mechanical systems including allied engineering streams. Design/ Analysis: An ability to adopt and integrate current technologies in the design and manufacturing domain to enhance the employability. 	H S	Lectures, Assignments Projects
PSO 3	Successful Career and Entrepreneurship: To build the nation, by imparting technological inputs and managerial skills to become Technocrats.	Н	Guest Lectures

N - None S

S - Supportive

H – Highly Related

IX. SYLLABUS

UNIT-I

Angular motion: Gyroscopes – effect of precession-motion on the stability of moving vehicles such as motor cycle-motorcar-aero-planes and ships. Static and dynamic force analysis of planar mechanisms.

UNIT-II

Friction: Inclined plane-friction of screw and nuts-pivots and rollers-uniform pressure, uniform wear-friction circle and friction axis, lubricating surfaces- boundary friction - film lubrication. Clutches: single plate, multi plate, cone clutch and centrifugal clutches.

Brakes and dynamometers: Single block brake- internal expanding brake- band brake of a vehicle. Dynamometers: Absorption and transmission types, general description and method of operation.

UNIT-III

Turning moment diagrams and flywheels: Turning moment- Inertia torque-connecting rod angular velocity and angular acceleration- crank effort and torque diagrams- fluctuation of energy-flywheels and their design.

Governors: Watt, Porter and Proell governors- spring loaded governors

UNIT-IV

Balancing: Balancing of rotating masses-Primary, secondary and higher balancing of reciprocating masses. Analytical and graphical methods. Unbalanced forces and couples. Examination of V, multi cylinder, inline and radial engines or primary and secondary balancing- locomotive balancing- Hammer blow- Swaying couple-Variation of tractive effort.

UNIT-V

Vibrations: Free vibration of mass attached to a vertical spring- Oscillation of pendulum- Transverse loads-vibration of beams with concentrated and distributed loads. Dunkerley's method- Raleigh's method Whirling of shafts- critical speed- torsional vibrations- one, two and three rotor systems.

TEXT BOOKS:

- 1. Theory of Machines / S.S. Rattan/ Tata McGraw-Hill education
- 2. Theory of Mechanisms and Machines/ Jagadish Lal/ Metropolitan book company

REFERENCE BOOKS:

- 1. Theory of Machines and Mechanisms/ JOSEPH E. SHIGLEY/ McGraw-Hill publishers
- 2. Theory of machines/ Thomas Bevan/ Pearson/ 3rd edition
- 3. Theory of machines/ R. K. Bansal/ Lakshmi Publications
- 4. Mechanisms and Machine Theory / JS Rao and RV Duggipati/ Newage
- 5. Theory of Machines/ Sadhu Singh/ Pearson
- 6. Mechanism and machine theory/ Ashok G. Ambekar/ PHI/ Eastern economy edition

XI. COURSE PLAN:

The course plan is meant as a guideline. There may probably be changes.

Lecture No.	Course Learning Outcomes	Topics to be covered	Reference
1	Define gyroscope	Introduction to Gyroscopes	T1, R3
2	Define precession Define spin vector	Introduction to angular motion, Precession angular velocity, vector representation of	T1, R3
3	Explain the three perpendicular directions of spin vector,	Determination of Gyroscopic couple, Problems on gyroscopic couples	T1, R3
4	Discuss the effect of gyroscope on stability of moving car	Effect of gyroscope on stability of moving car	T1, R3
5		Effect of gyroscope on stability of moving motorcycle	T1, R3
6	Discuss the effect of gyroscope on stability of moving	Effect of gyroscope on stability of moving aeroplane	T1, R3
7	Discuss the effect of gyroscope on stability of moving ship	Effect of gyroscope on stability of moving ship	T1, R3
8	Discuss static and dynamic force analysis	Static and dynamic force analysis of planar mechanisms	T1, R3
9	Explain the effect of friction on an inclined plane	Friction on an inclined plane Free body diagrams	T1, R3
10			T1, R3
11	Define film lubrication	Film lubrication	T1, R3
12	Distinguish between the friction circle and friction axis	friction circle, Boundary friction	T1, R3
13	Define clutch	Introduction to Clutch	T1, R3
14	Classify clutches Calculate the torques in	types of clutches	T1, R3

15	Define a brake	Introduction to Brakes	T1, R3
16	Explain block brake, band brake & internal expanding	Classification of Brakes	T1, R3
17	Define dynamometer	Introduction to dynamometers	T1, R3
18	Classify dynamometers	types of dynamometers	T1, R3
19	Calculate the torque required	General description of dynamometers	T1, R3
20	Explain the method of operation of dynamometer	Methods of operation of dynamometers	T1, R3
21	Calculate the torque required	Calculation of brake torque	T1, R3
22-24	Calculate the torque required	problems on brake torque	T1, R3
25	Explain turning moment diagrams	Turning moment diagrams explanation	T1, R3
26	Discuss the TM diagrams for various engines	Turning moment diagrams for various engines	T1, R3
27	Discuss inertia torque Determine the torque required	Inertia torque calculation for connecting rod	T1, R3
28	Discuss fluctuation of energy	fluctuation of energy	T1, R3
29-31	Explain Crank effort and torque diagrams	Crank effort and torque diagrams	T1, R3
32	Define flywheel Explain functions of flywheel	Flywheel and its functions	T1, R3
33-34	Discuss fly wheel design	Flywheel design	T1, R3
35-37	Design the flywheel	problems on flywheel	T1, R3
38	Explain different types of governors	Introduction to governors and their classification	T1, R3
39	Explain sensitiveness, isochronisms and hunting	sensitiveness, isochronisms and hunting	T1, R3
40	Solve problems for calculating equilibrium speeds	effort and power of governors	T1, R3
41	Solve problems for calculating equilibrium speeds	problems on governors	T1, R3
42-44	Define balancing Discuss the balancing of rotary	Balancing of rotating masses	T1, R3
45	Explain Primary balancing of reciprocating masses	Primary balancing of reciprocating masses	T1, R3
46	Explain Secondary balancing of reciprocating masses	Secondary balancing of reciprocating masses	T1, R3
47	Explain higher balancing of reciprocating masses	higher balancing of reciprocating masses	T1, R3
48-49	Explain locomotive balancing	locomotive balancing	T1, R3
50-51	Explain unbalanced forces and couples	Graphical method of calculating forces and couples	T1, R3
52-53	Explain balancing of Multi cylinder and V- Engines	balancing of Multi cylinder and V- Engines	T1, R3
54-55	Explain balancing of In line and radial engines	balancing of In line and radial engines	T1, R3
56	Explain vibrations Classify vibrations	Introduction to vibrations and their classification	T1, R3
57	Determine natural frequency of vertical single mass-spring	Free vibrations of mass attached to vertical springs	T1, R3
58	Determine natural frequency of	oscillations of simple pendulum, transverse	T1, R3
00	simple pendulum	vibrations	

60	Discuss Dunkerley's method Solve problems on frequency	Dunkerley's method for calculating frequency	T1, R3
61	Discuss Raleigh's method Solve problems on frequency	Raleigh's method for frequency calculations	T1, R3
62	Define critical speed and whirling speed of shaft	Critical speeds, Whirling of shafts	T1, R3
63	Determine natural frequency of one rotor system	Torsional vibrations- one rotor system	T1, R3
64	Determine natural frequency of two rotor system	Torsional vibrations- two rotor system	T1, R3
65	Determine natural frequency of three rotor system	Torsional vibrations- three rotor system	T1, R3

XI. MAPPING COURSE OBJECTIVES LEADING TO THE ACHIEVEMENT OF THE PROGRAM OUTCOMES:

Course		Program Outcomes											Program Specific Outcomes		
Objectives	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
Ι	Н				S			Н					S		
II					S						Н				S
III	Н		S				S					Н		Н	
IV		S									Н				S
N = None	•	S = Supportive									H =	Highly	related		

XII. MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF TSHE PROGRAM OUTCOMES:

Course	Program Outcomes										Program Specific Outcomes				
Outcomes	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
1	Η				S										S
2		Н									S		S		
3		Н			S										
4	S										Н			Н	
5											Н	S			S
6					S										
7		S									Н		S		
8					Н							S			
9			Н						S					Н	
10		Н									S				S
11	Н											S	S		
12					Н		S								
13		Н		S										Н	
N = None		S = Supportive H =									$\mathbf{H} = \mathbf{H}$	ighly re	elated		

Prepared by:

Mrs. D.Krishnaja, Assistant Professor