

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

Course Title	DIGITAL SIGNA	DIGITAL SIGNAL PROCESSING									
Course Code	A70421	A70421									
Regulation	on R15 – JNTUH										
Course Structure	Lectures Tutorials		Practicals	Credits							
Course Structure	4	-	-	4							
Course Coordinator	Mr. A Naresh Kuma	ar, Assistant Professor, I	EEE								
Team of Instructors	Mr. A Naresh Kuma	ar, Assistant Professor, I	EEE								

COURSE DESCRIPTION FORM

I. COURSE OVERVIEW:

The present course covers the concepts and techniques of modern digital signal processing which are fundamental to all the signal / speech / image processing, applications. The course starts with a detailed overview of discrete-time signals and systems, representation of the systems by means of differential equations, and their analysis using Fourier and z-transforms. The sampling theory of continuous - time signals is explained next, followed by exploring the transform-based analysis of linear time-invariant (LTI) systems and their structures. Subsequently, the notion of discrete Fourier transform is introduced, followed by an overview of fast algorithms for its computation. The methods for spectral analysis of discrete-time signals are discussed next, principal methods for design of FIR and IIR filters, followed by multi-rate signal processing and finite word length effects. While this course deals largely with the theory of DSP, we will use a powerful software package, MATLAB, to look at applications of this theory, particularly Fourier analysis and digital filter design.

II. PREREQUISITE(S):

Level	Credits	Periods / Week	Prerequisites
UG	4	4	Signals and Systems, Fundamentals of Fourier series and Fourier transforms

III. MARKS DISTRIBUTION:

Sessional Marks	University End Exam Marks	Total Marks
Mid Semester Test There shall be 2 midterm examinations. Each midterm examination consists of subjective type and Objective type tests. The subjective test is for 10 marks, with duration of 1 hour. Subjective test of each midterm exam shall contain 4 questions. The student has to answer 2 questions, each carrying 5 marks. The objective type test is for 10 marks with duration of 20minutes. It consists of 10 Multiple choice and 10 objective type questions. The student has to answer all the questions and each carries half mark. First midterm examination shall be conducted for the first 2 ½ units of syllabus and second midterm examination shall be conducted for the remaining 2 ½ units.	75	100

Seasonal Marks	University End Exam Marks	Total Marks
Five marks are earmarked for assignments. There shall be two assignments in every theory course. Marks shall be awarded considering the average of two assignments in each course reason whatsoever, will get zero marks(s).		

IV. EVALUATION SCHEME:

S. No	Component	Duration	Marks
1	I Mid Examination	90 minutes	20
2	I Assignment	-	5
3	II Mid Examination	90 minutes	20
4	II Assignment	-	5
5	External Examination	3 hours	75

V. COURSE OBJECTIVES:

At the end of the course, the students will be able to:

- I. Discuss background and fundamental material for the analysis and processing of digital signals.
- II. Understand the relationships between continuous-time and discrete-time signals and systems.
- III. Understand fundamentals of time, frequency and z-plane analysis and to discuss the inter-relationships of this analytic method.
- IV. Understand the designs and structures of digital (IIR and FIR) filters from analysis to synthesis for a given specifications.
- V. Understand a few real-world signal processing applications.
- VI. Demonstrate FFT algorithm, multi-rate signal processing techniques and finite word length effects.

VI. COURSE OUTCOMES:

After completing this course the student must demonstrate the knowledge and ability to:

- 1. Understand how digital to analog (D/A) and analog to digital (A/D) converters operate on a signal and be able to model these operations mathematically.
- 2. Understand discrete time signal processing and characterization of random signals, filter design techniques, and imperfections caused by finite word length.
- 3. Understand how to estimate the spectra of random signals that are to be processed by a discrete time filter, and to appreciate the performance of a variety of modern and classical spectrum estimation techniques.
- 4. Learn the theory of modern digital signal processing and digital filter design, including hands-on experience with important techniques involving digital filter design and digital simulation experiments
- 5. Introduce the fundamental principles and techniques of digital signal processing for understanding and designing new digital signal processing systems and for continued learning.
- 6. Perform time, frequency and Z-transform analysis on signals and LTI systems
- 7. Understand the properties like stability, causality, time-invariance and etc.
- 8. Understand the inter-relationship between DFT and various transforms.
- 9. Understand the significance of various filter structures and effects of round-off errors.
- 10. Design of infinite impulse response filters for a given specification.
- 11. Understand the fast computation of DFT and appreciate the FFT Processing.
- 12. Understand the tradeoffs between normal and multi rate DSP techniques and finite length word effects.
- 13. Design of finite impulse response filters for a given specification.
- 14. Understand identify, formulate, analyze and solve technical and engineering problems.
- 15. Understand use the techniques, skills and modern technical tools necessary for technical or engineering practice.

VII. HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program Outcomes	Level	Proficiency Assessed by
PO1	Engineering Knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems	Н	Assignments, Tutorials
PO2	Problem Analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences	Н	Assignments
PO3	Design / Development of Solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations (S	Mini Projects
PO4	Conduct Investigations of Complex Problems : Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions	Н	Projects
PO5	Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations	S	Projects
PO6	The Engineer and Society : Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice	N	
PO7	Environment and Sustainability : Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development	N	
PO8	Ethics : Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice	S	Oral Discussions
PO9	Individual and Team Work : Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings	N	
PO10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions	S	Presentations
PO11	Project Management and Finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments	Н	Development of Prototype, Projects
PO12	Life-Long Learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change	S	Seminars, Discussions

VIII. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program Specific Outcomes	Level	Proficiency Assessed by
PSO1	Professional Skills: An ability to understand the basic concepts in Electronics & Communication Engineering and to apply them to various areas, like Electronics, Communications, Signal processing, VLSI, Embedded systems etc., in the design and implementation of complex systems.	Η	Lectures, Assignments
PSO2	Problem-Solving Skills: An ability to solve complex Electronics and communication Engineering problems, using latest hardware and software tools, along with analytical skills to arrive cost effective and appropriate solutions.	S	Tutorials
PSO3	Successful career and Entrepreneurship: An understanding of social- awareness & environmental-wisdom along with ethical responsibility to have a successful career and to sustain passion and zeal for real-world applications using optimal resources as an Entrepreneur.	S	Seminars and Projects

N - None S - Supportive H - Highly Related

IX. SYLLABUS:

UNIT - I

INTRODUCTION

Introduction to digital signal processing: Discrete time signals and sequences, linear shift invariant systems, stability and causality, linear constant coefficient difference equations, Frequency domain representation of discrete time signals and systems.

REALIZATION OF DIGITAL FILTERS

Applications of Z-Transforms, solution of difference equations of digital filters, system function, stability criterion, frequency response of stable systems, realization of digital filters-direct, canonic, cascade and parallel forms.

UNIT - II

DISCRETE FOURIER SERIES

DFS representation of periodic sequences, Properties of discrete Fourier series, Discrete Fourier transforms: properties of DFT, linear convolution of sequences using DFT, computation of DFT: Over-lap add method, over-lap save method, Relation between DTFT, DFS, DFT, Z-Transform.

FAST FOURIER TRANSFORMS

Fast Fourier transforms (FFT)-Radix2 decimation in time and decimation in frequency FFT algorithms, inverse FFT and FFT with general radix- N.

UNIT - III

IIR DIGITAL FILTERS

Analog filter approximations - Butterworth and chebyshev, design of IIR digital filters from analog filters, step and impulse invariant techniques, bilinear transformation method, spectral transformations.

UNIT - IV FIR DIGITAL FILTERS

Characteristics of FIR digital filters, frequency response, Design of FIR digital filters: Fourier method, digital filters using window techniques, frequency sampling technique, comparison of IIR and FIR filters.

UNIT - V

MULTIRATE DIGITAL SIGNAL PROCESSING:

Introduction, down sampling, decimation, up sampling, interpolation, sampling rate Conversion.

FINITE WORD LENGTH EFFECTS:

Limit cycles, Overflow oscillations, round-off noise in iir digital filters, computational output round off noise, methods to prevent overflow, trade off b / w round off and overflow noise, dead band effects.

X. TEXT BOOKS:

- 1. Digital signal processing, principles, Algorithms and applications: John G. Proakis, Dimitris G. Manolakis, Pearson Education/PHI, 4th ed., 2007.
- 2. V. Oppenheim, R. W. Schaffer, Discrete Time Signal Processing, Prentice Hall of India, New Delhi.
- 3. Fundamentals of Digital signal processing Loney Ludeman, John wiley, 2009.

XI. REFERENCE BOOKS:

- 1. Digital signal processing: fundamentals and applications- li tan Elsevier, 2008.
- 2. Fundamentals of Digital signal processing using Matlab-Robert J. schilling, Sandra. L. Harris, Thomson.
- 3. Digital signal processing- salivahanan, vallavaraj and gnanapriya TMH, 2009
- 4. Discerte systems and Digital signal processing with Matlab Taan S. EIali, CRC press, 2009.
- 5. Digital signal processing- a practical approach, E. C. I feachor and Barrie W Jervis, 2nd Pearson 2009.

XII. COURSE PLAN:

At the end of the course, the students are able to achieve the following course learning outcomes:

Lecture No.	Unit No	Course Learning Objective	Topics Covered	Text Book / Reference
1-5	Ι	List out the basic steps in DSP, Classify the Signals, Systems	Introduction to DSP, Advantages, Applications, Limitations, Continuous and Discrete time signals and sequences, Static, linear shift invariant systems, Stability and Causality	T1-1.1, 1.4,2.1, 2.3
6-10		Solve the difference equations, and Locate & Sketch the Spectral analysis of the discrete time system		T1-2.4,4.2
11-13		Describe the applications of z-transform, Illustrate the characteristics of the system, Sketch Spectral Analysis	<i>c</i> , <i>j</i> , <i>j</i>	T1-3.1, 3.2,3.3,3.4 3.5, 3.6.2
14-15		Illustrate Structures for IIR and FIR systems	Realization of digital IIR and FIR filters- using direct form-I, II, Canonic, cascade and parallel	T1-2.5
16-21	Π	Describe the Periodic signal analysis using DFS, List the properties of DFS, and Illustrate the DFT and its properties	Discrete Fourier Series representation of periodic sequences, Properties of Discrete Fourier series, Discrete Fourier transform and properties of DFT	T1-4.1, 7.1,7.2
12-25		ApplyDFTforconvolution of the signal,Apply & ComputeDFTusing overlap add, savemethods,Relatealltransforms	Linear convolution of sequences using DFT, Computation of DFT: Over-lap add method and over-lap save method, Relation between DTFT, DFS, DFT, Z-transform	T1-7.3.1, 7.3.2,7.1.4
26-30		Apply the DFT algorithm to Compute FFT in time domain, frequency domain and Compute the FFT using radix-N	Fast Fourier transforms (FFT) using Radix-2 Decimation in time (DIT) algorithm, Decimation in frequency(DIF) algorithm, Inverse FFT, FFT with general radix- N	T1-8.1.2, 8.1.3,8.1.48.1. 5

21.25	TTT			TT1 10 2 1
31-35	III	Analyze the IIR filter	IIR Filter-Analog filter	T1-10.3.1,
		design Approximations,	approximations-Butterworth and	10.3.2, 10.3.3
		Express Digital filters from	Chebyshev, Express the Digital	
		analog filters	filters from analog filters	
36-40		Demonstration of the IIR	IIR filter design using Step and	T1-10.3.1,
		filter design methods	Impulse invariant techniques,	10.3.2, 10.3.3
			Bilinear transformation technique,	
			Spectral transformations	
41-44	IV	Demonstrate the FIR	FIR Filter: Characteristics (linear	T1-10.2.1,
		digital filters, Analyze	phase) of FIR digital filters,	10.2.2,10.2.3,
		Frequency Response of FIR	Frequency response, Design of FIR	10.2.7
		filters, Express FIR filter	digital filters, FIR filter design using	
		design techniques	Fourier method	
45-49		Demonstrate linear phase	Digital FIR filters design using	T1-10.2.1,
		FIR Digital Filters using	window techniques, Filter design	10.2.2,10.2.3,
		Windows, Discuss FIR	using Frequency sampling	10.2.7
		Digital Filters using	technique, Comparison of IIR and	
		sampling method,	FIR filters	
		Distinguish between FIR		
		and IIR filters		
50-53	V	Explain Multirate Digital	Introduction to Down and Up	T1-11.1, 11.2,
		Signal processing, Express	Sampling, Decimation, Interpolation	11.3
		Decimation, interpolation		
54-58	1	Discuss Sampling rate	Sampling rate Conversion by factor	T1-11.4, 11.7,
		conversion	I/D,	11.8,
				11.1,11.2
59-61		Describe Overflow and	Overflow oscillations, round-off	T1-9.4.3, T1-
		Round-off noise, Compute	noise in iir digital filters,	9.6.1, R5
		round-off noise	Computational output round off	
			noise	
62-65	1	Examine to prevent	Methods to prevent overflow, trade	T1-9.6.2, 9.5,
		overflow and trade off,	off b/w round off and overflow	9.6.1, R5
		Describe Dead band effects	noise, Dead band effects	

XIII. MAPPING COURSE OBJECTIVES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

Course	Program Outcomes											Program Specific Outcomes			
Objectives	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
Ι	Н							S			Н			S	S
II		Н								S			Н	S	
III				Н				S				S	Н	S	
IV			S		S						Н		Н	S	
V	Н			Н										S	
VI		Н			S					S			Н	S	

S – Supportive

H - Highly Related

Course Outcomes	Program Outcomes											Program Specific Outcomes			
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
1		Н	S	Н				S						S	S
2	Н			Н	S					S			Н	S	
3		Н						S					Н	S	
4	Н			Н	S					S				S	
5		Н	S		S			S			Н		Н	S	
6	Н	Н	S							S			Н	S	
7			S	Н				S			Н	S		S	S
8		Н	S	Н				S						S	S
9	Н			Н	S					S			Н	S	
10		Н						S					Н	S	
11	Н			Н	S					S				S	
12		Н	S		S			S			Н		Н	S	
13	Н	Н	S							S			Н	S	
14			S	Н				S			Н	S		S	S
15	Н		S					S			Н	S	Н	S	

XIV. MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

S – Supportive

H - Highly Related

Prepared by: Mr. A Naresh Kumar, Assistant Professor, EEE

HOD, ELECTRICAL AND ELECTRONICS ENGINEERING