DATA STRUCTURES
Mechanical Engineering

Il SEMESTER

Prepared by:

Mrs. K Laxminarayanamma, Assistant Professor

MODULE -I

Basic concepts: Introduction to data structures, classification of data
structures, operations on data structures; Searching techniques: Linear

search and Binary search; Sorting techniques: Bubble sort, selection

sort, insertion sort and comparison of sorting algorithms.

What is Data?

Data(Dictionary Definition):
the quantities, characters, or symbols on which operations are performed by a
computer, which may be stored and transmitted in the form of electrical signals

and recorded on magnetic, optical, or mechanical recording media.

Example: C=A+8B

When Data Becomes Information?

Data imxal si eman yM

Information My name is laxmi

When data arranged in a systematic way then it gets a structure and
become meaningful

This meaningful or processed data is called information

It is not difficult to understand that data needs to be managed in such a
way so that it can produce some meaningful information

To provide an appropriate way to structure the data, we need to know
about

Data Structures

Introduction to Data Structures

What is Data structure?

e A data structure is a data organization, management, and storage format
that enables efficient access and modification. More precisely, a data
structure is a collection of data values, the relationships among them,
and the functions or operations that can be applied to the data.

In computer terms, a data structure is a Specific way to store and
organize data in a computer's memory so that these data can be used
efficiently later.

* A data structure should be seen as a logical concept that must address
two fundamental concerns.

l. First, how the data will be stored,and

Il. Second, what operations will be performed onit.

Real-time application of Data Structures

» To store the contacts on our phone, then the software will simply place all
our contacts in an array.

» Arrangement of leader-board of a game can be done simply through arrays
» Images are linked with each other. So, an image viewer software uses a
linked list to view the previous and the next images using the previous and

next buttons.

» Web pages can be accessed using the previous and the next URL links which
are linked using linked list.

Real-time application of Data Structures

Converting infix to postfix expressions

Undo operation is also carried out through stack.
Operating System uses queue for job scheduling.

To handle congestion in networking queue can be used.
Facebook’s Graph APl uses the structure of Graphs.
GPS navigation system also uses shortest path APIs.

Databases also uses tree data structures for indexing

Domain Name Server(DNS) also uses tree structures.

Real-time application of Data Structures

» Every time we type something to be searched in google chrome or other

browsers, it generates the desired output based on the principle of hashing.

Classification of Data Structures

Data Structures

simple Data Structures

Compound D ata Structure

Linear Data Structures Non-Linear Data Strucutres

Stack Tree

Queue Graph
Lists

Simple and Compound Data Structures

Simple Data Structure: Simple data structure can be constructed with the
help of primitive data structure. A primitive data structure used to
represent the standard data types of any one of the computer languages.
Variables, arrays, pointers, structures, unions, etc. are examples of primitive

data structures.

Compound Data structure: Compound data structure can be constructed
with the relp of any one of the primitive data structure and it is having a

specific functionaiity. it can be designed by user. It can be classified as

Linear and Non-linear Data Structures

Linear Data Structure:

Linear data structures can be constructed as a continuous arrangement
of data elements in the memory. It can be constructed by using array
data type. In the linear Data Structures the relationship of adjacency is

maintained between the data elements.

Non-Linear Data Structure:

Non-linear data structures can be constructed as a collection of
randomly distributed set of data item joined together by using a special
pointer (tag). In non-linear Data structure the relationship of adjacency

is not maintained between the dataitems.

Operations on Data Structures

i Add an element

ii. Delete an element

iii. Traverse

iv. Sort the list of elements

V. Search for a data element

Algorithm Definition

* An Algorithm may be defined as a finite sequence of instructions each of
which has a clear meaning and can be performed with a finite amount

of effort in a finite length of time.

 The word algorithm originates from the Arabic word Algorism which is

linked to the name of the Arabic Mathematician Al Khwarizmi.

* Al Khwarizmi is considered to be the first algorithm designer for adding

numbers.

Structure of anAlgorithm

e An algorithm has the following structure:
— Input Step
— Assignment Step
— Decision Step

— Repetitive Step

— Output Step

Properties of an Algorithm

Finiteness:- An algorithm must terminate after finite number of steps.

Definiteness:-The steps of the algorithm must be precisely defined.

Generality:- An algorithm must be generic enough to solve all problems
of a particular class.

Effectiveness:- The operations of the algorithm must be basic enough
to be put down on pencil and paper.

Input-Output:- The algorithm must have certain initial and precise
inputs, and outputs that may be generated both at its intermediate and
final steps

Algorithm Analysis and Complexity

The performances of algorithms can be measured on the scales of Time

and Space.

The Time Complexity of an algorithm or a program is a function of the

running time of the algorithm or a program.

The Space Complexity of an algorithm or a program is a function of the

space needed by the algorithm or program to run tocompletion.

Time Complexity

Complexity |Notation Description
Constant o(1) Cons.tant numbe.r of operations, not depending on
the input data size.
: . Number of operations proportional of log(n)
Logarithmic 0(logn) where n is the size of the input data.
Linear o(n) Numbgr of operations proportional to the input
data size.
. Number of operations proportional to the square
2
Quadratic 0(n”) of the size of the input data.
Number of operations proportional to the cube of
Cubic o(n?) the
size of the input data.
0(2")
Exponential [O(k") Exponential number of operations, fast growing.

Searching Methods

Search:

Searching is the process of finding some particular element in the list. If
the element is present in the list, then the process is called successful and
the process returns the location of that element, otherwise the search is
called unsuccessful.

There are two popular search methods that are widely used in order to
search some item into the list. However, choice of the algorithm depends
upon the arrangement of the list.

1. Linear or Sequential Search

2. Binary Search

Linear Search

Begins search at first item in list, continues searching sequentially(item
by item) through list, until desired item(key) is found, or until end of list
is reached.

Also called sequential or serial search.

* Obviously not an efficient method for searching ordered lists like phone
directory(which is ordered alphabetically).

* Advantages
1. Algorithmissimple.

2. List need not be ordered in any particular way.

* Time Complexity of Linear Search is O(n).

Linear Search

Example:

|~

Linear Search
Find '20°
. w

2050 [30 [20] so] co Il 0] 40

Linear Search

» Linear search is a very simple search algorithm. In this type of search, a
sequential search is made over all items one by one.

» Every item is checked and if a match is found then that particular item is
returned, otherwise the search continues till the end of the data collection.

Linear Search

EIEEIENEIEIEI LD

e

33

Linear Search

Problem: Given an array arr[] of n elements, write a function to search a given
element x in arr|].

Solution:

A simple approach is to do linear search, i.e

Start from the leftmost element of arr[] and one by one compare x with each
element of arr[]

If x matches with an element, return the index.

If x doesn’t match with any of elements, return -1.

Input : arr[] = {10, 20, 80, 30, 60, 50, 110, 100, 130, 170}
x=110;

Output: 6

Element x is present at index 6

Linear Search

Algorithm:
Linear Search (Array A, Value x) :

Step 1: Setito O

Step 2:if i > n then go to step 7

Step 3: if A[i] =x then go to step 6

Step 4:Setitoi+1

Step 5: Go to Step 2

Step 6: Print Element x Found at index i and go to step 8
Step 7: Print element not found

Step 8: Exit

Linear Search

HLINEAR SEARCH
items=([]
n=int(input("Enter how many elements u want "))
print("enter %d elements"%n)
foriin range(0,n):
element=int(input())
items.append(element)
print(items)
x=int(input("enter element to search:"))
i=flag=0
while(i<len(items)):
if((itemsl[i])==x):
flag=1
break
i=i+1

print("location number statrts from 0 and found at location ",i)
else:
flag=-1

Outputl:
Enter how many elements u want 5

enter 5 elements

12

34

67

89

90

[12, 34, 67, 89, 90]

enter element to search:89

location number statrts from 0 and found at location 3
Output2:

Enter how many elements u want 3
enter 3 elements

12

89

67

[12, 89, 67]

enter element to search:100

not found

Binary Search

» An algorithm to solve this task looks at the middle of the array or array
segment first

»|If the value looked for is smaller than the value in the middle of the array

»Then the second half of the array or array segment can be ignored

»This strategy is then applied to the first half of the array or array segment

Binary Search

Binary Search : In computer science, a binary search or half-interval search
algorithm finds the position of a target value within a sorted array. The
binary search algorithm can be classified as a dichotomies divide-and-
conquer search algorithm and executes in logarithmic time.

Step by step example:

Number

Binary Search

Low High Mid
‘ h(4 \
41 0 3 2 Search (45)

low + high
s

2

38<45 —> low=Mid+1=5

Binary Search

Low High Mid
41 0 3 2 ‘ Search (45) |

mif[=[low + high]

2

0 1 2 3 4 S 6 / 8

((Low)(Mmid)

High=Mid - 1 =5€«—— 45<77

Binary Search

Examplel:

Low High Mid
#1 3 ‘ Search (45) |

0 4

#2 5 8 6
low + high
#3 5 5 5 m{=[@ tg]

Binary Search

Example2:
Find — 75

13 jr2f14)23]3a]s5]65 |
1 2 3 4 5 6 7

0 8 9
Iteration 1 - T T T A | | A
: : :
A A T A A
Interation 2 -
A A

Interation 3-

A

Example3:

left=0 right=9
Arr 0 1 2 3 4 B0 G 7 8 9
4
item =3 mid =4

Binary Search

Algorithm Binary Search
Implement binary search following the below steps:

1.Start with the middle element of the given list:

o|f the target value is equal to the middle element of the array, then return

the index of the middle element.

eOtherwise, compare the middle element with the target value,
o|f the target value is greater than the number in the middle index, then
pick the elements to the right of the middle index, and start with Step 1.
o|f the target value is less than the number in the middle index, then pick
the elements to the left of the middle index, and start with Step 1.

2.1f a match is found, return the index of the element matched.

3.0therwise, return -1

Binary Search

#Binary Search

item_list=[]
n=int(input("enter how many elements u want?"))
print("enter %d elements in sorted order"%n)
foriin range(0,n):
element=int(input())
item_list.append(element)
#item_list.sort()
print(item_list)
item=int(input("enter element to be searched"))

Binary Search

first=0
last = len(item_list)-1
found = False
while(first<=last and not found):
mid = (first + last)//2
if item_list[mid] == item :
found = True

else:
if item < item_list[mid]:
last = mid-1
else:

first=mid + 1
if(found==True):
print("element is found at location ",mid)
else:
print("element is not found")

Binary Search

Output:

enter how many elements u want?5
enter 5 elements in sorted order

12

67

89

90

100

[12, 67, 89, 90, 100]

enter element to be searched89
element is found at location 2

Sorting techniques

Sorting:

is any process of arranging items systematically, and has two common, yet
distinct meanings:

ordering: arranging items in a sequence ordered by some criterion;

categorizing: grouping items with similar properties.
A Sorting Algorithm is used to rearrange a given array or list elements according
to a comparison operator on the elements. The comparison operator is used to

decide the new order of element in the respective data structure.

Sorting techniques: Bubble sort, selection sort, insertion sort

Bubble Sort

Bubble Sort is the simplest sorting algorithm that works by repeatedly swapping
the adjacent elements if they are in wrong order.

Example:
First Pass:

(51428)—>(15428), Here, algorithm compares the first two elements,
and swaps since 5 > 1.

(15428)—> (14528),Swapsince5>4
(14528)—> (14258), Swap since5>2

(14258)—>(14258), Now, since these elements are already in order
(8 > 5), algorithm does not swap them.

Bubble Sort

Second Pass:

(14258)—>(14258)
(14258)—>(12458),Swap since4 > 2
(12458)—>(12458)
(12458)—> (12458)

Now, the array is already sorted, but our algorithm does not know if it is

completed. The algorithm needs one whole pass without any swap to know it is
sorted.

Bubble Sort

Third Pass:

(12458)—>(12458)
(12458)—>(12458)
(12458)—>(12458)
(12458)—>(12458)

Bubble Sort Example

I3 3 0 3 0 R

S
1 5
15
1 5
1 5

4 3
6 2 4 3
> o4 3
2 4 3 6

Here we can see the Array
after the first iteration.

Similarly, after other
consecutive iterations, this
array will get sorted.

Bubble Sort

Python program for implementation of Bubble Sort

def bubbleSort(arr):
n = len(arr)

Traverse through all array elements
foriin range(n):

Last i elements are already in place
forjin range(0, n-i-1):

traverse the array from O to n-i-1

Swap if the element found is greater
than the next element

if arr[j] > arr[j+1] :

arr[j], arr[j+1] = arr[j+1], arr[j]

Bubble Sort

Driver code to test above
arr = [64, 34, 25, 12, 22, 11, 90]

bubbleSort(arr)
print ("Sorted array is:")

foriin range(len(arr)):
print ("%d" %arrl[i])

Output:
Sorted array is: 11 12 22 25 34 64 90

Selection Sort

Selection Sort:
The selection sort algorithm sorts an array by repeatedly finding the minimum

element (considering ascending order) from unsorted part and putting it at the
beginning. The algorithm maintains two subarrays in a given array.

1) The subarray which is already sorted.
2) Remaining subarray which is unsorted.
In every iteration of selection sort, the minimum element (considering

ascending order) from the unsorted subarray is picked and moved to the sorted
subarray.

Selection Sort Example

Selection sort is an algorithm that selects the smallest element from an unsorted
list in each iteration and places that element at the beginning of the unsorted list.

How Selection Sort Works?

1.Set the first element as minimum

Select first element as minimum

Selection Sort Example

2.Compare minimum with the second element. If the second element is smaller
than minimum, assign the second element as minimum

Compare minimum with the third element. Again, if the third element is smaller,
then assign minimum to the third element otherwise do nothing. The process
goes on until the last element.

Selection Sort Example Cont..

EIEaEIENES

Compare minimum with the remaining elemen

Selection Sort Example Cont..

3.After each iteration, minimum is placed in the front of the unsorted list

Swap the first with minimum

4.For each iteration, indexing starts from the first unsorted element. Ste
3 are repeated until all the elements are placed at their correct [

Selection Sort Example Cont..

The first iterati

min value
at index 1

min value
at index 2

min value
at index 2

min value
at index 4

Selection Sort Example Cont..

ENEE N
EN N
BN
N N

swapplng

The second iteration

min value
at index 2

min value
at index 2

min value
at index 2

Selection Sort Example Cont..

EIEIEEENES
ENEIEEENEN
B

already in place

The third iteration

min value
at index 2

min value
at index 2

Selection Sort Example Cont..

DN
I
OO

‘ already in place \

The fourth iteration

min value
atindex 3

Selection Sort Example

E

Figure: Selection Sort

121015 1215 10]
t t !
12(20[10[15 20115 1o|
! b
20(12]15 20 |15 1o|
' ?
20{12 (15 20|15 1z|
2 [20]12|15
Step 1 Step 2

)

15

0N WO W I

132 is srmaliest

229 is srmraliest

35 is srmallest

S 1 is srmallest

52 is srmallest

S5 is smallest

mno sswWwappirng

72 s srmallest

87 is srmallest
mno sswWwappirng

sorting completed

Selection Sort Example

L

STEP 1. 715|142 —= 2 5417

ﬁ in element Sorted Array Unsorted Array

STEP 2. 2 | 514 7

ﬁ min element

214 517

Sorted Array Unserted Array

 —e
STEP 3. 2 | a 5[? ——— | 2|45 .

ﬂmin element Sorted Array Unsorted Array

STEP4. |2 | a]| 5 7| —=——— (2|4 | 5| 7

ﬁ min element Sorted Array

Selection Sort

Python program for implementation of Selection
Sort
A =164, 25,12,22,11]

Traverse through all array elements
foriin range(len(A)):

Find the minimum element in remaining
unsorted array
min_idx =i
forjin range(i+1, len(A)):
if Almin_idx] > A[j]:
min_idx = j

Swap the found minimum element with
the first element
Ali], Almin_idx] = A[min_idx], Ali]

Driver code to test above

print ("Sorted array")

foriin range(len(A)):
print("%d" %A[i]),

Output:
Sorted array: 11 12 22 25 64

Insertion Sort

Insertion Sort:

Insertion sort is a simple sorting algorithm that works the way we sort playing
cards in our hands. The array is virtually split into a sorted and an unsorted
part. Values from the unsorted part are picked and placed at the correct
position in the sorted part.

Insertion Sort

Insertion Sort

R EAIZEZAR

85| 12| 59| 45 |72 | 51

85| 59| 45| 72| H1
12| 85| 59 | 45 | 72 | 51
12 85| 45| 72| 51
12| 59| 85| 45| 72 | 51
12 | 59 85| 72| 51
12 29| 85| 72| 51

Assume 85is a
sorted list of
1st item

85>12 , shift
it to the right

so insert 12
in that place

85=59 , shift
it to the right

12<59, s0
insert 59 in
that place

85>45 , shift
it to the right

59>45 , shift
it to the right

R AAEERERI

12| 45| 59 | 85 | 72 | 51
12| 45| 59 85| 31
12| 45| 59 | 72 | 85 | 51
12| 45| 59 | 72 85
12| 45| 59 72| 85
12| 45 59| 72| 85
12| 45| 51 | 59 | 72 | 85

12<43, 50
insert 45 in
that place

85572 , shift
it to the right

59<72, 50
insert 72 in
that place

85=51 , shift
it to the right

72251 | shift
it to the right

§9>51 , shift
it to the right

45<51, so
insert 51 in
that place

Insertion Sort

Insertion Sort Execution Example

L4 | [s [2][ao] [12] [1

I2II‘IGII12II1

I [6]

| [6]
UI1DII12II1II5II6I
| [6]

I [6]

| [&6]

(2][] 2] EEN [=2] [
(21 [31[a] [1o] EEN [

«EH EN N K EE BN
] (=21 (=] |4IUIEI
] (2] (=] (=] (=] K2

[T][2131 la]lls5]1lel]l[10][12]

Insertion Sort

6 5 3 1 8 7 2 4

Insertion sort

Python program for implementation of Insertion Sort

arr=[]
n=int(input("enter how many elements u want?"))
print("enter %d elements"%n)
foriin range(0,n):
element=int(input())
arr.append(element)
foriin range(1, len(arr)):
key = arr[i]

Insertion sort

Move elements of arr[0..i-1], that are
greater than key, to one position ahead
of their current position
j=i-1
while j >=0 and key < arr|j] :
arr[j+1] = arrj]
j=1
arr[j+1] = key
print ("Sorted array is:")
print (arr)

comparison of sorting algorithms

Bubble Sort

6 5 3 1 8 7 2 4

Bubble Sort

Bubble Sort

»The time complexity of Bubble Sort is O(n?).

»The main advantage of Bubble Sort is the simplicity of the algorithm.

» The space complexity for Bubble Sort is O(1)

Selection Sort

Selection Sort

Selection sort

In computer science, selection sort is an in-place comparison sorting algorithm.
It has an O(n?) time complexity, which makes it inefficient on large lists, and
generally performs worse than the similar insertion sort.

Advantages:

1.1t is simple and easy to implement

2.1t can be used for small data sets

3.1t is 60 percent more efficient than bubble sort

Disadvantage:
In case of large data sets, the efficiency of selection sort drops as compared to
insertion sort

Insertion sort

The average case often has the same complexity as the worst case. So insertion
sort, on average, takes) O(n2) time. Insertion sort has a fast best-case
running time and is a good sorting algorithm to use if the input list is already
mostly sorted.

Advantages:

1.1t is easy to implement and efficient to use on small sets of data

2.1t can be efficiently implemented on data sets that are already substantially
sorted

3.1t performs better than algorithms like selection sort and bubble sort

4.1t is 40 percent faster than the selection sort

5.It is said to be online, as it can sort a list as and when it receives new element

2 000

Sorting And Searching Algorithms — Time Complexities -ARE

Algorithm | Best Time Complexity | Average Time Complexity | Worst Time Complexity | Worst Space Complexity

Linear Search | O(1) o)) (1)
Binary Search | O(1) Oflog) Oflog) (1)
Bubte Sort | Ofn) 0(n?) 0(2) off
Selection Sort | 0(n"2) 0(n?) () (1)

Insertion Sort | () 0[n2) 0(n'2) o(1)

Sorting And Searching Algorithms - Time

Complexities

Algorithm | Best Time Complexity | Average Time Complexity | Worst Time Complexity | Worst Space Complexity

Linear Search | O(1) o)) (1)
Binary Search | O(1) Oflog) Oflog) oif
Bubble Sort | O[n) 0(n?) () (1)
Selection Sort | 0(n"2) 0(n) 0(?) (1)

Insertion Sort | O(n) 0[n2) o) o(1)

MODULE -li

Stacks: Primitive operations, implementation of stacks using arrays,
applications of stacks arithmetic expression conversion and evaluation;
Queues: Primitive operations; Implementation of queues using Arrays,

applications of linear queue, circular queue and double ended queue
(deque).

e Astackis a list of elements in which an element may be inserted or
deleted only at one end, called the top of the stack.

e The elements are removed from a stack in the reverse order of that

in which they were inserted into the stack.

e Stack is also known as a LIFO (Last in Fast out) list or Push down list.

Basic Stack Operations

e PUSH: Itis the term used to insert an element into a stack.

4 4 4 4
3 3 3 3
2 2 2 2
1 1 | 22 |1 2 |1
TOP
Top=-1 0 —»| 11 0 11 |0 11 | 0
TOP
Empty Insert Insest Insert
Stack 11 22 33

PUSH operations on stack

Basic Stack Operations

POP: It is the term used to delete an element from a stack.

TOP

22

11

Initial
Stack

N W a

TOP

22

11

N W

POP operation on a stack

11

N W a

N W

Empty
Stack

Top=-1

Standard Error Messages in Stack

* Two standard error messages of stack are

— Stack Overflow: If we attempt to add new element beyond the
maximum size, we will encounter a stack overflow condition.

— Stack Underflow: If we attempt to remove elements beyond the base
of the stack, we will encounter a stack underflow condition.

Stack Operations

PUSH (STACK, TOP, MAXSTR, ITEM): This procedure pushes an ITEM onto
a stack

1. If TOP = MAXSIZE-1, then Print: OVERFLOW, and Return.
2. Set TOP :=TOP + 1 [Increases TOP by 1]

3. Set STACK [TOP] := ITEM. [Insert ITEM in TOP position]
4. Return

POP (STACK, TOP, ITEM): This procedure deletes the top element of
STACK and assign it to the variable ITEM

1. If TOP = -1, then Print: UNDERFLOW, and Return.
2. Set ITEM := STACK[TOP]

3. Set TOP :=TOP - 1 [Decreases TOP by 1]

4. Return

Python code to demonstrate Implementing

stack

Python code to demonstrate Implementing
stack using list

stack = ["Amar", "Akbar", "Anthony"]
stack.append("Ram")

stack.append("lgbal")

print(stack)

print(stack.pop())

print(stack)

print(stack.pop())

print(stack)

Output :
['Amar’, 'Akbar’, 'Anthony', 'Ram’, 'Igbal']
Igbal

['Amar’, 'Akbar’, 'Anthony', 'Ram’]

Ram

['Amar’, 'Akbar’, 'Anthony']

Applications of Stack

e Converting algebraic expressions from one form to another. E.g. Infix to
Postfix, Infix to Prefix, Prefix to Infix, Prefix to Postfix, Postfix to Infix and
Postfix to prefix.

e Evaluation of Postfix expression.
e Parenthesis Balancing in Compilers.

* Depth First Search Traversal of Graph.

* Recursive Applications.

Arithmetic Expression

Infix: It is the form of an arithmetic expression in which we fix (place) the
arithmetic operator in between the two operands. E.g.: (A+B) * (C- D)

Prefix: It is the form of an arithmetic notation in which we fix (place) the
arithmetic operator before (pre) its two operands.

The prefix notation is called as polish notation. E.g.: *+ AB—-CD

Postfix: It is the form of an arithmetic expression in which we fix (place) the
arithmetic operator after (post) its two operands.

The postfix notation is called as suffix notation and is also referred to reverse
polish notation. E.g:AB+CD- *

Conversion of Infix to Postfix

Example 13

Exaomele 2

mmPle 3¢

A + B — Tty Emxpresiien
AB‘" — E?uiva,!(ﬂ" (&*97 E P s

At4BYC > 10sx exprenion
A4 BC >
ABC I —F . pctin s
A8) (c— 0O) >15mmrem
AB+ e (c-DD
AB+ 2 cD—

T L TR MR —.

Conversion of Infix to Postfix

MMM
A+B +AB AB+
A+B*C +A*BC ABC*+

A*B-C/D -*AB/CD AB*CD/-

I

S IARE s

Algorithm to Convert Infix to Postfix Using Stack

1. Scan the infix expression from left to right.

2. If the scanned character is an operand, output it.

3. Else,

..... 3.1 If the precedence of the scanned operator is greater than the
precedence of the operator in the stack(or the stack is empty or the stack
contains a ‘(“), push it.

..... 3.2 Else, Pop all the operators from the stack which are greater than or
equal to in precedence than that of the scanned operator. After doing that
Push the scanned operator to the stack. (If you encounter parenthesis while
popping then stop there and push the scanned operator in the stack.)

Algorithm to Convert Infix to Postfix Using Stack

4. If the scanned character is an ‘(‘, push it to the stack.

5. If the scanned character is an ‘)’, pop the stack and output it until a (“is
encountered, and discard both the parenthesis.

6. Repeat steps 2-6 until infix expression is scanned.

7. Pop and add to output from the stack until it is empty

8. Print the output

Operators Precedence S TARE ¢

Highest

Lowest

Operators Precedence

Python Operators Precedence Rule — PEMDAS

You might have heard about the BODMAS rule in your school’s mathematics class.
Python also uses a similar type of rule known as PEMDAS.

P — Parentheses

E — Exponentiation

M — Multiplication

D — Division

A — Addition

S — Subtraction

Conversion of Infix to Postfix Using Stack

Read character Stack Output
a Empty a
=} o i a
(+(a
b i | ab
* +(* ab
C +(* abc
) + abc*

Expression=A+B*C/D-F+AAE

Scanned Symbol Stack Output

A
+ - A
B + AB
- +* AB
C +* ABC
/ +/ ABC*
D +/ ABC*D
- ’ ABC*D/+
F - ABC*D/+F
-+ + ABC*D/+F-
A - ABC*D/+F-A
A + A ABC*D/+F-A
B +n ABC*D/+F-AE

(empty) ABC*D/+F-AEA+

Conversion of Infix to Postfix Using Stack

Frareler NGB — C 3¢ (D'E)

3:2‘,;{ ":l < c '\ mfum &1 (bs!'(,u’x Nol».d»_,}?\
A
— - a
o il nE
= — AB+
< L ARt <
= — AB+<
C " ABH<
| > — As-i-c(())
— > (/7 ABAC
/E — [P<BADE
—E ABSH+COE|]
) ABFCOE =

Algorithm to Convert Infix to Postfix Using Stack

Convert the following infix expression A+ B * C—D / E * H into its equivalent
postfix expression.

Symbeol Postfec string Stack Remarks
A A

+ A

B AB

3 AR L E

- ABC -

- ABC*+ -

D ABC*+D -

! ABC*¥+ D -/

E ABC*+DE -/

* ABC*+DE/ - #

H ABC¥+DE/H - #

End of The input is now empty. Pop the output symbels from
string ABCF+DE/H*- the stack until it is empty.

Evaluation of Postfix Expression

Expression: 456™+

Left to Right Evaluation —>»

.

pop twice
and do math

pop twice
and do math
n

Expression: 456*+

Evaluation of Postfix Expression

Step Input Operation Stack Calculation
Symbol
1. 4 Push 4
2. 5 Push 4.5
3. 6 Push 4,5,6
4. * Pop(2 elements) 4 5%6=30
& Evaluate
5 Push result(30) 4,30
+ Pop(2 elements) Empty 4+30=34
& Evaluate
- Push result(34) 34
No-more elements(pop) Empty 34(Result)

Evaluation of Postfix Expression

Postfix expression: 6523 +8 *+3 + *

Symbol Operand 1 Operand 2 Value | Stack Remarks
= =
o B, O
= 5, 5 2
The first four symbols are
= Sr 3 2, 3 placed on the stack
Mext a "+’ is read, so 2and 2
+ = = S 5 5 5 are popped from the stack
and their sum 5, is pushed
s = = S 5 5 5 28 | Mext 8 is pushed
Mow a ¥ is seen, so 8and 5
* 5 = 40 G5, 5, <40 are popped as 8 ¥5 = 40 is
pushed
Mest, a "+ is seen, so <40
+ 5 <0 45 5, 45 and S are popped and <0 +
S =45 is pushed
= o <40 45 o, 45, 3 Mow, 32 is pushed
Mext, "+’ pops 2 and 45 and
+ a5 = 45 &, 48 pushes 45 + 2 = 48 is
pushed
Fnally, a "¥ is seen and 48
* [48 288 233 and & are popped, the resul

& ¥ 48 = 288 is pushed

Evaluation of Postfix Expression

» Expression=74 -3 * 15+ /"

/’

o

1

-12

-12

+\/’ \/'*

6

-12

7

\

-14

“A queue is an ordered list in which all insertions done at one end called REAR

and deletions are made at another end called FRONT”. Queues are referred to
as First In First Out (FIFO)

erngilielie

(Insertior)

v =

degqueue (Deletior)

0

Fromnr Rear

Example

1.T he people waiting in line at a bank cash counter form a queue.

2. In computer, the jobs waiting in line to use the processor for execution.
This queue is called

Array Representation of Queue

»Queue can be easily represented by using linear arrays.

» There are two variables i.e. front and rear, that are implemented in the case of
every queue.

»Front and rear variables point to the position from where insertions and
deletions are performed in a queue. Initially, the value of front and rear is -1
which represents an empty queue.

Array representation of a queue containing 5 elements along with the respective
values of front and rear, is shown in the following figure.

I
2l
i
i

o L -
L

Queue Operations using Array

e Various operations of Queue are:
> insertQ(): inserts an element at the end of queue Q.

> deleteQ(): deletes the first element of Q.

» displayQ(): displays the elements in the queue.

Insertion Operation

Initially the queue is empty.

o 1 2 > =

| Queue Empty

F=R=-1

Now, insert 11 to the queue. Then queue status will be:

b — = = < F=F+1=-1+1=0

R=R+1=-1+1=0

t1

Next, insert 22 to the queue. Then the queue status is:

am R=R+1=0+1=1
F=0

Insertion Operation

Next, insert 33 to the queue. Then the queue status is:

L m = = e
R=R+1=1+1=2
- - == === F—o
| =3 =

Next, insert 44 to the queue. Then the queue status is:

2>2 ‘ =2= ‘ -5

f

R=R+]=2+1-3
F=0

"

Insertion Operation

Next, insert 55 to the queue. Then the queue status is:
We cannot insert 66 to the queue as it signals queue is full. The queue status

is as follows:
L w g - == == =
RE=R+1=3+1=4
| = =, == | === I - - [=5] F=0
L o =

Next insert another element, say 66 to the queue.
We cannot insert 66 to the queue as it signals queue is full. The queue status

is as follows:
a» - == == -=F
-
| - - == | == I [>] R=R+1=4+1=5
F=0

+ 1

| ==

Algorithm to insert an element in a queue

Algorithm:

Step 1: IF REAR = MAX -1

Write OVERFLOW

Go to step 4

[END OF IF]

Step 2: IF FRONT =-1 and REAR =-1
SET FRONT = REAR =0

ELSE

SET REAR=REAR+1

[END OF IF]

Step 3: Set QUEUE[REAR] = NUM
Step 4: EXIT

Deletion Operation

R=R+1=3+1=4
| =2 | = &

a» n = == -

== I === | - ‘ 525 R=4
F=F+1=0+1=0
=

R=4
| | == | == | == | S

2 00O

m =
S IARE §
8

Algorithm to delete an element from the queue

Algorithm:

Step 1: IF FRONT =-1 or FRONT > REAR
Write UNDERFLOW

ELSE

SET VAL = QUEUE[FRONT]

SET FRONT = FRONT + 1

[END OF IF]

Step 2: EXIT

Applications of Queue

» ltis used to schedule the jobs to be processed by the CPU.

» When multiple users send print jobs to a printer, each printing job
is kept in the printing queue. Then the printer prints those jobs
according to first in first out (FIFO) basis.

» Breadth first search uses a queue data structure to find an
element from a graph.

Circular Queue

A circular queue is one in which the insertion of new element is done at
the very first location of the queue if the last location of the queue is full.

Suppose if we have a Queue of n elements then after adding the element
at the last index i.e. (n-1)th , as queue is starting with 0 index, the next
element will be inserted at the very first location of the queue which was
not possible in the simple linear queue.

Circular Queue operations

* The Basic Operations of a circular queue are

» InsertionCQ: Inserting an element into a circular queue results in
Rear = (Rear + 1) % MAX, where MAX is the maximum size of the

array.

» DeletionCQ : Deleting an element from a circular queue results in
Front = (Front + 1) % MAX, where MAX is the maximum size of the

array.
» TraversCQ: Displaying the elements of a circular Queue.

* Circular Queue Empty: Front=Rear=0

Circular Queue Representation Using Arrays

Let us consider a circular queue, which can hold maximum (MAX) of six
elements. Initially the queue is empty.

F R
vy
= [
1 ueues Emply
4 MAX = &
FRONT = REAR =1
COUNT =D
3 2

GO ular Queune

2 000

Insertion and Deletion operations on a Circular Queu%é

Insert new elements 11, 22, 33, 44 and 55 into the circular queue. The circular
gueue status is:

e ular Queuns

2 000

Insertion and Deletion operations on a Circular Queue - iare ;

® Now, delete two elements 11, 22 from the circular queue. The circular queue
status is as follows:

R

" o
5

1 FRONT = (FRONT + 1) % & = 2
4 REAR = 5
COUNT = COUNT - 1 = 3
4.4 33 ﬂ\
F
3 =

e ular Queune

2 000

Insertion and Deletion operations on a Circular
Queue

m =
S IARE §
< \3

» Q@

Again, insert another element 66 to the circular queue. The status of the
circular gueue is:
R

v

0
5
66
4 1
FRONT = 2
REAR = (REAR + 1} % &6 = 0
COUNT = COUNT + 1 = 4
44 33 ‘!\
3 Z F

e ular Queus

Insertion and Deletion operations on a Circular

Queue

Again, insert 77 and 88 to the circular queue. The status of the
Circular queue is:

FRONT = 2, REAR
REAR = REAR % &
COUNT = 6

=2
=2

O ular Queue

Application of Circular Queue

Below we have some common real-world examples where circular queues are
used:

Computer controlled Traffic Signal System uses circular queue.

CPU scheduling and Memory management.

Double Ended Queue (DEQUE)

* |tis aspecial queue like data structure that supports insertion and
deletion at both the ends.

e Such an extension of a queue is called a double-ended queue, or
deque, which is usually pronounced "deck" to avoid confusion with
the dequeue method of the regular queue, which is pronounced
like the abbreviation "D.Q."

* |tis also often called a head-tail linked list.

2 00O

DEQUE Representation using arrays %.Aneg

enqueue_front{Z3) enqueue_r =ar{44)
11122 »

33|11 |22 - 33|11 |22 |44

dequeue front{33)

enqueue_front{ 53]

33|11 |22
£

1122

dequeue_rear{44)
.

Types of DEQUE

 There are two variations of deque. They are:
— Input restricted deque (IRD)
— Output restricted deque (ORD)

* An Input restricted deque is a deque, which allows insertions at one end
but allows deletions at both ends of the list.

* An output restricted deque is a deque, which allows deletions at one end
but allows insertions at both ends of the list.

Applications of Deque

Since Deque supports both stack and queue operations, it can be used
as both.

The Deque data structure supports clockwise and anticlockwise
rotations in O(1) time which can be useful in certain applications

Also, the problems where elements need to be removed and or added
both ends can be efficiently solved using Deque

Palindrome-checker

Add " radar” to the r=ar

fromt
add to rear

rear front

-y

/__————r = d = r
\

remowve from rear Irems

T

Remove from front and rear

4

remowve from frons

r

MODULE -l

Linked lists: Introduction, singly linked list, representation of a
linked list in memory, operations on a single linked list; Applications
of linked lists: Polynomial representation and sparse matrix

manipulation.

Types of linked lists: Circular linked lists, doubly linked lists; Linked
list representation and operations of Stack and Queue.

Introduction to Linked List

A linked list is a collection of data in which each element contains the location
of the next element—that is, each element contains two parts: data and link.

null pornter

SCOIES data link data lmk data lmk data link

An empty
ikedtic DM Aode | [

SCOTES data link

Arrays versus Linked Lists

e Both an array and a linked list are representations of a list of items in
memory. The only difference is the way in which the items are linked
together. The Figure below compares the two representations for a list of
five integers.

Lol e mmm
scores
scores [1] 66 — | 72 -_I
scores [2 T2
2 T

scores | 3] 74
scores [4] 85 |_>| 35 -_I
scores [5] 96

—{ 72 [

a. Array representation b. Linked list representation

Linked List: A Dynamic Data Structure

A data structure that can shrink or grow during program execution.

The size of a dynamic data structure is not necessarily known at
compilation time, in most programming languages.

Efficient insertion and deletion of elements.

The data in a dynamic data structure can be stored in non-contiguous

(arbitrary) locations.

Linked list is an example of a dynamic data structure.

Advantages of linked list

 Unused locations in array is often a wastage of
space

* Linked lists offer an efficient use of memory
— Create nodes when they are required

— Delete nodes when they are not required anymore

— We don‘t have to know in advance how long the list should be

Types of linked lists

* There are four types of Linked lists:
— Single linked list
* Begins with a pointer to the first node
* Terminates with a null pointer

* Only traversed in one direction
— Circular single linked list
* Pointer in the last node points back to the first node

— Doubly linked list

* Two —start pointers— first element and last element
* Each node has a forward pointer and a backward pointer
* Allows traversals both forwards and backwards

— Circular double linked list

* Forward pointer of the last node points to the first node and
backward pointer of the first node points to the last node

Singly Linked Lists

B A singly linked list is a concrete
data structure consisting of a

sequence of nodes

B Each node stores
® Element

®m link to the next node

\ 4

next

® C >
v
@ > ® @

[

2 00O

Representation of a linked list in memory S

1
{ Data MNext
» 1 13
2
3
4 “-
) |
T R —
rd
8 57 NULL

Memory Representation of a linked list

START

Representation of Linked lists in memory

2
3
4
5
6
7
8

INFO

67
45
80
75

90

LINK

A NN O

START=3, INFO[3]=45
LINK[3]=2, INFO[2]=67
LINK[2]=5, INFO[5]=75
LINK[5]=4, INFO[4]=50
LINK[4]=7, INFO[7]=20
LINK[7]=0, NULL value, So the list has ended

Operations on Linked Lists

* The basic operations of a single linked list are
— Creation
— Insertion

— Deletion

— Traversing

Applications of linked list

Linked lists are used to represent and manipulate polynomial. Polynomials
are expression containing terms with non zero coefficient and exponents.
For example:

P(x) = agXn+a; Xn1+ ... +a,1 X+ a,

Represent very large numbers and operations of the large number such as
addition, multiplication and division.

Linked lists are to implement stack, queue, trees and graphs.

Implement the symbol table in compiler construction.

_Polynomial Representation

 Linked list Implementation:

* p2(X) = 4x6 + 10x4 + 12X + 8

P1 =] 9 8 | 7 g | 6 163 4 3| o

~» TAIL (contains pointer)

o

PZ 4 6 10 | 4 "2 | 1 "8| o

| | =
.

NODE (contains coefficient & exponent)

Sparse Matrices

Matrix is a two-dimensional data object made of m rows and n columns,
therefore having total m x n values. If most of the elements of the matrix have 0
value, then it is called a sparse matrix.

sparse ... many elements are zero
dense ... few elements are zero

Example:

0 0
0 0
0 0
0 2

O Vvl w
OO N
O 00 b

Example Of Sparse Matrices

»Diagonal

» Tridiagonal

» Lower triangular

Representation Of Sparse Matrices

Single linear list in row-major order:
»scan the nonzero elements of the sparse matrix in row-major order

»each nonzero element is represented by a triple (row, column, value)

»>the list of triples may be an array list or a linked list (chain)

00304
00570
00000
02600

Single Linear List Example

list =
row

1122414

column 353423

value

345726

Array Linear List Representation

Example:
00304
00570
00000
02600

row 1122414

list = column 353 423
value 345726

Chain Representation

Node structure:

value next

Single Chain

Example:
00304
00570
00000
02600

row 112244
ist = column 353423

value 3457 26
q! ‘s a aa
firstNode

Single Linked List

A linked list is a linear data structure, in which the elements are not stored at
contiguous memory locations. The elements in a linked list are linked using
pointers as shown in the below image:

Head

P TR [P [P

Data Next

Single Linked List

B A singly linked list is a concrete
data structure consisting of a

sequence of nodes

B Each node stores
® Element

®m link to the next node

\ 4

next

® C >
v
@ > ® @

[

Single Linked List

STALC R

400

.

4

HEADP
100
== rk
10 |200— 20 |(Z00—M 30
1.:‘.: — 100 ""-._“_ 200 300
point er X/ aly
hold=s the Each node Stores the next
address of stores the data. node address,
the frst
node of the
hist.

Emply liskt

E X111 _
F
The nexd hield of

the last node i=
HMULL.

data | next

Operations on Single Linked Lists

* The basic operations of a single linked list are
— Creation
— Insertion

— Deletion

— Traversing

Creation of a Single Linked List

» A linked list allocates space for each element separately in its own block of
memory called a "node".

» Each node contains two fields; a "data" field to store whatever element, and
a "next" field which is a pointer used to link to the next node.

» Each node is allocated in the heap using malloc(), so the node memory
continues to exist until it is explicitly de-allocated using free().

» The front of the list is a pointer to the —start node

Creating a node for Single Linked List

» Sufficient memory has to be allocated for creating a node.

»The information is stored in the memory, allocated by using the malloc()
function.,after allocating memory for the structure of type node,

» the information for the item (i.e., data) has to be read from the user,

»set next field to NULL and finally returns the address of the node.

Newnode

Data ‘
N

100

Creation of a Single Linked List

LinkedList can be represented as a class and a Node as a separate class. The
LinkedList class contains a reference of Node class type.

Node class
class Node:

Function to initialize the node object node: data | next
def __init__ (self, data):
self.data = data # Assign data
self.next = None # Initialize # next as null

class SLL:

def __init_ (self): start
self.start=None Emply lisk NULL

Creating a single linked list with N nodes

1.Create a newnode
2.Set newnode.data=data Newnode

3.Set newnode.next=NULL
Data

4.Set temp=start
5.Repeat step 6 whiletemp.next!=NULL

6. set temp=temp.next 100
[end of loop]

7.Set temp.next=newnode
8.Exit

skart
100

¥ 10 |200— 20 (300 30 |400— 40 | X

100 200 300 400

Creating a single linked list with N nodes

class Node:
def __init_ (self,data):
self.data=data
self.next=None
class SLL:
def __init_ (self):
self.start=None
def createlist(self):
n=int(input("enter no of nodes"))
foriin range(n):
data=int(input("enter value"))
newnode=Node(data)
if(self.start==None):
self.start=newnode
else:
temp=self.start
while temp.next!=None:
temp=temp.next

Traversing a Single Linked List

1.Set temp=start
2.Repeat step 3 and 4 While temp!=NULL

3. Apply process to temp.data
4. Set temp=temp.next

[Enf of loop]
5.Exit

start
100

¥ 10 |200— 20 (300 30 |400—M 40 | X

Print Each node of a Single Linked List

1.Set temp=start
2.Write temp.data
3.Repeat step 4 and 5 While temp.next!=NULL
4. Write temp.data
5. Set temp=temp.next
[Enf of loop]
5.Exit
#function to Display each node of a linked list
def display(self):
print("element in single linked list are:")
if self.start==None:
print("Empty")
else:
temp=self.start
print(temp.data)
while temp.next!=None:
temp=temp.next
print(temp.data)

Inserting a node

* Inserting a node into a single linked list can be done at
— Insertion at the beginning of thelist.

— Insertion at the end of thelist.

— Insertion in the middle of thelist.

Inserting a node at the beginning

1.Create a nwenode

2.Set newnode.data=data
3.Set newnode.next=start
4.Set start=newnode

5.Exit
slart
s00 | |
'
|-
i0 (00— 20 (200— 30 |400— 40 | X
100 200 300 400
— 5 100

Inserting a node at thebeginning

def insertbegin(self):

data=int(input("enter value"))

newnode=Node(data)

if self.start==None:
self.start=newnode

else:
temp=self.start
newnode.next=temp
self.start=newnode

skark

200

ey
Ly i0 |(2oo— 20 (300— 30 |400— 40 X

‘ 100 200 200 400

L | 5 (100
500

Inserting a node at the end

1.Create a newnode
2.Set newnode.data=data
3.Set newnode.next=NULL
4.Set temp=start
5.Repeat step 6 whiletemp.next!=NULL
6. set temp=temp.next
[end of loop]
7.Set temp.next=newnode
8.Exit

shart

100 _|_.

i0 |200——— 20 (300— 30 |(400— 40 (500
100 200 200 400

200

Inserting a node at the end

def insertend(self):
n=int(input("enter value"))
newnode=Node(n)
if(self.start==None):
self.start=newnode
else:
temp=self.start
while temp.next!=None:
temp=temp.next
temp.next=newnode
shark

100 _|_.

10 |(2oo— 20 (300— 30 |400— 40 |500
100 200 300 400

200

Inserting a node at intermediate position

slart prev temp
100 « X
10 |200— 20 snn'"7L" 30 [400—M 40 | X
100 200 300 400
—¥ 50 3n|l_J
500 A

new node

Inserting a node at intermediate position

def insertmid(self):
n=int(input("enter value"))
newnode=Node(n)
pos=int(input("enter position"))
c=self.count()
if(self.start==None):
self.start=newnode
else:
if pos>1 and pos<=c:
temp=self.start
prev=temp
i=1
while i<pos:
prev=temp
temp=temp.next
i+=1
newnode.next=temp
prev.next=newnode

Python Classes and Objects

Python is an object oriented programming language.
Almost everything in Python is an object, with its properties and methods.
A Class is like an object constructor, or a "blueprint"” for creating objects.

Create a Class
To create a class, use the keyword class:

Example:
Create a class named MyClass, with a

property named x:

class MyClass:
X=5

Create Object

use the class named MyClass to create objects:

Example

class MyClass:
Xx=5

pl = MyClass()

print(p1.x)

_ () Function

All classes have a function called __init__ (), which is always executed when
the class is being initiated.

Use the _init_ () function to assign values to object properties, or other
operations that are necessary to do when the object is being created:

Example

class Person:
def __init_ (self, name, age):
self.name = name
self.age = age

pl = Person("John", 36)

print(pl.name)
print(pl.age)

Object Methods

Objects can also contain methods. Methods in objects are functions that belong
to the object.

Example

class Person:
def __init_ (self, name, age):
self.name = name
self.age = age

def myfunc(self):
print("Hello my name is " + self.name)

pl = Person("John", 36)
pl.myfunc()

Output:
Hello my name is Joh

Deletion of a node from a single linked list

* Another primitive operation that can be done in a singly linked list is the
deletion of a node. Memory is to be released for the node to be deleted. A
node can be deleted from the list from three different places namely.

— Deleting a node at the beginning.

— Deleting a node at theend.

— Deleting a node at intermediate position.

Deleting a node at thebeginning

 The following steps are followed, todeletea node at the beginning of
the list:
1. If start=NULL then,
print Empty list
gotostep 5
[End of if]
2. Set temp=start
3. Set start=start. next
4. Free or delete temp
5. Exit

skart

e d BT 'znn[__;n 20 (300— 30 [400—M 40 | X
47 200 300 400

Deleting a node at thebeginning

Algorithm: #Function to delete a node from the beginning
1. If start=NULL then, def deletebegin(self):
print Empty list global prev
[Endg(;:(i)ﬂs’tep > if seIf.start==None:
2. Set temp=start print("empty”)
3. Set start=start. next else:
4. Free or delete temp temp=self.start
5. Exit newstart=self.start.next
del temp
self.start=newstart
shart
200

- * 10 Eznn:__yzn 20 (300—{ 30 [400— 40 | X
47 0 200 300 400

Deleting a node at the end

* The following steps are followed to delete a node at the end of the list:

1.1f start=NULL, then
print Empty list
gotostep 8
[end of if]

2.Set temp=start

3.Repeat step 4 and 5 while temp.next!=NULL

4. Set pretemp=temp

5. Settemp=temp.next
[end of loop]

6.Set pretemp.next=NULL

/.Free temp

8.Exit

st

100

200

300

Deleting a node at the end

#function to delete last node of a single linked list
def deleteend(self):
global prev st
If self.start==None:
print("empty") 100
else:

temp=self.start G leeal &l an lwnal & wn | ¥ L | Ir:
orevself.start 0 20— 30—k X0 LX}

while temp.next!I=None: 100 - 0 *Illll
prev=temp
temp=temp.next

prev.next=None

del temp

Deleting a node at intermediate position

In order to delete the node, which is present after the specified node, we need
to skip the desired number of nodes to reach the node after which the node
will be deleted. We need to keep track of the two nodes. The one which is to
be deleted and the other one the node which is present before that node. For

this purpose, two variables are used: temp and prev.

shart

100

W 10 ann'"%"'"; 20 fann:"{':n 30 (00— 40 | X

100 200 300 400

Deleting a node at intermediate position

STEP 1: IF start = NULL
WRITE Empty List
GOTO STEP 11

END OF IF
STEP 2: SET TEMP = start
STEP3:SETI=1

STEP 4: REPEAT STEP 5 TO 8 UNTIL I<position

STEP 5: preTEMP = TEMP

STEP 6: TEMP = TEMP .NEXT

STEP 7: IF TEMP = NULL

WRITE "DESIRED NODE NOT PRESENT"
GOTO STEP 11
END OF IF

STEP 8:1=1+1

END OF LOOP

STEP 9: preTEMP.NEXT = TEMP.NEXT

STEP 10: FREE TEMP

STEP 11: EXIT

head new link

ptr 1 ptr

ptrl -> next = ptr -> next
free(ptr)

Deletion a node from specified position

Deleting a node at intermediate position

def deletemid(self):
i=1
if self.start==None:
print("Empty")
else:
position=int(input("enter position"))
c=self.count()
if position>c:
print("check position")
elif position>1 and position<=c:
temp=prev=self.start
while i<position:
prev=temp
temp=temp.next
i+=1
prev.next=temp.next
del temp
else:

Counting number of nodes

1.1f start=NULL then,
print count=0

[end of if]
2.Set count=1
3.Set temp=start
4.Repeat step 5 and 6 while temp.next!=NULL
5. Set count=count+1
6. Settemp=temp.next

[end of loop]
7.Exit

Counting number of nodes

def count(self):
nc=0
temp=self.start
while temp!=None:
nc+=1

temp=temp.next
print("Number of nodes=",nc)
return nc

Linked list representation of stack

Instead of using array, we can also use linked list to implement stack. Linked list
allocates the memory dynamically.

» A stack can be represented by using nodes of the linked list.
»Each node contains two fields : data(info) and next(link)

»The data field of each node contains an item in the stack and the corresponding
next field points to the node containing the next item in the stack

» The top refers to the top most node (The last item inserted) in the stack.

»all the single linked list operations perform based on Stack operations LIFO(last
in first out)

Linked list representation of stack

The start variable of the linked list is used as top

Operations on a Linked Stack

Stack Operations:

push() : Insert the element into linked list nothing but which is the top node of
Stack.

pop() : Return top element from the Stack and move the top pointer to the second
node of linked list or Stack.

peek(): Return the top element.

display(): Print all element of Stack.

Operations on a Linked Stack

Siack operalions on a
Linked LisL

‘ Push / Pop ‘

Y N\

At the At the
beginning

erd

Operations on a Linked Stack

Stacw= [inned List implementation

heod

Twsert/deleta ['_“

1) at end X
v
o)
(2) O'Z' bgg.vm-ﬂa
¢
D(1)

(ob a%0 Yoo

-l 5[a[0] —> e

350

- NEWw
Wed b

Push Operation

Head
Push Pop

node 1 node 2 node 3
top value value —
next next next

Last In First Qut [LIFO)

Y
node 1 node 2 node 3
value value —
Stac k S a— next next next
node 0
e
— next —

New Node

Inserting a node at the beginning

1.Create a nwenode

2.Set newnode.data=data
3.Set newnode.next=start
4.Set start=newnode

5.Exit
skart
500 | |
e
|-
i0 (200 20 (300 30 |400—Pp 40 |X
100 200 100 400
| 5 |100

Push Operation

push() : Insert the element into linked list.
The new element is added at the top most position of the stack.

Steps to push an element into a stack:
1.create the new node
2.set newnode.data=data
3.if top=NULL, then
set newnode.next=NULL
set top=newnode
else

set newnode.next=top
set top=newnode
[end of if]

Function to push an element into a stack:

def push(self):
data=int(input("enter value"))
newnode=Node(data)
if(self.top==None):
self.top=newnode
else:
temp=self.top
newnode.next=temp
self.top=newnode

pop() : delete the topmost element from the stack
Return top element from the Stack and move the top pointer to the
second node of linked list or Stack.

Steps to pop an element from stack:

1.1f top=NULL,then
print Empty or underflow
[end of if]

2.Set temp=top

3.Set top=top.next

4.Free temp

5.end

_
=
=
[|
-

.l. o=
=
=
o=
|2

n Anﬂ

O

©

S =

Q =

® T [|

3 it

(o |
r..m.:..
e
1 | —
LB
_ = wn_
=
ruﬁ.;.
~

temp

Steps to pop an element from stack:

def pop(self): Befare popping in stack (implemented using Linked List
global prev

if (self.top==None): prm— JF_
print("empty")
else: 1 I
temp=self.top ._}‘
newstart=self.top.next
del temp
self.top=newstart

il
3

et It el

b pophls node
[pop fram top|

Display the nodes (Traversing)

Displaying all the nodes of a stack needs traversing all the nodes of the linked list
organized in the form of stack. For this purpose, we need to follow the following
steps.

1.Copy the head pointer into a temporary pointer.

2.Move the temporary pointer through all the nodes of the list and print

3.value field attached to every node.

Display the nodes (Traversing)

def display(self):
print("elements in stack are:")
if self.start==None:
print("empty")
else:
temp=self.start
print(temp.data)
while temp.next!=None:
temp=temp.next
print(temp.data)

Peek operation

def peek(self):
if self.start==None:
print("empty")
else:
temp=self.start
print(temp.data)

Linked list representation of Queue

In a linked queue, each node of the queue consists of two parts i.e. data part
and the link part. Each element of the queue points to its immediate next

element in the memory.

In the linked queue, there are two pointers maintained in the memory i.e.
front pointer and rear pointer. The front pointer contains the address of the
starting element of the queue while the rear pointer contains the address of

the last element of the queue.

Linked list representation of Queue

Insertion and deletions are performed at rear and front end respectively.
If front and rear both are NULL, it indicates that the queue is empty.

The linked representation of queue is shown in the following figure.

o Al A e X

front rear

Linked Queue

Operation on Linked Queue

enQueue() This operation adds a new node after rear and moves rear to the next
node.

deQueue() This operation removes the front node and moves front to the next
node.

display() - Displaying the elements of Queue

Operation on Linked Queue

Queue - Limked List implementatiom

‘FYo’ﬂ't' Yeoay
”O Ligo
\ y
oo 200 300 350 Lso

2100 = [4|aR| —> | 6 || — [314%| — 901

Inserting a node at the end (enQueue)

1.Create a newnode
2.Set newnode.data=data
3.Set newnode.next=NULL
4.Set temp=start
5.Repeat step 6 whiletemp.next!=NULL
6. set temp=temp.next
[end of loop]
7.Set temp.next=newnode
8.Exit

shart

100 _|_.

i0 |200——— 20 (300— 30 |(400— 40 (500
100 200 200 400

200

Insertion operation (enQueue)

Algorithm
Step 1: Allocate the space for the new node PTR
Step 2: SET PTR -> DATA = VAL
Step 3: IF FRONT = NULL
SET FRONT = REAR = PTR
SET FRONT -> NEXT = REAR -> NEXT = NULL

ELSE Front Rear
SET REAR -> NEXT = PTR
SET REAR = PTR 100

SET REAR -> NEXT = NULL

[END OF IF] 10 20|—){2l 3|—D{30 40H 40 |500

Step 4: END 100 200 300 400

S

300

Deletion operation(deQueue)

Deletion operation removes the element that is first inserted among all the queue
elements. Firstly, we need to check either the list is empty or not. The condition
front == NULL becomes true if the list is empty, in this case , we simply write
underflow on the console and make exit.

Otherwise, we will delete the element that is pointed by the pointer front. For
this purpose, copy the node pointed by the front pointer into the pointer ptr.
Now, shift the front pointer, point to its next node and free the node pointed by
the node ptr. This is done by using the following statements.

2 000

<
O

Deleting a node at thebeginning(deQueue) “«%;)/:AREE

Algorithm:

1. If start=NULL then,
print Empty list
gotostep 5

[End of if]

2. Set temp=start

3. Set start=start. next

4. Free or delete temp

5. Exit

skart

—f e 10 'znn[__yzn 20 (300 30 [400—M 40 | X
47 0 200 300 400

Deletion operation(deQueue)

Algorithm

Step 1: IF FRONT = NULL

Write " Underflow "

Go to Step 5

[END OF IF]

Step 2: SET PTR = FRONT

Step 3: SET FRONT = FRONT -> NEXT
Step 4: FREE PTR

Step 5: END

Circular Single Linked List

It is just a single linked list in which the link field of the last node points back to
the address of the first node.

A circular linked list has no beginning and no end. It is necessary to establish a
special pointer called start pointer always pointing to the first node of the list.

Circular linked lists are frequently used instead of ordinary linked list because
many operations are much easier to implement. In circular linked list no null
pointers are used, hence all pointers contain valid address.

Circular Single Linked List and its basic operations

r]y

100

200

100

300

200

400

300

m =
£ IARE ¢
i &

—} 40

100

400

2 00O

Circular Single Linked List basic operations %.Aneg

The basic operations in a circular single linked list are:
* Creation

*|nsertion
*Deletion

*Traversing

2 000

Creating a circular single Linked List with N number of &

m =
S IARE §
< \3

2 Q*
7 \2
¥ For W

shark

Steps: 100 _L

1. Create a newnode g g ot g e
2. Set newnode.data=data L, ———

3 Set newnode.next=start 500 T
4. |If start=NULL then,

start=newnode
[End of if]

5. Set temp=start
6. Repeat step 7 while tem.next!=start
7. set temp=temp.next

[end of loop]

8. Set temp.next=newnode
. Exit

chark

100

Creating a circular single Linked List with
N number of nodes

{10

200

100

— 20

300

200

— 3D

2 00O

m =
S IARE §
< \3

,)

400—P 40

300

200

400

100

200

Creating a circular single Linked List with N

number of nodes

def createlist (self):
n=int (input ("enter number of nodes 1in the

list"))
for 1 in range(n):
data=int (input ("enter wvalue"))
newnode=Node (data)
if self.start==None:
self.start=newnode
newnode.next=newnode

else:
temp=self.start
while temp.next!=self.start:
temp=temp.next
temp.next=newnode
newnode.next=self.start

Inserting a node at the beginning

1.Create a nwenode

2.Set newnode.data=data

3.Set temp=start

4.Repeat sep 5 while temp.next!=start
5. tem=temp.next

6.Set newnode.next=start

7.Set temp.next=newnode

8.Set start=newnode

9.exit
shark
500 o
-
iy i0 (200— 20 (300—M 30 |(400— 40 snul_
100 200 300 400
— 3 100
500

Inserting node at the beginning

def insertbegin(self):
data=int(input("enter value"))
newnode=Node(data)

if self.start==None: st
self.start=newnode |
Ine.wnOde'nethnewnOde - 10 (200 20 (300 30 (400 40 5lll+
Clse. 100 200 300 400
temp=self.start
while temp.next!=self.start: _"’I 5 |100
temp=temp.next 500

temp.next=newnode
newnode.next=self.start
self.start=newnode

Steps:
1. Create a newnode
2. Set newnode.data=data
3. Set newnode.next=start
4. |If start=NULL then,
start=newnode
[End of if]
5. Set temp=start
6. Repeat step 7 while tem.next!=start
7. set temp=temp.next
[end of loop]
8. Set temp.next=newnode

Inserting a node at the end

. Exit

shark

100

i0

200

100

— 20

300

200

—» 30

400

| 40

300

300

400

N

100

500

Inserting a node at the end

def insertend(self):
data=int(input("enter value"))
newnode=Node(data)
if self.start==None:

skark

self.start=newnode 100 _L
newnOde,nethnewnOde —j 10 [200— 20 (00— 30 |400 p 40 |500
else' 100 200 300 400
temp=self.start L 50 | 100
while temp.next!=self.start: i T

temp=temp.next
temp.next=newnode
newnode.next=self.start

Deleting a node at the beginning

e The following steps are followed, to delete a node at the beginning of

the list:
St . start
€ps: 200
1.if start=NULL then, |
_ ——— 7‘:5 20 (300—P{ 30 |400— 40 [200
write underflow tenp“--d T B 200 P
go to step 8

2.set temp=start

3.Repeat step 4 while temp.next!=start
4. set temp=temp.next

5.set temp.next=start.next

6.Free start

7.set start=temp.next

8.Exit
140

Deleting a node at the beginning

def deletebegin(self):
temp=self.start
if self.start==None:

print("List is empty, deletion not possible”)

elif temp.next==temp:
print(temp.data,"is deleted success")

del temp
self.start=None start

else: 200
dtemp=self.start / o T
while temp.next!=self.start: e

temp=temp.next temp
temp.next=dtemp.next
self.start=dtemp.next
print(dtemp.data,"is deleted success")
del dtemp

i P-Eﬁzn

300

P

400

200

300

—m 40

200

400

Deleting a node at the end

* The following steps are followed to delete a node at the end of the list:
Steps:
1.if start=NULL then,
write underflow
go to step 8
2.set temp=start
3.Repeat step 4 while temp.next!=start
4. set pretemp=temp
5. set temp=temp.next
[end of loop] start
6.set pretemp.next=start 100
7.free temp
8.Exit :ﬂ 10 znn—b‘ 2 ann—b‘ 31 1nn'"7L""; W illlll]i

100 200 300 400

Deleting a node at the end

def deletend(self):
temp=self.start
if self.start==None:
print("List is empty, deletion not possible")
elif temp.next==temp:
printf(temp.data,"is deleted success")
del temp start
self.start=None —
else: L
ptemp=temp

temp=temp.next jw W—h 1 —h ¥ m_"’L"H 0
while temp.next!=self.start: eeeeeeend

ptemp=temp 100 200 300 {00
temp=temp.next
ptemp.next=self.start

print(temp.data,"is deleted success")
del temp

wedes

2 000

Traversing a circular single linked list from left to right = 1ar=¢

* The following steps are followed, to traverse a list from left to right:
* If listis empty then display _Empty List’ message.

* If the list is not empty, follow the steps given below:

temp = start;

print(temp.data ,end="")

while(temp.next != start)

temp = temp .next;

print(temp .data)

2 00O

Traversing a circular single linked list from left to right S

m =
S IARE §
< \3
,)

def display(self):
if self.start==None:
print("Linked list is empty")
else:
print("elements in single linked list are:")
temp=self.start
print(temp.data ,end="")
while temp.next!=self.start:
temp=temp.next
print(temp.data ,end="")

Double Linked List

A doubly linked list is a linked data structure that consists of a set of
sequentially linked records called nodes.

A double linked list is a two-way list in which all nodes will have two links.

This helps in accessing both successor node and predecessor node from
the given node position.

skark
100
X | 10 200 | ¥ 00| 20 300 "znn 30 | X
100 200 300
Head Next Mext Mext Mext

NULLI(:)I- A _kj'. B ‘kj'_ C -kj‘_ S|yl

Prev Prev Prev Prev

2 00O

Double Linked List Node Structure 1ARES

* Doubly linked list provides bi-directional traversing. Each node contains three
fields:

— Left link.
— Data.
— Right link.

node: left | data |right

Double Linked List Node Structure

[Prev | Dsta | Nex

Node

#class to create and initialize a node
class Node:
def __init_ (self,data):
self.data=data
self.prev=None
self.next=None

Double Linked List

STALK Stores the HEAP
previous node
100 address,

H .-"1:.?

. start " B p

V X Illl Ellll 4 100 | 20 EIIIIH_ 200 | 30 X
The start o ! w200 300 o
poinker v) K
holds the Stores the data, Stores the next The right field of
address of node address, the last node is
the frst MILL.
node of the

list.

2 00O

Memory Representation of a doubly linked list S

Head
1
{ Data Prev Next
13 -1

e — 1 *

o o0 kA W N R

~J

8 | 5 L85 =

Memory Representation of a Doubly linked list

Basic operations in a double linked list

e Creation
e Insertion
e Deletion
e Traversing

e The e beginning of the double linked list is stored in a "start/head" pointer
which points to the first node. The first node’s left link and last node’s
right link is set to NULL.

head

S— —
L’ml — 2 | 3 (X

Doubly Linked List

Creating a Double Linked List with N number of

nodes
class DList:
def __init__(self): start
self.start=None Empty st MILL

def createlist(self):
n=int(input("enter number of nodes
in the list"))
foriin range(n):
data=int(input("enter value")) vmv
newnode=Node(data) M M
if self.start==None:

newnode
self.start=newnode b
else:
temp=self.start 0
while temp.next!=None:
temp=temp.next x| EIInﬁlﬂn] 3nnr_"2nn | X

temp.next=newnode

i00 200 300
newnode.prev=temp

L =
2 IARE §

Creating a Double Linked List with N number of nodes ™~

clart

100

10

200

100

T4

100

20

300

200

1+

200

30

300

Inserting a node at the beginning

The following steps are to be followed to insert a new node at the beginning

of the list: st
def insertbegin(self): (00
data=int(input("enter value"))

newnode=Node(data)
if self.start==None:

10

200

_"
,*__

100

A

300

'
1___

200

30

self.start=newnode 100
else:

newnode.next=self.start

self.start=newnode 400 |

shart

200

300

start . left = newnode

400 | 10

200

Iy

100

20

300

14

200

30

newnode.prev=None

- X| 40 100

400

200

300

Inserting a node at the ending

e The following steps are followed to insert a new node at

the end of the list:
st

def insertend(self):
data=int(input("enter value")) 100
newnode=Node(data)
if self.start==None: Y
self.start=newnode
else: 100 0 300
temp=self.start
while temp.next!=None:
temp=temp.next o 1
temp.next=newnode 200 | 30 | 400
newnode.prev=temp 100 200 300 W

10 (200 100 20 (30, 20| 30| X

T+
T4

start

[4

X o 200 | ® 100 20 |300

T

J00(40
400

120

2 000

Inserting a node at an intermediate position 2 1ARE 3

e The following steps are followed, to insert a new node in an
intermediate position in the list:
def insertmid(self):
print("enter data before which number is to be inserted")
num=int(input())
temp=self.start
ptemp=temp
if self.start==None:
print("List is empty")
elif num==temp.data:
self.insertbegin()

2 00O

Inserting a node at an intermediate position Cont.. *.""¢

else:
data=int(input("enter value"))

newnode=Node(data) o

temp=self.start - 100 | 40 | 200
jm 1«10 20 | 300
X (10 |4m0

while temp.datal=num: 200 <_‘
100

temp=temp.next _,
newnode.next=temp

200 30 | X
newnode.prev=temp.prev 300

temp.prev.next=newnode

2 00O

Inserting a node at an intermediate position % IARE 3

skart

|w

100 | 40 | 200

100

400
-Hilllll 20 | 300 ¢

X |10 400 4—
100

200

200 30 | X

Deleting a node at the beginning

* The following steps are followed, to delete a node at the beginning of the list:

def deletebegin(self):

st
temp=self.start
. m .
if self.start==None: |
st s emoty? m— X R
p Yo PH o o)
self.start=temp.next 100 00 00

self.start.prev=None

print(temp.data,"is deleted success")

del temp

Deleting a node at the end

The following steps are followed to delete a node at the end of the list:

def deletend(self):
temp=self.start
if self.start==None:
print("List is empty")

else:
ptemp=temp
temp=temp.next

while temp.next!=None:

ptemp=temp
temp=temp.next
ptemp.next=None

print(temp.data,"is deleted success")

del temp

shart

100

10

200

‘__F 100

20

/¥,

s

200

300

Deleting a specified node

def deletion(self):
print("enter element to delete")
a=int(input())
temp=self.start
if self.start==None:
print("List is empty, deletion not possible")
return

else:
temp=self.start

while temp.next!=None and temp.data!=a:
temp=temp.next

temp.prev.next=temp.next
temp.next.prev=temp.prev
print(temp.data,"is deleted success")

clart

100

Deleting a specified node

10

200

100

T4

100

20

300

200

1+

200

30

300

Traversal and displaying a list (Left to Right)

* The following steps are followed, to traverse a list from left to right:

def display(self):
print("elements in Doubly linked list are:")
if self.start==None:
print("Linked list is empty")
else:
temp=self.start
while temp!=None:
print(temp.data ,end="")
temp=temp.next

shkark

100
_|—P X | 10 [zo0

100 200 00 130

100 | 20 J00 200 Z0 X

Iy
i

Applications of Double linked list

Doubly linked list can be used in

»navigation systems where both front and back navigation is required.

>t is used by browsers to implement backward and forward navigation of visited
web pages i.e. back and forward button.

Advantages and Disadvantages of Double Linked List

The major disadvantage of doubly linked lists (over singly linked lists) is that

* they require more space (every node has two pointer fields instead of
one). Also, the code to manipulate doubly linked lists needs to maintain
the prev fields as well as the next fields; the more fields that have to be
maintained, the more chance there is for errors.

The major advantage of doubly linked lists is that

 they make some operations (like the removal of a given node, or a right-
to-left traversal of the list) more efficient.

Advantages of Circular Lists

 The major advantage of circular lists (over non-circular lists) is that they

eliminate some extra-case code for some operations (like deleting last
node).

* Also, some applications lead naturally to circular list representations.

* For example, a computer network might best be modeled using a circular
list.

MODULE - IV

Trees: Basic concept, binary tree, binary tree representation,
array and linked representations, binary tree traversal, binary tree
variants, application of trees; Graphs: Basic concept, graph

terminology, graph implementation, graph traversals, Application
of graphs.

Tree — a Hierarchical Data Structure

* Trees are non linear data structure that can be represented in a hierarchical
manner.

— A tree contains a finite non-empty set of elements.

— Anytwo nodes inthetreeare connected with a relationship of
parent-child.

— Every individual elements in a tree can have any number of sub trees.

Why Trees?

1. One reason to use trees might be because you want to store information
that naturally forms a hierarchy. For example, the file system on a computer:

Root Directory

I |
‘ l |

. o

Directory 1 ‘ Directory 2 i Directory 3

Why Trees?

2. Trees (with some ordering e.g., BST) provide moderate access/search
(quicker than Linked List and slower than arrays).

3. Trees provide moderate insertion/deletion (quicker than Arrays and slower
than Unordered Linked Lists).

4. Like Linked Lists and unlike Arrays, Trees don’t have an upper limit on number
of nodes as nodes are linked using pointers.

Tree — Basic Terminology

—

Left Right

Ssub —= ~ Sub

Tree Tree
M

* Root : The topmost node is called root of the tree. The basic node of all
nodes in the tree. All operations on the tree are performed with
passing root node to the functions.

* Child : a successor node connected to a node is called child. A node in

binary tree may have at most two children(or)The elements that

are directly under an element are called its children

* Parent: anode is said to be parent node to all its child nodes (or) The element

directly above something is called its parent.

e Leaf: anode that has no child nodes.

e Siblings : Two nodes are siblings if they are children to the same parent

node.

Tree — Basic Terminology Contd...

—

Left Right

Sub = >~ Sub

Tree Tree
M

Ancestor : a node which is parent of parent node (A is ancestor node to

D,Eand F).
Descendent : a node which is child of child node (D, E and F are

descendent nodes of node A)

Level : The distance of a node from the root node, The root is at level —
0,(Band Care at Level 1 and D, E, F have Level 2 (highest level
of tree is called height of tree)

Degree : The number of nodes connected to a particular parent node.

Binary Tree

A binary tree is a hierarchy of nodes, where every parent node has at most
two child nodes. There is a unique node, called the root, that does not have a

pa rent- Root Node

Binary Tree

* Abinary tree can be defined recursively as

e Root node

e Left subtree: left child and all its descendants

Right subtree: right child and all its descendants

Binary Tree

Full and Complete Binary Trees

A full treeis a binary tree in which
— Number of nodes at level / is 2/-1
— Total nodes in a full tree of height n is
* A complete tree of height n is a binary tree
— Number of nodes at level 1/ n-1is 2I-1

— Leaf nodes at level n occupy the leftmost positions in the tree

£ b

full tree complete tree

Tree Traversals

* A binary tree is defined recursively: it consists of a root, a left subtree,
and a right subtree.

» To traverse (or walk) the binary tree is to visit each node in the binary
tree exactly once.

* Tree traversals are naturally recursive.

e Standard traversal orderings:
* preorder
* inorder
* postorder
* level-order

Preorder, Inorder, Postorder

In Preorder, the root is
visited before (pre)

The subtrees traversals.
In Inorder, the root is

visited in-between left

and right subtree traversal.

In Preorder, the root

is visited after (pre)

the subtrees traversals.

Preorder Traversal:

1. Visit theroot
2. Traverse left subtree
3. Traverse right subtree

Inorder Traversal:

1. Traverse left subtree
2. Visit the root
3. Traverse right subtree

Postorder Traversal:

1. Traverse left subtree
2. Traverse right subtree
3. Visit the root

In-order Traversal

In this traversal method, the left subtree is visited first, then the
root and later the right sub-tree. We should always remember
that every node may represent a subtree itself.

If a binary tree is traversed in-order, the output will produce
sorted key values in an ascending order.

In-order Traversal

Root

Left Subtree Right Subtree

D-B—-E—-A—-F—->C-—->G

In-order Traversal

Algorithm

Until all nodes are traversed -

Step 1 - Recursively traverse left subtree.
Step 2 - Visit root node.

Step3 - Recursively traverse right subtree.

Construct a Binary Tree from Postorder and Inorder . 7ux: -

Given Postorder and Inorder traversals, construct the tree.

in[]

= {4: 8, 2, 5, 1, 6, 3, 7}
post[] =

{SJ 4.’ 5) 2) 6’ 7J 3) 1}

the process of constructing tree from
in[]={4,8,2,5,1,6,3,7}and post[] ={8, 4,5, 2,6, 7, 3, 1}

1) We first find the last node in post[]. The last node is “1”, we
know this value is root as root always appear in the end of
postorder traversal.

2) We search “1” in in[] to find left and right subtrees of root.
Everything on left of “1” in in[] is in left subtree and everything on
right is in right subtree.

/1\

[4, 8, 2, 5] [6, 3, 7]

3) We recur the above process for following two.

....b) Recur for in[] = {6, 3, 7} and post[] = {6, 7, 3}
....... Make the created tree as right child of root.

....a) Recur for in[] ={4, 8, 2, 5} and post[] ={8, 4, 5, 2}.
....... Make the created tree as left child of root.

Applications of trees

> Represent organization
» Represent computer file systems
» Networks to find best path in the Internet

» Chemical formulas representation

»Outlines, etc

Example of Tree Traversal

* Assume: visiting a node printing its

data
*Preorder: 1582637
111012 14 2027 22 30
°lnorder:236781011

12 14 15 20 22 27 30

*Postorder:3762 10 14 ‘
12118223027 2015

Traversal Techniques

void preorder(tree *tree) {
if (tree->isEmpty()) return; visit(tree->getRoot()); preOrder(tree-

>getLeftSubtree()); preOrder(tree->getRightSubtree());
}

void inOrder(Tree *tree){

if (tree->isEmpty()) return; inOrder(tree->getLeftSubtree());
visit(tree->getRoot()); inOrder(tree->getRightSubtree());

}

void postOrder(Tree *tree){

if (tree->isEmpty()) return; postOrder(tree->getLeftSubtree());

postOrder(tree->getRightSubtree()); visit(tree->getRoot());
}

Threaded Binary Tree

e A threaded binarytree defined as:

* "Abinarytreeisthreaded by making all right
child pointers that would normally be null point
to theinorder successor of the node, and all left
child pointers that would normally be null point
to the inorder predecessor of the node

Construct Tree from given Inorder and Preorder traversals
Let us consider the below traversals:

Inorder sequence: DBEAFC

Preorder sequence: ABDECF

in a Preorder sequence, leftmost element is the root of the
tree. So we know ‘A’ is root for given sequences.

By searching ‘A’ in Inorder sequence, we can find out all
elements on left side of ‘A’ are in left subtree and elements on
right are in right subtree.

So we know below structure now.

A

/[\

[\
DBE FC

We recursively follow above steps and get the following
tree.

Graph Basics

Graphs are collections of nodes connected by edges—G =(V,E) where Vis a set of
nodes and E a set of edges.

* Graphs are useful in a number of applications including
— Shortest path problems
— Maximum flow problems

Graphs unlike trees are more general for they can have connected components.

Graph Types

Directed Graphs: A directed graph edges allow travel in one

direction.

¢ Undirected Graphs: An undirected graph edges allow travel in

either direction.

FIGURE 8.1A
The graph G = {1; 2; 3; 4; 6); {{1: 2}
{1,812, 38} {2, 4}; {38, 5}, {4, &1}

FIGURE 8.1B

The directed graph G = ({1, 2, 3, 4, 5}, {(1, 2),
1,3). 2,1, (3, 2), 4, 3), (4,5),

(5, 2), (65.:4)H

Graph Terminology

A graph is an ordered pair G=(V,E) with a set of vertices or nodes and

the edges that connect them.
A subgraph of a graph has a subset of the vertices and edges.

The edges indicate how we can move through the graph.

A path is a subset of E that is a series of edges between two nodes.

A graph is connected if there is at least one path between every pair of

nodes.

Graph Terminology

 Thelength of a path in a graph is the number of edges in the path.

* A complete graph is one that has an edge between every pair of nodes.

A weighted graph is one where each edge has a cost for traveling
between the nodes.

* Acycleis a path that begins and ends at the same node.
* An acyclic graph is one that has no cycles.

* An acyclic, connected graph is also called an unrooted tree

2 000

Data Structures for Graphs An Adjacency Matrix %

* For an undirected graph, the matrix will be symmetric along the

diagonal.

* For a weighted graph, the adjacency matrix would have the weight for
edges in the graph, zeros along the diagonal, and infinity (=) every
place else.

Adjacency Matrix Example 1

FIGURESBIA 5| ¢ © 1 1t 0
The graph G= ({1’ 2,3,4, 5}’ {{1’ 2}' FIGURE 8.2A
{1, 3}’ {2’ 3}, {2’ 4}’ {3, 5}’ {4’ 5}}) The adjacency matrix for the graph in Fig. 8.1(a)

Adjacency Matrix Example 2

FIGURE 8.1B

The directed graph G = ({1, 2, 3, 4, 5}, {(1, 2),
(1,3),(2,1),(3,2), (4,3), (4, 5),

(5,2), (5,4))

Data Structures for Graphs An Adjacency List

A list of pointers, one for each node of the graph.

These pointers are the start of a linked list of nodes that can be reached
by one edge of the graph.

For a weighted graph, this list would also include the weight for each

edge.

Adjacency List Example 1

1 —> 2 | —» 3
2 — 1 — 3 — 4
3 —> 1 —> 2 — 5
4 —» 2 | —» 5
5 — 3 — 4
FIGURE 8.3A
The adjacency list for the graph in Fig. 8.1(a)

Adjacency List Example 2

FIGURE 8.1B

The directed graph G = ({1, 2, 3, 4, 5}, {(1, 2),
(1,3), 2,1), (3, 2), (4, 3), (4,5),

(5,2), 540

Graph Traversals

* Some algorithms require that every vertex of a graph be visited exactly
once.

 The order in which the vertices are visited may be important, and may
depend upon the particular algorithm.

e The two common traversals:
- depth-first
- breadth-first

Graph Traversals: Depth First Search Traversal

We follow a path through the graph until we reach a dead end.

We then back up until we reach a node with an edge to an unvisited

node.

We take this edge and again follow it until we reach a dead end.

This process continues until we back up to the starting node and it has
no edges to unvisited nodes.

Breadth First Search Traversal

From the starting node, we follow all paths of length one.
Then we follow paths of length two that go to unvisited nodes.

We continue increasing the length of the paths until there are no

unvisited nodes along any of the paths.

2 000

Breadth First Search Traversal Example

m =
S IARE §
< \3

7, <

e Consider the following graph:

FIGURE 8.4
A graph

* Theorder of the breadth-first traversal of this graph starting at node 1 would be: 1, 2, 8,
3,7,4,5,9,6

MODULE -V

Binary search trees: Binary search trees, properties and operations;
Balanced search trees: AVL trees; Introduction to M-Way search
trees, B trees; Hashing and collision: Introduction, hash tables, hash

functions, collisions, applications of hashing.

Binary Search Trees

In a BST, each node stores some information including a unique key
value, and perhaps some associated data. A binary tree is a BST iff, for
every node n in the tree:

All keys in n's left subtree are less than the key in n, and

All keys in n's right subtree are greater than the key in n.

In other words, binary search trees are binary trees in which all values in
the node‘s left subtree are less than node value all values in the node‘s
right subtree are greater than node value.

180

BST Example

Here are some BSTsin which eachnode just stores an integer key:

e i k g
7 - ocan T

7 ~ ~ N

& 7~ 9T &)

In the left one S is not greater than 6. In the right one 6 is not greaterthan 7.

Properties and Operations

A BST is a binary tree of nodes ordered inthe following way:
i Each node contains one key (also unique)

ii. The keys in the left subtree are < (less) thanthe key in its parent
node

ili. The keys in the right subtree > (greater) thanthe key in its parent
node

iv. Duplicate node keys are not allowed.

Operations - Inserting a node

A naive algorithm for inserting a node into a BST is that, we start from
the root node, if the node to insert is less than the root, we go to left
child, and otherwise we go to the right child of the root.

We then insert the node as a left or right child of the leaf node based
on node is less or greater than the leaf node. We note that a new node
is always inserted as a leaf node.

Operations - Inserting a node

* Arecursive algorithm for inserting a node into a
BST is as follows.Assume we insert a node N to
tree T.
if the tree is empty, the we return new node N as the tree. Otherwise, the
problem of inserting is reduced to inserting the node N to left of right sub
trees of T, depending on N is less or greater than T. A definition is as follows.
Insert(N, T) =N if Tis empty
= insert(N, T.left) if N<T
= insert(N, T.right) if N>T

Operations - Searching for anode

Searching for a node is similar to inserting a node. Westart from root, and
then go left or right until we find (or not find the node). A recursive
definition of search is as follows. If the node is equal to root, then we
return true. If the root is null, then we return false. Otherwise we
recursively solve the problem for T.left or T.right, dependingon N<TorN >
T. A recursive definition is as follows.
e Search should return a true or false, depending on the node is found or
not.

Searching for anode

Search(N, T) = false if T is empty Searching for a node is similar to
inserting a node. We start from root, and then go left or right until
we find (or not find thenode).

A recursive definition of search is as follows. If the node is equal
to root, then we return true. If the root is null, then we return
false. Otherwise we recursively solve the problem for T.left or
T.right, dependingon N < T or N>

T.Arecursive definition is asfollows.

Search should return a true or false, depending on the node is
found or not.

Search(N,T)= false if Tisempty
= true ifT=N
=search(N, T.left) if N<T

186

Operations - Deleting a node

A BST is a connected structure. That is, all nodes in a tree are connected
to some other node. For example, each node has a parent, unless node
is the root. Therefore deleting a node could affect all sub trees of that

node. For example, deleting node 5 from the tree could result in losing
sub trees that are rooted at 1 and 9.

/ \
5 45
£y \
1 3 47
75 =N /
8 15 46

Balanced Search Trees

* A self-balancing (or height-balanced) binary search tree is any node-based
binary search tree that automatically keeps its height (maximal number of
levels below the root) small in the face of arbitrary item insertions and
deletions.

* AVLTrees: An AVLtree is another balanced binary search tree. Named after
their inventors, Adelson-Velskii and Landis, they were the first dynamically
balanced trees to be proposed. Like red-black trees, they are not perfectly
balanced, but pairs of sub-trees differ in height by at most 1, maintaining
an Of(logn) search time. Addition and deletion operations also take Oflogn)
time.

There are three cases we need to consider for deletion:

1. Deleting a leaf --- simply remove it:

(8) (8)
[\ X
(2) (21) 2) (2)
FX / =oay [\
(1) (5) (13) (1) (5)
/ /
(3) (3)

1. Deleting a node with one chuld --- remove it and move ts chuld (the subtret rooted at tts chuld) p:

3. Deleting a node with o chldren - swap vt the senallet eed-child s i subte, then semov

) i)
[\ [
Rt g
[V o=]
Y 55)) 0

)

I

or swap with the largest keved-chuld n its left subtree, then remove;

(8) 8)
[\ / \
(2) (1) (1) 1)
LoX,) \
(1) (5) (13) (5)
/ /
(3) ()

AVL Tree - Definition

AVL tree is a self-balancing Binary Search Tree (BST) where
the difference between heights of left and right subtrees
cannot be more than one for all nodes.

Named after their
12 inventor Adelson,
B Velski & Landis,
AVL trees

/

AVL Tree Example

AVL trees are height balancing binary search tree. AVL tree
checks the height of the left and the right sub-trees and

assures that the difference is not more than 1. This difference
is called the Balance Factor.

balanceFactor=height(leftSubTree)-height(rightSubTree)

2 SN ‘\.2
(¢c) (A)
0"- 1»}/ \/\u 1

»—. 0

Balanced Not balanced Not balanced

Balance Factor

AVL Tree Operations-

Search Operation
Insertion Operation
Deletion Operation

Kinds of Rotations
There are 4 kinds of rotations possible in AVL Trees-

AVL Tree Rotations

Single Rotations Double Rotations

l l
l l l l

Left Rotation Right Rofation Left-Right Rotation Right-Left Rotation
(LL Rotation) (RR Rotation) (LR Rotation RL Rotation

Right Rotation

If a tree becomes unbalanced, when a node is inserted into the
right subtree of the right subtree, then we perform a single left
rotation

—2 N
n O
Q« o 0M°

Right unbalanced tree Left Rotation Balanced

Left Rotation

AVL tree may become unbalanced, if a node is inserted in the
left subtree of the left subtree. The tree then needs a right
rotation.

Left unbalanced Tree Right Rotation Balanced Tree

Node C is still unbalanced, however now, it is because of the left-subtree
of the left-subtree.

We shall now right-rotate the tree, making B the new root node of this
subtree. C now becomes the right subtree of its own left subtree.

The tree is now balanced.

Right-Left Rotation

State Action

A node has been inserted into the left subtree of the right subtree. This
makes A. an unbalanced node with balance factor 2.

First, we perform the right rotation along C node, making C the right
subtree of its own left subtree B. Now, B becomes the right subtree of A.

EXAMPLE:
CONSTRUCT AN AVL WITH THE GIVEN VALUES

63,9,19,27,18,108,99,81

Introduction to M-Way Search Trees

* A multiway tree is a tree that can have more than two children.
A multiway tree of order m (or an m-way tree) is one in which a
tree can have mchildren.

 Example:Multi way tree of order5

Properties of M-way Search Trees

 m-way search tree is a m-way tree in which:
I Each node has m children and m-1 key fields
ii. The keys in each node are in ascending order.
iii. The keys in the first i children are smaller than the ithkey
iv. The keys in the last m-i children are larger than theith key

* 4-way search tree

50 60 80

30 35 58 59 63 70 73 100

52 54 61 62

57

55 56

» A B-tree is a self-balancing or perfectly height-balanced M-way
search tree.

that maintains sorted data and allows searches, sequential
access, insertions, and deletions in logarithmic time.

»The B-tree is a generalization of a binary search tree in that a
node can have more than two children.

»Unlike other self-balancing binary search trees, the B-tree is
well suited for storage systems that read and write relatively

large blocks of data, such as discs.

» It is commonly used in databases and file systems.

Properties of a B-Tree:
i. Itis perfectly height-balanced and therefore every leaf
node is at the same depth.

ii. Everyinternal node, except the root, is at least half-full
i.e contains ceil(M/2) or more children.

iii. Every leaf node must contain ceil(M/2)-1 keys, where
ceil(x) is the ceiling function.

iv. The root may have any number of value(1 to M-1) when
M is the degree of the tree.

iv. Every leaf node must contain ceil(M/2)-1 keys, where
ceil(x) is the ceiling function.

Searching a B -Tree

Start at the root and determine which pointer to follow based on a
comparison between the search value and key fields in the root node.

Follow the appropriate pointer to a child node.

Examine the key fields in the child node and continue to follow the
appropriate pointers until the search value is found or a leaf node is
reached that doesn't contain the desired search value.

Insertion into aB-Tree

* The condition that all leaves must be on the same level forces a
characteristic behavior of B-trees, namely that B-trees are not allowed to
grow at the their leaves; instead they are forced to grow at the root.

* When inserting into a B-tree, a value is inserted directly into a leaf. This
leads to three common situations that can occur:

I A key is placed into a leaf that still has room.
ii. The leaf in which a key is to be placed isfull.
iii. The root of the B-tree is full.

Insertion into a B-Tree

Casel: A key is placed into a leaf that still has room

This is the easiest of the cases to solve because the value is ssmply inserted into the correct sorted

position in the leaf node.
12
5 8 13 15
Inserting the number 7 results in:
12

\

Insertion into aB-Tree

Case2: The leafin which a key is to be placed is full

In this case. the leaf node where the value should be inserted is split in two. resulting in 3 new
leaf node. Half of the kevs will be moved from the fiill leaf to the new leaf. The new leaf is then
incorporated into the B-tree._

The new leaf is incorporated by moving the middle value to the parent and a pointer to the new
Ieaf is also added to the parent. This process is continues up the tree until all of the values have
"found" a location._

Insert 6 into the following B-tree:

1=
== = 7 = 13 15
results in a split of the first leafnode:
12
2 =3 7 8 13 15
12
2] =3 S 7 =2 13 15

The new node needs to be incorporated into the tree - this is accomplished by taking the middle
value and inserfting it in the parent:

(=] 12

Insertion into aB-Tree

Case3: The root of the B-tree is full

The upward movement of values from case 2 means that it's possible that a value could move up
to the root of the B -tree. If the root is full. the same basic process ffom case 2 will be applied and
a new root will be created. This tvpe of split results in 2 new nodes being added to the B-tree.

Inserting 13 into the following tree:

6 (12|20
21314 |5 7‘31011 14 (15|18 |19 A8 |5H |8 B | H B
Results in:
ilzmin

PR il o O

IAREE AR [(MERRIAR! M B398 A155|8 IR B

The 15 needs to be moved to the roof node but it is full. This means that the root needs to be

divided:
£ 12 15 AR
213145 T|8(W| 1 135 1 819 418|538 k) IR R

The 15 is inserted into the parent. which means that it becomes the new root node:

Deleting from a B -Tree

The deletion process will basically be a reversal of the insertion process
- rather than splitting nodes, it's possible that nodes will be merged so
that B-tree properties, namely the requirement that a node must be at
least half full, can be maintained.

There are two main cases to be considered:
i Deletion from a leaf
ii. Deletion from a non-leaf

210

Deleting from a B -Tree

Case 1: Deletion from a leaf

1a) If the leaf is at least half full afier deleting the desired value, the remaining larger values are
moved to "fill the gap".

Deleting 6 from the following tree:

12 §le 7 |ss o I:s;n lzs'u 7y

results in:

1§

Deleting from a B -Tree

If there 1s a left or nght sibling wath the number of kevs exceeding the minimum requirement, all
of the kevs from the leaf and sibling will be redistributed between them bv moving the separator
key from the parent to the leaf and moving the middle kev from the node and the sibling
combined to the parent.

[11
113 nls
“\.-_‘ \ -“"\.
112 | 5| B 14 | 15 18 | 20 3 M Ol T
Moww delete 8 from the tree:
18
T —
1|13 2|5 |
,,-:-"—f—‘-j- s xx'\-\.‘_ ___\-_\-___‘"—\—._
|1 2 | L #| 15 1| =™ 2| | o

If the number of keys in the sibling does not exceed the minimum requirement, then the leaf and sibhlng
are merged by putting the keys from the leaf, the sibling, and the separator from the parent into th
leaf. The =sibling node is discarded and the keys in the parent are mowved to "fill the gap"”. Kt's possib
that this will cause the parent to underflow. If that is the case, treat the parent as a leaf and continu
repeating step 1b-2 until the minimum requirement is met arthe root of the tree is reached.

Hashing is the transformation of a string of characters into a usually
shorter fixed-length value or key that represents the original
string. Hashing is used to index and retrieve items in a database because
it is faster to find the item using the shorter hashed key than to find it
using the original value.

Taking a very simple example of it, an array with its index as key is the
example of hash table. So each index (key) can be used for accessing
the value in a constant search time. This mapping key must be simple

In a hashing system the keys are stored in an array which is called the
Hash Table. A perfectlyimplemented hash table would always
promise an average insert/ delete / retrieval time of O(1).

| [1 IS Ladld JU UuLLul C

List=[11, 4,15]
H (x) =[x %10

'\0
M%//g‘k\xk\

i e
Hash Table 1111211311415

\ y,

Types of Hashing:

Hashing]

Static Dynamic
Hashing Hashing

Hash Table

Hash Table is a data structure which stores data in an associative
manner. In a hash table, data is stored in an array format, where
each data value has its own unique index value.

Access of data becomes very fast if we know the index of the
desired data.

Thus, it becomes a data structure in which insertion and search
operations are very fast irrespective of the size of the data. Hash
Table uses an array as a storage medium and uses hash
technique to generate an index where an element is to be
inserted or is to be located from.

Hashing Function

A function which employs some algorithm to computes the key K
for all the data elements in the set U, such that the key K which is
of a fixed size. The same key K can be used to map data to a hash
table and all the operations like insertion, deletion and searching
should be possible. The values returned by a hash function are
also referred to as hash values, hash codes, hash sums, or

hashes.

hash
keys function hashes

a0

ot
S 2
a3
a4
a5

John Smith

Lisa Smath
Sam Doe e

13

=1 “

15

Sandra Dee ——

Hash Functions

A Good Hash function is one which distribute keys
evenly among the slots.

And It is said that Hash Function is more art than a
science. Becoz it need to analyze the data.

Hash
Function —

Choice of hash function.
Really tricky!
To avoid collision (two different pairs are in the same the
same bucket.)
Size (number of buckets) of hash table.
Overflow handling method.
Overflow: there is no space in the bucket for the new pair.

Choice of Hash Function

Requirements
easy to compute
minimal number of collisions
If a hashing function groups key values together, this is

called clustering of the keys.
A good hashing function distributes the key values

uniformly throughout the range.

Some hash functions

Middle of square
H(x):= return middle digits of x"2

Division
H(x):= return x % k
Multiplicative:

H(x):= return the first few digits of the fractional
part of x*k, where k is a fraction

Folding:

Partition the identifier x into several parts, and add the parts together
to obtain the hash address

e.g. x=12320324111220; partition x into 123,203,241,112,20; then
return the address 123+203+241+112+20=699
Shift folding vs. folding at the boundaries
Digit analysis:
If all the keys have been known in advance, then we could delete the

digits of keys having the most skewed distributions, and use the rest
digits as hash address.

Collision

A collision occurs when two different keys hash to the same value
E.g. For TableSize = 17, the keys 18 and 35 hash to the same value
18 mod17=1and35mod 17 =1

Cannot store both data records in the same slot in array!

Two different methods for collision resolution:

collision resolution

Two classes:
(1) Closed hashing or open addressing:
search for empty slots using a second function and store item in
first empty slot that is found
(2) Open hashing or separate chaining:

Separate Chaining: Use a dictionary data structure (such as
a linked list) to store multiple items that hash to the same
slot

s»Separate chaining = Open hashing

*»*Closed hashing = Open addressing

Closed Hashing (Open Addressing)

In this technique a hash table with pre-identified size is considered. All items
are stored in the hash table itself.

While inserting, if a collision occurs, alternative cells are tried until an empty
bucket is found. For which one of the following technique is adopted.

Liner Probing

Quadratic probing

Double hashing

D=8, keys a,b,c,d have hash values h(a)=3, h(b)=0, h(c)=4,

h(d)=3
& Where do we insert d? 3 already filled

& Probe sequence using linear hashing:

h,(d) = (h(d)+1)%8 = 4%8 = 4 ‘1’
h,(d) = (h(d)+2)%8 = 5%8 = 5* 2
h,(d) = (h(d)+3)%8 = 6%8 = 6 j
etc. 5
7,0,1,2 6

7

% Wraps around the beginning of the
table!

0

Main Idea: When collision occurs, scan down the array one cell at a time looking
for an empty cell

h.(X) = (Hash(X) + i) mod TableSize (i=0,1,2,...)

Compute hash value and increment it until a free cell is found

Linear Probing Example

insert(14)
1497 =0

0

1

2

14

insert(8)
8%7=1

0

1

2

14

8

insert(21)
21%7 =0

0

1

2

14

8

21

insert(2)
2% 7 =2

0

1

2

14

8

12

2

Drawbacks of Linear Probing

Works until array is full, but as number of items N approaches TableSize
(AL = 1), access time approaches O(N)

Very prone to cluster formation

Primary clustering — clusters grow when keys hash to values close to each
other

Quadratic Probing

Main Idea: Spread out the search for an empty slot
Increment by i? instead of i

h.(X) = (Hash(X) + i?) % TableSize
hO(X) = Hash(X) % TableSize
h1(X) = Hash(X) + 1 % TableSize
h2(X) = Hash(X) + 4 % TableSize
h3(X) = Hash(X) + 9 % TableSize

Double hashin

Double hashing is one of the best methods for dealing with collisions.
If the slot is full, then a second hash function is calculated and combined
with the first hash function.
H(k, i) = (H,(k) +iH,(k))% m

Double Hashing

Idea: Spread out the search for an empty slot by using a second hash function
No primary or secondary clustering

h.(X) = (Hash,(X) + iHash,(X)) mod TableSize
fori=0,1, 2, ..
Integer keys:
Hash,(X) = R — (X mod R)
where R is a prime smaller than TableSize

Double Hashing Example
insert(14) insert(8) 1insert(21) 1insert(2) insert(7)

14%7 =0 8%7=1 21%7 =0 2%7 =2 7% 7=0
5-(21%5)=4 5-(21%5)=4
% 14 el 14 °l 14 %l 14 0l 14
1 1| g 1 g 1 g 1
2 2 2 2 2 2 2
3 3 3 3 3
i i oy oy 421
5 5 5 5 5
6 6 6 6 6
1 1 2 1 29

nrohec-

Double Hashing Example

insert(2)
2%T7=2

insert(14)
14%7=0

o 14

insert(8)
8%7=1

14
8

insert(21)
21%7 =0
5-(21%5)=4

0

1

2
<

14

8

21

°l 14

21

insert(7)
7%7 =0
5-(21%5)=4

0

1

2

14

Hashing with Separate Chaining i

v Putalittle dictionaryat each h(a)= h(d)
entry 0 h(e)= h(b)
- choosetypeas appropriate i { a 1 d
- common case s unordered Z

linked list (chain) s, 5

v Properties 4 L
- performance degrades with 5 -

length of chains %

Problem with separate chaining:
Memory consumed by pointers —
32 (or 64) bits per key!

What if we only allow one Key at each entry?
two objects that hash to the same spot can’t both go there
first one there gets the spot
next one must go in another spot

A Comparative Analysis ofClosed Hashing vs

Open Hashing

Open Addressing Closed Addressing |

All elements would be Additional Data structure
stored in the Hash table needs to be used to

itself No additional data accommeodate collision
structure is needed. data.

Simple and effective
approach to collision
resolution. Key may or may

In cases of collisions, a
unique hash key must be

Obfained not be unique.
Determmining size of the Performance deterioration
hash table, adequate enough|of closed addressing much
for storing all the data i1s slower as compared to
difficult. Open addressing.

State needs be maintained |No state data needs to be
for the data (additional maintained (easier to
work) maintain)

Uses space efﬁciently Expensive on space

Applications of Hashing

A hash function maps a variable length input string to fixed length output
string -- its hash value, or hash for short. If the input is longer than the
output, then some inputs must map to the same output -- a hash collision.

Comparing the hash values for two inputs can give us one of two answers:
the inputs are definitely not the same, or there is a possibility that they are
the same. Hashing as we know it is used for performance improvement,
error checking, and authentication.

In error checking, hashes (checksums, message digests, etc.) are used to
detect errors caused by either hardware or software. Examples are TCP
checksums, ECC memory, and MD5 checksums on downloadedfiles.

210

Applications of Hashing

* Construct a message authentication code (MAC)
e Digital signature
 Make commitments, but reveal message later

* Timestamping

* Key updating: key is hashed at specific intervals
resulting in new key

THANKYOU

—

