
DATA STRUCTURES
Mechanical Engineering

III SEMESTER

Prepared by:
Mrs. K Laxminarayanamma, Assistant Professor

2

MODULE -I

Basic concepts: Introduction to data structures, classification of data

structures, operations on data structures; Searching techniques: Linear

search and Binary search; Sorting techniques: Bubble sort, selection

sort, insertion sort and comparison of sorting algorithms.

3

What is Data?

Data(Dictionary Definition):

the quantities, characters, or symbols on which operations are performed by a

computer, which may be stored and transmitted in the form of electrical signals

and recorded on magnetic, optical, or mechanical recording media.

Example: C = A + B

4

When Data Becomes Information?

Data imxal si eman yM

Information My name is laxmi

When data arranged in a systematic way then it gets a structure and
become meaningful

This meaningful or processed data is called information

It is not difficult to understand that data needs to be managed in such a
way so that it can produce some meaningful information

To provide an appropriate way to structure the data, we need to know
about

 Data Structures

Introduction to Data Structures

What is Data structure?

• A data structure is a data organization, management, and storage format
that enables efficient access and modification. More precisely, a data
structure is a collection of data values, the relationships among them,
and the functions or operations that can be applied to the data.

 In computer terms, a data structure is a Specific way to store and

organize data in a computer's memory so that these data can be used
efficiently later.

• A data structure should be seen as a logical concept that must address

two fundamental concerns.

I. First, how the data will be stored, and

II. Second, what operations will be performed on it.

5

6

Real-time application of Data Structures

 To store the contacts on our phone, then the software will simply place all
 our contacts in an array.

 Arrangement of leader-board of a game can be done simply through arrays

 Images are linked with each other. So, an image viewer software uses a
 linked list to view the previous and the next images using the previous and
 next buttons.

 Web pages can be accessed using the previous and the next URL links which
 are linked using linked list.

7

 Converting infix to postfix expressions

 Undo operation is also carried out through stack.

 Operating System uses queue for job scheduling.

 To handle congestion in networking queue can be used.

 Facebook’s Graph API uses the structure of Graphs.

 GPS navigation system also uses shortest path APIs.

 Databases also uses tree data structures for indexing

 Domain Name Server(DNS) also uses tree structures.

Real-time application of Data Structures

8

 Every time we type something to be searched in google chrome or other

 browsers, it generates the desired output based on the principle of hashing.

Real-time application of Data Structures

Classification of Data Structures

• Data structures can be classified as

i. Simple data structure

ii. Compound data structure

iii. Linear data structure

iv. Non linear data structure

9

Simple and Compound Data Structures

• Simple Data Structure: Simple data structure can be constructed with the

help of primitive data structure. A primitive data structure used to

represent the standard data types of any one of the computer languages.

Variables, arrays, pointers, structures, unions, etc. are examples of primitive

data structures.

• Compound Data structure: Compound data structure can be constructed

with the help of any one of the primitive data structure and it is having a

specific functionality. It can be designed by user. It can be classified as

i. Linear data structure

ii. Non-linear data structure

10

Linear and Non-linear Data Structures

• Linear Data Structure:

 Linear data structures can be constructed as a continuous arrangement

of data elements in the memory. It can be constructed by using array

data type. In the linear Data Structures the relationship of adjacency is

maintained between the data elements.

• Non-Linear Data Structure:

 Non-linear data structures can be constructed as a collection of

randomly distributed set of data item joined together by using a special

pointer (tag). In non-linear Data structure the relationship of adjacency

is not maintained between the data items.

11

Operations on Data Structures

i. Add an element

ii. Delete an element

iii. Traverse

iv. Sort the list of elements

v. Search for a data element

12

Algorithm Definition

• An Algorithm may be defined as a finite sequence of instructions each of

which has a clear meaning and can be performed with a finite amount

of effort in a finite length of time.

• The word algorithm originates from the Arabic word Algorism which is

linked to the name of the Arabic Mathematician AI Khwarizmi.

• AI Khwarizmi is considered to be the first algorithm designer for adding

numbers.

13

Structure of an Algorithm

• An algorithm has the following structure:

– Input Step

– Assignment Step

– Decision Step

– Repetitive Step

– Output Step

14

Properties of an Algorithm

• Finiteness:- An algorithm must terminate after finite number of steps.

• Definiteness:-The steps of the algorithm must be precisely defined.

• Generality:- An algorithm must be generic enough to solve all problems
of a particular class.

• Effectiveness:- The operations of the algorithm must be basic enough

to be put down on pencil and paper.

• Input-Output:- The algorithm must have certain initial and precise
inputs, and outputs that may be generated both at its intermediate and
final steps

15

Algorithm Analysis and Complexity

• The performances of algorithms can be measured on the scales of Time

and Space.

• The Time Complexity of an algorithm or a program is a function of the

running time of the algorithm or a program.

• The Space Complexity of an algorithm or a program is a function of the

space needed by the algorithm or program to run to completion.

16

Time Complexity

17

Complexity Notation Description

Constant O(1)
Constant number of operations, not depending on
the input data size.

Logarithmic O(logn)
Number of operations proportional of log(n)
where n is the size of the input data.

Linear O(n)
Number of operations proportional to the input
data size.

Quadratic O(n2)
Number of operations proportional to the square
of the size of the input data.

Cubic O(n3)
Number of operations proportional to the cube of
the
size of the input data.

Exponential
O(2n)

Exponential number of operations, fast growing. O(kn)

Searching Methods

• Search:
 Searching is the process of finding some particular element in the list. If

the element is present in the list, then the process is called successful and
the process returns the location of that element, otherwise the search is
called unsuccessful.

• There are two popular search methods that are widely used in order to
search some item into the list. However, choice of the algorithm depends
upon the arrangement of the list.

1. Linear or Sequential Search

2. Binary Search

18

Linear Search

• Begins search at first item in list, continues searching sequentially(item
by item) through list, until desired item(key) is found, or until end of list
is reached.

 Also called sequential or serial search.

• Obviously not an efficient method for searching ordered lists like phone

directory(which is ordered alphabetically).

• Advantages

1. Algorithm is simple.

2. List need not be ordered in any particular way.

• Time Complexity of Linear Search is O(n).

19

20

Example:

Linear Search

21

Linear search is a very simple search algorithm. In this type of search, a
sequential search is made over all items one by one.

 Every item is checked and if a match is found then that particular item is
returned, otherwise the search continues till the end of the data collection.

Linear Search

22

Problem: Given an array arr[] of n elements, write a function to search a given
element x in arr[].

Solution:
A simple approach is to do linear search, i.e
Start from the leftmost element of arr[] and one by one compare x with each
element of arr[]
If x matches with an element, return the index.
If x doesn’t match with any of elements, return -1.

Input : arr[] = {10, 20, 80, 30, 60, 50, 110, 100, 130, 170}
x = 110;
Output : 6
 Element x is present at index 6

Linear Search

23

Algorithm:

Linear Search (Array A, Value x) :

Step 1: Set i to 0
Step 2: if i > n then go to step 7
Step 3: if A[i] = x then go to step 6
Step 4: Set i to i + 1
Step 5: Go to Step 2
Step 6: Print Element x Found at index i and go to step 8
Step 7: Print element not found
 Step 8: Exit

Linear Search

24

#LINEAR SEARCH
items=[]
n= int(input("Enter how many elements u want "))
print("enter %d elements"%n)
for i in range(0,n):
 element=int(input())
 items.append(element)
print(items)
x=int(input("enter element to search:"))
i=flag=0
while(i<len(items)):
 if((items[i])==x):
 flag=1
 break
 i=i+1
if(flag==1):
 print("location number statrts from 0 and found at location ",i)
else:
 flag=-1
 print("not found")

Linear Search

25

Output1:
Enter how many elements u want 5
enter 5 elements
12
34
67
89
90
[12, 34, 67, 89, 90]
enter element to search:89
location number statrts from 0 and found at location 3
Output2:
Enter how many elements u want 3
enter 3 elements
12
89
67
[12, 89, 67]
enter element to search:100
not found

26

Binary Search

An algorithm to solve this task looks at the middle of the array or array
 segment first

If the value looked for is smaller than the value in the middle of the array

Then the second half of the array or array segment can be ignored

This strategy is then applied to the first half of the array or array segment

27

Binary Search : In computer science, a binary search or half-interval search
algorithm finds the position of a target value within a sorted array. The
binary search algorithm can be classified as a dichotomies divide-and-
conquer search algorithm and executes in logarithmic time.

Step by step example:

Binary Search

28

Binary Search : In computer science, a binary search or half-interval search
algorithm finds the position of a target value within a sorted array. The
binary search algorithm can be classified as a dichotomies divide-and-
conquer search algorithm and executes in logarithmic time.

Step by step example:

Binary Search

29

Binary Search

30

Binary Search

Example1:

31

Binary Search

Example2:

32

Example3:

33

Algorithm Binary Search
Implement binary search following the below steps:

1.Start with the middle element of the given list:

•If the target value is equal to the middle element of the array, then return
the index of the middle element.
•Otherwise, compare the middle element with the target value,

•If the target value is greater than the number in the middle index, then
pick the elements to the right of the middle index, and start with Step 1.
•If the target value is less than the number in the middle index, then pick
the elements to the left of the middle index, and start with Step 1.

2.If a match is found, return the index of the element matched.

3.Otherwise, return -1

Binary Search

34

#Binary Search

item_list=[]
n=int(input("enter how many elements u want?"))
print("enter %d elements in sorted order"%n)
for i in range(0,n):
 element=int(input())
 item_list.append(element)
#item_list.sort()
print(item_list)
item=int(input("enter element to be searched"))

Binary Search

35

first = 0
last = len(item_list)-1
found = False
while(first<=last and not found):
 mid = (first + last)//2
 if item_list[mid] == item :
 found = True
 else:
 if item < item_list[mid]:
 last = mid-1
 else:
 first = mid + 1
if(found==True):
 print("element is found at location ",mid)
else:
 print("element is not found")

Binary Search

36

Output:

enter how many elements u want?5
enter 5 elements in sorted order
12
67
89
90
100
[12, 67, 89, 90, 100]
enter element to be searched89
element is found at location 2

Binary Search

37

Sorting techniques

Sorting:
 is any process of arranging items systematically, and has two common, yet
distinct meanings:
ordering: arranging items in a sequence ordered by some criterion;

categorizing: grouping items with similar properties.

A Sorting Algorithm is used to rearrange a given array or list elements according
to a comparison operator on the elements. The comparison operator is used to
decide the new order of element in the respective data structure.

Sorting techniques: Bubble sort, selection sort, insertion sort

38

Example:

First Pass:

(5 1 4 2 8) –> (1 5 4 2 8), Here, algorithm compares the first two elements,
and swaps since 5 > 1.

(1 5 4 2 8) –> (1 4 5 2 8), Swap since 5 > 4

(1 4 5 2 8) –> (1 4 2 5 8), Swap since 5 > 2

(1 4 2 5 8) –> (1 4 2 5 8), Now, since these elements are already in order
 (8 > 5), algorithm does not swap them.

Bubble Sort

Bubble Sort is the simplest sorting algorithm that works by repeatedly swapping
the adjacent elements if they are in wrong order.

39

Second Pass:

(1 4 2 5 8) –> (1 4 2 5 8)
(1 4 2 5 8) –> (1 2 4 5 8), Swap since 4 > 2
(1 2 4 5 8) –> (1 2 4 5 8)
(1 2 4 5 8) –> (1 2 4 5 8)

Now, the array is already sorted, but our algorithm does not know if it is
completed. The algorithm needs one whole pass without any swap to know it is
sorted.

Bubble Sort

Bubble Sort

40

Third Pass:

(1 2 4 5 8) –> (1 2 4 5 8)
(1 2 4 5 8) –> (1 2 4 5 8)
(1 2 4 5 8) –> (1 2 4 5 8)
(1 2 4 5 8) –> (1 2 4 5 8)

41

Bubble Sort Example

42

Python program for implementation of Bubble Sort

def bubbleSort(arr):
 n = len(arr)

 # Traverse through all array elements
 for i in range(n):

 # Last i elements are already in place
 for j in range(0, n-i-1):

 # traverse the array from 0 to n-i-1
 # Swap if the element found is greater
 # than the next element
 if arr[j] > arr[j+1] :
 arr[j], arr[j+1] = arr[j+1], arr[j]

Bubble Sort

43

Driver code to test above
arr = [64, 34, 25, 12, 22, 11, 90]

bubbleSort(arr)

print ("Sorted array is:")
for i in range(len(arr)):
 print ("%d" %arr[i])

Output:
Sorted array is: 11 12 22 25 34 64 90

Bubble Sort

44

Selection Sort

Selection Sort:
The selection sort algorithm sorts an array by repeatedly finding the minimum
element (considering ascending order) from unsorted part and putting it at the
beginning. The algorithm maintains two subarrays in a given array.

1) The subarray which is already sorted.
2) Remaining subarray which is unsorted.
In every iteration of selection sort, the minimum element (considering
ascending order) from the unsorted subarray is picked and moved to the sorted
subarray.

45

Selection sort is an algorithm that selects the smallest element from an unsorted
list in each iteration and places that element at the beginning of the unsorted list.

 How Selection Sort Works?

1.Set the first element as minimum

Select first element as minimum

Selection Sort Example

46

2.Compare minimum with the second element. If the second element is smaller
than minimum, assign the second element as minimum

Compare minimum with the third element. Again, if the third element is smaller,
then assign minimum to the third element otherwise do nothing. The process
goes on until the last element.

Selection Sort Example

47

Compare minimum with the remaining elements

Selection Sort Example Cont..

48

3.After each iteration, minimum is placed in the front of the unsorted list

Swap the first with minimum

4.For each iteration, indexing starts from the first unsorted element. Step 1 to
3 are repeated until all the elements are placed at their correct positions.

Selection Sort Example Cont..

49

For each iteration, indexing starts from the

first unsorted element. Step 1 to 3 are

repeated until all the elements are placed

at their correct positions.

The first iteration

Selection Sort Example Cont..

50

The second iteration

Selection Sort Example Cont..

51

The third iteration

Selection Sort Example Cont..

52

The fourth iteration

Selection Sort Example Cont..

53

Selection Sort Example

54

Selection Sort Example

55

Selection Sort Example

56

Python program for implementation of Selection
Sort
A = [64, 25, 12, 22, 11]

Traverse through all array elements
for i in range(len(A)):

 # Find the minimum element in remaining
 # unsorted array
 min_idx = i
 for j in range(i+1, len(A)):
 if A[min_idx] > A[j]:
 min_idx = j

 # Swap the found minimum element with
 # the first element
 A[i], A[min_idx] = A[min_idx], A[i]

Selection Sort

57

Driver code to test above
print ("Sorted array")
for i in range(len(A)):
 print("%d" %A[i]),

Output:
Sorted array: 11 12 22 25 64

Insertion Sort

58

Insertion Sort:
Insertion sort is a simple sorting algorithm that works the way we sort playing
cards in our hands. The array is virtually split into a sorted and an unsorted
part. Values from the unsorted part are picked and placed at the correct
position in the sorted part.

59

Insertion Sort

60

Insertion Sort

61

Insertion Sort

62

Insertion Sort

63

Python program for implementation of Insertion Sort

arr=[]
n=int(input("enter how many elements u want?"))
print("enter %d elements"%n)
for i in range(0,n):
 element=int(input())
 arr.append(element)
for i in range(1, len(arr)):
 key = arr[i]

Insertion sort

64

 # Move elements of arr[0..i-1], that are
 # greater than key, to one position ahead
 # of their current position
 j = i-1
 while j >=0 and key < arr[j] :
 arr[j+1] = arr[j]
 j -= 1
 arr[j+1] = key
print ("Sorted array is:")
print (arr)

Insertion sort

65

comparison of sorting algorithms

66

Bubble Sort

67

Bubble Sort

68

The time complexity of Bubble Sort is O(n2).

The main advantage of Bubble Sort is the simplicity of the algorithm.

The space complexity for Bubble Sort is O(1)

Bubble Sort

69

Selection Sort

70

In computer science, selection sort is an in-place comparison sorting algorithm.
It has an O(n2) time complexity, which makes it inefficient on large lists, and
generally performs worse than the similar insertion sort.

Advantages:
1.It is simple and easy to implement
2.It can be used for small data sets
3.It is 60 percent more efficient than bubble sort

Disadvantage:
In case of large data sets, the efficiency of selection sort drops as compared to
insertion sort

Selection sort

71

The average case often has the same complexity as the worst case. So insertion
sort, on average, takes) O(n2) time. Insertion sort has a fast best-case
running time and is a good sorting algorithm to use if the input list is already
mostly sorted.

Advantages:
1.It is easy to implement and efficient to use on small sets of data
2.It can be efficiently implemented on data sets that are already substantially
sorted
3.It performs better than algorithms like selection sort and bubble sort
4.It is 40 percent faster than the selection sort
5.It is said to be online, as it can sort a list as and when it receives new element

Insertion sort

72

Sorting And Searching Algorithms – Time Complexities

73

Sorting And Searching Algorithms - Time
Complexities

MODULE -II

74

Stacks: Primitive operations, implementation of stacks using arrays,
applications of stacks arithmetic expression conversion and evaluation;
Queues: Primitive operations; Implementation of queues using Arrays,
applications of linear queue, circular queue and double ended queue
(deque).

Stack

• A stack is a list of elements in which an element may be inserted or
 deleted only at one end, called the top of the stack.

• The elements are removed from a stack in the reverse order of that

 in which they were inserted into the stack.

• Stack is also known as a LIFO (Last in Fast out) list or Push down list.

75

Basic Stack Operations

• PUSH: It is the term used to insert an element into a stack.

PUSH operations on stack

76

Top=-1

Basic Stack Operations

POP: It is the term used to delete an element from a stack.

POP operation on a stack

77

Top=-1

Standard Error Messages in Stack

• Two standard error messages of stack are

– Stack Overflow: If we attempt to add new element beyond the
maximum size, we will encounter a stack overflow condition.

– Stack Underflow: If we attempt to remove elements beyond the base
of the stack, we will encounter a stack underflow condition.

78

Stack Operations

• PUSH (STACK, TOP, MAXSTR, ITEM): This procedure pushes an ITEM onto
a stack

1. If TOP = MAXSIZE-1, then Print: OVERFLOW, and Return.

2. Set TOP := TOP + 1 [Increases TOP by 1]

3. Set STACK [TOP] := ITEM. [Insert ITEM in TOP position]

4. Return

• POP (STACK, TOP, ITEM): This procedure deletes the top element of
STACK and assign it to the variable ITEM

1. If TOP = -1, then Print: UNDERFLOW, and Return.

2. Set ITEM := STACK[TOP]

3. Set TOP := TOP - 1 [Decreases TOP by 1]

4. Return

79

80

Python code to demonstrate Implementing
stack using list
stack = ["Amar", "Akbar", "Anthony"]
stack.append("Ram")
stack.append("Iqbal")
print(stack)
print(stack.pop())
print(stack)
print(stack.pop())
print(stack)

Python code to demonstrate Implementing
stack

Output :
['Amar', 'Akbar', 'Anthony', 'Ram', 'Iqbal']
 Iqbal
['Amar', 'Akbar', 'Anthony', 'Ram']
 Ram
 ['Amar', 'Akbar', 'Anthony']

Applications of Stack

• Converting algebraic expressions from one form to another. E.g. Infix to
Postfix, Infix to Prefix, Prefix to Infix, Prefix to Postfix, Postfix to Infix and
Postfix to prefix.

• Evaluation of Postfix expression.

• Parenthesis Balancing in Compilers.

• Depth First Search Traversal of Graph.

• Recursive Applications.

81

Arithmetic Expression

• Infix: It is the form of an arithmetic expression in which we fix (place) the
arithmetic operator in between the two operands. E.g.: (A + B) * (C - D)

• Prefix: It is the form of an arithmetic notation in which we fix (place) the
arithmetic operator before (pre) its two operands.

 The prefix notation is called as polish notation. E.g.: * + A B – C D

• Postfix: It is the form of an arithmetic expression in which we fix (place) the
arithmetic operator after (post) its two operands.

 The postfix notation is called as suffix notation and is also referred to reverse
polish notation. E.g: A B + C D - *

82

83

Conversion of Infix to Postfix

84

Conversion of Infix to Postfix

85

1. Scan the infix expression from left to right.
2. If the scanned character is an operand, output it.
3. Else,
…..3.1 If the precedence of the scanned operator is greater than the
precedence of the operator in the stack(or the stack is empty or the stack
contains a ‘(‘), push it.

…..3.2 Else, Pop all the operators from the stack which are greater than or
equal to in precedence than that of the scanned operator. After doing that
Push the scanned operator to the stack. (If you encounter parenthesis while
popping then stop there and push the scanned operator in the stack.)

 Algorithm to Convert Infix to Postfix Using Stack

86

4. If the scanned character is an ‘(‘, push it to the stack.

5. If the scanned character is an ‘)’, pop the stack and output it until a ‘(‘ is
encountered, and discard both the parenthesis.

6. Repeat steps 2-6 until infix expression is scanned.

7. Pop and add to output from the stack until it is empty

8. Print the output

Algorithm to Convert Infix to Postfix Using Stack

87

Operators Precedence

88

Python Operators Precedence Rule – PEMDAS
You might have heard about the BODMAS rule in your school’s mathematics class.
Python also uses a similar type of rule known as PEMDAS.
P – Parentheses
E – Exponentiation
M – Multiplication
D – Division
A – Addition
S – Subtraction

Operators Precedence

89

Conversion of Infix to Postfix Using Stack

90

Conversion of Infix to Postfix Using Stack

91

Conversion of Infix to Postfix Using Stack

 Algorithm to Convert Infix to Postfix Using Stack

Convert the following infix expression A + B * C – D / E * H into its equivalent
postfix expression.

92

93

Expression: 456*+

Evaluation of Postfix Expression

94

Evaluation of Postfix Expression

Expression: 456*+

Evaluation of Postfix Expression

Postfix expression: 6 5 2 3 + 8 * + 3 + *

95

96

Evaluation of Postfix Expression

Queue

97

“A queue is an ordered list in which all insertions done at one end called REAR
and deletions are made at another end called FRONT”. Queues are referred to
as First In First Out (FIFO)

Example
1.T he people waiting in line at a bank cash counter form a queue.
2. In computer, the jobs waiting in line to use the processor for execution.
 This queue is called

98

Array Representation of Queue

Queue can be easily represented by using linear arrays.

 There are two variables i.e. front and rear, that are implemented in the case of
every queue.

Front and rear variables point to the position from where insertions and
deletions are performed in a queue. Initially, the value of front and rear is -1
which represents an empty queue.

Array representation of a queue containing 5 elements along with the respective
values of front and rear, is shown in the following figure.

Queue Operations using Array

• Various operations of Queue are:

 insertQ(): inserts an element at the end of queue Q.

 deleteQ(): deletes the first element of Q.

 displayQ(): displays the elements in the queue.

99

Insertion Operation

Initially the queue is empty.

Now, insert 11 to the queue. Then queue status will be:

Next, insert 22 to the queue. Then the queue status is:

100

Insertion Operation

101

Next, insert 44 to the queue. Then the queue status is:

Next, insert 33 to the queue. Then the queue status is:

102

Next, insert 55 to the queue. Then the queue status is:
We cannot insert 66 to the queue as it signals queue is full. The queue status
is as follows:

Next insert another element, say 66 to the queue.
We cannot insert 66 to the queue as it signals queue is full. The queue status
is as follows:

Insertion Operation

103

Algorithm:

Step 1: IF REAR = MAX - 1
Write OVERFLOW
Go to step 4
[END OF IF]
Step 2: IF FRONT = -1 and REAR = -1
SET FRONT = REAR = 0
ELSE
SET REAR = REAR + 1
[END OF IF]
Step 3: Set QUEUE[REAR] = NUM
Step 4: EXIT

Algorithm to insert an element in a queue

104

Now, delete an element

Now, delete one more element

Deletion Operation

105

Algorithm:

Step 1: IF FRONT = -1 or FRONT > REAR
Write UNDERFLOW
ELSE
SET VAL = QUEUE[FRONT]
SET FRONT = FRONT + 1
[END OF IF]
Step 2: EXIT

Algorithm to delete an element from the queue

Applications of Queue

 It is used to schedule the jobs to be processed by the CPU.

 When multiple users send print jobs to a printer, each printing job
 is kept in the printing queue. Then the printer prints those jobs
 according to first in first out (FIFO) basis.

 Breadth first search uses a queue data structure to find an
 element from a graph.

106

Circular Queue

• A circular queue is one in which the insertion of new element is done at
the very first location of the queue if the last location of the queue is full.

• Suppose if we have a Queue of n elements then after adding the element
at the last index i.e. (n-1)th , as queue is starting with 0 index, the next
element will be inserted at the very first location of the queue which was
not possible in the simple linear queue.

107

Circular Queue operations

• The Basic Operations of a circular queue are

 InsertionCQ: Inserting an element into a circular queue results in
Rear = (Rear + 1) % MAX, where MAX is the maximum size of the
array.

 DeletionCQ : Deleting an element from a circular queue results in
Front = (Front + 1) % MAX, where MAX is the maximum size of the
array.

 TraversCQ: Displaying the elements of a circular Queue.

• Circular Queue Empty: Front=Rear=0.

108

Circular Queue Representation Using Arrays

Let us consider a circular queue, which can hold maximum (MAX) of six
elements. Initially the queue is empty.

109

Insertion and Deletion operations on a Circular Queue

Insert new elements 11, 22, 33, 44 and 55 into the circular queue. The circular
queue status is:

110

Insertion and Deletion operations on a Circular Queue

 Now, delete two elements 11, 22 from the circular queue. The circular queue
status is as follows:

111

Insertion and Deletion operations on a Circular

Queue

Again, insert another element 66 to the circular queue. The status of the
circular queue is:

112

113

Again, insert 77 and 88 to the circular queue. The status of the
Circular queue is:

Insertion and Deletion operations on a Circular
Queue

114

Application of Circular Queue

Below we have some common real-world examples where circular queues are
used:

Computer controlled Traffic Signal System uses circular queue.

CPU scheduling and Memory management.

Double Ended Queue (DEQUE)

• It is a special queue like data structure that supports insertion and
 deletion at both the ends.

• Such an extension of a queue is called a double-ended queue, or

 deque, which is usually pronounced "deck" to avoid confusion with

 the dequeue method of the regular queue, which is pronounced

 like the abbreviation "D.Q."

• It is also often called a head-tail linked list.

115

DEQUE Representation using arrays

116

Types of DEQUE

• There are two variations of deque. They are:

– Input restricted deque (IRD)

– Output restricted deque (ORD)

• An Input restricted deque is a deque, which allows insertions at one end
but allows deletions at both ends of the list.

• An output restricted deque is a deque, which allows deletions at one end
but allows insertions at both ends of the list.

117

• Since Deque supports both stack and queue operations, it can be used
as both.

• The Deque data structure supports clockwise and anticlockwise
rotations in O(1) time which can be useful in certain applications

• Also, the problems where elements need to be removed and or added
both ends can be efficiently solved using Deque

Applications of Deque

118

119

MODULE -III

120

Linked lists: Introduction, singly linked list, representation of a
linked list in memory, operations on a single linked list; Applications
of linked lists: Polynomial representation and sparse matrix
manipulation.

Types of linked lists: Circular linked lists, doubly linked lists; Linked
list representation and operations of Stack and Queue.

Introduction to Linked List

12
1

A linked list is a collection of data in which each element contains the location
of the next element—that is, each element contains two parts: data and link.

121

Arrays versus Linked Lists

• Both an array and a linked list are representations of a list of items in
memory. The only difference is the way in which the items are linked
together. The Figure below compares the two representations for a list of
five integers.

12
2 122

12
3

Linked List: A Dynamic Data Structure

• A data structure that can shrink or grow during program execution.

• The size of a dynamic data structure is not necessarily known at

compilation time, in most programming languages.

• Efficient insertion and deletion of elements.

• The data in a dynamic data structure can be stored in non-contiguous

(arbitrary) locations.

• Linked list is an example of a dynamic data structure.

123

12
4

Advantages of linked list

• Unused locations in array is often a wastage of
space

• Linked lists offer an efficient use of memory

– Create nodes when they are required

– Delete nodes when they are not required anymore

– We don‘t have to know in advance how long the list should be

124

12
5

Types of linked lists

• There are four types of Linked lists:
– Single linked list

• Begins with a pointer to the first node
• Terminates with a null pointer

• Only traversed in one direction

– Circular single linked list

• Pointer in the last node points back to the first node

– Doubly linked list

• Two ―start pointers– first element and last element
• Each node has a forward pointer and a backward pointer

• Allows traversals both forwards and backwards

– Circular double linked list

• Forward pointer of the last node points to the first node and
backward pointer of the first node points to the last node

125

Singly Linked Lists

 A singly linked list is a concrete
data structure consisting of a
sequence of nodes

 Each node stores
 Element

 link to the next node

next

elem node

A B C D

12
6 126

127

Representation of a linked list in memory

128

12
9

Operations on Linked Lists

• The basic operations of a single linked list are

– Creation

– Insertion

– Deletion

– Traversing

129

13
0

Applications of linked list

• Linked lists are used to represent and manipulate polynomial. Polynomials
are expression containing terms with non zero coefficient and exponents.
For example:

 P(x) = a0 Xn + a1 Xn-1 + …… + an-1 X + an

• Represent very large numbers and operations of the large number such as

addition, multiplication and division.

• Linked lists are to implement stack, queue, trees and graphs.

• Implement the symbol table in compiler construction.

130

131

132

Sparse Matrices

sparse … many elements are zero
dense … few elements are zero

Matrix is a two-dimensional data object made of m rows and n columns,
therefore having total m x n values. If most of the elements of the matrix have 0
value, then it is called a sparse matrix.

Example:
0 0 3 0 4
0 0 5 7 0
0 0 0 0 0
0 2 6 0 0

133

Example Of Sparse Matrices

Diagonal

Tridiagonal

Lower triangular

134

Representation Of Sparse Matrices

Single linear list in row-major order:

scan the nonzero elements of the sparse matrix in row-major order

each nonzero element is represented by a triple (row, column, value)

the list of triples may be an array list or a linked list (chain)

135

Single Linear List Example

0 0 3 0 4
0 0 5 7 0
0 0 0 0 0
0 2 6 0 0

list =

row 1 1 2 2 4 4

column 3 5 3 4 2 3

value 3 4 5 7 2 6

136

Array Linear List Representation

 row 1 1 2 2 4 4
list = column 3 5 3 4 2 3
 value 3 4 5 7 2 6

Example:
0 0 3 0 4
0 0 5 7 0
0 0 0 0 0
0 2 6 0 0

137

Chain Representation

Node structure:

row col

next value

138

Single Chain

 row 1 1 2 2 4 4

list = column 3 5 3 4 2 3

 value 3 4 5 7 2 6

1 3

3

1 5

4

2

5

2

7

4

2

4

6

3 4 3

null

firstNode

2

Example:
0 0 3 0 4
0 0 5 7 0
0 0 0 0 0
0 2 6 0 0

139

A linked list is a linear data structure, in which the elements are not stored at
contiguous memory locations. The elements in a linked list are linked using
pointers as shown in the below image:

Single Linked List

Single Linked List

 A singly linked list is a concrete
data structure consisting of a
sequence of nodes

 Each node stores
 Element

 link to the next node

next

elem node

A B C D

14
0 140

Single Linked List

14
1 69

14
2

Operations on Single Linked Lists

• The basic operations of a single linked list are

– Creation

– Insertion

– Deletion

– Traversing

142

143

Creation of a Single Linked List

A linked list allocates space for each element separately in its own block of
 memory called a "node".

 Each node contains two fields; a "data" field to store whatever element, and
 a "next" field which is a pointer used to link to the next node.

 Each node is allocated in the heap using malloc(), so the node memory
 continues to exist until it is explicitly de-allocated using free().

 The front of the list is a pointer to the ―start node

Sufficient memory has to be allocated for creating a node.

The information is stored in the memory, allocated by using the malloc()
 function.,after allocating memory for the structure of type node,

 the information for the item (i.e., data) has to be read from the user,

set next field to NULL and finally returns the address of the node.

14
4 71

 Creating a node for Single Linked List

145

Creation of a Single Linked List

LinkedList can be represented as a class and a Node as a separate class. The
LinkedList class contains a reference of Node class type.

Node class
class Node:

 # Function to initialize the node object
 def __init__(self, data):
 self.data = data # Assign data
 self.next = None # Initialize # next as null

class SLL:
 def __init__(self):
 self.start=None

146

Creating a single linked list with N nodes

1.Create a newnode
2.Set newnode.data=data
3.Set newnode.next=NULL
4.Set temp=start
5.Repeat step 6 whiletemp.next!=NULL
6. set temp=temp.next
 [end of loop]
7.Set temp.next=newnode
8.Exit

147

class Node:
 def __init__(self,data):
 self.data=data
 self.next=None
class SLL:
 def __init__(self):
 self.start=None
 def createlist(self):
 n=int(input("enter no of nodes"))
 for i in range(n):
 data=int(input("enter value"))
 newnode=Node(data)
 if(self.start==None):
 self.start=newnode
 else:
 temp=self.start
 while temp.next!=None:
 temp=temp.next
 temp.next=newnode

Creating a single linked list with N nodes

148

Traversing a Single Linked List

1.Set temp=start
2.Repeat step 3 and 4 While temp!=NULL
3. Apply process to temp.data
4. Set temp=temp.next
 [Enf of loop]
5.Exit

149

Print Each node of a Single Linked List

1.Set temp=start
2.Write temp.data
3.Repeat step 4 and 5 While temp.next!=NULL
4. Write temp.data
5. Set temp=temp.next
 [Enf of loop]
5.Exit

#function to Display each node of a linked list
def display(self):
 print("element in single linked list are:")
 if self.start==None:
 print("Empty")
 else:
 temp=self.start
 print(temp.data)
 while temp.next!=None:
 temp=temp.next
 print(temp.data)

Inserting a node

15

0

• Inserting a node into a single linked list can be done at

– Insertion at the beginning of the list.

– Insertion at the end of the list.

– Insertion in the middle of the list.

Inserting a node at the beginning

77

1.Create a nwenode
2.Set newnode.data=data
3.Set newnode.next=start
4.Set start=newnode
5.Exit

Inserting a node at the beginning

76

def insertbegin(self):
 data=int(input("enter value"))
 newnode=Node(data)
 if self.start==None:
 self.start=newnode
 else:
 temp=self.start
 newnode.next=temp
 self.start=newnode

Inserting a node at the end

78

1.Create a newnode
2.Set newnode.data=data
3.Set newnode.next=NULL
4.Set temp=start
5.Repeat step 6 whiletemp.next!=NULL
6. set temp=temp.next
 [end of loop]
7.Set temp.next=newnode
8.Exit

154

def insertend(self):
 n=int(input("enter value"))
 newnode=Node(n)
 if(self.start==None):
 self.start=newnode
 else:
 temp=self.start
 while temp.next!=None:
 temp=temp.next
 temp.next=newnode

Inserting a node at the end

109

81

Inserting a node at intermediate position

Inserting a node at intermediate position

156

def insertmid(self):
 n=int(input("enter value"))
 newnode=Node(n)
 pos=int(input("enter position"))
 c=self.count()
 if(self.start==None):
 self.start=newnode
 else:
 if pos>1 and pos<=c:
 temp=self.start
 prev=temp
 i=1
 while i<pos:
 prev=temp
 temp=temp.next
 i+=1
 newnode.next=temp
 prev.next=newnode

157

Python Classes and Objects

Python is an object oriented programming language.
Almost everything in Python is an object, with its properties and methods.
A Class is like an object constructor, or a "blueprint" for creating objects.

Create a Class
To create a class, use the keyword class:

Example:
Create a class named MyClass, with a
property named x:

class MyClass:
 x = 5

158

Create Object

use the class named MyClass to create objects:

Example

class MyClass:
 x = 5
p1 = MyClass()
print(p1.x)

159

The __init__() Function

All classes have a function called __init__(), which is always executed when
the class is being initiated.

Use the __init__() function to assign values to object properties, or other
operations that are necessary to do when the object is being created:

Example

class Person:
 def __init__(self, name, age):
 self.name = name
 self.age = age

p1 = Person("John", 36)

print(p1.name)
print(p1.age)

160

Object Methods

Objects can also contain methods. Methods in objects are functions that belong
to the object.

Example

class Person:
 def __init__(self, name, age):
 self.name = name
 self.age = age

 def myfunc(self):
 print("Hello my name is " + self.name)

p1 = Person("John", 36)
p1.myfunc() Output:

Hello my name is John

161

• Another primitive operation that can be done in a singly linked list is the
deletion of a node. Memory is to be released for the node to be deleted. A
node can be deleted from the list from three different places namely.

– Deleting a node at the beginning.

– Deleting a node at the end.

– Deleting a node at intermediate position.

Deletion of a node from a single linked list

162

Deleting a node at the beginning

• The following steps are followed, to delete a node at the beginning of
the list:
1. If start=NULL then,
 print Empty list
 go to step 5
 [End of if]
2. Set temp=start
3. Set start=start. next
4. Free or delete temp
5. Exit

163

#Function to delete a node from the beginning
def deletebegin(self):
 global prev
 if self.start==None:
 print("empty")
 else:
 temp=self.start
 newstart=self.start.next
 del temp
 self.start=newstart

Deleting a node at the beginning

Algorithm:
1. If start=NULL then,
 print Empty list
 go to step 5
 [End of if]
2. Set temp=start
3. Set start=start. next
4. Free or delete temp
5. Exit

164

Deleting a node at the end

• The following steps are followed to delete a node at the end of the list:
1.If start=NULL, then

 print Empty list
 go to step 8
 [end of if]

2.Set temp=start
3.Repeat step 4 and 5 while temp.next!=NULL
4. Set pretemp=temp

5. Set temp=temp.next
 [end of loop]
6.Set pretemp.next=NULL

7.Free temp
8.Exit

165

Deleting a node at the end

#function to delete last node of a single linked list

def deleteend(self):

 global prev

 if self.start==None:

 print("empty")

 else:

 temp=self.start

 prev=self.start

 while temp.next!=None:

 prev=temp

 temp=temp.next

 prev.next=None

 del temp

166

Deleting a node at intermediate position

In order to delete the node, which is present after the specified node, we need
to skip the desired number of nodes to reach the node after which the node
will be deleted. We need to keep track of the two nodes. The one which is to
be deleted and the other one the node which is present before that node. For
this purpose, two variables are used: temp and prev.

167

STEP 1: IF start = NULL
WRITE Empty List
 GOTO STEP 11
 END OF IF
STEP 2: SET TEMP = start
STEP 3: SET I = 1
STEP 4: REPEAT STEP 5 TO 8 UNTIL I<position
STEP 5: preTEMP = TEMP
STEP 6: TEMP = TEMP .NEXT
STEP 7: IF TEMP = NULL
WRITE "DESIRED NODE NOT PRESENT"
 GOTO STEP 11
 END OF IF
STEP 8: I = I+1
END OF LOOP
STEP 9: preTEMP.NEXT = TEMP.NEXT
STEP 10: FREE TEMP
STEP 11: EXIT

Deleting a node at intermediate position

168

Deleting a node at intermediate position

def deletemid(self):
 i=1
 if self.start==None:
 print("Empty")
 else:
 position=int(input("enter position"))
 c=self.count()
 if position>c:
 print("check position")
 elif position>1 and position<=c:
 temp=prev=self.start
 while i<position:
 prev=temp
 temp=temp.next
 i+=1
 prev.next=temp.next
 del temp
 else:
 print("check position")

169

Counting number of nodes

1.If start=NULL then,
 print count=0

 [end of if]
2.Set count=1
3.Set temp=start

4.Repeat step 5 and 6 while temp.next!=NULL
5. Set count=count+1
6. Set temp=temp.next

 [end of loop]
7.Exit

170

def count(self):
 nc=0
 temp=self.start
 while temp!=None:
 nc+=1
 temp=temp.next
 print("Number of nodes=",nc)
 return nc

Counting number of nodes

171

Linked list representation of stack

Instead of using array, we can also use linked list to implement stack. Linked list
allocates the memory dynamically.

A stack can be represented by using nodes of the linked list.

Each node contains two fields : data(info) and next(link)

The data field of each node contains an item in the stack and the corresponding
next field points to the node containing the next item in the stack

The top refers to the top most node (The last item inserted) in the stack.

all the single linked list operations perform based on Stack operations LIFO(last
 in first out)

172

The start variable of the linked list is used as top

Linked list representation of stack

173

Stack Operations:

push() : Insert the element into linked list nothing but which is the top node of
 Stack.

pop() : Return top element from the Stack and move the top pointer to the second
 node of linked list or Stack.

peek(): Return the top element.

display(): Print all element of Stack.

Operations on a Linked Stack

174

Operations on a Linked Stack

175

Operations on a Linked Stack

176

Push Operation

Inserting a node at the beginning

77

1.Create a nwenode
2.Set newnode.data=data
3.Set newnode.next=start
4.Set start=newnode
5.Exit

178

Push Operation

push() : Insert the element into linked list.

The new element is added at the top most position of the stack.

Steps to push an element into a stack:
 1.create the new node
 2.set newnode.data=data
 3.if top=NULL, then
 set newnode.next=NULL
 set top=newnode
 else
 set newnode.next=top
 set top=newnode
 [end of if]
 4.end

179

Function to push an element into a stack:

def push(self):
 data=int(input("enter value"))
 newnode=Node(data)
 if(self.top==None):
 self.top=newnode
 else:
 temp=self.top
 newnode.next=temp
 self.top=newnode

180

pop() : delete the topmost element from the stack
 Return top element from the Stack and move the top pointer to the
 second node of linked list or Stack.

Steps to pop an element from stack:
1.If top=NULL,then
 print Empty or underflow
 [end of if]
2.Set temp=top
3.Set top=top.next
4.Free temp
5.end

181

Pop Operation

182

Steps to pop an element from stack:

def pop(self):
 global prev
 if (self.top==None):
 print("empty")
 else:
 temp=self.top
 newstart=self.top.next
 del temp
 self.top=newstart

183

Displaying all the nodes of a stack needs traversing all the nodes of the linked list
organized in the form of stack. For this purpose, we need to follow the following
steps.

1.Copy the head pointer into a temporary pointer.

2.Move the temporary pointer through all the nodes of the list and print

3.value field attached to every node.

Display the nodes (Traversing)

184

def display(self):
 print("elements in stack are:")
 if self.start==None:
 print("empty")
 else:
 temp=self.start
 print(temp.data)
 while temp.next!=None:
 temp=temp.next
 print(temp.data)

Display the nodes (Traversing)

185

def peek(self):
 if self.start==None:
 print("empty")
 else:
 temp=self.start
 print(temp.data)

Peek operation

186

Linked list representation of Queue

In a linked queue, each node of the queue consists of two parts i.e. data part
and the link part. Each element of the queue points to its immediate next
element in the memory.

In the linked queue, there are two pointers maintained in the memory i.e.
front pointer and rear pointer. The front pointer contains the address of the
starting element of the queue while the rear pointer contains the address of
the last element of the queue.

187

Insertion and deletions are performed at rear and front end respectively.
 If front and rear both are NULL, it indicates that the queue is empty.

The linked representation of queue is shown in the following figure.

Linked list representation of Queue

188

Operation on Linked Queue

enQueue() This operation adds a new node after rear and moves rear to the next
node.

deQueue() This operation removes the front node and moves front to the next
node.

display() - Displaying the elements of Queue

189

Operation on Linked Queue

Inserting a node at the end (enQueue)

78

1.Create a newnode
2.Set newnode.data=data
3.Set newnode.next=NULL
4.Set temp=start
5.Repeat step 6 whiletemp.next!=NULL
6. set temp=temp.next
 [end of loop]
7.Set temp.next=newnode
8.Exit

191

Algorithm
Step 1: Allocate the space for the new node PTR
Step 2: SET PTR -> DATA = VAL
Step 3: IF FRONT = NULL
 SET FRONT = REAR = PTR
 SET FRONT -> NEXT = REAR -> NEXT = NULL
 ELSE
 SET REAR -> NEXT = PTR
 SET REAR = PTR
 SET REAR -> NEXT = NULL
 [END OF IF]
Step 4: END

Insertion operation (enQueue)

192

Deletion operation removes the element that is first inserted among all the queue
elements. Firstly, we need to check either the list is empty or not. The condition
front == NULL becomes true if the list is empty, in this case , we simply write
underflow on the console and make exit.

Otherwise, we will delete the element that is pointed by the pointer front. For
this purpose, copy the node pointed by the front pointer into the pointer ptr.
Now, shift the front pointer, point to its next node and free the node pointed by
the node ptr. This is done by using the following statements.

Deletion operation(deQueue)

193

Deleting a node at the beginning(deQueue)

Algorithm:
1. If start=NULL then,
 print Empty list
 go to step 5
 [End of if]
2. Set temp=start
3. Set start=start. next
4. Free or delete temp
5. Exit

194

Algorithm
Step 1: IF FRONT = NULL
Write " Underflow "
Go to Step 5
[END OF IF]
Step 2: SET PTR = FRONT
Step 3: SET FRONT = FRONT -> NEXT
Step 4: FREE PTR
Step 5: END

Deletion operation(deQueue)

195

Circular Single Linked List

It is just a single linked list in which the link field of the last node points back to
the address of the first node.

A circular linked list has no beginning and no end. It is necessary to establish a
special pointer called start pointer always pointing to the first node of the list.

Circular linked lists are frequently used instead of ordinary linked list because
many operations are much easier to implement. In circular linked list no null
pointers are used, hence all pointers contain valid address.

Circular Single Linked List and its basic operations

196

197

The basic operations in a circular single linked list are:
• Creation
•Insertion
•Deletion
•Traversing

Circular Single Linked List basic operations

144

Creating a circular single Linked List with N number of
nodes

•

•

198

Steps:

1. Create a newnode

2. Set newnode.data=data

3 Set newnode.next=start

4. If start=NULL then,

 start=newnode

 [End of if]

5. Set temp=start

6. Repeat step 7 while tem.next!=start

7. set temp=temp.next

 [end of loop]

8. Set temp.next=newnode

9. Exit

Creating a circular single Linked List with
N number of nodes

199

200

def createlist(self):

 n=int(input("enter number of nodes in the

 list"))

 for i in range(n):

 data=int(input("enter value"))

 newnode=Node(data)

 if self.start==None:

 self.start=newnode

 newnode.next=newnode

 else:

 temp=self.start

 while temp.next!=self.start:

 temp=temp.next

 temp.next=newnode

 newnode.next=self.start

Creating a circular single Linked List with N
number of nodes

Inserting a node at the beginning

77

1.Create a nwenode
2.Set newnode.data=data
3.Set temp=start
4.Repeat sep 5 while temp.next!=start
5. tem=temp.next
6.Set newnode.next=start
7.Set temp.next=newnode
8.Set start=newnode
9.exit

202

Inserting node at the beginning

def insertbegin(self):
 data=int(input("enter value"))
 newnode=Node(data)
 if self.start==None:
 self.start=newnode
 newnode.next=newnode
 else:
 temp=self.start
 while temp.next!=self.start:
 temp=temp.next
 temp.next=newnode
 newnode.next=self.start
 self.start=newnode

144

•

•

203

Steps:

1. Create a newnode

2. Set newnode.data=data

3. Set newnode.next=start

4. If start=NULL then,

 start=newnode

 [End of if]

5. Set temp=start

6. Repeat step 7 while tem.next!=start

7. set temp=temp.next

 [end of loop]

8. Set temp.next=newnode

9. Exit

Inserting a node at the end

204

def insertend(self):
 data=int(input("enter value"))
 newnode=Node(data)
 if self.start==None:
 self.start=newnode
 newnode.next=newnode
 else:
 temp=self.start
 while temp.next!=self.start:
 temp=temp.next
 temp.next=newnode
 newnode.next=self.start

Inserting a node at the end

140

Deleting a node at the beginning

• The following steps are followed, to delete a node at the beginning of

the list:

Steps:

 1.if start=NULL then,

 write underflow

 go to step 8

 2.set temp=start

 3.Repeat step 4 while temp.next!=start

 4. set temp=temp.next

 5.set temp.next=start.next

 6.Free start

 7.set start=temp.next

 8.Exit

205

206

def deletebegin(self):
 temp=self.start
 if self.start==None:
 print("List is empty, deletion not possible")
 elif temp.next==temp:
 print(temp.data,"is deleted success")
 del temp
 self.start=None
 else:
 dtemp=self.start
 while temp.next!=self.start:
 temp=temp.next
 temp.next=dtemp.next
 self.start=dtemp.next
 print(dtemp.data,"is deleted success")
 del dtemp

Deleting a node at the beginning

Deleting a node at the end

207

• The following steps are followed to delete a node at the end of the list:

Steps:

 1.if start=NULL then,

 write underflow

 go to step 8

 2.set temp=start

 3.Repeat step 4 while temp.next!=start

 4. set pretemp=temp

 5. set temp=temp.next

 [end of loop]

 6.set pretemp.next=start

 7.free temp

 8.Exit

Deleting a node at the end

208

 def deletend(self):
 temp=self.start
 if self.start==None:
 print("List is empty, deletion not possible")
 elif temp.next==temp:
 printf(temp.data,"is deleted success")
 del temp
 self.start=None
 else:
 ptemp=temp
 temp=temp.next
 while temp.next!=self.start:
 ptemp=temp
 temp=temp.next
 ptemp.next=self.start
 print(temp.data,"is deleted success")
 del temp

Traversing a circular single linked list from left to right

209

• The following steps are followed, to traverse a list from left to right:

• If list is empty then display ‗Empty List‘ message.
• If the list is not empty, follow the steps given below:

temp = start;

print(temp.data ,end=" ")

 while(temp.next != start)

 temp = temp .next;

 print(temp .data)

210

 def display(self):
 if self.start==None:
 print("Linked list is empty")
 else:
 print("elements in single linked list are:")
 temp=self.start
 print(temp.data ,end=" ")
 while temp.next!=self.start:
 temp=temp.next
 print(temp.data ,end=" ")

Traversing a circular single linked list from left to right

Double Linked List

21

1

• A doubly linked list is a linked data structure that consists of a set of
sequentially linked records called nodes.

• A double linked list is a two-way list in which all nodes will have two links.
• This helps in accessing both successor node and predecessor node from

the given node position.

212

• Doubly linked list provides bi-directional traversing. Each node contains three
fields:

– Left link.

– Data.

– Right link.

Double Linked List Node Structure

213

#class to create and initialize a node
class Node:
 def __init__(self,data):
 self.data=data
 self.prev=None
 self.next=None

Double Linked List Node Structure

 Double Linked List

21

4

215

Memory Representation of a doubly linked list

Basic operations in a double linked list

21

6

• Creation

• Insertion

• Deletion

• Traversing

• The e beginning of the double linked list is stored in a "start/head" pointer
which points to the first node. The first node‘s left link and last node‘s
right link is set to NULL.

Creating a Double Linked List with N number of

nodes

21

7

create

class DList:
 def __init__(self):
 self.start=None
 def createlist(self):
 n=int(input("enter number of nodes
in the list"))
 for i in range(n):
 data=int(input("enter value"))
 newnode=Node(data)
 if self.start==None:
 self.start=newnode
 else:
 temp=self.start
 while temp.next!=None:
 temp=temp.next
 temp.next=newnode
 newnode.prev=temp

Creating a Double Linked List with N number of nodes

21

8

Inserting a node at the beginning

The following steps are to be followed to insert a new node at the beginning
of the list:

def insertbegin(self):

 data=int(input("enter value"))

 newnode=Node(data)

 if self.start==None:

 self.start=newnode

 else:

 newnode.next=self.start

 self.start=newnode

 start . left = newnode

 newnode.prev=None

21

9

Inserting a node at the ending

• The following steps are followed to insert a new node at

the end of the list:

120

97

def insertend(self):
 data=int(input("enter value"))
 newnode=Node(data)
 if self.start==None:
 self.start=newnode
 else:
 temp=self.start
 while temp.next!=None:
 temp=temp.next
 temp.next=newnode
 newnode.prev=temp

Inserting a node at an intermediate position

221

•

•

• The following steps are followed, to insert a new node in an
 intermediate position in the list:

def insertmid(self):

 print("enter data before which number is to be inserted")

 num=int(input())

 temp=self.start

 ptemp=temp

 if self.start==None:

 print("List is empty")

 elif num==temp.data:

 self.insertbegin()

222

else:

 data=int(input("enter value"))

 newnode=Node(data)

 temp=self.start

 while temp.data!=num:

 temp=temp.next

 newnode.next=temp

 newnode.prev=temp.prev

 temp.prev.next=newnode

Inserting a node at an intermediate position Cont..

Inserting a node at an intermediate position

223

Deleting a node at the beginning

224

• The following steps are followed, to delete a node at the beginning of the list:

def deletebegin(self):

 temp=self.start

 if self.start==None:

 print("List is empty")

 else:

 self.start=temp.next

 self.start.prev=None

 print(temp.data,"is deleted success")

 del temp

Deleting a node at the end

225

• The following steps are followed to delete a node at the end of the list:

def deletend(self):

 temp=self.start

 if self.start==None:

 print("List is empty")

 else:

 ptemp=temp

 temp=temp.next

 while temp.next!=None:

 ptemp=temp

 temp=temp.next

 ptemp.next=None

 print(temp.data,"is deleted success")

 del temp

Deleting a specified node

226

•The following steps are followed, to delete a node from an
 def deletion(self):
 print("enter element to delete")
 a=int(input())
 temp=self.start
 if self.start==None:
 print("List is empty, deletion not possible")
 return

 else:
 temp=self.start

 while temp.next!=None and temp.data!=a:
 temp=temp.next

 temp.prev.next=temp.next
 temp.next.prev=temp.prev
 print(temp.data,"is deleted success")
 del temp

Deleting a specified node

227

130

Traversal and displaying a list (Left to Right)

• The following steps are followed, to traverse a list from left to right:

•

228

def display(self):
 print("elements in Doubly linked list are:")
 if self.start==None:
 print("Linked list is empty")
 else:
 temp=self.start
 while temp!=None:
 print(temp.data ,end=" ")
 temp=temp.next

229

Doubly linked list can be used in

navigation systems where both front and back navigation is required.

It is used by browsers to implement backward and forward navigation of visited
 web pages i.e. back and forward button.

Applications of Double linked list

Advantages and Disadvantages of Double Linked List

230

The major disadvantage of doubly linked lists (over singly linked lists) is that

• they require more space (every node has two pointer fields instead of
one). Also, the code to manipulate doubly linked lists needs to maintain
the prev fields as well as the next fields; the more fields that have to be
maintained, the more chance there is for errors.

The major advantage of doubly linked lists is that

• they make some operations (like the removal of a given node, or a right-

to-left traversal of the list) more efficient.

Advantages of Circular Lists

231

• The major advantage of circular lists (over non-circular lists) is that they
eliminate some extra-case code for some operations (like deleting last
node).

• Also, some applications lead naturally to circular list representations.

• For example, a computer network might best be modeled using a circular
list.

MODULE - IV

232

Trees: Basic concept, binary tree, binary tree representation,
array and linked representations, binary tree traversal, binary tree
variants, application of trees; Graphs: Basic concept, graph
terminology, graph implementation, graph traversals, Application
of graphs.

Tree – a Hierarchical Data Structure

• Trees are non linear data structure that can be represented in a hierarchical
manner.

– A tree contains a finite non-empty set of elements.

– Any two nodes in the tree are connected with a relationship of
parent-child.

– Every individual elements in a tree can have any number of sub trees.

233

Why Trees?

234

1. One reason to use trees might be because you want to store information
that naturally forms a hierarchy. For example, the file system on a computer:

235

2. Trees (with some ordering e.g., BST) provide moderate access/search
(quicker than Linked List and slower than arrays).

3. Trees provide moderate insertion/deletion (quicker than Arrays and slower
than Unordered Linked Lists).

4. Like Linked Lists and unlike Arrays, Trees don’t have an upper limit on number
of nodes as nodes are linked using pointers.

Why Trees?

Tree – Basic Terminology

• Root : The topmost node is called root of the tree. The basic node of all

 nodes in the tree. All operations on the tree are performed with

 passing root node to the functions.

• Child : a successor node connected to a node is called child. A node in

 binary tree may have at most two children(or)The elements that

 are directly under an element are called its children

236

237

• Parent : a node is said to be parent node to all its child nodes (or) The element

 directly above something is called its parent.

• Leaf : a node that has no child nodes.

• Siblings : Two nodes are siblings if they are children to the same parent

 node.

Tree – Basic Terminology Contd…

• Ancestor : a node which is parent of parent node (A is ancestor node to

 D,E and F).

• Descendent : a node which is child of child node (D, E and F are

 descendent nodes of node A)

• Level : The distance of a node from the root node, The root is at level –

 0,(B and C are at Level 1 and D, E, F have Level 2 (highest level

 of tree is called height of tree)

• Degree : The number of nodes connected to a particular parent node. 238

Binary Tree

• A binary tree is a hierarchy of nodes, where every parent node has at most
two child nodes. There is a unique node, called the root, that does not have a
parent.

239

• A binary tree can be defined recursively as

• Root node

• Left subtree: left child and all its descendants

• Right subtree: right child and all its descendants

Binary Tree

a

b c

d e

g h i

l

f

j k

240

Full and Complete Binary Trees

• A full tree is a binary tree in which

– Number of nodes at level l is 2l–1

– Total nodes in a full tree of height n is

• A complete tree of height n is a binary tree

– Number of nodes at level 1 l n–1 is 2l–1

– Leaf nodes at level n occupy the leftmost positions in the tree

241

Tree Traversals

• A binary tree is defined recursively: it consists of a root, a left subtree,
and a right subtree.

• To traverse (or walk) the binary tree is to visit each node in the binary
tree exactly once.

• Tree traversals are naturally recursive.

• Standard traversal orderings:

• preorder

• inorder

• postorder

• level-order

242

Preorder, Inorder, Postorder

• In Preorder, the root is

visited before (pre)

 The subtrees traversals.

• In Inorder, the root is

 visited in-between left

 and right subtree traversal.

• In Preorder, the root

 is visited after (pre)

 the subtrees traversals.

Preorder Traversal:
1. Visit the root
2. Traverse left subtree
3. Traverse right subtree

Inorder Traversal:
1. Traverse left subtree
2. Visit the root
3. Traverse right subtree

Postorder Traversal:
1. Traverse left subtree
2. Traverse right subtree
3. Visit the root

243

244

In this traversal method, the left subtree is visited first, then the
root and later the right sub-tree. We should always remember
that every node may represent a subtree itself.

If a binary tree is traversed in-order, the output will produce
sorted key values in an ascending order.

In-order Traversal

245

In-order Traversal

D → B → E → A → F → C → G

246

Algorithm
Until all nodes are traversed −
Step 1 − Recursively traverse left subtree.
Step 2 − Visit root node.
 Step3 − Recursively traverse right subtree.

In-order Traversal

247

Construct a Binary Tree from Postorder and Inorder

Given Postorder and Inorder traversals, construct the tree.

in[] = {4, 8, 2, 5, 1, 6, 3, 7}
post[] = {8, 4, 5, 2, 6, 7, 3, 1}

the process of constructing tree from
 in[] = {4, 8, 2, 5, 1, 6, 3, 7} and post[] = {8, 4, 5, 2, 6, 7, 3, 1}

248

1) We first find the last node in post[]. The last node is “1”, we
know this value is root as root always appear in the end of
postorder traversal.

2) We search “1” in in[] to find left and right subtrees of root.
Everything on left of “1” in in[] is in left subtree and everything on
right is in right subtree.

249

 1

[4, 8, 2, 5] [6, 3, 7]

3) We recur the above process for following two.

….b) Recur for in[] = {6, 3, 7} and post[] = {6, 7, 3}

…….Make the created tree as right child of root.

….a) Recur for in[] = {4, 8, 2, 5} and post[] = {8, 4, 5, 2}.

…….Make the created tree as left child of root.

250

 1
 / \
 2 3
 / \ / \
 4 5 6 7
 \
 8

251

Represent organization

Represent computer file systems

Networks to find best path in the Internet

Chemical formulas representation

Outlines, etc

Applications of trees

Example of Tree Traversal

• Assume: visiting a node printing its
data

•Preorder: 15 8 2 6 3 7

11 10 12 14 20 27 22 30

•Inorder: 2 3 6 7 8 10 11

12 14 15 20 22 27 30

•Postorder: 3 7 6 2 10 14

12 11 8 22 30 27 20 15

6

1

5
8

2

3 7

11

1

4

10

 1

2

2

0

2

7

2

2

3

0

252

Traversal Techniques

void preorder(tree *tree) {

if (tree->isEmpty()) return; visit(tree->getRoot()); preOrder(tree-

>getLeftSubtree()); preOrder(tree->getRightSubtree());
}

void inOrder(Tree *tree){
if (tree->isEmpty()) return; inOrder(tree->getLeftSubtree());
visit(tree->getRoot()); inOrder(tree->getRightSubtree());
}

void postOrder(Tree *tree){
if (tree->isEmpty()) return; postOrder(tree->getLeftSubtree());
postOrder(tree->getRightSubtree()); visit(tree->getRoot());
}

253

Threaded Binary Tree

• A threaded binary tree defined as:
• "A binary tree is threaded by making all right
child pointers that would normally be null point
to the inorder successor of the node, and all left
child pointers that would normally be null point
to the inorder predecessor of the node

254

255

Construct Tree from given Inorder and Preorder traversals
Let us consider the below traversals:
Inorder sequence: D B E A F C
Preorder sequence: A B D E C F

256

in a Preorder sequence, leftmost element is the root of the
tree. So we know ‘A’ is root for given sequences.
 By searching ‘A’ in Inorder sequence, we can find out all
elements on left side of ‘A’ are in left subtree and elements on
right are in right subtree.
So we know below structure now.

 A
 / \
 / \
 D B E F C

257

We recursively follow above steps and get the following
tree.

 A
 / \
 B C
 / \ /
 D E F

Graph Basics

• Graphs are collections of nodes connected by edges – G = (V,E) where V is a set of
nodes and E a set of edges.

• Graphs are useful in a number of applications including

– Shortest path problems

– Maximum flow problems

• Graphs unlike trees are more general for they can have connected components.

258

Graph Types

Directed Graphs: A directed graph edges allow travel in one
direction.
• Undirected Graphs: An undirected graph edges allow travel in
either direction.

259

Graph Terminology

• A graph is an ordered pair G=(V,E) with a set of vertices or nodes and

the edges that connect them.

• A subgraph of a graph has a subset of the vertices and edges.

• The edges indicate how we can move through the graph.

• A path is a subset of E that is a series of edges between two nodes.

• A graph is connected if there is at least one path between every pair of

nodes.

260

Graph Terminology

• The length of a path in a graph is the number of edges in the path.

• A complete graph is one that has an edge between every pair of nodes.

• A weighted graph is one where each edge has a cost for traveling
between the nodes.

• A cycle is a path that begins and ends at the same node.

• An acyclic graph is one that has no cycles.

• An acyclic, connected graph is also called an unrooted tree

261

Data Structures for Graphs An Adjacency Matrix

• For an undirected graph, the matrix will be symmetric along the

diagonal.

• For a weighted graph, the adjacency matrix would have the weight for
edges in the graph, zeros along the diagonal, and infinity (∞) every
place else.

262

Adjacency Matrix Example 1

263

Adjacency Matrix Example 2

264

Data Structures for Graphs An Adjacency List

• A list of pointers, one for each node of the graph.

• These pointers are the start of a linked list of nodes that can be reached
by one edge of the graph.

• For a weighted graph, this list would also include the weight for each

edge.

265

Adjacency List Example 1

266

Adjacency List Example 2

267

Graph Traversals

• Some algorithms require that every vertex of a graph be visited exactly
once.

• The order in which the vertices are visited may be important, and may
depend upon the particular algorithm.

• The two common traversals:

- depth-first

- breadth-first

268

Graph Traversals: Depth First Search Traversal

• We follow a path through the graph until we reach a dead end.

• We then back up until we reach a node with an edge to an unvisited

node.

• We take this edge and again follow it until we reach a dead end.

• This process continues until we back up to the starting node and it has
no edges to unvisited nodes.

269

Breadth First Search Traversal

• From the starting node, we follow all paths of length one.

• Then we follow paths of length two that go to unvisited nodes.

• We continue increasing the length of the paths until there are no

unvisited nodes along any of the paths.

270

Breadth First Search Traversal Example

• Consider the following graph:

• The order of the breadth-first traversal of this graph starting at node 1 would be: 1, 2, 8,

3, 7, 4, 5, 9, 6

271

MODULE -V

272

Binary search trees: Binary search trees, properties and operations;
Balanced search trees: AVL trees; Introduction to M-Way search
trees, B trees; Hashing and collision: Introduction, hash tables, hash
functions, collisions, applications of hashing.

180

• In a BST, each node stores some information including a unique key
value, and perhaps some associated data. A binary tree is a BST iff, for
every node n in the tree:

• All keys in n's left subtree are less than the key in n, and
• All keys in n's right subtree are greater than the key in n.
• In other words, binary search trees are binary trees in which all values in

the node‘s left subtree are less than node value all values in the node‘s
right subtree are greater than node value.

273

Binary Search Trees

190
274

BST Example

275

Properties and Operations

A BST is a binary tree of nodes ordered in the following way:

i. Each node contains one key (also unique)

ii. The keys in the left subtree are < (less) than the key in its parent
node

iii. The keys in the right subtree > (greater) than the key in its parent
node

iv. Duplicate node keys are not allowed.

Operations - Inserting a node

276

A naïve algorithm for inserting a node into a BST is that, we start from
the root node, if the node to insert is less than the root, we go to left
child, and otherwise we go to the right child of the root.

 We then insert the node as a left or right child of the leaf node based
on node is less or greater than the leaf node. We note that a new node
is always inserted as a leaf node.

Operations - Inserting a node

277

• A recursive algorithm for inserting a node into a
 BST is as follows.Assume we insert a node N to

 tree T.
if the tree is empty, the we return new node N as the tree. Otherwise, the
problem of inserting is reduced to inserting the node N to left of right sub

trees of T, depending on N is less or greater than T. A definition is as follows.
Insert(N, T) = N if T is empty

= insert(N, T.left) if N < T
= insert(N, T.right) if N > T

Operations - Searching for a node

278

• Searching for a node is similar to inserting a node. We start from root, and
then go left or right until we find (or not find the node). A recursive

definition of search is as follows. If the node is equal to root, then we
return true. If the root is null, then we return false. Otherwise we

recursively solve the problem for T.left or T.right, depending on N < T or N >
T. A recursive definition is as follows.

• Search should return a true or false, depending on the node is found or
not.

= search(N, T.right) if N > T

186
279

Searching for a node

• Search(N, T) = false if T is empty Searching for a node is similar to
inserting a node. We start from root, and then go left or right until
we find (or not find the node).

• A recursive definition of search is as follows. If the node is equal
to root, then we return true. If the root is null, then we return
false. Otherwise we recursively solve the problem for T.left or
T.right, depending on N < T or N >
T. A recursive definition is as follows.

• Search should return a true or false, depending on the node is
found or not.

Search(N, T) = false if T is empty

= true if T = N

= search(N, T.left) if N < T

Operations - Deleting a node

280

• A BST is a connected structure. That is, all nodes in a tree are connected
to some other node. For example, each node has a parent, unless node
is the root. Therefore deleting a node could affect all sub trees of that
node. For example, deleting node 5 from the tree could result in losing
sub trees that are rooted at 1 and 9.

281

Balanced Search Trees

• A self-balancing (or height-balanced) binary search tree is any node-based
binary search tree that automatically keeps its height (maximal number of
levels below the root) small in the face of arbitrary item insertions and
deletions.

• AVL Trees: An AVL tree is another balanced binary search tree. Named after
their inventors, Adelson-Velskii and Landis, they were the first dynamically
balanced trees to be proposed. Like red-black trees, they are not perfectly
balanced, but pairs of sub-trees differ in height by at most 1, maintaining
an O(logn) search time. Addition and deletion operations also take O(logn)
time.

282

283

284

285

190

286

AVL Tree - Definition

AVL tree is a self-balancing Binary Search Tree (BST) where
the difference between heights of left and right subtrees
cannot be more than one for all nodes.

Named after their
inventor Adelson,
Velski & Landis,
 AVL trees

287

288

AVL trees are height balancing binary search tree. AVL tree
checks the height of the left and the right sub-trees and
assures that the difference is not more than 1. This difference
is called the Balance Factor.

balanceFactor=height(leftSubTree)−height(rightSubTree)

289

Balance Factor

290

AVL Tree Operations-

Search Operation
Insertion Operation
Deletion Operation

291

Kinds of Rotations
 There are 4 kinds of rotations possible in AVL Trees-

292

Right Rotation
If a tree becomes unbalanced, when a node is inserted into the
right subtree of the right subtree, then we perform a single left
rotation

293

Left Rotation
AVL tree may become unbalanced, if a node is inserted in the
left subtree of the left subtree. The tree then needs a right
rotation.

294

295

Right-Left Rotation

296

EXAMPLE:

CONSTRUCT AN AVL WITH THE GIVEN VALUES

63,9,19,27,18,108,99,81

297

Introduction to M-Way Search Trees

• A multiway tree is a tree that can have more than two children.
A multiway tree of order m (or an m-way tree) is one in which a
tree can have m children.

• Example:Multi way tree of order 5

298

Properties of M-way Search Trees

• m-way search tree is a m-way tree in which:

i. Each node has m children and m-1 key fields

ii. The keys in each node are in ascending order.

iii. The keys in the first i children are smaller than the ith key

iv. The keys in the last m-i children are larger than the ith key

• 4-way search tree

B -Trees

299

A B-tree is a self-balancing or perfectly height-balanced M-way
search tree.
that maintains sorted data and allows searches, sequential
access, insertions, and deletions in logarithmic time.

The B-tree is a generalization of a binary search tree in that a
node can have more than two children.

Unlike other self-balancing binary search trees, the B-tree is
well suited for storage systems that read and write relatively
large blocks of data, such as discs.

 It is commonly used in databases and file systems.

300

Properties of a B-Tree:
i. It is perfectly height-balanced and therefore every leaf

node is at the same depth.

ii. Every internal node, except the root, is at least half-full
i.e contains ceil(M/2) or more children.

iii. Every leaf node must contain ceil(M/2)-1 keys, where
ceil(x) is the ceiling function.

iv. The root may have any number of value(1 to M-1) when
M is the degree of the tree.

iv. Every leaf node must contain ceil(M/2)-1 keys, where
ceil(x) is the ceiling function.

301

Searching a B -Tree

• Start at the root and determine which pointer to follow based on a
comparison between the search value and key fields in the root node.

• Follow the appropriate pointer to a child node.

• Examine the key fields in the child node and continue to follow the
appropriate pointers until the search value is found or a leaf node is
reached that doesn't contain the desired search value.

302

Insertion into a B -Tree

• The condition that all leaves must be on the same level forces a
characteristic behavior of B-trees, namely that B-trees are not allowed to
grow at the their leaves; instead they are forced to grow at the root.

• When inserting into a B-tree, a value is inserted directly into a leaf. This
leads to three common situations that can occur:

i. A key is placed into a leaf that still has room.

ii. The leaf in which a key is to be placed is full.

iii. The root of the B-tree is full.

303

Insertion into a B -Tree

304

Insertion into a B -Tree

305

Insertion into a B -Tree

210

306

Deleting from a B -Tree

• The deletion process will basically be a reversal of the insertion process
- rather than splitting nodes, it's possible that nodes will be merged so
that B-tree properties, namely the requirement that a node must be at
least half full, can be maintained.

• There are two main cases to be considered:

i. Deletion from a leaf

ii. Deletion from a non-leaf

307

Deleting from a B -Tree

308

Deleting from a B -Tree

309

Hashing

• Hashing is the transformation of a string of characters into a usually
shorter fixed-length value or key that represents the original
string. Hashing is used to index and retrieve items in a database because
it is faster to find the item using the shorter hashed key than to find it
using the original value.

• Taking a very simple example of it, an array with its index as key is the
example of hash table. So each index (key) can be used for accessing
the value in a constant search time. This mapping key must be simple

• In a hashing system the keys are stored in an array which is called the
Hash Table. A perfectly implemented hash table would always
 promise an average insert/ delete / retrieval time of O(1).

310

311

Types of Hashing:

312

Hash Table is a data structure which stores data in an associative
manner. In a hash table, data is stored in an array format, where
each data value has its own unique index value.

 Access of data becomes very fast if we know the index of the
desired data.
Thus, it becomes a data structure in which insertion and search
operations are very fast irrespective of the size of the data. Hash
Table uses an array as a storage medium and uses hash
technique to generate an index where an element is to be
inserted or is to be located from.

Hash Table

313

Hashing Function

• A function which employs some algorithm to computes the key K
for all the data elements in the set U, such that the key K which is
of a fixed size. The same key K can be used to map data to a hash
table and all the operations like insertion, deletion and searching
should be possible. The values returned by a hash function are
also referred to as hash values, hash codes, hash sums, or
hashes.

314

315

Choice of hash function.
Really tricky!
To avoid collision (two different pairs are in the same the
same bucket.)
Size (number of buckets) of hash table.

Overflow handling method.
Overflow: there is no space in the bucket for the new pair.

316

Choice of Hash Function

Requirements
easy to compute
minimal number of collisions

If a hashing function groups key values together, this is
called clustering of the keys.
A good hashing function distributes the key values
uniformly throughout the range.

317

Some hash functions

Middle of square
H(x):= return middle digits of x^2

Division
H(x):= return x % k

Multiplicative:
H(x):= return the first few digits of the fractional
part of x*k, where k is a fraction

318

Folding:
Partition the identifier x into several parts, and add the parts together
to obtain the hash address
e.g. x=12320324111220; partition x into 123,203,241,112,20; then
return the address 123+203+241+112+20=699
Shift folding vs. folding at the boundaries

Digit analysis:
If all the keys have been known in advance, then we could delete the
digits of keys having the most skewed distributions, and use the rest
digits as hash address.

319

 Collision

A collision occurs when two different keys hash to the same value
E.g. For TableSize = 17, the keys 18 and 35 hash to the same value
18 mod 17 = 1 and 35 mod 17 = 1

Cannot store both data records in the same slot in array!
Two different methods for collision resolution:

320

Two classes:
(1) Closed hashing or open addressing:
search for empty slots using a second function and store item in
first empty slot that is found
(2) Open hashing or separate chaining:

collision resolution

Separate Chaining: Use a dictionary data structure (such as
a linked list) to store multiple items that hash to the same
slot

Separate chaining = Open hashing

Closed hashing = Open addressing

321

Closed Hashing (Open Addressing)

• In this technique a hash table with pre-identified size is considered. All items
are stored in the hash table itself.

• While inserting, if a collision occurs, alternative cells are tried until an empty
bucket is found. For which one of the following technique is adopted.

• Liner Probing

• Quadratic probing

• Double hashing

322

D=8, keys a,b,c,d have hash values h(a)=3, h(b)=0, h(c)=4,
h(d)=3

Where do we insert d? 3 already filled

Probe sequence using linear hashing:

h1(d) = (h(d)+1)%8 = 4%8 = 4

h2(d) = (h(d)+2)%8 = 5%8 = 5*

h3(d) = (h(d)+3)%8 = 6%8 = 6

etc.

7, 0, 1, 2

Wraps around the beginning of the
table!

323

Main Idea: When collision occurs, scan down the array one cell at a time looking
for an empty cell

hi(X) = (Hash(X) + i) mod TableSize (i = 0, 1, 2, …)
Compute hash value and increment it until a free cell is found

324

Linear Probing Example

325

Drawbacks of Linear Probing

Works until array is full, but as number of items N approaches TableSize
(1), access time approaches O(N)

Very prone to cluster formation

Primary clustering – clusters grow when keys hash to values close to each
other

326

Quadratic Probing

Main Idea: Spread out the search for an empty slot
Increment by i2 instead of i

hi(X) = (Hash(X) + i2) % TableSize

h0(X) = Hash(X) % TableSize
h1(X) = Hash(X) + 1 % TableSize
h2(X) = Hash(X) + 4 % TableSize
h3(X) = Hash(X) + 9 % TableSize

327

Double hashing is one of the best methods for dealing with collisions.
If the slot is full, then a second hash function is calculated and combined
with the first hash function.
H(k, i) = (H1(k) + i H2(k)) % m

Double hashing

328

Double Hashing

Idea: Spread out the search for an empty slot by using a second hash function
No primary or secondary clustering

hi(X) = (Hash1(X) + iHash2(X)) mod TableSize
for i = 0, 1, 2, …
Integer keys:
Hash2(X) = R – (X mod R)
where R is a prime smaller than TableSize

329

330

331

Hashing with Separate Chaining

332

Problem with separate chaining:
 Memory consumed by pointers –
 32 (or 64) bits per key!

What if we only allow one Key at each entry?

two objects that hash to the same spot can’t both go there
first one there gets the spot
next one must go in another spot

333

A Comparative Analysis of Closed Hashing vs
Open Hashing

210

334

Applications of Hashing

• A hash function maps a variable length input string to fixed length output
string -- its hash value, or hash for short. If the input is longer than the
output, then some inputs must map to the same output -- a hash collision.

• Comparing the hash values for two inputs can give us one of two answers:
the inputs are definitely not the same, or there is a possibility that they are
the same. Hashing as we know it is used for performance improvement,
error checking, and authentication.

• In error checking, hashes (checksums, message digests, etc.) are used to
detect errors caused by either hardware or software. Examples are TCP
checksums, ECC memory, and MD5 checksums on downloaded files.

211

335

Applications of Hashing

• Construct a message authentication code (MAC)

• Digital signature

• Make commitments, but reveal message later

• Timestamping

• Key updating: key is hashed at specific intervals
resulting in new key

336

THANK YOU

