

# **INSTITUTE OF AERONAUTICAL ENGINEERING**

(Autonomous) Dundigal,Hyderabad -500043

# **AERONAUTICAL ENGINEERING**

# **COURSE DESCRIPTION FORM**

| Course Title        | EXPERIMENTA      | EXPERIMENTAL AERODYNAMICS                                     |                      |         |  |  |  |  |  |  |  |
|---------------------|------------------|---------------------------------------------------------------|----------------------|---------|--|--|--|--|--|--|--|
| Course Code         | R15-A72120       |                                                               |                      |         |  |  |  |  |  |  |  |
| Class               | IV B.Tech I Seme | IV B.Tech I Semester                                          |                      |         |  |  |  |  |  |  |  |
| Year                | 2018-2019        | 2018-2019                                                     |                      |         |  |  |  |  |  |  |  |
| Regulation          | R15 – JNTUH      | R15 – JNTUH                                                   |                      |         |  |  |  |  |  |  |  |
| Course Structure    | Lectures         | Tutorials                                                     | Practical's          | Credits |  |  |  |  |  |  |  |
| Course Structure    | 4                | 1                                                             | -                    | 4       |  |  |  |  |  |  |  |
| Course Coordinator  | Mr. Shiva Prasad | l U, Asst. Professor                                          | , Aeronautical Engin | eering  |  |  |  |  |  |  |  |
| Team of Instructors | Mr. Shiva Prasad | Mr. Shiva Prasad U, Asst. Professor, Aeronautical Engineering |                      |         |  |  |  |  |  |  |  |

### I. COURSEOVERVIEW

This course introduces the basic concepts underlying in performing experiments in aerodynamics which is the foundation for aerodynamics in the field Aeronautical Engineering. The emphasis of this course is laid on understanding the concepts of similarity, errors in experimentation, design of experimental facility, physics and instrumentation used for measurement of parameters like pressure, velocity, temperature and fundamentals of flow visualization techniques.

### **II. PREREQUISITE(S)**

| Level | Credits | Periods | Prerequisite        |
|-------|---------|---------|---------------------|
| UG    | 4       | 4       | Mechanics of Fluids |
| UG    | 4       | 4       | Aerodynamics I      |
| UG    | 4       | 4       | Aerodynamics II     |

#### **III. MARKS DISTRIBUTION**

| Sessional Marks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | University End<br>Exam Marks | Total<br>Marks |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|----------------|
| There shall be 2 midterm examinations. Each midterm examination consists of subjective test and objective type tests. The subjective test is for 10 marks of 60 minutes duration. Subjective test of shall contain 4 questions; the student has to answer 2 questions, each carrying 5 marks. The objective type test is for 10 marks of 20 minutes duration. It consists of 10 Multiple choice and 10 objective type questions, the student has to answer all the questions and each carries half mark.<br>First midterm examination shall be conducted for the first two and half units of syllabus and second midterm examination shall be conducted for the remaining portion.<br>Five marks are earmarked for assignments. There shall be two assignments in every theory course. Marks shall be awarded considering the average of two. |                              | 100            |

# IV. EVALUATION SCHEME

| S.No | Component            | Duration   | Marks |  |  |
|------|----------------------|------------|-------|--|--|
| 1    | I Mid examination    | 80 minutes | 20    |  |  |
| 2    | I Assignment         |            | 05    |  |  |
| 3    | II Mid examination   | 80 minutes | 20    |  |  |
| 4    | II Assignment        |            | 05    |  |  |
| 5    | External examination | 3 hours    | 75    |  |  |

#### V. COURSEOBJECTIVES

#### The objective of the teacher is to impart knowledge and abilities to the students to:

- I. Describe basic fundamentals of Aerodynamics experiments, their need in comparison with numerical computation and theoretical studies.
- I. Develop concepts of flow similarity and illustrate the importance of non-dimensional numbers and their use.
- III. Explain the design procedure of wind tunnel and demonstrate the process in designing a practical wind tunnel.
- IV. Analyze the concept of force and moment measurement using wind tunnel balances and extrapolate it to new balancedevelopment.
- V. Summarize various pressure, velocity, temperature measurement techniques and flow visualization methods.

#### VI. COURSEOUTCOMES

#### After completing this course the student must demonstrate the knowledge and ability to:

- 1. Define requirement of aerodynamic experiments for various speeds and to measure at varying speeds by using controller.
- 2. Distinguish various types of tunnels based of their purpose of build.
- 3. Differentiate the accuracies and precision of methods and results between numerical computations, theoretical solutions and experimental.
- 4. Illustrate the process of design of low speed windtunnel.
- 5. Emphasize on the correctness of the design of a given low speed wind tunnel and of the numerical data obtained from various sensors andtransducers.
- 6. Interpret the data acquired from various sensors and images of flowvisualization.
- 7. Design complete wind tunnel and instrumentation required for a givenexperiment.
- 8. Evaluate the models for testing in wind tunnel at different speeds using various equipment's to test the variables.practical elements of experimental aerodynamics and to develop an appreciation for how aerodynamic data are acquired;
- 9. Provide the students with an opportunity to apply modern instrumentation and measurement techniques to the acquisition of aerodynamic data and understand the inherent limitations of each technique;
- 10. Become proficient in estimating experimental uncertainty in the model testing and to find the inputs for the multidisciplinary analysis.
- 11. Critically analyse the results of their experiments and present them in a concise and logical fashion, both in written and oral forms;

- 12. Gain experience using embedded microprocessors for experimental applications.
- 13. Steady and unsteady pressure measurements and various types of pressure probes and transducers, errors in pressure measurements.
- 14. Measurement of temperature using thermocouples, resistancethermometers, temperature sensitive paints and liquid crystals.
- 15. Understand the optimal methods and apply it to various systems of visualization for subsonic and supersonic speeds.

#### VII. HOW PROGRAM OUTCOMES ARE ASSESSED

|      | Program outcomes                                                                                                                                                                                                                                                | Level | Proficiency<br>assessed by |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------------------|
| PO1  | <b>General knowledge:</b> An ability to apply the knowledge of mathematics, science and Engineering for solving multifaceted issues of Aeronautical Engineering                                                                                                 | S     | Assignments                |
| PO2  | <b>Problem Analysis:</b> An ability to communicate effectively and to prepare formal technical plans leading to solutions and detailed reports for Aeronauticalsystems                                                                                          | S     | Exercise                   |
| PO3  | <b>Design/Development of solutions:</b> To develop Broad theoretical knowledge<br>in Aeronautical Engineering and learn the methods of applying them to<br>identify, formulate and solve practical problems involving Aerodynamics                              | Н     | Assignments                |
| PO4  | <b>Conduct investigations of complex problems</b> : An ability to apply the techniques of using appropriate technologies to investigate, analyze, design, simulate and/or fabricate/commission complete systems involving complex aerodynamics flow situations. | Н     | Exercise                   |
| PO5  | <b>Modern tool usage:</b> An ability to model real life problems using different hardware and software platforms, both offline and real-time with the help of various tools along with upgraded versions.                                                       | -     |                            |
| PO6  | <b>The engineer and society</b> : An Ability to design and fabricate modules, control systems and relevant processes to meet desired performance needs, within realistic constraints for social needs                                                           | -     |                            |
| PO7  | <b>Environment and sustainability:</b> An ability To estimate the feasibility, applicability, optimality and future scope of power networks and apparatus for design of eco-friendly with sustainability                                                        | -     |                            |
| PO8  | <b>Ethics:</b> To Possess an appreciation of professional, societal, environmental and ethical issues and proper use of renewableresources                                                                                                                      | -     |                            |
| PO9  | <b>Individual and team work:</b> An Ability to design schemes involving signal sensing and processing leading to decision making for real time Aeronautical systems and processes at individual and team levels.                                                | -     |                            |
| PO10 | <b>Communication:</b> an Ability to work in a team and comprehend his/her scope of work, deliverables, issues and be able to communicate both in verbal ,written for effective technical presentation                                                           | -     |                            |
| PO11 | <b>Life-long learning</b> : An ability to align with and upgrade to higher learning and research activities along with engaging in life-longlearning.                                                                                                           | Н     | Discussions                |
| PO12 | <b>Project management and finance</b> : To be familiar with project management problems and basic financial principles for a multi-disciplinary work                                                                                                            | -     |                            |

S- Supportive H – HighlyRelated

#### VIII. HOW PROGRAM SPECIFIC OUTCOMES AREASSESSED

|       | Program Specific Outcomes                                                                                                                                                                                                                 | Level | Proficiency<br>assessed by |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------------------|
| PSO 1 | <b>Professional skills:</b> Able to utilize the knowledge of aeronautical/aerospace engineering in innovative, dynamic and challenging environment for design and development of new products                                             | Н     | Lectures,<br>Assignments   |
| PSO 2 | <b>Problem solving skills:</b> imparted through simulation language skills and general purpose CAE packages to solve practical, design and analysis problems of components to complete the challenge of airworthiness for flight vehicles | S     | Tutorials                  |
| PSO 3 | <b>Practical implementation and testing skills:</b> Providing different types of in house and training and industry practice to fabricate and test and develop the products with more innovative technologies                             | S     | Seminars and<br>Projects   |
| PSO 4 | <b>Successful career and entrepreneurship:</b> To prepare the students with broad aerospace knowledge to design and develop systems and subsystems of aerospace and allied systems and become technocrats                                 | -     |                            |

**S- Supportive** 

H - Highly Related

#### IX. SYLLABUS

#### UNIT – I

**Forms of Aerodynamic experiments**- observation, measurement-objectives, History- WRIGHT Brothers'wind tunnel, Model Testing- wind tunnel principles-scaling laws, scale parameters, similarity-geometric., kinematic & Dynamic. Wind tunnels- low speed- types, description. High Speed tunnels-transonic, supersonic, hypersonic, shock tubes, special tunnels- low turbulence, high Re, environmental tunnels, automobile tunnels- distinctive features, application.

#### UNIT – II

Low Speed Wind Tunnels-Detailed Design: Principal components- working section, diffuser, corners turning vanes, fan, straighteners, honeycombs, screens, contraction cone, fan, motor- function, description, design requirements, constraints, construction, performance- loss coefficients. Wind tunnel performance-flow quality, power losses. Wind Tunnel Corrections. Sources of inaccuracies- buoyancy, solid blockage, wake blockage, streamline curvature- causes, estimation and correction.

#### UNIT – III

**High Speed Tunnels and Low speed Balances**: High Speed Tunnels basic features of transonic wind tunnel, supersonic wind tunnel- blow down and suction- basic features, shock tubes & hypersonic gun tunnel. LOAD MEASUREMENT- low speed wind tunnel balances- mechanical & Strain gauge types,

Null Displacement methods & strain method, sensitivity, weigh beams - steel yard type and current balance type, balance linkages- levers & Pivots, model support- three point wire support, three point strut support, platform balance, yoke balance, strain gauge, 3-component strain gauge balance, description, application.

#### $\mathbf{UNIT}-\mathbf{IV}$

**Pressure, Velocity and Temperature Measurement:**Pressure, Velocity, Temperature measurements: Pressure: static Pressure- surface pressure orifice, static probes, pitot probe for total pressure, Mach number from pressure measurements, wedge & cone measurements- static pressure and flow angularity. Pressure sensitive paints, steady and unsteady pressure measurement and various types of pressure probes and transducers. Errors in pressure measurement. Temperature: measurement of temperature using thermocouples, resistance thermometers, temperature sensitive paints, and liquid crystals. Velocity: measurement of airspeed, flow direction, boundary layer profile using pitot static probe, 5 hole probe yaw meter, total head rake, Hot wire anemometry, Laser Doppler Anemometry/velocimetry. Particle Image

Velocimetry- working principle description of equipment, settings, calibration, measurement, dataprocessing, Applications.

#### $\mathbf{UNIT} - \mathbf{V}$

**Flow Visualization and Optical Methods:**Need, Streamlines, streak lines, Path lines, Time lines. Typestufts, china clay, oil film, smoke, hydrogen bubble, optical methods: density & refractive index, schileren system- convex lenses, knife edges, concave mirrors, Shadowgraph - working principle, description, setting up, operation, observation, recording, interpretation of imagery, relative merits & applications

#### **Textbooks**:

- 1. Low Speed Wind Tunnel Testing, Barlow JB, Rae WH, Pope A, Wiley1999.
- 2. HighSpeedWindTunnelTesting,PopeAandGoinKL,Wiley1965.
- 3. Experimental Fluid Mechanics, Bradshaw P., Pergamon Press, 1970.

#### **Reference books:**

- 1. Handbook of Flow Visualization, Yang WJ, Taylor & Francis, 2001.
- 2. Fluid Mechanics Measurements, Goldstein RJ, Taylor & Francis, 1996.
- 3. Handbook of Experimental Fluid Mechanics, Tropea C, YarinAL, Foss JF., Springer, 2007

# X. COURSE PLAN

The course plan is meant as a guideline. There may probably be changes.

| Lecture<br>No. | Course Learning Outcomes                                                                                                                     | Topics to be covered                                                                                                                              | Reference  |
|----------------|----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| 1              | Introduction to Aerodynamic experiments                                                                                                      | Explain the basics of Aerodynamic experiments                                                                                                     | T1:1.1     |
| 2-3            | observation, measurement- objectives                                                                                                         | Discuss the relation between observation, measurement- objectives                                                                                 | T1:1.1     |
| 4-8            | History- WRIGHT Brothers' wind tunnel                                                                                                        | Discuss History- WRIGHT Brothers' wind tunnel                                                                                                     | T1:2.1     |
| 9-10           | Model Testing- wind tunnel principles-<br>scaling laws, scale parameters                                                                     | Explain Model Testing- wind tunnel principles-<br>scaling laws, scale parameters                                                                  | T1:1.2-1.4 |
| 11             | Similarity- geometric, kinematic & Dynamic.                                                                                                  | Explain Similarity- geometric, kinematic & Dynamic.                                                                                               | T1:2.5     |
| 12             | Wind tunnels- low speed- types, description                                                                                                  | Explain Wind tunnels- low speed- types, description                                                                                               | T1:2.5-2.6 |
| 13             | High Speed tunnels- transonic, supersonic,<br>hypersonic, shock tubes, special tunnels-<br>low turbulence, high Re                           | Apply High Speed tunnels- transonic, supersonic,<br>hypersonic, shock tubes, special tunnels- low<br>turbulence, high Re                          | T1:2.6     |
| 14             | environmental tunnels, automobile tunnels-<br>distinctive features, application                                                              | Explain environmental tunnels, automobile tunnels- distinctive features, application                                                              | T1:2.5-2.6 |
| 15             |                                                                                                                                              | Knowing Principal components- working section,<br>diffuser, corners turning vanes, fan, straighteners,<br>honeycombs, screens                     | T1:3.1     |
| 16-19          | contraction cone, fan, motor- function,<br>description, design requirements,<br>constraints, construction, performance- loss<br>coefficients | Knowing contraction cone, fan, motor- function,<br>description, design requirements, constraints,<br>construction, performance- loss coefficients | T1:3.2-3.8 |
| 20             | power losses                                                                                                                                 | Knowing Wind tunnel performance- flow quality, power losses                                                                                       | T1:3.1-3.8 |
| 21-22          | inaccuracies- buoyancy, solid blockage,<br>wake blockage, streamline curvature-<br>causes, estimation and correction                         | estimation and correction                                                                                                                         | T1:9.1-9.8 |
| 23             | HIGH SPEED TUNNELS basic features of transonic wind tunnel,                                                                                  | Knowing HIGH SPEED TUNNELS basic features of transonic wind tunnel, supersonic                                                                    | T2:1.1-1.8 |

|       | supersonic wind tunnel                                                                                                                                                                                           | wind tunnel                                                                                                                                                                                                                          |                     |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| 24    | blow down and suction- basic features, shock tubes & hypersonic gun tunnel                                                                                                                                       | Knowing blow down and suction- basic features, shock tubes & hypersonic gun tunnel                                                                                                                                                   | T2:1.1-1.8          |
| 25    | LOAD MEASUREMENT- low<br>speed wind tunnel balances- mechanical &<br>Strain gauge types, Null Displacement<br>methods & strain method, sensitivity, weigh<br>beams - steel yard type and current balance<br>type | Knowing LOAD MEASUREMENT- low speed<br>wind tunnel balances- mechanical & Strain gauge<br>types, Null Displacement methods & strain<br>method, sensitivity, weigh beams - steel yard<br>type and current balance type                | T1:4.1-4.8          |
| 26    | balance linkages- levers & Pivots, model<br>support- three point wire support, three<br>point strut support, platform balance, yoke                                                                              | Knowing balance linkages- levers & Pivots,<br>model support- three point wire support, three<br>point strut support, platform balance, yoke<br>balance, strain gauge, 3-component strain gauge<br>balance, description, application. | T1: 4.1-<br>4.8     |
| 27    | pressure orifice, static probes, pitot probe                                                                                                                                                                     | Knowing PRESSURE: static Pressure- surface<br>pressure orifice, static probes, pitot probe for<br>total pressure, Mach number from pressure<br>measurements                                                                          | T1: 6.1-<br>6.8     |
| 28    | pressure and flow angularity. pressure sensitive paints                                                                                                                                                          | Exercise wedge & cone measurements- static pressure and flow angularity. pressure sensitive paints                                                                                                                                   | T1:6.10             |
| 29-30 |                                                                                                                                                                                                                  | Knowing Steady and unsteady pressure<br>measurement and various types of pressure<br>probes and transducers. Errors in pressure<br>measurement                                                                                       | T1: 6.1-<br>6.8     |
| 31-32 |                                                                                                                                                                                                                  | Knowing TEMPERATURE: measurement of temperature using thermocouples, resistance thermometers,                                                                                                                                        | T1:6.8              |
| 33-34 | temperature sensitive paints, and liquid crystals                                                                                                                                                                | Knowing temperature sensitive paints, and liquid crystals                                                                                                                                                                            | T1:11.1             |
| 35-36 |                                                                                                                                                                                                                  | Knowing VELOCITY: measurement of airspeed,<br>flow direction, boundary layer profile using pitot<br>static probe                                                                                                                     | T1:11.2             |
| 37-38 | 5 hole probe yaw meter, total head rake                                                                                                                                                                          | Knowing 5 hole probe yaw meter, total head rake                                                                                                                                                                                      | T1:11.7             |
| 39-40 | Hot wire anemometry                                                                                                                                                                                              | Knowing Hot wire anemometry                                                                                                                                                                                                          | T1:11.5             |
| 41-43 | Laser Doppler Anemometry/velocimetry                                                                                                                                                                             | Knowing Laser Doppler<br>Anemometry/velocimetry                                                                                                                                                                                      | T1:15.1-<br>15.5    |
| 44-46 | Particle Image Velocimetry                                                                                                                                                                                       | Knowing Particle Image Velocimetry                                                                                                                                                                                                   | T1:12.1             |
| 47-48 | Streamlines, streak lines, Path lines, Time lines                                                                                                                                                                | Knowing Streamlines, streak lines, Path lines, Time lines                                                                                                                                                                            | T1:11.9             |
| 49-50 | Types- tufts, china clay                                                                                                                                                                                         | Exercise Types- tufts, china clay                                                                                                                                                                                                    | T1:11.11,<br>15.18  |
| 51-53 | oil film, smoke, hydrogen bubble,                                                                                                                                                                                | Knowing oil film, smoke, hydrogen bubble                                                                                                                                                                                             | T1:3.4,3.7<br>,3.10 |
| 54-56 | refractive index                                                                                                                                                                                                 | Knowing OPTICAL METHODS: density & refractive index                                                                                                                                                                                  | T1:3.2-3.3          |
| 57-58 | schileren system- convex lenses, knife edges, concave mirrors,                                                                                                                                                   | Knowing schileren system- convex lenses, knife edges, concave mirrors                                                                                                                                                                | T1:3.5-3.6          |
| 59-61 | Shadowgraph                                                                                                                                                                                                      | Knowing Shadowgraph                                                                                                                                                                                                                  | T1:3.9              |
| 62-64 | Problems                                                                                                                                                                                                         | Exercise                                                                                                                                                                                                                             | T1:3.11             |

# XI. MAPPING COURSE OBJECTIVES LEADING TO THE ACHIEVEMENT OF THE PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES

| Course     | Program Outcomes           |       |     |            |     |     |            |     |        |         |      | Program Specific<br>Outcomes |      |      |      |      |
|------------|----------------------------|-------|-----|------------|-----|-----|------------|-----|--------|---------|------|------------------------------|------|------|------|------|
| Objectives | <b>PO1</b>                 | PO2   | PO3 | <b>PO4</b> | PO5 | PO6 | <b>PO7</b> | PO8 | PO9    | PO10    | PO11 | PO12                         | PSO1 | PSO2 | PSO3 | PSO4 |
| Ι          | Н                          |       |     |            | S   |     |            |     |        |         |      |                              | S    |      |      |      |
| II         |                            |       |     |            | S   |     |            |     |        |         | Н    |                              |      |      | S    |      |
| III        | Н                          |       | S   |            |     |     |            |     |        |         |      |                              |      | Н    |      |      |
| IV         |                            | S     |     |            |     |     |            |     |        |         | Н    |                              |      |      | S    |      |
| V          |                            |       |     |            |     |     |            |     |        |         |      |                              | Н    |      |      |      |
|            | $\mathbf{S} = \mathbf{Su}$ | pport | ive |            |     |     |            | H = | Highly | yrelate | d    |                              |      |      |      |      |

# XII. MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF THE PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES

| Course   |            | Program Outcomes |        |            |     |     |            |     |     |             |      |         | Pr      | Program Specific<br>Outcomes |      |      |  |
|----------|------------|------------------|--------|------------|-----|-----|------------|-----|-----|-------------|------|---------|---------|------------------------------|------|------|--|
| Outcomes | <b>PO1</b> | PO2              | PO3    | <b>PO4</b> | PO5 | PO6 | <b>PO7</b> | PO8 | PO9 | <b>PO10</b> | PO11 | PO12    | PSO1    | PSO2                         | PSO3 | PSO4 |  |
| 1        |            |                  |        | S          |     |     |            |     |     |             |      |         |         |                              |      |      |  |
| 2        |            | S                |        |            |     |     |            |     |     |             |      |         |         |                              |      |      |  |
| 3        | S          |                  |        |            |     |     |            |     |     |             |      |         | S       | Н                            | S    |      |  |
| 4        | Н          |                  |        |            |     |     |            |     |     |             |      |         |         |                              |      |      |  |
| 5        |            |                  | Η      |            |     |     |            |     |     |             |      |         |         |                              |      |      |  |
| 6        | Н          |                  |        |            |     |     |            |     |     |             |      |         | S       |                              | S    |      |  |
| 7        |            |                  |        |            |     |     |            |     |     |             |      |         |         |                              |      |      |  |
| 8        |            |                  |        |            |     |     |            |     |     |             |      |         |         |                              |      |      |  |
| 9        |            | S                |        |            | S   |     |            |     |     |             |      |         |         |                              |      |      |  |
| 10       | S          |                  |        |            |     |     |            |     |     |             |      |         | S       |                              |      |      |  |
| 11       | Н          |                  |        |            | S   |     |            |     |     |             |      |         |         |                              |      |      |  |
| 12       |            |                  | Н      |            |     |     |            |     |     |             |      |         |         |                              |      |      |  |
| 13       | Н          |                  |        |            |     |     |            |     |     |             |      |         | S       |                              | S    |      |  |
| 14       |            |                  |        |            |     |     |            |     |     |             |      |         |         | Н                            |      |      |  |
| 15       |            |                  |        | S          |     |     |            |     |     |             |      |         |         |                              |      |      |  |
|          | S          | = Suj            | pporti | ve         |     |     |            |     |     |             | H    | = Highl | yrelate | ed                           |      |      |  |

Prepared by: Mr. Shiva Prasad U, Assistant Professor,

HOD, AE