

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad - 500 043

ELECTRICAL AND ELECTRONICS ENGINEERING

COURSE DESCRIPTION FORM

Course Title	ELECTRONIC (ELECTRONIC CIRCUITS						
Course Code	A40413							
Regulation	R15							
Course Structure	Lectures	Lectures Tutorials Practicals Credits						
	4			4				
Course Coordinator	Ms ANUSHA .N , Assistant Professor							
Team of Instructors	Ms ANUSHA .N ,	Ms ANUSHA .N , Assistant Professor						

I. COURSE OVERVIEW:

The course is an introduction to Electronic Circuits which are the applications such as amplifiers oscillators and multi vibrators. This course deals with single stage amplifiers, feedback amplifiers and design aspects of power amplifiers to drive loud speakers. The lectures introduce basic ideas of Non-linear wave shaping such as Clippers &Clampers and linear wave shaping, their responses to sine, step, pulse, square and ramp inputs. The lecturers also cover the design and analysis of different types of multi vibrators and switching characteristics of devices such as diode, transistor and their design, switching times.

PREREQUISITES:

Level	Credits	Periods	Prerequisite	
UG	4	4	 1.Knowledge of electronic circuits 2.Knowledge of Amplifiers 3. knowledge of pulse circuits 	

II. COURSE ASSESSMENT METHODS:

a) Marks distribution:

Session marks	University end exam marks	Total marks
There shall be two mid tem examinations. Each id term exam consists of subjective type and objective type test.		
The subjective test is for 10 marks, with duration of 1 hour. Subjective test of each semester shall contain four questions; the student has to answer two out of them. Each carrying 5 marks The objective test paper Is prepared by JNTUH, which consists of 20 questions each carrying 0.5 marks and total of 10 marks.	75	100
The student is assessed by giving two assignments, one, after completion of 1 to 4 units and the second, after the completion of 4 to 8 units each carrying 5 marks. On the total the internal marks are 25.		

The average of two internal tests is the final internal marks.	
The external question paper is set by JNTUH consisting of 8 questions each	
carrying 15 marks out of which 5 questions are to be answered their by external	
examination is of total 75 mark	

III. EVALUATION SCHEME:

S. No	Component	Duration	Marks
1	I Mid Examination	90 minutes	20
2	I Assignment		05
3	II Mid Examination	90 minutes	20
4	II Assignment		05
5	External Examination	3 hours	75

IV. COURSE OBJECTIVE:

At the end of the course, the students will be able to:

- a) Understand the classification of amplifiers and Approximation model of transistor and also know the types of feedback amplifiers
- b) To understand the concepts of frequency response of BJT&FET amplifiers and their design & construction of amplifier circuits to amplify signals at various frequencies.
- c) Design and analysis of Multi-vibrators and Non-Linear wave shaping(Clippers & Clampers) circuit
- d) To design, construct and analyze power amplifiers to achieve better efficiencies and also to analyze Linear wave shaping circuits for different inputs
- e) To make the students to understand the switching times of diode and transistor.

v. COURSE OUTCOMES:

After completing this course the student must demonstrate the knowledge and ability to:

- 1. Understand working principles of electronic measuring instruments.
- 2. Understand advantages & applications of electronic measuring instruments.
- 3. Understand design and analysis of electronic voltmeters, ammeters and ohmmeters
- 4. To apply the operating knowledge of major electronic measuring instruments& advanced meters toselect and used for Engineering problems by making use of modern instruments.

VI. HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program outcomes	Level	Proficiency assessed by
PO1	Engineering knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.	Н	Assignments
PO2	Problem Analysis : Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.	S	Exercise

PO3	Design/Development of Solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.	Н	Projects
PO4	Conduct Investigations of Complex Problems : Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.	N	
PO5	Modern Tool Usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.	S	Discussion, Seminars
PO6	The Engineer and Society : Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.	S	Exercise
PO7	Environment and Sustainability : Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.	Н	Discussion, Seminars
PO8	Ethics : Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.	S	Discussions
PO9	Individual and Team Work : Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.	S	Discussions
PO10	Communication : Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.	S	Discussion, Seminars
PO11	Project Management and Finance : Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.	S	Discussions, Seminars
PO12	Life – Long Learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.	S	Prototype, discussions

N= None

S=Supportive

H=highly related

VII. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program Specific Outcomes	Level	Proficiency assessed by
PSO1	Professional Skills: Able to utilize the knowledge of high voltage engineering in collaboration with power systems in innovative, dynamic and challenging environment, for the research based team work.	S	Lectures, Assignments
PSO2	Problem-Solving Skills: Can explore the scientific theories, ideas, methodologies and the new cutting edge technologies in renewable energy engineering, and use this erudition in their professional development and gain sufficient competence to solve the current and future energy problems	N	

	universally.			
PSO3		process controllers, transducers and HMI trical and electronics principles to install, test	S	Guest Lectures
	N - None	S - Supportive	H - Highly	Related

VIII. SYLLABUS

UNIT - I

Single stage Amplifiers Design and Analysis:

Review of CE, CB, CC& CS amplifiers-Classification of Amplifiers, Distortion in amplifiers-Approximate analysis, CE, CB, CC amplifiers comparison.

Feedback Amplifiers:

Concept of feedback, classification of feedback amplifiers, General characteristics of feedback amplifiers, Effect of feedback on Amplifier characteristics- Voltage series- Voltage shunt, Current series and Current shunt feedback configurations- Simple problems.

UNIT - II

BJT & FET Frequency Response:

Logarithms Decibels, General frequency considerations, Low frequency Analysis, Low frequency response of BJT amplifiers, Low frequency response of FET amplifier, Miller effect capacitance, High frequency response of BJT amplifier, Square wave testing

UNIT - III

Multivibrators:

Analysis and Design of Bi-stable, Monostable, Astable - multivibrator and Schmitt trigger using Transistors

Clippers and Clampers:

Diode clippers, Transistor clippers, clipping at two independent levels, Transfer characters of clippers, Emitter coupled clipper, Comparators, applications of voltage comparators, Clamping operation, clamping circuits using diode with different inputs, clamping circuit theorem, practical clamping circuits, effect of diode characteristics on clamping voltage, Transfer characteristics of clampers.

UNIT - IV

Large signal Amplifiers:

s-A power Amplifier, Maximum value of efficiency of class-A Amplifier, Transformer coupled amplifier- Pushpull amplifier-Complimentary Symmetry circuits-Phase inverters, Transistor power Dissipation, Thermal runaway, Heat sinks.

Linear Wave shaping:

High pass, Low pass RC circuits, their response for sinusoidal, pulse, square and ramp inputs.

UNIT - V

Switching characteristics of devices:

Diode as a switch, piecewise linear diode characteristics, Transistor as a switch, Break down voltage considerations of transistor, saturation parameters of transistor and their variation with temperature, Design of transistor switch, transistor switching times.

TEXT BOOKS:

- 1. Electronic Devices and Circuit Theory, Robert L. Boylestad, Louis Nasheisky, 9th Edition 2007, Pearson Education.
- 2. Electronic Devices and Circuits by S. Salivahanan, N.Suresh Kumar and A.Vallavaraj, 2nd 2008, Tata McGraw Hill edition companies.
- 3. Solid state pulse circuits by David A. Bell, 4thedition, prentice Hall of India.

REFERENCES:

- 1. Introductory Electronic Devices and circuits-Robert T.Paynter, 7th edition 2009, PEI
- 2. Electronic Devices and circuits, Anil K.Mani, Varsha Agarwal, 1st edition WILEY.
- 3. Electronic Circuits by S. Salivahanan, N.Suresh Kumar and A.Vallavaraj, 2nd 2008, Tata McGraw Hill edition companies.
- 4. Pulse and Digital Circuits by A.Anand Kumar
- 5. Pulse, Digital and Switching Waveforms by Jacob Millman, Herbert Taub, Mothiki S. Prakash Rao (20083rd edition, Tata McGraw Hill edition companies.)

IX. COURSE PLAN:

At the end of the course, the students are able to achieve the following course learning outcomes:

Lecture . No.	CLO	Learning Outcomes	Unit No.	Topic to be covered	Reference
1-3	1	Memorize the characteristics of CE, CB , CC &CS amplifiers, classification and Distortions in amplifiers	Ι	Introduction, Transistor as an amplifier, Classification of amplifiers, Review of CE, CB, CC & CS amplifiers& Distortion in amplifiers	R3 1.45,1.68
4-10	2	Analyze the transistor models of CE, CB and CC amplifiers using h- parameters and distinguish among three amplifier circuits.		Approximate analysis, Analysis of a transistor using exact model, Approximate analysis of CE and CC amplifiers, Approximate analysis of CB amplifier and comparison of CE, BB, CE amplifiers	R3 1.33,1.41
10-14	3	Classify the feedback amplifiers and know the characteristics of negative feedback amplifiers.		Introduction to Feedback amplifiers and classification General characteristics of Negative feedback amplifiers	R3 3.1,3.5
16	4	Apply feedback on amplifier characteristics and know the effect.		Effect of feedback on amplifier characteristics.	R3 3.7
17-22	5	Analyze the feedback topologies of negative feedback amplifiers and problems		Voltage series, voltage shunt , current series and current shunt feedback configurations, Simple problems	R3 3.12,3.15,3 .17
23	6	Recall the frequency response of BJT & FET amplifiers.	II	Introduction to BJT & FET Frequency responses	R3 2.1
23	7	Define Logarithms-Decibels to solve transistor gain problems		Logarithms-Decibels	R3 2.3
24	8	Analyze the frequency response of different coupling schemes of amplifiers and low frequency BJT		General frequency considerations, Low frequency Analysis of BJT Low frequency response of BJT,	R3 2.7,2.9

		amplifier			
25	9	Examine the low frequency response of BJT and FET amplifiers.		Low frequency response of FET Miller effect capacitance	R32.14,2.18, 2.30
26-27	11	Explain the π -model (high frequency) model of transistor and understand the frequency response.		High frequency response of BJT	R3 2.20
28	12	Estimate different parameters of π - model. Test the frequency response for square wave input.		Problems on π -model of transistor Square wave testing	R3 2.19,2.21,2 .43
29	13	Describe about multivibrators	III	Introduction to Multivibrators	R4, 223
29-34	14	Design of multivibrators. Analyze bistable, monostable and astable multivibrators		Analysis & Design of Bi-stable, Analysis & Design of Mono-stable, Analysis & Design of Astable multivibrator	R4,225,279, 299
35	15	Construct Schmitt trigger circuit using transistors and calculate LTP and UTP.		Schmitt trigger using Transistors	R4 261
36	16	Design multivibrators from given parameters		Problems on Multivibrators	R4, 269
37	17	Define Non-linear wave shaping		Introduction to Non-linear wave shaping	R4, 104
38-40	18	Explain the operation of different types of clippers to understand the operation of clippers.		Diode clippers and Transistor clippers ,Emitter coupled clipper, Clipping at two independent levels, Transfer characteristics of clippers	R4,111, 115,107
41	19	Write the applications of comparators.		Comparators, applications of voltage comparators	R4, 149
42-44	20	Discuss about clamping circuits, clamping theorem and effect of diode characteristics on clamping voltage.		Clamping operation, clamping circuits using diode with different inputs, Clamping circuit theorem, Practical clamping circuits, Effect of diode characteristics on clamping voltage, Transfer characteristics of clampers	R4,153,161,16 5
45-46	21	Classify power amplifiers based on the location of operating point.	IV	Introduction to Large signal amplifiers, Classification of Power amplifiers, Class- A power amplifier	R3, 5.2
47-49	22	Design of different types of power amplifiers and calculate efficiency of each amplifier.		Transformer coupled amplifier Push-Pull Amplifier, Complimentary Symmetry Circuits	R3,5.13, 5.19
50-53	23	Explain the operation of phase inverter and power dissipation in transistor.		Phase inverters, Transistor power dissipation, Thermal runway, Heat sinks Problems on power amplifiers	R3, 5.21,5.23
54	24	Define Linear wave shaping to understand linear circuits.		Introduction to Linear wave shaping.	R4, 1
55-57	25	Identify the high pass and Low pass circuits and their responses to different inputs.		High pass and Low pass RC circuits and their response for sine, step, pulse, square and ramp inputs	R4,5,10, 23
58-59	26	Compute upper 3dB frequency of low pass circuit.		Problems on Linear wave shapingers	R4,17

60-63	27	Describe the switching	V	Introduction to switching characteristics	R4 ,200,202
		characteristics of diode and transistor		of devices, Piecewise linear diode	
				characteristics Diode as a switch,	
				Transistor as a switch	
64	28	Explain the breakdown phenomenon		Breakdown voltage considerations of	R4,205
		of a transistor.		transistor	
65	29	Indicate the saturation parameters of		Saturation parameters of transistor and	R4,208,
		transistor and their variation with		their variation with temperature	209
		temperature.			
66-69	30	Design of a transistor switch and		Design of a transistor switch Diode	R4, 199,210,
		switching times of diode and		switching times witching times of a	203,
		transistor.		Transistor Problems on switching	
				characteristics of devices	

X. MAPPING COURSE OBJECTIVES LEADING TO THE ACHIEVEMENT OFPROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

Course Outcomes			Program Specific Outcomes												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
а	S	S	S		S	Η			S	S	S	S	S	S	S
b	S	S	Н	S	S	Η	S		S			S	S	S	S
с	S	Н	Н		S			S				S	S	Н	S
d	S	Н	Н	S	Н	S			S	S	S	S	S	S	S
e	Η	Н	S	S		Η	S		S	S	S	S	S	Н	S

S – **Supportive**

H - Highly Related

XI. MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF THE PROGRAM OUTCOME

Course	Program Outcomes													Program Specific Outcomes		
Objectives	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
1	Н	S	Н		S	Н		S	S	S	S	S	S	S	S	
2	S	S	Н	S	S	Н	S		S		S	S	S	Н	S	
3	S	S	Н	S	S		S		S		S	S	S	Н	S	
4	S	Η	Н	S	S	S			S	S	S	S	S	S	S	

S – **Supportive**

H - Highly Related

Prepared by: Ms. Anusha. N, Assistant Professor

HOD, ELECTRICAL AND ELECTRONICS ENGINEERING