

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad -500 043

ELECTRONICS AND COMMUNICATION ENGINEERING

COURSE DESCRIPTOR

Course Title	ELECTRONIC CIRCUIT ANALYSIS						
Course Code	AEC004						
Programme	B.Tech						
Semester	IV E	CE					
Course Type	Core						
Regulation	IARE - R16						
	Theory				Practical		
Course Structure	Lecture	s	Tutorials	Credits	Laboratory	Credits	
	3		1	3	3	2	
Chief Coordinator	Mr. J. Siva Ramakrishna, Assistant Professor						
Course Faculty			Swarna Latha, A i, Assistant Prof		ssor		

I. COURSE OVERVIEW:

The course will make them learn the basics to design and analysis of single stage and multistage amplifiers. Demonstrate the ability to analyze the frequency response of different types of amplifiers. Interpret the concept of feedback and classify various types of feedback amplifiers. Understand the principle of oscillation and design different types of oscillators. Further, design concepts of large signal (power) amplifiers are explained.

II. COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites	Credits
UG	AEC001	III	Electronic Devces and Circuits	4

III. MARKS DISTRIBUTION:

Subject	SEE Examination	CIA Examination	Total Marks
Electronic Circuit Analysis	70 Marks	30 Marks	100

~	Chalk & Talk	~	Quiz	~	Assignments	×	MOOCs
~	LCD / PPT	~	Seminars	~	Mini Project	×	Videos
×	Open Ended Expe	riments					

IV. DELIVERY / INSTRUCTIONAL METHODOLOGIES:

V. EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIA examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into five units and each unit carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each unit. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The emphasis on the questions is broadly based on the following criteria:

50 %	To test the objectiveness of the concept.
50 %	To test the analytical skill of the concept OR to test the application skill of the concept.

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 25 marks for Continuous Internal Examination (CIE), 05 marks for Quiz/ Alternative Assessment Tool (AAT).

Component	Theory		Total Marks
Type of Assessment	CIE Exam	Quiz / AAT	Total Warks
CIA Marks	25	05	30

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8th and 16th week of the semester respectively. The CIE exam is conducted for 25 marks of 2 hours duration consisting of two parts. Part–A shall have five compulsory questions of one mark each. In part–B, four out of five questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Quiz / Alternative Assessment Tool (AAT):

Two Quiz exams shall be online examination consisting of 25 multiple choice questions and are be answered by choosing the correct answer from a given set of choices (commonly four). Marks shall be awarded considering the average of two quizzes for every course. The AAT may include seminars, assignments, term paper, open ended experiments, five minutes video and MOOCs.

VI. HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program Outcomes (POs)	Strength	Proficiency assessed by
PO 1	Engineering knowledge: Apply the knowledge of	3	Lectures,
	mathematics, science, engineering fundamentals, and an		Assignments,
	engineering specialization to the solution of complex engineering problems.		Exercises
PO 2	Problem analysis : Identify, formulate, review research	2	Lab related exercises
	literature, and analyze complex engineering problems		
	reaching substantiated conclusions using first principles of		
	mathematics, natural sciences, and engineering sciences		
PO 5	Modern tool usage: Create, select, and apply appropriate	1	Design Exercises
	techniques, resources, and modern engineering and IT tools		
	including prediction and modeling to complex engineering		
	activities with an understanding of the limitations.		
PO 12	Life-long learning: Recognize the need for, and have the	1	Development of
	preparation and ability to engage in independent and life-long		Mini Projects
	learning in the broadest context of technological change.		

3 = **High; 2** = **Medium; 1** = Low

VII. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program Specific Outcomes (PSOs)	Strength	Proficiency assessed
			by
PSO 1	Professional Skills: An ability to understand the basic	3	Lectures and
	concepts in Electronics and Communication engineering		Assignments.
	and to apply them to various areas, like Electronics,		
	Communications, Signal processing, VLSI, Embedded		
	systems etc., in the design and implementation of complex		
	systems.		
PSO 2	Problem-Solving Skills: An ability to solve complex	-	-
	Electronics and Communication Engineering problems,		
	using latest hardware and software tools, along with		
	analytical skills to arrive cost effective and appropriate		
	solutions.		
PSO 3	Successful Career and Entrepreneurship: An	2	Guest lectures
	understanding of social-awarness and environmental-		
	wisdom along with ethical responsibility to have a		
	successful career and to sustain passion and zeal for real		
	world applications using optimal resources as an		
	Enterpreneur.		

3 = High; **2** = Medium; **1** = Low

VIII. COURSE OBJECTIVES (COs):

The c	The course should enable the students to:						
Ι	Design and analyse single stage and multi stage Amplifiers						
II	Analyse the frequency response of different types of Amplifiers						
III	Interpret the concept of feedback and classify various types of feedback amplifiers						
IV	Understand the principle of oscillation and design different types of oscillators						

IX. COURSE LEARNING OUTCOMES (CLOs):

CLO Code	CLO's	At the end of the course, the student will have the ability to:	PO's Mapped	Strength of Mapping
AEC004.01	CLO 1	Design various amplifier circuits using	PO 1, PO2,	2
		Bipolar Junction Transistors in Common	PO12	

CLO Code	CLO's	At the end of the course, the student will have the ability to:	PO's Mapped	Strength of Mapping
		Emitter, Common Base and Common		
		Collector configurations.		
AEC004.02	CLO 2	Understand the effect of coupling and	PO 1,PO2,	2
		bypass capacitances on frequency response	PO12	
		of single stage amplifiers.		
AEC004.03	CLO 3	Analyse various BJT amplifier circuits and	PO1, PO 2,	2
		their frequency responses at low, mid and	PO5	
		High frequencies.		
AEC004.04	CLO 4	Apply the usefulness of amplifiers using	PO 2, PO5	2
		semiconductor devices in various real time		
AEC004.05	CLO 5	circuit making. Understand and Remember the concept of	PO1, PO5	2
AEC004.03	CLU J	_	F01, F05	2
		Bipolar Junction Transistor amplifiers at		
1.5.0004.04	at a c	high frequencies.		
AEC004.06	CLO 6	Analyse various high frequency parameters	PO 2, PO12	2
		like Conductance's, resistances and		
		Capacitances in Hybrid- π model.		
AEC004.07	CLO 7	Design RC, Transformer and Direct	PO 1, PO5,	2
		coupling techniques used in multi stage	PO12	
		amplifiers and also Remember the		
		differences between them.		
AEC004.08	CLO 8	Analyze various multistage amplifiers such	PO 1, PO5	2
		as Darlington, Cascode (Common Emitter-		
		Common Base) etc.		
AEC004.09	CLO 9	Design the tuned circuits used in single	PO 2, PO5,	2
		tuned amplifier, double tuned amplifiers and	PO12	
		stagger tuned amplifiers.		
AEC004.10	CLO 10	Understand and Remember the conditions	PO 1, PO12	2
		required by an electronic circuit using	,	
		Bipolar Junction Transistor to act like an		
		Oscillator.		
AEC004.11	CLO 11	Design various sinusoidal Oscillators like	PO 1, PO2	2
/ILC004.11	CLO II	RC Phase shift, Wien bridge, Hartley and	101,102	2
		Colpitts oscillator for various frequency		
AEC004.12	CLO 12	ranges.	PO 1, PO2,	2
ALC004.12	CLO 12	Analyse the importance of positive feedback	PO12	2
		and negative feedback in connection in	1012	
AEC004.12	CL 0.12	electronic circuits.	DO 1 DO2	2
AEC004.13	CLO 13	Analyze various types of feedback	PO 1, PO2, PO12	2
		amplifiers like voltage series, current series,	1012	
		current shunt and voltage shunt.		
AEC004.14	CLO 14	-	PO 5, PO12	1
		amplifiers and large signal amplifiers using		
		Bipolar Junction Transistors.		
AEC004.15	CLO 15	Understand types of power amplifiers based	PO 1	3
		on position of Quiescent or operating point		
		on load lines and also understand its		
		parameters.		
	$CI \cap 16$	Design different types of power amplifiers	PO 5	1
AEC004.16	CLO 16	2 congin anterene types of power amprinters	100	
AEC004.16	CLO 10	for practical applications of desired	100	

CLO Code	CLO's	At the end of the course, the student will have the ability to:	PO's Mapped	Strength of Mapping
		distortion etc.		
AEC004.17		Acquire experience in building and troubleshooting simple electronic analog circuits using Bipolar Junction Transistor.	PO 1, PO5	2
AEC004.18		Acquire the knowledge and develop capability to succeed national and international level competitive examinations.	PO 1, PO5	2

3 = High; **2** = Medium; **1** = Low

X. MAPPING COURSE LEARNING OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

]	Progra	ım Ou	tcomes	s (POs))					ram Sp omes (l								
CLO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12			PSO3							
CLO 1	3	2										1	3									
CLO 2	3	2										1	3									
CLO 3	3	2			1								3									
CLO 4		2			1																	
CLO 5	3				1										2							
CLO 6		1										3	3									
CLO 7	3				1							1	3									
CLO 8	1				1								3									
CLO 9		2			2							1	3									
CLO 10	3											1	3									
CLO 11	3	2																				
CLO 12	2	3										2	3		2							
CLO 13	3	2										1										
CLO 14					1							1	3		2							
CLO 15	3																					
CLO 16					3								3		2							
CLO 17	2				1								3		2							
CLO 18	3				1								3									
<u>.</u>	3 = H	ligh; 2	$2 = \mathbf{M}0$	edium	; 1 =]	Low			-		-				3 = High; 2 = Medium; 1 = Low							

XI. ASSESSMENT METHODOLOGIES – DIRECT

CIE Exams	PO 1, PO 2,	SEE Exams	PO 1, PO 2, PO	Assignments	PO 1	Seminars	PO 2
	PO 5		5,PO 12				
Laboratory Practices	PO 1	Student Viva	-	Mini Project	-	Certification	-
Term Paper	-						

XII. ASSESSMENT METHODOLOGIES - INDIRECT

~	Early Semester Feedback	~	End Semester OBE Feedback
×	Assessment of Mini Projects by Experts		

XIII. SYLLABUS

UNIT – I
SINGLE STAGE AMPLIFIERS AND FREQUENCY RESPONSE :
Classification of amplifiers, overview of analysis of a transistor amplifier circuit using h-parameter,
Millers theorem and its dual, design of Single stage RC coupled amplifier using bipolar junction
transistor, low frequency response of bipolar junction transistor amplifier, analysis at low frequency,
effect of coupling and bypass capacitor.
UNIT – II
HIGH FREQUENCY RESPONSE OF AMPLIFIER :
The hybrid- π common emitter transistor model, hybrid π conductance and capacitance, effect of
coupling and bypass capacitors, common emitter short circuit current gain, current gain with resistive
load, alpha, beta cut-off frequencies, gain bandwidth product ,emitter follower at high frequencies.
UNIT – III
MULTI STAGE AMPLIFIERS AND TUNED AMPLIFIERS :
Multistage amplifier: Different coupling schemes used in amplifiers, RC coupled amplifiers, transformer
coupled amplifiers and direct coupled amplifiers, analysis of cascaded RC coupled bipolar junction
transistor amplifiers, cascode amplifiers, Darlington pair.
aunsistor umpriners, cuscode umpriners, Durinigtori punt
Tuned amplifiers: introduction, Q - factor, small signal tuned amplifier, effect of cascading single tuned
amplifiers on bandwidth, stagger tuned amplifiers, stability of tuned amplifiers.
UNIT – IV
FEEDBACK AMPLIFIERS AND OSCILLATORS :
Feedback amplifiers: Concept of feedback, classification of feedback amplifiers, general characteristics
of negative feedback amplifiers, analysis of voltage series, voltage shunt, current series and current shunt
feedback configurations, problems;
Oscillators: Classification of oscillator, conditions for oscillations, RC phase shift oscillator, generalized
analysis of LC oscillations, Hartley and Colpitts oscillators, Wien - bridge and crystal oscillators,
stability of oscillators.
UNIT – V
LARGE SIGNAL AMPLIFIERS:
Classification, class A large signal amplifiers, transformer coupled class A audio power amplifiers,
efficiency of class A amplifier, class B amplifier, efficiency of class B amplifier,
class B push-pull amplifier, complementary symmetry class B push-pull amplifier, distortion in power
amplifiers, thermal stability and heat sinks.
ampiniers, thermal submity and heat sinks.

TEXT BOOKS:

1	Jacob Millman , Christor C Halkias, —Integrated Electronicsl, Tata McGraw Hill, 1st Edition, 2008.
2	Sedra A.S., K.C. Smith,Micro Electronic Circuits, Oxford University Press, 6th Edition, 2013.
3	Donald A Neamen, — Electronic Circuits Analysis and Design , Tata McGraw Hill, 3 rd Edition, 2007.

REFERENCES:

1	David A. Bell —Electronic Devices & Circuits 5th Edition,. Oxford university press, 7 th Edition, 2009
2	S.Salivahna, N. Suresh kumar, -Electronic circuit analysisl, McGraw-Hill Education, 1 st Edition,
	2011.
3	Robert L. Boylestad, Louis Nashelsky, -Electronic Devices and Circuits Theoryl, Pearson
	education, 9 th Edition, 2008
4	K. Lal Kishore, —Electronic Circuit Analysisl, BS Publications, 1st Edition, 2004.

XIV. COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

Lecture No	Topics to be covered	CLOs	Reference
1-3	Describe Classification of amplifiers, overview of analysis of a transistor amplifier circuit using h-parameter.	CLO 1, CLO 2	T1:22.5 R1:2.3
4-6	Understand Millers theorem and its dual, design of Single stage RC coupled amplifier using bipolar junction transistor	CLO 2	T1:22.5 R1:2.4
7-9	Recall low frequency response of bipolar junction transistor amplifier, analysis at low frequency, effect of coupling and bypass capacitor	CLO 2	T1:22.6 R1:2.6
10-14	Describe The hybrid- π common emitter transistor model, hybrid π conductance and capacitance	CLO 3	T1:22.7 R1:4.4
15-16	Understand the effect of coupling and bypass capacitors.	CLO 2	T1:22.7 R1:4.10
17-20	Describe common emitter short circuit current gain, current gain with resistive load, alpha, beta cut-off frequencies.	CLO 5, CLO 6	T1:22.8 R1:4.15
21-23	Describe gain bandwidth product ,emitter follower at high frequencies	CLO 6	T1:22.9 R1:5.4
24-27	Understand multistage amplifier: Different coupling schemes used in amplifiers, RC coupled amplifiers, transformer coupled amplifiers and direct coupled amplifiers	CLO 7, CLO 8	T1:22.9 R1:5.8
28-30	Analysis of cascaded RC coupled bipolar junction transistor amplifiers, cascode amplifiers, Darlington pair	CLO 7	T1:23.10 R1:6.8
31-34	Describe tuned amplifiers introduction, Q - factor, small signal tuned amplifier, effect of cascading single tuned amplifiers on bandwidth, stagger tuned amplifiers, stability of tuned amplifiers.	CLO 9	T1:23.10 R1:6.13
35-38	Identify feedback amplifiers: Concept of feedback, classification of feedback amplifiers, general characteristics of negative feedback amplifiers, analysis of voltage series, voltage shunt	CLO 10, CLO 11	T1:23.9 R1:7.5
39-41	Distinguish current series and current shunt feedback configurations, problem	CLO 12	T1:23.10 R1:7.5
41-43	Understand oscillators: Classification of oscillator, conditions for oscillations, RC phase shift oscillator	CLO 10	T1:23.10 R1:8.1
44-46	Describe generalized analysis of LC oscillations, Hartley and Colpitts oscillators, Wien - bridge and crystal oscillators, stability of oscillators.	CLO 12	T1:23.1 R1:9.2
47-50	Explain efficiency of class A amplifier, class B amplifier, efficiency of class B amplifier, class B push- pull amplifier	CLO 13, CLO 14	T1:23.1 R1:9.4

Lecture No	Topics to be covered	CLOs	Reference
51-60	Describe complementary symmetry class B push-pull	CLO 15	T1:23.1
	amplifier, distortion in power amplifiers, thermal		R1:9.9
	stability and heat sinks		

XV. GAPS IN THE SYLLABUS - TO MEET INDUSTRY / PROFESSION REQUIREMENTS:

S NO	Description	Proposed actions	Relevance with POs	Relevance with PSOs
1	To improve standards and analyze the concepts.	Seminars	PO 1	PSO 1
2	Conditional probability, Sampling distribution, correlation, regression analysis and testing of hypothesis	Seminars / NPTEL	PO 2	PSO 1
3	Encourage students to solve real time applications and prepare towards competitive examinations.	NPTEL	PO 5	PSO 3

Prepared by: Mr. J Siva Ramakrishna, Assistant Professor

HOD, ECE