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COMPLEX FUNCTIONS 

Complex number 

For a complex number  z = x + iy, the number Re z = x is called the real part of z and the number Im z = y 

is said to be the its imaginary part. If x = 0, z is said to be a purely imaginary number.  

Definition : Let z = x + iy ∈ C. The complex number z = x − iy is called the complex conjugate of z  and  

|z| = 
22 yx   is said to be the absolute value or  the modulus of the complex number 

z. 

Functions of a Complex Variable  : 

  Let D be a nonempty set in C. A single-valued complex function or, simply, a complex function f : D → 

C is a map that assigns to each complex argument z = x + iy in D a unique complex number w = u + iv. 

We write w = f(z).  

           The set D is called the domain of the function f and the set f(D) is the range or the image of f. So, a 

complex-valued function f of a complex variable z is a rule that assigns to each complex number z in a set 

D one and only one complex number w. We call w the image of z under f.  

          If z = x + iy ∈ D, we shall write f(z) = u(x, y) + iv(x, y) or f(z) = u(z) + iv(z). The real functions u 

and v are called the real and, respectively, the imaginary part of the complex function f. Therefore, we can 

describe a complex function with the aid of two real functions depending on two real variables. 

Example 1.The function f : C → C, defined by f(z) = z 
3
 , can be written as f(z) = u(x, y) + iv(x, y), with 

u, v : R 
2
 → R given by u(x, y) = x 

3
 − 3xy

2
 , v(x, y) = 3x 

2
 y − y 

3
.  

Example 2.For the function f : C → C, defined by f(z) = e 
z
 , we have u(x, y) = e 

x
 cos y, v(x, y) = e 

x
 sin 

y, for any (x, y) ∈ R 
2
 . 

Limits of Functions :   Let D ⊆ C, a ∈ D ′ and f : D → C. A number l ∈ C is called a limit of the function 

f at the point a if for any V ∈ V(l), there exists U ∈ V(a) such that, for any z ∈ U ∩ D \ {a}, it follows that 

f(z) ∈ V . We shall use the notation l =lim
0zz

 f(z).  

Remark : If a complex function f : D → C possesses a limit l at a given point a, then this limit is unique. 

Exercise 1: Prove that  
z

z
zz




lim

0

 does not exist. 

 Solution: To prove that the above limit does not exist, we compute this limit as z → 0 on the real and on 

the imaginary axis, respectively. In the first situation, i.e. for z = x ∈ R, the value of the limit is 1. In the 

second situation, 
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 i.e. for z = i y, with y ∈ R, the limit is −1. Thus, the limit depends on the direction from which we   

approach  0, which implies that the limit does not exist.  

 

Differentiability of complex function: 

         Let w = f(z) be a given function defined for all z in a neighbourhood of z0.If  

z

zfzzf

z 





)()(
lim 00

0
 exists,the function f(z) is said to be derivable at z0 and the limit is denoted by 

)( 0

, zf  . )( 0

, zf  if exists is called the derivative of f(z) at z0. 

 

Exercise: f(z)= 
2z  is a function which is continuous at all z but not derivable at any z  0 

Solution:  Let f(z)=
2z  = zz  

    Then f(z)= 00 zz  

We have to prove that 
0

zz
lt


z=z0  and 0
0

zzlt
zz




     Thus 
0

zz
lt


00 zzzz   


0

zz
lt


f(z)=f(z0) 

The function is continuous at all z 

f(z0+ )z = zzzzzzzzzzzz  00000 ))((  

Now 
z

zzzzzz

z

zfzzf








 0000 )()(
 

Consider the limit as 0z  

Case 1:  let 0z along x-axis then xzyxx  0,  


0z

lt 00
00

0

0 )()(
zz

x

xxzxxz
lt

z

zfzzf

x












                            )1(  

Case 2: Let 0z  along y-axis then yizyyx  ,0  

00
00

0

0

0

))(()()()(
zz

yi

yiyizyiyiz
lt

z

zfzzf
lt

yz












          )2(  

Thus , from (1) and (2) for  f’(z0) to exists  
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i.e., 002 0000  zzzz  

f’(z) does not exists though f(z)= 
2z  is continuous at all z. 

 polar form of Cauchy-Riemann equation: 

Theorem:  

If ),(),()()(  rivrurefzf i   and f(z) is derivable at 0

00

i
erz   then 

 

Proof: Let 
irez   Then ),(),()()(  rivrurefzf i   

Differentiating   it with respect to r partially, 

iezf
r

z
zfzf

r
)(')(')( 









 

f’(z)= )(
11

rrii
ivu

er

f

e







                                                                )1(  

Similarly differentiating partially with respect to  





iriezf
z

zf
f

).(')(' 








 

 )(
1

)(' 
ivu

rie
zf

i
  )2(  

From (1) and (2) we have 

)(
1

)(
1


ivu

rie
ivu

e irri
  


 









u

r
i

v

r
ivu rr

11
 

Equating real and imaginary parts  ,we get 

 















 u

rr

v
and

v

rr

u 11
 

 















 u

rr

vv

rr

u 1
,
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Analytic function: 

A complex function is said to be analytic on a region  R if it is complex differentiable at every point in R . 

The terms holomorphic function, differentiable function, and complex differentiable function are 

sometimes used interchangeably with "analytic function". Many mathematicians prefer the term 

"holomorphic function" (or "holomorphic map") to "analytic function" .  

If a complex function is analytic on a region R , it is infinitely differentiable in R. 

Singularities: 

A complex function may fail to be analytic at one or more points through the presence of singularities, or 

along lines or line segments through the presence of branch cuts.  

     Eg. f(z)=
z

1
 is analytic every where except at z=0. 

    At z=0  )(, zf   does not exist. 

    So z=0 is an isolated singular point. 

Entire function: 

A complex function that is analytic at all finite points of the complex plane is said to be entire. A single-

valued function that is analytic in all but possibly a discrete subset of its domain, and at those singularities 

goes to infinity like a polynomial (i.e., these exceptional points must be poles and not essential 

singularities), is called a meromorphic function.  

Cauchy–Riemann equations: 

The Cauchy–Riemann equations on a pair of real-valued functions of two real variables u(x,y) and v(x,y) 

are the two equations: 

1. 
y

v

x

u









                                  

2. 
x

v

y

u









                             

Typically u and v are taken to be the real and imaginary parts respectively of a complex-valued function 

of a single complex variable z = x + iy,  f(x + iy) = u(x,y) + iv(x,y) 

 

Relation with harmonic functions: 

 Analytic functions are intimately related to harmonic functions. We say that a real-valued function h(x, 

y) on the plane is harmonic if it obeys Laplace’s equation:  

http://mathworld.wolfram.com/ComplexFunction.html
http://mathworld.wolfram.com/ComplexDifferentiable.html
http://mathworld.wolfram.com/HolomorphicFunction.html
http://mathworld.wolfram.com/HolomorphicFunction.html
http://mathworld.wolfram.com/ComplexFunction.html
http://mathworld.wolfram.com/Differentiable.html
http://mathworld.wolfram.com/Singularity.html
http://mathworld.wolfram.com/Singularity.html
http://mathworld.wolfram.com/BranchCut.html
http://mathworld.wolfram.com/EntireFunction.html
http://mathworld.wolfram.com/ComplexFunction.html
http://mathworld.wolfram.com/ComplexPlane.html
http://mathworld.wolfram.com/EntireFunction.html
http://mathworld.wolfram.com/Single-ValuedFunction.html
http://mathworld.wolfram.com/Single-ValuedFunction.html
http://mathworld.wolfram.com/Pole.html
http://mathworld.wolfram.com/EssentialSingularity.html
http://mathworld.wolfram.com/EssentialSingularity.html
http://mathworld.wolfram.com/MeromorphicFunction.html
https://en.wikipedia.org/wiki/Real_part
https://en.wikipedia.org/wiki/Imaginary_part
https://en.wikipedia.org/wiki/Complex_number
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y

h

x

h
. 

In fact, as we now show, the real and imaginary parts of an analytic function are harmonic. Let f = u + i v 

be analytic in some open set of the complex   plane.  

       Then, 
y

u

yx

u

xy

u

x

u



























2

2

2

2

 

                                   =  
x

u

yy

u

x 















                                 (using Cauchy–Riemann)  

                                   =
xy

u

yx

u








 22

    

                                          =0 

A similar calculation shows that v is also har monic. This result is important in applications because it 

shows that one can obtain solutions of a second order partial differential equation by solving a system of 

first order partial differential equations. It is particularly important in this case because we will be able to 

obtain solutions of the Cauchy–Riemann equations without really solving these equations.  

Given a harmonic function u we say that another harmonic function v is its harmonic conjugate if the 

complex-valued function f = u+i v is analytic. 

Conjugate harmonic function: 

If two harmonic functions  u and v satisfy  the Cauchy-Reimann equations in a domain D  and they are 

real and imaginary parts of an analytic function f in D  then v is said to be a  conjugate harmonic function 

of  u in D.If f(z)=u+iv is an analytic function  and if u and v satisfy Laplace’s equation ,then u and  v are 

called   conjugate harmonic functions. 

Polar form of cauchys Riemann equations: 

The Cauchy-Riemann equations can be written in other coordinate systems. For instance, it is not difficult 

to see that in the system of coordinates given by the polar representation z = r e
i

 these equations take the 

following form:  

                                                               























u

rr

v

v

rr

u

1

1

 

Problem: Show that the function f : C → C, defined by f(z) = 


z  does not satisfy the Cauchy-Riemann 

equations.  
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Solution:  Indeed, since u(x, y) = x, v(x, y) = −y, it follows that ∂u /∂x = 1, while ∂v/ ∂y = −1. So, this 

function, despite the fact that it is continuous everywhere on C, it is R differentiable on C, is nowhere C-

derivable. 

 

 

Problem: Show that the function 
zezf )(  satisfies the Cauchy-Riemann equations. 

Solution: 

 Since  (xz ee   cosy+i siny), 

 

Indeed     it follows that 

               u(x, y) =e
x
cosy,     v(x, y) =e

x
 siny 

And      
x

u




= e 

x
cosy = 

y

v




 ;     

y

u




= e 

x
siny = 

x

v




  ; 

 

Moreover,  e
z 
 is complex derivable and  it follows immediately that its

 
complex derivative is e

z
.
 

 

 

Holomorphic functions: 

Holomorphic functions are complex functions, defined on an open subset of the complex plane, that are 

differentiable. In the context of complex analysis, the derivative of   f   at z0 is defined to be   

0

0
0

' )()(
lim)(

0 zz

zfzf
zf

zz 





, cz . 

Construction of analytic function whose real or imaginary part is known: 

Suppose f(z)=u+iv is an analytic function ,whose real part u is known .We can find v, the imaginary part 

and also the function f(z). 

Problem: Showthat   0)('log
22

2 2
























zf

yx
where f(z) is an analytic function. 

Solution: Taking )(
22

,
2

zz
izz

y
zz

x 








  

We have 
























































y
i

xz

y

yz

x

xz 2

1

 

And 






















y
i

xz 2

1
 

https://en.wikipedia.org/wiki/Open_set
https://en.wikipedia.org/wiki/Differentiable_function
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Hence 4)('(log
2

2

2

2


















zf

yx zz

 2








 2
)('log

2

1
zf  

                                                          = 2
zz

 2

 ))](')('[(log zfzf               )(
2

zzz   

                                                          = 2
zz

 2

))](')('[(log zfzf   

                                                          = 2 

















_)('

)(''

)('

)(''

zf

zf

zzf

zf

z
            

                                                          = 2(0+0)=0 

Since f(z) is analytic , f(z) is analytic, )(' zf  is also analytic and 0
)('

,0
)('











z

zf

z

zf
 

Problem: Show that   f(z)=















0,0

0,
)(

42

z

z
yx

iyxxy

           is not analytic  at z=0 although C-R equations 

satisified at origin. 

Solution:      
z

zf

z

zf

z

fzf )(0)(

0

)0()(








             

                                        =
)().(

)(

).(

)(
42

2

42

2

42

2

yx

xy

zyx

zxy

zyx

iyxxy










    

Clearly 
lim

0
0



y

x  
)( 42

2

yx

xy


  =     

lim

0

0



x

y
)( 42

2

yx

xy


    =0 

Along  path y=mx 

           0
.1

.
0

.

).(
0

0

)0()(
0

24

22lim

442

22limlim













xm

xm
x

xmx

xmx
x

z

fzf
z   

    Along  path x=my
2
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0
1

0
.

).(
0

0

)0()(
0

2

lim

424

22limlim













m

m
y

ymy

ymy
y

z

fzf
z  

    Limit value depends on  m i.e on the path of approach and its different  for the different paths 

Followed  and therefore limit does not exists. 

Hence f(z) is not differentiable at z=0.Thus f(z) is not analytic at z=0 

To prove that C-R conditions are satisified at origin 

Let  ivuzf )(
)(

)(
42

2

yx

iyxxy




 

Then u(x,y)= 
)( 42

22

yx

yx


 and    v(x,y)= 

)( 42

3

yx

xy


 for  z 0  

Also u(0,0)=0   and v(0,0)= 0    [f(z)=0 at z=0] 

Now 




x

u lim

0x 0
0

0
)0,0()0,( lim




x
x

x

uxu
 

          




y

u lim

0y 0
0

0
)0,0(),0( lim




y
x

y

uyu
 

           




x

v lim

0x 0
0

0
)0,0()0,( lim




x
x

x

vxv
 

           




y

v lim

0y 0
0

0
)0,0(),0( lim




y
x

y

vyv
 

Thus C-R equations are satisified are satisified at the origin 

Hence f(z) is not analytic at z=0 even C-R equations are satisified at origin. 

Milne Thomson method: 

Problem:  Find the regular function whose imaginary part is yxyx 2)log( 22  . 

Solution:   Given v yxyx 2)log( 22   

1
2

22










yx

x

x

v
   -(1)         and 2

2
22









yx

y

y

v
  -(2) 
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    f’(z)   =    
x

v
i

y

v

x

v
i

x

u



















       (Using C-R equation) 

              =   













1

2
2

2
2222 yx

x

yx

y
     (using (1) ,(2)) 

By Milne Thomson method ,f’(z) is expressed in terms of z by replacing x z and y by 0. 

Hence 
















 1

2
21

2
2)('

2 z
i

z

z
izf       

On   integrating,  cdz
z

izf 















  1

2
2)(  

                                          = cziziczziz  )2(log2)log2(2 . 

 

Problem: Show that the function 234  xxyu is harmonic .construct the corresponding analytic 

function f(z)=u+iv in terms of z. 

Solution:  Given 234  xxyu (1) 

Differentiating (1) partially w.r.t .x, 34 



y

x

u
  

Again differentiating  0
2

2






x

u
 

Again differentiating (1)  partially w.r.t .y, x
x

u
4




 

Again differentiating  0
2

2






y

u
 







2

2

x

u
0

2

2






y

u
 

Hence u is Harmonic. 

Now )(' zf
x

u



 +i xiyzf
y

u
i

x

u

y

v
4.34)(' 














 

Using Milne Thomson method 
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)(' zf zi43  (Putting x=z and y=0) 

Integrating, czizzf  223)(  

 

Problem: Find the imaginary part of an analytic function whose real part is )sincos( yyyxe x  .
 

Solution:  Let ivuzf )(  where u= )sincos( yyyxex   

     )(' zf  
x

u




+i

x

v




   =   

x

u




-i

y

u




   (using  C-R equ) 

                  =   )]cossinsin([]cos)sincos([ yyyyxeiyeyyyxe xxx   

  By Milne’s method )(' zf zzzz ezeieze  )0()(  

Integrating, we get 

    f(z)= czeceezcdzeze zzzzz  )1()(  

i.e., ivu   = ceiyx iyx  )(  

                   = ceeiyx iyx  .)(  

                   = cyiyiyxe x  )sin)(cos(  

                   = 
xe cyyyiyyixyx  )sincossincos(  

               =  
xe cyyyxiyyyx  )]cossin()sincos[(

 

 

Bilinear Transformation-Mobius Transformations: 

Another important class of elementary mappings was studied by August Ferdinand Möbius (1790-

1868).  These mappings are conveniently expressed as the quotient of two linear expressions and are 

commonly known as linear fractional or bilinear transformations.  They arise naturally in mapping 

problems involving the function arc tan(z).  In this section, we show how they are used to map a disk one-

to-one and onto a half-plane.  An important property is that these transformations are conformal in the 

entire complex plane except at one point. 

    Let    denote four complex constants with the restriction that .  Then the 

function  

 

(10-13)             

http://www-groups.dcs.st-and.ac.uk/~history/Mathematicians/Mobius.html
http://mathfaculty.fullerton.edu/mathews/c2003/ConformalMappingMod.html
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is called  a bilinear transformation, a Möbius transformation, or a linear fractional transformation.    

If the expression for S(z) in Equation (10-13) is multiplied through by the quantity  ,  then the 

resulting expression has the bilinear form  .   

We collect terms involving z and write  .  Then, for values of    the inverse 

transformation is given by 

 

(10-14)            . 

    We can extend    to mappings in the extended complex plane.  The 

value    should be chosen to equal the limit of   as  .  Therefore we define 

 

                ,  

 

and the inverse is  .  Similarly, the value    is obtained by 

 

                , 

 

and the inverse is  .  With these extensions we conclude that the 

transformation    is a one-to-one mapping of the extended complex z-plane onto the extended 

complex w-plane.   

     We now show that a bilinear transformation carries the class of circles and lines onto itself.  If S(z) is 

an arbitrary bilinear transformation given by Equation (10-13) and  ,  then S(z)  reduces to a linear 

transformation, which carries lines onto lines and circles onto circles.  If , then we can write S(z) in 

the form   

http://mathworld.wolfram.com/MoebiusTransformation.html
http://mathworld.wolfram.com/LinearFractionalTransformation.html
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(10-15)                

    The condition    precludes the possibility that S(z) reduces to a constant.  Equation (10-

15) indicates that S(z) can be considered as a composition of functions.   

It is a linear mapping , followed by the reciprocal transformation ,  followed 

by  .  In Section 2.1 we showed that each function in this composition maps the 

class of circles and lines onto itself; it follows that the bilinear transformation S(z) has this property.  A 

half-plane can be considered to be a family of parallel lines and a disk as a family of circles.  Therefore 

we conclude that a bilinear transformation maps the class of half-planes and disks onto itself.  Example 

10.3 illustrates this idea. 

      The general formula for a bilinear transformation (Equation (10-13)) appears to involve four 

independent coefficients:  .  But as S(z) is not identically constant, either    or  

,  we can express the transformation with three unknown coefficients and write either 

 

                 or     ,   

 

respectively.  Doing so permits us to determine a unique a bilinear transformation if three distinct image 

values ,   , and    are specified.  To determine such a mapping, we can 

conveniently use an implicit formula involving z and w. 

 Theorem  10.3 (The Implicit Formula). There exists a unique bilinear transformation that maps three 

distinct points   onto three distinct points , respectively.  An implicit 

formula for the mapping is given by the equation     

 

(10-18)            .   

http://mathfaculty.fullerton.edu/mathews/c2003/ComplexFunLinearMod.html
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Example  1.  Construct the bilinear transformation  w = S(z)  that maps the 

points    onto the points  ,  respectively. 

                    

 

  Solution.  We use the implicit formula, Equation (10-18), and write   

 

             

 

             

 

            .    

Expanding this equation, collecting terms involving w and zw on the left and then simplify. 
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Therefore the desired bilinear transformation is   

 

            .   

  

Example  2.  Find the bilinear transformation  w = S(z)  that maps the 

points    onto the points  ,  respectively. 

                                                       

 

  

Solution:  Again, we use the implicit formula, Equation (10-18), and write   
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Using the fact that  ,  we rewrite this equation as   

 

            .     

We now expand the equation and obtain   

 

               

 

which can be solved for w in terms of z, giving the desired solution   

 

            .   

  

 Corollary  (The Implicit Formula with a point at Infinity).  In equation (10-18) the point at infinity 

can be introduced as one of the prescribed points in either the z plane or the w plane. 

Proof: 

 Case  1.  If  ,  then we can write    and substitute this expression 

into Equation (10-18) to obtain    which can be rewritten 

as   and simplifies to obtain   

     

            .   

 

Case 2.  If  ,  then we can write   and substitute this expression into 
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Equation (10-18) to obtain   which can be rewritten 

as    and simplifies to obtain 

 

(10-21)        .   

 

Example 1: Find the bilinear transformation    that maps the points   

             onto   ,   respectively. 

Solution:  Method I.   Use the implicit formula   .   

 

Substitute the values given above and get    

 

                    ,   

 

then simplify and get   

 

                    .   

 

Solving for w we obtain 

 

                     

 

Therefore,    

Solution:   Method II.   The general form of a bilinear transformation is 
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                    ,    and it is not the case that both . 

 

So the desired formula must have one of the following two forms: 

 

either        or    .   

Let us assume that the first form    is the one that works out. 

 

Then we can set up three equations to solve    for  :    

 

                    ,    

        

then simplify these equations get 

 

                    .   

 

The last equation is easy to solve and we get      and then the first equation yields   . 

 

Use these values to rewrite the second equation as      and then obtain   . 

 

Substituting these into      produces the desired result: 

 

                    . 

Example 2: Find the bilinear transformation    that maps the points   

             onto   ,   respectively.   

Solution:   Method I.   Use the implicit formula   .   

 

Substitute the values given above and get    

 

                    ,   

 

                    , 

 

then simplify and get   
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                    .   

 

Solving for w we obtain 

 

                        

 

                                           

 

Therefore,  .   

Solution:   Method II.   The general form of a bilinear transformation is 

 

                    ,    and it is not the case that both . 

 

So the desired formula must have one of the following two forms: 

 

either        or    .   

Let us assume that the first form    is the one that works out. 
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Then we can set up three equations to solve    for  :    

 

                    ,    

        

then simplify these equations get the system of equations   

 

                       

 

Add row 1 to row 3 and get   

 

                     

 

Divide row 2 by 1 and subtract it from row 1 to get   

 

                     

 

Use      to rewrite the second equation as      and then obtain   . 

 

Use      to rewrite the third equation as      and then obtain   . 

 

Substituting these into      produces the desired result: 

 

                    . 

Example 3: Find the bilinear transformation    that maps the points   

             on to   ,   respectively. 

Solution:    Method I.   Use the implicit formula .   

 

Substitute the values given above and get   ,   
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then simplify and obtain   .   

 

Therefore,    .  

Solution:   Method II.   The general form of a bilinear transformation is 

 

                    ,    and it is not the case that both . 

 

So the desired formula must have one of the following two forms: 

 

either        or    .   

Let us assume that the first form    is the one that works out. 

 

Then we can set up three equations to solve    for  :    

 

                    ,    

 

In the third equation we will take reciprocals and write it as   ,  then we have 

 

                    ,    

        

then simplify these equations get 

 

                    .   

 

Use    to rewrite the second equation as    then solve the system of two equations 

 

                     

 

subtracting the first equation from the second equation and get   . 

 

Use      in the first equation and get   .   

 

Substituting these into      produces the desired result: 

                     . 
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Example 4: Find the bilinear transformation    that maps the points   

             on to   ,   respectively. 

Solution:  Method I.   Use the implicit formula .   

 

Substitute the values given above and get    

 

                       

 

Therefore,    .    

Solution:   Method II.   The general form of a bilinear transformation is 

 

                    ,    and it is not the case that both . 

 

So the desired formula must have one of the following two forms: 

 

either        or    .   

Let us assume that the first form    is the one that works out. 

 

Then we can set up three equations to solve    for  :    

 

                    ,    

 

In the third equation we will take reciprocals and write it as   ,  then we have 
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                    ,    

        

then simplify these equations get 

 

                    .   

 

The first equation is easy to solve and we get    .   

 

Use    to rewrite the second equation as    then solve the system of two equations 

 

                       

 

Subtract the second equation from the first equation obtain      and get   . 

 

Use      in the second equation and get   .   

 

Substituting these into      produces the desired result: 

 

                     . 

Fixed Point: 

 A fixed point of a mapping    is a point  such that .   

Example 1: Show that a bilinear transformation,  ,  can have at most two fixed 

points. 

Solution: 

The equation     can be written as    

 

                    ,    

 

and this quadratic equation has, at most, two distinct solutions: 

 

                        

                     

                    and    
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                    .   

Example 2: Find the fixed points of  (a).  .  (b).  .   

Solution:   (a).  Solve the equation      for  z  and get   

 

         

 

Therefore, the fixed points of    are  .   

Just for fun, we can substitute    into  the formula  . 

 

                    ,    and   

 

                    .   

(b).   Solution:   Solve the equation      for  z  and get   
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Therefore, the fixed points of    are  .   

Just for fun, we can substitute    into  the formula  . 

 

                    ,    and   

 

                    . 

EXCERCISE PROBLEMS:    

u = 𝑒−2𝑥𝑦 sin(𝑥2 − 𝑦2)  is a 

harmonic function. Hence find its harmonic conjugate. 

2) Prove that the real part of analytic function f (z) where u = log|𝑧|2 is harmonic function. If so find 

the analytic function by Milne Thompson method. 

3) Obtain the regular function f (z) whose imaginary part of an analytic function is  
𝑥−𝑦

𝑥2+𝑦2 

4) Find an analytic function f (z) whose real part of an analytic function is u = 
𝑠𝑖𝑛2𝑥

𝑐𝑜𝑠ℎ2𝑦−𝑐𝑜𝑠2𝑥
 by Milne-

Thompson method. 

5) Find an analytic function f (z) = u +iv if the real part of an analytic function is u = a (1+cos𝜃) 

using Cauchy-Riemann equations in polar form. 

6) Prove that if 𝑢 =  𝑥2 − 𝑦2, 𝑣 = − 
𝑦

𝑥2+𝑦2  both u and v satisfy Laplace’s equation, but u + iv is not 

a regular (analytic) function of z. 

      7) Show that the function f (z) = √|𝑥𝑦|   is not analytic at the origin although Cauchy –Riemann 

equations are satisfied at origin. 

      8) If 𝑤 =  ∅ + 𝑖𝜑 represents the complex potential for an electric field where 𝜑 =  𝑥2 − 𝑦2 +
𝑥

𝑥2+𝑦2 

then determine the function 𝜑.  

     9) State and Prove the necessary condition for f (z) to be an analytic function in Cartesian form. 

  10) If 𝑢 and 𝑣 are conjugate harmonic functions then show that  𝑢𝑣 is also a harmonic function. 

    11) Find the orthogonal trajectories of the family of curves 𝑟 2𝑐𝑜𝑠2𝜃 = c 

        1) Show that the real part of an analytic function f (z) where  
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   12) Find an analytic function whose real part is u = 
𝑠𝑖𝑛2𝑥

𝑐𝑜𝑠ℎ2𝑦−𝑐𝑜𝑠2𝑥
 

  13) Find an analytic function whose imaginary part is v = 𝑒𝑥(𝑥𝑠𝑖𝑛𝑦 + 𝑦𝑐𝑜𝑠𝑦) 

  14) Find an analytic function whose real part is (i) u = 
𝑥

𝑥2+𝑦2 (ii) u = 
𝑦

𝑥2+𝑦2 

   15) Find an analytic function whose imaginary part is v =
2𝑠𝑖𝑛𝑥𝑠𝑖𝑛𝑦

𝑐𝑜𝑠ℎ2𝑥+𝑐𝑜𝑠ℎ2𝑦
 

  16) Find an analytic function f(z) = u +iv if u = a(1+cos𝜃) 

    17) Find the conjugate harmonic of u = 𝑒𝑥2−𝑦2
cos2xyand find f(z) in terms of z. 

   18) If f(z) is an analytic function of z and if u - v = 𝑒𝑥(𝑐𝑜𝑠𝑦 − 𝑠𝑖𝑛𝑦) find f(z) in terms of z. 

    19) If f(z) is an analytic function of z and if u - v = (x-y)(𝑥2 + 4𝑥𝑦 + 𝑦2)) find f(z) in terms of   z. 

20) Find the orthogonal trajectories of the family of curves 𝑥3𝑦 − 𝑥𝑦3= C = constant 
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LINE INTEGRAL 

Defination:  In mathematics, a line integral is an integral where the function to be integrated is evaluated 

along a curve. The terms path integral, curve integral, and curvilinear integral are also used; contour 

integral as well, although that is typically reserved for line integrals in the complex plane. 

The function to be integrated may be a scalar field or a vector field. The value of the line integral is the 

sum of values of the field at all points on the curve, weighted by some scalar function on the curve 

(commonly arc length or, for a vector field, the scalar product of the vector field with a differential vector 

in the curve). This weighting distinguishes the line integral from simpler integrals defined on intervals. 

Many simple formulae in physics (for example, W = F · s) have natural continuous analogs in terms of 

line integrals (W = ∫C F · ds). The line integral finds the work done on an object moving through an 

atomic or gravitational field. 

In complex analysis, the line integral is defined in terms of multiplication and addition of complex 

numbers.  

Let us consider F(t)= u(t)+i v(t) , bta  . Where u and v are real valued continuous functions of t in 

[a,b].  

  we define  tdtvitdtutdtF

b

a

b

a

b

a

  )()()(  

Thus, tdtF

b

a

 )( is a complex number such that real part of  tdtF

b

a

 )(  is tdtu

b

a

 )(  and imaginary part of 

tdtF

b

a

 )(  is tdtv

b

a

 )( . 

Problem: Evaluate dziyx
i

)(
1

0

2 


     along the paths 1)y=x          2)y=x
2
 

Solution: 1) along the line y=x, dy= dx so that dz = dx+idx=(1+i) dx 

   
,)1)(()(

1

0

2
1

0

2 dxiixxdziyx
i

 


       Since y=x 

                         =(1+i) 









23

23
1

0

x
i

x
 

                                             =(1+i) 







 i

2

1

3

1
 

https://en.wikipedia.org/wiki/Mathematics
https://en.wikipedia.org/wiki/Integral
https://en.wikipedia.org/wiki/Function_%28mathematics%29
https://en.wikipedia.org/wiki/Curve
https://en.wikipedia.org/wiki/Contour_integral
https://en.wikipedia.org/wiki/Contour_integral
https://en.wikipedia.org/wiki/Line_integral#Complex_line_integral
https://en.wikipedia.org/wiki/Scalar_field
https://en.wikipedia.org/wiki/Vector_field
https://en.wikipedia.org/wiki/Arc_length
https://en.wikipedia.org/wiki/Dot_product
https://en.wikipedia.org/wiki/Differential_%28infinitesimal%29
https://en.wikipedia.org/wiki/Interval_%28mathematics%29
https://en.wikipedia.org/wiki/Mechanical_work
https://en.wikipedia.org/wiki/Mechanical_work
https://en.wikipedia.org/wiki/Complex_analysis
https://en.wikipedia.org/wiki/Complex_number#Multiplication_and_division
https://en.wikipedia.org/wiki/Complex_number#Addition_and_subtraction
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                            = i
6

1

6

5
  

                             

2) alongtheparabola y=x
2
,dy=2xdx sothatdz=dx+2ixdx 

                                                                      dz=(1+2ix)dx and xvaries from 0to1 

   

               dxixixxdziyx
i

)21)(()( 2

1

0

2
1

0

2  


 

 = (1-i) dxixx )21(
1

0

2   

                                     = (1-i) 







 i

2

1

3

1
 

 =
6

)32)(1( ii 
 

 = i
6

1

6

5
   

Problem: Evaluate dzxyixyx
iz

z
))(2( 2

1

0

2 



 along y=x

2 

Solution:  Given f(z)=x
2 dzxyixy ))(2 2   

                           Z=x+iy, dz=dx+idy 

           xdxdyxthecurvey 2,2     

dxixxidxdxdz )21(2        

f(z)=x
2
+2x(x

2
)+i(x

4
-x) 

      =x
2
+2x

3
   +i(x

4
-x) 

f(z)  dz=(x
2
  +2x

3
)+i(x

4
-x)(1+2ix))dx 

            =x
2
+2x

3
+i(x

4
-x)+2ix

3
+4ix

4
-2x

5
+2x

2
 

dzxyixyxdzzf
i

z
c

)(2)( 2
1

0

2  
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         = dxxxxixxx ))25(232( 34325
1

0
 ) 

                  = 









225

5
(

23

4254
3

6
1

0

xxx
i

x
x

x
 

                 = 0
2

1

2

1

5

5

2

1
1

3

1





























 

              = ii 
6

7

5

5

6

7
 

              idzzf
c

 6

7
)(  

Cauchy-Goursat Theorem:  Let  f(z)  be analytic in a simply connected domain D.  If C is a simple 

closed contour that lies in D, then   

                                         

  Let us recall that    (where n is a positive integer) are all entire functions and have 

continuous derivatives.  The Cauchy-Goursat theorem implies that, for any simple closed contour, 

 

(a)                        ,   

 

(b)                        ,   and   

 

(c)  . 

 

  Cauchy integral formula: 

 STATEMENT :  let F(z)=u(x,y)+iv(x,y) be analytic on and within a simple closed contour (or curve ) 

‘c’ and let f 
‘
(z)  be continuous there,then ∫ 𝑓(𝑧)𝑑𝑧 = 0 

Proof: f (z)=u(x,y)+iv(x,y) 

      And dz=dx+idy 

            f(z).dz = (u(x,y)+iv(x,y) )dx+idy 

http://mathworld.wolfram.com/CauchyIntegralTheorem.html
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          f(z).dz = u(x,y)dx+i u(x,y)dy+iv(x,y)dx+i
2 
v(x,y)dy 

          f(z).dz= u(x,y)dx- v(x,y)dy+i( u(x,y)dy+ v(x,y)dx 

Integrate both sides, we get 

∫ 𝑓(𝑧)𝑑𝑧 = ∫(udx −  vdy) + 𝑖( udy +  vdx) 

By greens theorem, we have  

∫ 𝑀𝑑𝑥 + 𝑁𝑑𝑦 = ∬
∂N

∂x
− 

∂M

∂Y
dxdy 

Now   ∫ 𝑓(𝑧)𝑑𝑧 = ∬(−
∂v

∂x
− 

∂u

∂Y
)dxdy + 𝑖(

∂u

∂x
−  

∂v

∂Y
)dxdy 

Since f 
‘
(z)   is continuous &four partial derivatives   i.e  

∂u

∂x
,

∂u

∂Y
,  

∂v

∂x
,

∂v

∂Y
 are also continuous  in the region 

R enclosed by C, Hence we can apply Green’s Theorem. 

Using Green’s Theorem in plane, assuming that R is the region bounded by C. 

It is given that f (z)=u(x,y)+iv(x,y) is analytic on and within c. 

 Hence
y

v

x

u









, 

x

v

y

u









 

Using this we have  

    
Rc R

dxdyidxdydzzf 000)(  

                                           Hence   the  theorem. 

 

 

Cauchy's integral formula: 

Cauchy's integral formula states that  

 

(1)  

Where the integral is a contour integral along the contour enclosing the point .  

It can be derived by considering the contour integral  

http://mathworld.wolfram.com/ContourIntegral.html
http://mathworld.wolfram.com/Contour.html
http://mathworld.wolfram.com/ContourIntegral.html
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(2)  

Defining a path as an infinitesimal counterclockwise circle around the point , and defining the path 

as an arbitrary loop with a cut line (on which the forward and reverse contributions cancel each other 

out) so as to go around . The total path is then  

 

(3)  

so  

 

(4)  

From the Cauchy integral theorem, the contour integral along any path not enclosing a pole is 0. 

Therefore, the first term in the above equation is 0 since does not enclose the pole, and we are left with  

 

(5)  

Now, let , so . Then  

 

 

 

(6)  

  

 

(7)  

But we are free to allow the radius to shrink to 0, so  

 

 

 

(8)  

  

 

(9)  

  

 

(10)  

   

(11)  

giving (1).  

http://mathworld.wolfram.com/Circle.html
http://mathworld.wolfram.com/CauchyIntegralTheorem.html
http://mathworld.wolfram.com/ContourIntegral.html
http://mathworld.wolfram.com/Pole.html
http://mathworld.wolfram.com/Pole.html
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If multiple loops are made around the point , then equation (11) becomes  

 

(12)  

Where is the contour winding number.  

A similar formula holds for the derivatives of ,  

  

 

(13)  

  

 

(14)  

  

 

(15)  

  

 

(16)  

  

 

(17)  

Iterating again,  

 

(18)  

Continuing the process and adding the contour winding number ,  

 

Problem: Evaluate using cauchy’s integral formula  
c

z

dz
zz

e

)2)(1(

2

where c is the circle 3z  

Solution: Given   
c

z

dz
zz

e

)2)(1(

2

              ……………(1) 

Both the points z=1,z=2 line inside 3z  

Resolving   into partial fractions 

http://mathworld.wolfram.com/CauchyIntegralFormula.html#eqn11
http://mathworld.wolfram.com/ContourWindingNumber.html
http://mathworld.wolfram.com/ContourWindingNumber.html
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)2)(1(

1

 zz
=

)1( z

A
+

)2( z

B
 

A=-1, B=1 

From (1) 

 

 
c

z

dz
zz

e

)2)(1(

2

=  



c

z

dz
z

e

)1(

2

+   
c

z

dz
z

e

)2(

2

             (by cauchy’s integral formula) 

                         =-2𝜋i̎f(1)+2𝜋if(2) 

                          =-2𝜋ie
2.1

+2𝜋ie
2.2 

                           =-2𝜋ie
2
+2𝜋𝑖e4

=2𝜋𝑖(𝑒4
-e

2
) 

 

Problem: Using cauchy’sintegralformula to evaluate ,
)2)1(

cossin 22

dz
zz

zz

c

 

 
where c is the circle 3z  

Solution:  dz
zz

zf

c

  )2)1(

)(
=( dz

z
c

  )2(

1
+ dz

z
c

  )1(

1
)f(z)dz 

                                   =     dz
z

zf

c

  )2(

)(
+ dz

z

zf

c

  )1(

)(
 

                                    =2Пif(2)- 2∏if(1) 

                                =2Пi(sin4П+cos4П)-(sinП+cosП)) 

                                =2Пi(1-(-1))=4Пi             

 

dz
zz

zz

c

 



)2)1(

cossin 22 
=4Пi 

 Problem: Evaluate dz
zz

z

c

 



)2()1(

)1(
2

  whrere    c is 2 iZ  

Solution: the singularities of
)2()1(

)1(
2 



zz

z
 are given by 
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(z+1)
2
(z-2)=0 

  Z=-1 and z=2 

Z=-1 lies inside the circle since 021  i  

Z=2 lies outside the circle sinceI2-iI-2>0 022  i  

The given line integral can be written as 

dz
zz

z

c

 



)2()1(

)1(
2

=  





c
z

z

z

2)1(

)2(

)1(

---------------------------- (1) 

The derivative of analytic function is given by 

  

           dz
az

zf

c

n  1)(

)(
=

2𝜋𝑖𝑓𝑛(𝑎)

𝑛!
------------------------------------- (2) 

        From (1) and (2) f(z)=
(𝑧−1)

(𝑧−2)
, a=-1,n=1 

22

1

)2(

1

)2(

)1(1)2(1
)(









zz

zz
zf  

9

1
)1(1


f  

Substituting in (2),we get 

 

dz
zz

z

c

 



)2()1(

)1(
2

= )
9

1
(

1

2


i
 

                          =
−2

9
Пi 

 

Problem: Evaluate dz
z

e

c

z

  4

2

)1(
 where c: 11 z  
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Solution:  the singular points of  dz
z

e z

4

2

)1( 
 are givenby7 

               (z+1)
4
=0 1 z  

The singular point z=-1 lies insidethecirclec: 31 z  

Applying   cauchy’s integral formula for derivatives 

 

     dz
az

zf

c

n  1)(

)(
   =   dz

n

if

c

n




!

)1(2
-------------------------- (1) 

F (z)=e
2z

,n=3,a=-1 

f (z)=2e
2z

 

f
1 
(z)=4e

2z
 

f
11 

(z)=8e
2z

 

f
111(

z)=16e
2z

 

f
111 

(-1)=16e
-2

 

Substituting in (1) 

 

    dz
z

e

c

z

  4

2

)1(
= 



c
n

if

!

)1(2 111
 

                      =
!2

162 2ei
 

                               =16Пie
-2 

 

Problem: Use cauchy’s integral formula to evaluate  dz
z

e

c

z

 



3

2

)1(
     

with c: 2z

 

Solution:  

Given 

dz
z

e

c

z

 



3

2

)1(
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       f(z)=e
-2z

 

The singular point z=-1 lies inside the given circle 2z  

Apply Cauchy’s integral formula for derivatives 

=
!2

)1(2 1 if
           











c

aif

az

zf

!2

)(2

)(

)( 1

3


  

Where f(z)=e
-2z

 

              f
1
(z)=-2 e

-2z
 

             f
11

(z)=4 e
-2z

 

             f
11

(-1)= 4 e
2
 

 dz
z

e

c

z

 



3

2

)1(
=

2
2

4
2

42
ie

ei



 �

 

Problem: Evaluate  dz
zz

dz

c

  )4(8

        

withc: 2z

     

 

Solution:  

The singularities of 

dz
zz

dz

c

  )4(8

   are given by  

 

-4z0,z   0=4)+(zZ8 

 The point z=0  lie  inside and the z=-4 lies outside the circle 
2z

 

By the derivative of analytic function. 

 Problem: Evaluate using integral formula  c

z

zz

dze

)2)(1(

2

 where c is the circle 3z

  

 

Solution:  Let (z)= e
z
 which is analytic within  the circle c: 3z  and the two singular points  a=1,a=2 

lie inside  c. 

dz
z

e

c

z

 



3

2

)1(
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 c

z

zz

dze

)2)(1(

2

=

dz
z

e
dz

z

e

dz
zz

e

c

z

c

z

z
























12

1

1

2

1

22

2

 

Now using   cauchy’s integral formula ,we obtain  

 c

z

zz

dze

)2)(1(

2

=
24 22 ieie    

                       = )(2 24 eei   

 c

z

zz

dze

)2)(1(

2

= )(2 24 eei   

Problem: Evaluate dz
z

zz

c 



1

3
2

2

 where cisthe circle 11 z  

Solution:  Given f(z)= 3z
2
+z 

Z=a=+1or -1 

The circle 11 z  has centre at z=1 and radius 1 and includes the point z=1,f(z)=3z
2
+z  is an analytic 

function 

Also 

















 1

1

1

1

2

1

)1)(1(

1

1

1
2 zzzzz

 



















c

dz
z

zz

z

zz

1

3

2

1

1

3 2

2

2

- 












c

dz
z

zz

1

3

2

1 2

---------------- (1) 

Since z=1 lies inside c, we have by cauchy’s integralformula 

=2 )(iif  

                  =   2 4*i         

    Bycauchy’sintegral theorem, since z=-1 lies out side c, we have 

dz
z

zz

c 



1

3 2

=  0 

From equation(1) we have 
 

dz
z

zz

c 



1

3
2

2
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=

i

i





4

0)8(
2

1





 

 

EXCERCISE   PROBLEMS:    

1) Evaluate 
0

dz

z z  where c: 0z z = r                                                           

      2) Evaluate  
(2,2)

(1,1)
( ) ( )x y dx y x dy    along the parabola  2y x            

       3) Evaluate 

2

2

4

1
c

z
dz

z



   where C: 2z   using Cauchy’s Integral formula 

       4) Evaluate 

2

( 1)( 2)

z

c

e
dz

z z   where C: 4z   using Cauchy’s integral formula     

       5) Evaluate 

3

3( 2)
c

z z

z



  where : 3C z   using Cauchy’s integral formula     

       6) Expand f(z) = 

2

3( 1)

z

c

e

z   at a point  z=1          

       7) Expand f(z)= 
2

1

4 3
c

z z   for   31  z   

       8) Evaluate 
2 2 2 2 2 2( ) ( ) ( )y z dx z x dy x y dz      from (0,0,0) to (1,1,1) , where 

      C is the curve 
2 3, ,x t x t x t                                                                      

       9) Evaluate 

(1,1)

2 2

(0,0)

(3 4 )x xy ix dz   along  
2y x                                               

       
 

      10) Evaluate )(

1

0

2






i

ixyx dz 

(i)  Along the straight from z  = 0 to z = 1+i . 

dz
z

zz

c 



1

3
2

2
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(ii) along the real axis from z = 0 to z = 1 and then along a line parallel to real axis from z = 1 to z = 

1+i 

(iii) Along the imaginary axis from z = 0 to z = I  and then along a line parallel to real axis z = i to z = 

1+ i . 

11) Evaluate )12(

2

1








i

i

iyx dz along (1-i) to (2+i)  

12) Evaluate  
c

dyxyxdxxyy )2()2( 22
where c is boundary of the region y=x

2
and x=y

2
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Power series: 

A series expansion is a representation of a particular function as a sum of powers in one of its variables, 

or by a sum of powers of another (usually elementary) function f(z). 

A power series in a variable is an infinite sum of the form  

 i

iza  

   A series of the form  n

nza is called as power series.  

       That is  ...............2

21  n

n

n

n zazazaza   

Taylor's series: 

Taylor's theorem states that any function satisfying certain conditions may be represented by a Taylor 

series. 

The Taylor series is an  infinite series, whereas a Taylor  polynomial is a polynomial of degree n and has 

a finite number  of terms. The form of a Taylor polynomial of degree n for a function  

f (z) at x = a is 

  .......
!

)(
)(.........

!3

)(
)(

!2

)(
)())(()()(

3
'''

2
''' 










n

az
af

az
af

az
afazafafzf

n
n ,

raz   

Maclaurin series: 

   A Maclaurin series is a Taylor series expansion of a function about  x=0,  

.......
!

)(
)0(.........

!3

)(
)0(

!2

)(
)0())(0()0()(

3
'''

2
''' 

n

z
f

z
f

z
fzffzf

n
n  

This series is called as maclurins series expansion of f(z). 

Some important result: 

   

   

    

          

http://mathworld.wolfram.com/Sum.html
http://mathworld.wolfram.com/OftheForm.html
http://mathworld.wolfram.com/TaylorSeries.html
http://mathworld.wolfram.com/TaylorSeries.html
http://mathworld.wolfram.com/TaylorSeries.html
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Problems 

 

Problem:  Determine the first four terms of the power series for sin 2x using Maclaurin’s series. 

Solution: 

 Let 

 f(x) = sin 2x            f(0) = sin 0 = 0 

f′(x)= 2 cos 2x              f′(0) = 2 cos 0 = 2 

f′′(x)= –4 sin 2x           f′′(0) = –4 sin 0 = 0  

f′′′(x) = –8 cos 2x         f′′′(0) = –8 cos 0 = –8 

 f
iv
(x)= 16 sin 2x           f

iv
(0)= 16 sin 0 = 0  

f
v 
(x)= 32 cos 2x(0)       f

v 
(0)= 32 cos 0 = 32 

f
vi 

(x)= –64 sin 2x          f
vi 

(0)= –64 sin 0 = 0 

f
vi i

(x )= –128 cos 2x      f
vii 

(0)= –128 cos 0 = –128 

  f(x )= sin2x = 0+2 x+0 x
2
+(-8) 

!3

3x
+0.x

4
 +32 

!5

5x
 

                      = 2x - 
3

4 3x
+

15

4 5x
 

Problem :  Find  the Taylor series about z = -1 for f (x) = 1/z. Express your  answer in sigma     

                  notation. 

Solution: 

 

        Let f (z) = z 
-1  

             f(-1) = -1  

                 f ' = - z 
-2  

            f
’
(-1) = -1  

                 f '' = 2z
-3

              f '' (-1) = -2 

                 f ''' = -6z 
-4 

          f ''' (-1) = -6
 

                 f '''' = 24z
-5  

          f '''' (-1) = -24 

   f(z)  =  -1-1(z+1) - .........)1(
!4

24
)1(

!3

6
)1(

!2

2 432  zzz  

           =





0

)1(1
n

nz  

Problem :  Find the Maclaurin series for f (z) = z e 
z
 Express your answer in 

 
sigma notation.

 

Solution: 

Let   f (z) = z e 
z
                                           f (0) = 0 

         f ' = e 
z
+ z e 

z
                                       f '(0) = 1 + 0 = 1 

         f '' = e 
z
+ e 

z
+ z e 

z
                               f ''(0) = 1 + 1 + 0 = 2 

         f ''' = e 
z
+ e 

z
+ e 

z
+ z e

z
                        f '''(0) = 1 + 1 + 1 + 0 = 3 

        f '''' = e 
z
+ e 

z
+ e 

z
+ e

z
+ z e 

z
                 f ''''(0) = 1 + 1 + 1 + 1 + 0 = 4 

      .............
!4

4

!3

3

!2

2
10)( 432  zzzzzf  

               = .............
6

1

2

1 432  zzzz  

               =  


 1 )!1(n

n

n

z
 

Problem: Expand   log z   by taylor’s series about z=1. 
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Solution: 

       Let f(z) = log z 

     Put    z-1= w 

             z= 1+w    

            log z = log (1+w) 

           f(z)=log z = log (1+w) 

                 =   1.........;
!

)1(.........
32

32

 w
n

www
w

n
n  

                f(z) = 11.........;
!

)1(
)1(.........

3

)1(

2

)1(
)1(

32










 z
n

zzz
z

n
n  

 

Laurent series: 

 

In mathematics, the Laurent series of a complex function f(z) is a representation of that function as a 

power series which includes terms of negative degree. It may be used to express complex functions in 

cases where a Taylor series expansion cannot be applied. 

The Laurent series for a complex function f(z) about a point c is given by: 

   





n

n

n azazf )()(  

           






 


10 )(

1
)()(

n
nn

n

n

n
az

bazazf  

where the an and a are constants. 

Laurent polynomials: 

A Laurent polynomial is a Laurent series in which only finitely many coefficients are non-zero. Laurent 

polynomials differ from ordinary polynomials in that they may have terms of negative degree. 

Principal part: 

The principal part of a Laurent series is the series of terms with negative degree, that is 







1

)()(
K

K

K azazf  

If the principal part of f is a finite sum, then f has a pole at c of order equal to (negative) the degree of the 

highest term; on the other hand, if f has an essential singularity at c, the principal part is an infinite sum 

(meaning it has infinitely many non-zero terms). 

Two Laurent series with only finitely many negative terms can be multiplied: algebraically, the sums are 

all finite; geometrically, these have poles at c, and inner radius of convergence 0, so they both converge 

on an overlapping annulus. 

Thus when defining formal Laurent series, one requires Laurent series with only finitely many negative 

terms. 

https://en.wikipedia.org/wiki/Mathematics
https://en.wikipedia.org/wiki/Power_series
https://en.wikipedia.org/wiki/Taylor_series
https://en.wikipedia.org/wiki/Polynomial
https://en.wikipedia.org/wiki/Pole_%28complex_analysis%29
https://en.wikipedia.org/wiki/Essential_singularity
https://en.wikipedia.org/wiki/Formal_power_series#Formal_Laurent_series
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Similarly, the sum of two convergent Laurent series need not converge, though it is always defined 

formally, but the sum of two bounded below Laurent series (or any Laurent series on a punctured disk) 

has a non-empty annulus of convergence. 

 

Zero’s of an analytic function: 

      A zero of an analytic function f(z) is a value of z such that f(z)=0 .Particularly a point  a is  called a 

zero of an analytic function  f (z)  if f(a) = 0. 

   Eg:  
22

2

)1(

)1(
)(






z

z
zf    

        Now, 0)1( 2 z   

                    Z = -1, z = -1 are zero’s of an analytic function. 

Zero’s of m
th

 order: 

 

If an analytic function f(z) can be expressed in the form  )()()( zazzf m  where )(z   is analytic 

function  and 0)(  a   then z=a is called zero of  m
th
 order  of the function f(z). 

 A simple zero is a zero of order 1. 

Eg:  1.   3)1()(  zzf  

                   0)1( 3 z  

                    z=1 is a zero of order 3 of the function f(z). 

       2. 
z

zf



1

1
)(  

         i.e z  is a simple zero of f(z). 

       3.  zzf sin)(   

         i.e  ,......3,2,1,0 nnz   are simple zero’s of  f(z). 

 

 

Problems 

 

Problem: Find the first four terms of the Taylor’s series expansion of the complex function  

        
)4)(3(

1
)(






zz

z
zf  About z =2.Find the region of convergence. 

Solution:       

     The   singularities of the function 
)4)(3(

1
)(






zz

z
zf  are z = 3 and z = 4 

      Draw   a circle   with centre at z=2 and radius 1 .Then the distance of singularities from the centre are 

1 and 2. 

  Hence within the circle 12 z   , the given function is analytic .Hence ,it can be extended in Taylor’s 

series within the circle 12 z . 

  Hence 12 z
 
is the circle of convergence. 

Now  
3

4

4

5
)(







zz
zf   (partial fraction) , f(2)= 3/2 

          
22

'

)3(

4

)4(

5
)(







zz
zf  ,   

4

11
)2(' f    
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33 )4(

10

)3(

8
)(''







zz
zf   ,  

4

27
)2('' f  
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30

)3(

24
)('''







zz
zf   ,  

8

177
)2(''' f  

Taylor’s series expansion for f(z) at z=a is  

.......
!

)(
)(.........

!3

)(
)(

!2

)(
)())(()()(

3
'''

2
''' 










n

az
af

az
af

az
afazafafzf

n
n  

    






















8

177

!3

)2(

4

27

!2

)2(

4

11
)2(

2

3

)4)(3(

1 32 zz
z

zz

z
 

 

 

 


















16

59
)2(

8

27
)2(

4

11
)2(

2

3
)( 32 zzzzf . 

Problem:  Obtain Laurent series for 
3

2

)1(
)(




z

e
zf

z

about z = 1. 

Solution:       

      Given 
3

2

)1(
)(




z

e
zf

z

 

    Put   z-1= w    so that    z = w+1 

              
3

)1(2

)(
w

e
zf

w

  

              
3

22

)(
w

ee
zf

w

  

         = 







 .......

!3

)2(

!2

)2(
21

32

3

2 ww
w

w

e
 if 0w  

                      =
3

0

2

!

2 




 n

n

n

w
n

e  

                      =
3

0

2 )1(
!

2 




 n

n

n

z
n

e     , if 01 z  

                       

          =
3

0

2 )1(
!

2 




 n

n

n

z
n

e     , if 01 z  

      
3

0

2 )1(
!

2
)( 





  n

n

n

z
n

ezf     , if 01 z  
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 Since   points 01 z will be singular points. 

Singular point   of an analytic function:  A point at which an analytic function f(z) is not analytic, i.e. at 

which f '(z) fails to exist, is called a singular point or singularity of the 

function.                                         

There are different types of singular points:   

Isolated and non-isolated singular points: A singular point z0 is called an isolated singular point of an 

analytic function f(z) if there exists a deleted ε-spherical neighborhood of z0 that contains no singularity. 

If no such neighborhood can be found, z0 is called a non-isolated singular point. Thus an isolated singular 

point is a singular point that stands completely by itself, embedded in regular points. In fig 1a where z1, z2 

and z3 are isolated singular points. Most singular points are isolated singular points. A non-isolated 

singular point is a singular point such that every deleted ε-spherical neighborhood of it contains singular 

points. See Fig. 1b where z0 is the limit point of a set of singular points. Isolated singular points include 

poles, removable singularities, essential singularities and branch points.  

 

Types of isolated singular points: 

Pole: An isolated singular point z0 such that f(z) can be represented by an expression that is of the form 
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Where  0 0) ≠ 0. The integer n is called the order of the 

pole. If n = 1, z0 is called a simple pole. 

Example: 1.The function 

    

           has a  pole of order 3 at z = 2 and simple poles at z = -3 and z = 2. 

1. A point z is a pole for f if f blows up at z (f goes to infinity as you approach z). An example of a 

pole is z=0 for f(z) = 1/z. 

Simple   pole:  A pole of order 1 is called a simple pole whilst a pole of order 2 is called a double 

pole.  

If the principal part of the Laurent series has an infinite number of terms then z = z0 is called an 

isolated essential singularity of f(z). The function f(z) = i/ z(z − i) ≡ 1/( z – i) – (1/ z)  has a simple 

pole at z = 0 and another simple pole at z = i. 

The function 2

1

ze has an isolated essential singularity at z = 2. Some complex functions have non-

isolated singularities called branch points. An example of such a function is √z. 

 

   Removable singular point: An isolated singular point z0 such that f can be defined, or redefined, at z0 

in such a way as to be analytic at z0. A singular point z0 is removable if  

)(lim
0

zf
zz

 Exist. 

Example: 1.The singular point z = 0 is a removable singularity of f(z) = (sin z)/z since      1
sin

lim
0


 z

z

z
 

A point z is a removable singularity for f if f is defined in a neighborhood of the point z, but not at z, 

but f can be defined at z so that f is a continuous function which includes z. Here is an example of 

this: if f(z) = z is defined in the punctured disk, the disk minus 0, then f is not defined at z=0, but it 

can certainly be extended continuously to 0 by defining f(0) = 0. This means at z=0 is a removable 

singularity. 

 Essential singular point: A singular point that is not a pole or removable singularity is called an 

essential singular point.  

Example: 1. f(z) = e 
1/(z-3)

 has an essential singularity at z = 3. 
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2. A point z is an essential singularity if the limit as f approaches z takes on different values as you 

approach z from different directions. An example of this is exp(1/z) at z=0. As z approaches 0 

from the right, exp(1/z) blows up and as z approaches 0 from the left, exp(1/z) goes to 0. 

Singular points at infinity: The type of singularity of f(z) at z = ∞ is the same as that of  f(1/w) at w = 0. 

Consult the following example. 

Example:  The function f(z) = z
2
 has a pole of order 2 at z = ∞, since f(1/w) has a pole of order 2 at w = 

0. 

Using the transformation w = 1/z the point z = 0 (i.e. the origin) is mapped into w = ∞, called the point at 

infinity in the w plane. Similarly, we call z = ∞ the point at infinity in the z plane. To consider the 

behavior of f(z) at z = ∞, we let z = 1/w and examine the behavior of f(1/w) at w = 0. 

Residues: 

The constant a-1   in  the Laurent series  

n

n

n zzazf )()( 0 




 (1)  

of about a point z0 is called the residue of f(z). If is analytic at z0,   its residue is zero, but the converse is 

not always true (for example, 
2

1

z
has residue of 0 at z=0 but is not analytic at z=0 . The residue of a 

function f at a point z0 may be denoted )(Re
0

zfs
ZZ

.  

Residue:  Let f(z) have a nonremovable isolated singularity at the point z0.  Then f(z) has the Laurent 

series representation for all z in some disk given by   

 

            .  
n

n

n zzazf )()( 0 




                                                                                                   (1) 

 

The coefficient   a-1   of  
0

1

zz 
  is called the residue of f(z) at z0  and we use the notation   

 

              Res[f, z0]= a-1    

Example: If  zezf

2

)(  ,  then the Laurent series of f about the point z0 =0 has the form    

 

            ,  and 

 

              Res[f, 0] = a-1  =2 

http://mathworld.wolfram.com/LaurentSeries.html
http://mathworld.wolfram.com/ResidueComplexAnalysis.html
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The residue of a function f around a point z0 is also defined by 


c

dzzf
i

sf )(
2

1
Re


 (2) 

Where C is counterclockwise simple closed contour, small enough to avoid any other poles of . In fact, 

any counterclockwise path with contour winding number 1 which does not contain any other poles gives 

the same result by the Cauchy integral formula. The above diagram shows a suitable contour for which to 

define the residue of function, where the poles are indicated as black dots. 

It is more natural to consider the residue of a meromorphic one-form because it is independent of the 

choice of coordinate. On a Riemann surface, the residue is defined for a meromorphic one-form  at a 

point  by writing  in a coordinate  around . Then 

 

(3) 

The sum of the residues of  is zero on the Riemann sphere. More generally, the sum of the residues 

of a meromorphic one-form on a compact Riemann surface must be zero. 

The residues of a function  may be found without explicitly expanding into a Laurent series as 

follows. If  has a pole of order  at , then  for  and . Therefore, 

 

(4) 

  

 

(5) 

 

 

 

(6) 

  

 

(7) 

  

 

(8) 

 

 

 

(9) 

  

 

(10) 

http://mathworld.wolfram.com/Contour.html
http://mathworld.wolfram.com/Pole.html
http://mathworld.wolfram.com/ContourWindingNumber.html
http://mathworld.wolfram.com/Pole.html
http://mathworld.wolfram.com/CauchyIntegralFormula.html
http://mathworld.wolfram.com/Contour.html
http://mathworld.wolfram.com/MeromorphicOne-Form.html
http://mathworld.wolfram.com/RiemannSurface.html
http://mathworld.wolfram.com/MeromorphicOne-Form.html
http://mathworld.wolfram.com/RiemannSphere.html
http://mathworld.wolfram.com/MeromorphicOne-Form.html
http://mathworld.wolfram.com/RiemannSurface.html
http://mathworld.wolfram.com/LaurentSeries.html
http://mathworld.wolfram.com/Pole.html
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(11) 

Iterating, 

 

(12) 

So 

 

 

 

(13) 

   

(14) 

And the residue is 

 

(15) 

The residues of a holomorphic function at its poles characterize a great deal of the structure of a function, 

appearing for example in the amazing residue theorem of contour integration. 

 If f(z) has a removable singularity at z0  then  a-1 =0   for  n=1,2,…….  Therefore,  Res[f, z0]=0. 

  

 

Residues at Poles: 
 

(i)      If f(z) has a simple pole at z0 ,  then    )()(lim],[Re 00
0

zfzzzfs
ZZ




 

 

(ii)     If f(z) has a pole of order 2 at  z0   ,  then    )()(lim],[Re 2

00
0

zfzz
dz

d
zfs

ZZ



 

http://mathworld.wolfram.com/HolomorphicFunction.html
http://mathworld.wolfram.com/Pole.html
http://mathworld.wolfram.com/ResidueTheorem.html
http://mathworld.wolfram.com/ContourIntegration.html
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(iii)     If f(z) has a pole of order 3 at z0 ,  then  ))()((lim
!2

1
],[Re 3

02

2

0
0

zfzz
dz

d
zfs

ZZ



 

(v)     If f(z) has a pole of order k at  z0 ,  then  ))()((lim
)!1(

1
],[Re 01

1

0
0

zfzz
dz

d

k
zfs k

k

k

ZZ










 

Cauchy’s   Residue Theorem: 

An analytic function f(z) whose Laurent series is given by )()(lim)( 0
0

zfzzzf
ZZ


                    (1)

 

Can be integrated term by term using a closed contour C encircling z0,
 
 

 

dzzza
zz

dz
adzzza

dzzzadzzf

c

n

n

n

cc

n

n

n

c

n

n

n

c


























)(
)(

)(

)()(

0

00

10

2

0

 

 

 

 
(2) 

The Cauchy integral theorem requires that the first and last terms vanish, so we have 

  
 

c c
zz

dz
adzzf

0

1)(        

(3) 

Where a-1 is the complex residue. Using the contour   z=c(t)=e
it
 +z 0  gives 

idt
e

ie

zz

dz
it

it

c




2

2

00


   (4) 

so we have 

 
c

iadzzf 2)( 1  (5) 

If the contour C encloses multiple poles, then the theorem gives the general result 

)(Re2)( zfsidzzf
Aa

az
c

i





   (6) 

http://mathworld.wolfram.com/AnalyticFunction.html
http://mathworld.wolfram.com/LaurentSeries.html
http://mathworld.wolfram.com/Contour.html
http://mathworld.wolfram.com/CauchyIntegralTheorem.html
http://mathworld.wolfram.com/ComplexResidue.html
http://mathworld.wolfram.com/Contour.html
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Where   A  is the set of poles contained inside the contour. This amazing theorem therefore says that the 

value of a contour integral for any contour in the complex plane depends only on the properties of a few 

very special points inside the contour. 

Residue at infinity: 

The residue at infinity is given by: 



C

Z dzzf
i

zfs )(
2

1
)]([Re


 

Where f is an analytic function except at finite number of singular points and C is a closed countour so all 

singular points lie inside it. 

Problem:  Determine the poles of the function 
)2()1(

2
)(

2 




zz

z
zf and the residue at each pole. 

Solution:      The poles of f(z) are given by (z+1)
2
(z-2)=0 

  Here z=2 is a simple pole and z= -1 is a pole of order 2 . 

Residue at z=2 is 

9

4

)2()1(

2
)2(lim)()2(lim

222







 zz

z
zzfz

zz
 

Residue at z=-1  is 

)2()1(

2
)1(lim)()1(lim

2

2

1

2

1 




 zz

z
z

dz

d
zfz

dz

d

zz
 

        
9

4

)2(

4
lim

)2(

)2(
lim

211













 zz

z

dz

d

zz
 

Problem:  Find the residue of the function 
4

21
)(

z

e
zf

z
 at the poles. 

Solution:      Let
4

21
)(

z

e
zf

z
  

        z =0 is a pole of order 4 

Residue of f(z) at z=0 is  

    =
4

2
4

3

3

0

)1(
)0(lim

!3

1

z

e
z

dz

d z

z





 

   = )1(lim
!3

1 2

3

3

0

z

z
e

dz

d



 

    = )2(lim
!3

1 2

2

2

0

z

z
e

dz

d



 

http://mathworld.wolfram.com/ContourIntegral.html
http://mathworld.wolfram.com/ComplexPlane.html
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 = )4(lim
!3

1 2

0

z

z
e

dz

d



 

      = )8(lim
!3

1 2

0

z

z
e


 

  =
3

4

!3

8 



. 

Problem:  Find the residue of the function  )
1

cos()( 3

z
zzf  at z . 

Solution:      Let )
1

cos()( 3

z
zzf   

                    t
tt

ftg cos
1

)
1

()(
3

  

 







 ..........

!4!2
1

1 42

3

tt

t
 

 







 ..........

242

11
3

t

tt
 

        There fore 
z

zsf )(Re = - coefficient ot t in the eapansion of g(t) about t=0 

 = -1/24. 

 

 

Problem: Evaluate dz
zzz

z

c

 



)2)(1(

34
where c is the circle 

2

3
z . Using Residue theorem. 

Solution:   Let   dz
zzz

z

c

 



)2)(1(

34
 

  The   poles of f(z) are z (z-1)(z-2)=0 

                                    z=0, z= 1, z=2 

These poles are simple poles. 

The   poles z=0 and z=1 lie within the circle c: 
2

3
z  

Residue of f(z) at z=0 is 2
2

4

)2)(1(

34
lim)()0(lim

00
1 






 zzz

z
zzfzR

zz
 

Residue of f(z) at z=1  is 1
21

34

)2)(1(

34
)1(lim)()1(lim

11
2 











 zzz

z
zzfzR

zz
 

By Residue theorem, dz
zzz

z

c

 



)2)(1(

34
= iiRRi  2)12(2)(2 21  . 

 

 

Problem: Evaluate   






2

0
sin45

d
 Using Residue theorem. 
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Solution:   Let 












sin45

d
I  

Put
iez  , 

iz

dz
d   and )

1
(

2

1
sin

z
z

i
  

iez   Unit circle c: 1z  

     
iz

dz

z
z

i

I
c






)
1

(
2

1
45

1
 

  





cc
iziz

dz

iizz

dz

)2)(2(25 22
 

                               



c iz

i
z

dz

)2)(
2

(

 

                               
c

dzzf )(
2

1
 

Where )2(
2

)( iz
i

zzf 







  

The poles of f(z) are z=-i/2 and z=-2i 

The pole z=-i/2 lies inside the unit circle. 

  Residue of f(z) at z=-i/2  is  

                                         

)()
2

(lim
2/

zf
i

z
iz




 

                                         )2)(
2

(

1
)

2
(lim

2/

iz
i

z

i
z

iz






 

                                         
)2(

1
lim

2/ iziz 




 

                                          
i

i
i 3

2

2
2

1







 

By cauchy’s residue theorem 

                            
3

2

3

2
2

2

1
)(

2

1 
 








  i

idzzfI
c

 

                                  
3

2

sin45

2

0











d
. 

 

Problem: Prove that ),0,0(
))(( 2222

2

baba
babxax

dxx
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Solution:   To evaluate the given integral, consider   


cc

dzzf
bzaz

dzz
)(

))(( 2222

2

 

Where c is the  contour consisting of the semi circle 
RC of radius R together with the real part of the real 

axis from –R to R. 

The poles of 
))((

)(
2222

2

bzaz

z
zf


  are bizaiz  ;  

But  z=ia and z=ib are the only two poles lie in the upper half of the plane . 

)()()]([Re zfiazLtzsf
aiz

iaz 


  

                    
)(2)(2))(( 2222

2

22

2

bai

a

baia

a

bziaz

z
Lt

aiz 











 

Also  )()()]([Re zfibzLtzsf
biz

ibz 


  

 
)(2)(2))(( 2222

2

22

2

bai

b

baib

b

azibz

z
Lt

biz 













 

By Cauchy’s Residue theorem, we have  
c

idzzf 2)( (sum of the residues with in C) 

                                      
baba

ba

bai

b

bai

a
idzzf

c

































)()(2)(2
2)(

222222
 

                  We have                 


 RC

R

R
ba

dzzfdxxf


)()(  

But  Randzasdzzf i

CR

Re0)(  

Hence 
babxax

dxx
dxxf





 











))((
)(

2222

2
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EXCERCISE   PROBLEMS:    

1) Evaluate  
2

0 cos

d

a b

 

  where  C: 1z 
                                

 2) Prove that 
2 2

dx

a x a







        

 3) Show that 
3-

dx 3

(x+1) 8




     

4) Prove that   
2 2 2 2( )( ) ( )

dx

x a x b ab a b






                                    

 5) Evaluate 
2 2 2 2 2 2( ) ( ) ( )y z dx z x dy x y dz      from (0,0,0) to (1,1,1) , where   C is the curve 

2 3, ,x t x t x t                                                                      

6) Evaluate 

(1,1)

2 2

(0,0)

(3 4 )x xy ix dz   along  2y x                                                

7) Obtain the Taylor series expansion of f(z)  =  
z

1
 about the point  z = 1 

8) Obtain the Taylor series expansion of f(z)  =  
ze  

 about the point  z = 1 

9) Expand f(z) = 
1

1





z

z
 in Taylor’s series about the point (i)  z = 0 (ii) z = 1  

10) Expand f(z) = 
2

1

z
 in Taylor’s series  in powers of z +1   

11) Obtain Laurent’s series expansion of f(z) = 
2

2

4

5 4

z

z z



 
 valid in   1< z < 2 

  12) Give two Laurent’s series expansions in powers of Z for f(z) = 
)1(

1
2 zz   

   13) Expand f(z )= 
)2)(1(

1

 zz    

   14) Maclaurin’s series expansion of f(z) 

   15) Laurent’s series expansion in the annulus region in  

a) 
21  z

 

16) Find the residue  of the function 


 zat
z

z
zf

)1(
)(

2

3
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17) Find the residue of 
14

2

z

z
 at these singular points which lie inside the circle |𝑧|=2 

18) Find the residue  of the function 
22

2

)1)(1(

2
)(






zz

zz
zf  at each pole 
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MODULE-IV 

 

SPECIAL FUNCTIONS-I 
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 Improper  Integrals: Beta and Gamma functions 

 Definitions 

 Properties of Beta and Gamma functions 

 Standard forms of Beta functions 

 Relationship between Beta and Gamma function 

DEFINITION:      

IMPROPER INTEGRAL: 

The integral  
b

a

dxxf for which 

i) Either the interval of integration is not finite i. e.  orba  or both 

ii) The function f(x) is unbounded at one or more point in [a, b] is called das improper integral.  

NOTE: Integral of (i) and (ii) are called the improper integrals of first and second kinds respectively. 

Examples: 

1. 



0

41

1
dx

x
 And 






dx
x21

1
 are improper integrals of the first kind. 

2.  

1

0

21

1
dx

x
 is an improper integral of the second kind. 

 

DEFINITION: 

BETA FUNCTION: 

The definite integral  
 

1

0

11 1 dxxx
nm

 is called the Beta function and is denoted by  nm, . The 

integral converges for m>0,n>0.
                                    

 
 

 

NOTE: 

Beta function is also called as Eulerian integral of first kind 

.  

PROPERTIES OF BETA FUNCTION: 

 nm,  
 

1

0

11 1 dxxx
nm
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i) SYMMETRY PROPERTY OF BETA FUNCTION  

i.e.,  nm, =  mn,  

Proof: 

By definition, we have 

 nm, =  
 

1

0

11 1 dxxx
nm

 

 

Put 1-x=y  so that dx=-dy 

       
0

1

11
1, dyyynm nm

  

  dyyy
mn


 

1

0

11 1  

 
 

1

0

11 1 dxxx
mn

 

 mn,     







 

b

a

b

a

dxxfdttf  

Hence  nm, =  mn,  

 

ii)              Prove that      

                          

  


0

1

1212 cossin,  dnm nm

 

Proof: 

By definition, we have 

 nm, =  
 

1

0

11 1 dxxx
nm

 

put 2sinx so that  ddx 2sin  

     



2

0

1212 2sinsin1sin,



 dnm
nm

 




2

0

1212 cossin2



 dnm
 

Hence proved 
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ii)  nm, =    1,,1  nmnm   

Proof:  

By definition, we have 

               
   1,,1  nmnm  =      

1

0

1

1

0

1
11 dxxxdxxx

nmnm
 

                    

     
1

0

1

1

0

1
11 dxxxdxxx

nmnm
 

                    

  


1

0

11 )]1([1 dxxxxx
nm

 

                   

 
 

1

0

11 1 dxxx
nm

 

                   =  nm,  

Hence  nm, =    1,,1  nmnm 
 

 

 

Iv)  

If m and n are positive integers, then  
   
 !1

!1!1
,






nm

nm
nm  

 

Proof: 

We have  nm, =  
 

1

0

11 1 dxxx
nm

 

Integrating by parts 

 

 
 

 
 

  dxxm
n

x

n

x
x m

nn

m 2

1

0

1

0

1 1
1

1

1

1  
















  

 

=    1,1
1

1
1

1

0

2

1

0








 nm

n

m
dxxx

n

m nm  …………..(1) 
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Now we have to find  1,1  nm . 

To obtain this put m=m-1 and n=n+1 in (1). Then, we have  

  

   2,2
1

2
1,1 




 nm

n

m
nm   

Putting this value of  1,1  nm  in (1) we have 

 

 

   2,2
1

2
.

1
, 




 nm

n

m

n

m
nm  ……………………(2) 

Changing m to m-2 and n to n-2 from (1) we have 

 2,2  nm =  3,3
1

2
.

2

3









nm

n

m

n

m
  

From (2) 

 

   3,3
2

3
.

1

2
.

1
, 








 nm

n

m

n

m

n

m
nm   

Proceeding like this we get 

 

 
  
  

    1,1
2

1
............

2

3
.

1

2
.

1
, 












 mnmm

mn

mm

n

m

n

m

n

m
nm   

 

 
 1,1

2

1
............

2

3
.

1

2
.

1









 mn

mnn

m

n

m

n

m
 ……(3) 

From (3) 

 
   1

1
..

2

1
............

2

3
.

1

2
.

1
,










mnmnn

m

n

m

n

m
nm  

 

 

 
     nnnmnmn

m

12...........................21

!1




  

Multiplying the numerator and denominator by (n-1)!, we have  

 

 
   
 !1

!1!1
,






mn

nm
nm
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STANDARD FORMS OF BETA FUNCTIONS 

FORM I: 

To show  

 nm, =
 







0

1

1
dx

x

x
nm

m

=
 







0

1

1
dx

x

x
nm

n

 

Proof: 

We have  

                        
 nm, =  

 

1

0

11 1 dxxx
nm

……………………………(1)

 

 

                     put 
y

x



1

1
 so that 

 2
1 y

dy
dx




 

From (1) 

We have 

 nm, =
 





























0

2

11

1
.

1

1
1

1

1

y

dy

yy

nm

 

 

   









0

11

1

11
nm

n

yy

dyy

 

 

 









0

1

1
nm

n

y

dyy

 

 nm, =
 







0

1

1
dx

x

x
nm

m

 

Hence proved. 

 

 

FORM II: 

To show that 

 nm, =
 











0

11

1
dx

x

xx
nm

nm
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Proof: 

From form we have 

 
 nm, =

 






0

1

1
dx

x

x
nm

m

 

=
   

dx
x

x
dx

x

x
nm

n

nm

m















 0

1

0

1

11
 

Now putting 
y

x
1

 and dy
y

dx
2

1
 in the second integral, we get

 

 






1

1

1
dx

x

x
nm

m

= 


























0

2

1

1
.

1
1

1

dy
y

y

y
nm

m

 

  

 



1

0

1

1
.

1
dy

yy

y
mnm

nm

 

=
  





1

0

1

1
dy

y

y
nm

n

 

 

 

  





1

0

1

1
dx

x

x
nm

n

 

 

Hence  

 nm, =
 











0

11

1
dx

x

xx
nm

nm
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FORM III: 

 nm, =
 







0

1

dx
bax

x
ba

nm

m
nm

 

Proof:  

We have 

 






0

1

dx
bax

x
ba

nm

m
nm

= 


















0

1

1

dx

b

ax
b

x
ba

nm

nm

m
nm

 

Put  

b

ax
=t then dt

b

dxa
  

 











0

1

1

1

1
dt

a

b

t

t
a

b

b

ba
nm

m

m

m

nm

nm

 

 

 









0

1

1
dt

t

t
nm

m

=  nm,
 

Hence proved. 

FORM IV:  

To show 
 

 
 
 mnnm

nm

aa

nm
dx

ax

xx







 



1

,1
1

0

11 

 

PROOF: 

 nm, =  
 

1

0

11 1 dxxx
nm

 

Put 
 

at

ta
x






1
 then  

   
 















2

011
1

at

tat
adx  

 

 
 2

1

at

aa




  

 
 

dt
at

aa
dx

2

1




  

Also when x=0, t=0 and x=1,t=1. 
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Now (1) become 

 nm, =
 
 

 
 

 
 





























1

0

2

1

1

1

1

11
11

1
1

dt
at

aa

at

ta

at

ta
n

m

nm

 

 

 nm, =
 
 























1

0

1

1

11
1

dta
at

ata

at

ta
n

m

nm

 

Also we have  
   
 nm

nm
nm






 ,  

 
   
 nm

nm
dx

x

x
nm

n

















0

1

1
 

Taking m + n=1 so that m=n-1, we get 

 

 
   

 1
1

10

1



 nn
dx

x

x
nm

n 











 

Or  

     1........
1

1
0

1


 


 dx

x

x
nn

n

  

We have  

 
n

m
ec

n
dx

x

x
n

n

2

12
cos

21
0

2

2  







Where m>0, n>0 and m>n 

Put x
2n

=t and
 

s
n

m




2

12
, we have 

 

 

  



ecs

n
dt

ttn

tt nn
m

cos
212

0

2
1

2
2




 


 

 

 



ecs

n
dt

t

tt nn
m

cos
21

0

1
2

1

2
2




 




 

Or 

 

 



ecs

n
dt

t

tt nn
m

cos
21

0

1
2

1
1

2
12




 







 

 

  



sn
dt

t

t s

sin21
0

1





 

 

  



sn
dt

x

x s

sin21
0

1





 

………………(2) 
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From (1) and (2) we have 

 
 

 
 mnnm

nm

aa

nm
dx

ax

xx







 



1

,1
1

0

11 

 

Hence Proved 

 

PROBLEMS: 

 

1.  Show that   








 
 2

1
,

2

1

2

1
cossin

2

0

nm
dnm 



 

                   Solution: 

                          

 


2

0

11
2

0

cossincossincossin



 dd nmnm
 

                            



2

0

2

1
2

2

1
2 cossincossin



 d
nm

 

                       Put 2sin = x so that  
2

cossin
dx

d   

                      

  dxxxd

nm

nm






1

0

2

1

2

12

0

1cossin





 

                      

  dxxx

nm









 







 



1

0

1
2

1
1

2

1

1

 

                          








 


2

1
,

2

1

2

1 nm


 

                  








 
  2

1
,

2

1

2

1
cossin

2

0

nm
dnm 



 

                                             Hence proved 
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2. Express the following integrals in terms of Beta function: 

 

i. dx
x

x




1

0
21

 

ii. dx
x

x




4

0
29

                                                                   Answer:      








2

1
,

2

1

2

1
                           

Solution:  Put yx 2
so that dyydx 2

1

2

1 
  

When x=0, y=0 when x=1, y=1. 

dyy
y

y
dx

x

x
2

1
1

0

2
11

0
2 2

1

11









 

  dyy




1

0

2
1

1
2

1
 

  dyyy


 

1

0

1
2

1

1
2

1
11  











2

1
,1

2

1
  

 

Exercise Problems: 

 

1. Prove that    nmadxxxa nm

a

nm
,1

0

11


  

Hint: put x=ay 

2. Show that   












 1,
11

1
0

1 p
n

m

n
dxxx

a
pnm   

Hint: put 
nx =y 

3. Show that      nmdxxx nm

a
nm

,211 1

0

11


  

Hint: put 
2

1 y
x


  

4. Show that 
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i. 
 

0
10

11












dx
x

xx
nm

nm

 

ii. 
 

 nmdx
x

xx
nm

nm

,2
10

11












 

5. Prove that
     

qp

qp

p

qp

q

qp







 ,,11, 
, where p>0, q>0. 

6. Show that        1,1
1




 nmabdxxbax
nmn

b

a

m
  

GAMMA FUNCTION: 

 

Definition:  

The definite integral dxxe nx 1

0







  is called the Gamma function and is denoted by  

  dxxen nx 1

0







  And read as “gamma n”. 

NOTE:   

1. The integral converges for n>0. 

2. Gamma function is also called Eulerian integral of the second kind. 

3. The integral   Gamma function does not converges if n≤0. 

 

PROPERTIES OF GAMMA FUNCTIONS: 

I. To show that   11   

Proof: By definition of Gamma function, we have 

  dxxen nx 1

0
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    10

0

0

0













xxx edxedxxen  

 

 

II. To show that      11  nnn where n > 1. 

Proof:  By definition of Gamma function, we have 

 
 

  dx
e

xn
e

xdxxen
x

n
x

nnx




































 1
.1

1

2

00

11

0

Integrate by parts 

     111 2

0

 





 nndxxen nx
 

Note: 

1.      nnn  1  

2. If n is a positive  fraction,  then we write 

        rnnnnnn  ................4321  

Where   0 rn  

3. If n is a non-negative integer, then    !1 nn   
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RELATION BETWEEN BETA AND GAMMA FUNCTIONS   

1. 

 
   
 nm

nm
nm






 ,

    Where m>0, n>0  

Proof: 

 

: By definition of Gamma function, we have 

  dxxem mx 1

0







 ……………………….. (1) 
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Put x = yt so that dx =y dt then (1) gives 

 

  dxxyedttyeydttytem mmyxmmytmmyt 1

0

1

0

11

0















  …………………….(2) 

Or    
 

dxxe
y

m myx

m

1

0










……………………….(3) 

Multiplying both sides of (3) 

     dydxxyedyyem mnmxyny

 
 
















0 0

1111

0

……………..(4) 

      dxxdyyenm mnmxy 1

0 0

11 

 



 








 , by interchanging the order of integration 

   
 

 
dxx

x

nm
nm m

nm

1

0 1









  

 

   
 

 
   nmnmdxx

x

nm
dxnm m

nm
,

1

1

0





 



  

 

                                            
   
 nm

nm
nm






 ,  

                                                       Hence proved 

 

 

2. To prove that    




n
nn

sin
1   

Proof:  

By Form I of Beta function 

 nm, ==
 







0

1

1
dx

x

x
nm

n

 
 

Also we have  
   
 nm

nm
nm






 ,  

 
   
 nm

nm
dx

x

x
nm

n
















0

1

1
 

 

Taking m + n=1 so that m=1-n, we get 
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 1
1

1
0

1



 nn
dx

x

xn 



 

 

   
 

 




0

1

1
1 dx

x

x
nn

n



 
We have  

                
 

 
n

m
ec

n
dx

x

x
n

m

2

12
cos

21
0

2

2  





, where m>0, n>0 and n>m 

                   Put tx m 2
 and

 
s

n

m




2

12
, we have 

 

 

  



sec

n
dt

ttn

tt nn
m

cos
212

0

2
1

2
2







 

Or 

 

 



sec

n
dt

t

tt nn
m

cos
21

0

1
2

1

2
2









 

 

 
 secdt

t

t n
m

cos
1

0

1
2

12


 




 

Or 
  



n
dt

t

t s

sin1
0

1


 




 

    




n
nn

sin
1 

 
 Hence proved 

 

 

3. To show that 









2

1
 

Proof:  we know that 

 
   
 nm

nm
nm






 ,

 

Taking m=n=
2

1
, we have 

2

2

1

2

1

2

1

2

1

2

1

2

1
,

2

1


























































   11 
…………………………..(1) 
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1

0

2

1
2

11

0

1
2

11
2

1

11
2

1
,

2

1
dxxxdxxx

 

 

2sinx  so that  ddx cossin2  

Also when x=0,  =0:  when x=1,  =
2

  

 









1

0

2

0

cossin2
cos

1

sin

1

2

1
,

2

1







ddx

 

 
2

0

2



d

………………………………………………(2) 

From (1) and (2) we have  











2

1
 

4. To show that 
2

0

2 




 dxe x
 

Proof:  we have  

 

  dxxen nx 1

0









 

Taking n=
2

1
, we have dxxe x 2

1

0
2

1 












  

Put x =t
2
 so that d x=2t d t 

Also when x=0, t=0: when  tx ,  

  dtedtte tt









 









0

2
1

2

0

22

22
2

1
 

Or 


 dxe x

0

2

2

 

2
0

2 




 dxe x

 

 

 

 

 

PROBLEMS 
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1. Compute    

i) 









2

11

 

 

ii) 









2

1
 

iii) 









2

7
 

Solutions:   i) 

We have      nnn  1
 

                                         Taking 
2

7
n  

        




















2

9

2

9

2

11
 

     











2

7

2

7

2

9
 

 











2

5

2

5

2

7

2

9
 

 











2

3

2

3

2

5

2

7

2

9
 

 











2

1

2

1

2

3

2

5

2

7

2

9
 

 


2

1

2

3

2

5

2

7

2

9
  

Solution: ii) 

We have      nnn  1
 

 
 

n

n
n

1


 

                          Taking 
2

1
n  

                             
2

2

1
2

2

1

1
2

1

2

1

































 

 

 

 

2.                     
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3. Evaluate  

i.    

1

0

35 1 dxxx  

 

ii.   

1

0

24 1 dxxx                                                      Answer: 1/105 

 

iii.   

1

0

3
1

1 dxxx                                                  Answer: 
39

16 
 

iv.   

1

0

2/322/5 1 dxxx                                            Answer: 





















4

1

4

3

65

8


 

 

Solution: i)  

 

   
 

1

0

1416

1

0

35 11 dxxxdxxx  

 
   
 46

46
4,6
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504

1

!9

!3!5
  

 

4.  

 

 

    

                                                  
5. Evaluate 

 

i) 




0

26 dxex x
 

ii) 




0

42
3

dxex x
 

iii) 




0

2 2

dxex x
 

iv) 




0

2

dxex x
 

Solution: Put yx 2 so that dydx
2

1
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0

6

0

26

2

1

2
dye

y
dxex yx

 

 

 

 

 

 

 

= 




0

6

2

1

2

1
dyey y

 

 

 

= !6
2

1

2

1

2

1
7

0

17 


 dyey y
 

 

Evaluate  

i. 
2

0

2
7

5 cossin



 d  

ii. 
2

0

7sin



 d  

iii. 
2

0

11cos



 d  

iv. 
2

0

cot



 d  

Solution: i) we have  nmdnm ,
2

1
cossin

2

0

1212 






 
                    Put 2 m-1=5 and 2n-1=1/2 so that m=3, n=9/4 

Therefore  4/9,3
2

1
cossin

2

0

2
7

5 



 d

 

 

  1989

64

4
21

4

9

4

9
3

3

2

1




























 

vi. 
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6. Evaluate  

1. 





0

4 2

3 dxx
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       2.        





0

2

dxa bx

 

 

         3.          












0

3

4 1
log dx

x
x

 

 

 

4.  

 

 

           5.   












0

3

2 1
log dx

x
x
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MODULE-V 

SPECIAL FUNCTIONS-II 
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                                                               Bessel's equation 

 

x
2
 y''+x y'+(x

2
-v

2
)y=0 is called Bessel's equation. 

 

Solution of Bessel's Equation: 

Because x=0 is a regular singular point of Bessel's equation we know that there exists at least one 

solution of the form y=
rn

n

on

xc 




 .  Substituting the last expression into (6.10) gives  

x
2
 y"+x y'+(x

2
-v

2
)y=

rn

n
on

x)1rn)(rn(c 




 +
rn

n

on

x)rn(c 




 +
2rn

n

on

xc 




  

-v
2 rn

n

on

xc 




  = c0(r
2
-r+r-v

2
)x

r
 

+x
r
 

2n

n

on

rn2

n

1n

xcxx]v)rn()1rn)(rn[(c 








   

= 







 on

2n

n

rn22

n
1n

rr22

0 xcxx]v])rn[(cxx)vr(c   

From (6.11) we see that the indicial equation is r
2
-v

2
=0, so the indicial roots are r1=v and r2 = -v. When 

r1=v, (6.11) becomes  

x
v 2n

n

on

vn

n

1n

xcxx)v2n(nc 








        

=x
v









  











2n 0n

2n

n

n

n1 xcx)v2n(ncxc)v21(  

=x
v 0x]cc)v22k)(2k[(xc)v21(

0k

2k

k2k1 







 







  

 

Therefore by the usual argument we can write (1+2v)c1=0 and  

(k+2) (k+2+2v)ck+2+ck=0 

or ck+2= - - - -,2,1,0k,
)v22k)(2k(

ck 



    

The choice c1=0 in (6.12) implies c3=c5=c7= - - - - = 0, so for k=0,2,4, - - - - we find, after letting k +2 = 

2n,  

 

n = 1,2,3, - - - - that  

 c2n = - 
)vn(n2

c
2

2n2




      

 Thus c2 = - 
)v1(1.2

c
2

0


      

 c4 = - 
)v2)(v1(1.2.2

c

)v2(22

c
4

0

2

2





 

 c6 = - 
)v3)(v2)(v1(3.2.1.2

c

)v3(3.2

c
6

0

2

4
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 : 

 

 c2n = - - - -,3,2,1n,
)vn)...(v2)(v1(!n2

c)1(
2

0

n





 (6.14) 

It is standard practice to choose c0 to be specific value – namely. 

   c0 = 
)v1(2

1
v 

 

where  (1+v) is the gamma function. (See Appendix) Since this latter function  possesses the 

convenient property  (1+) = (), we can reduce the indicated product in the denominator of (6.14) 

to one term.  

For example: 

 (1+v+1)= (1+v)  (1+v) 

 (1+v+2)= (2+v)  (2+v)= (2+v)(1+v)(1+v). 

Hence we can write (6.14) as  

)nv1(!n2

)1(

)v1()vn)...(v2)(v1(!n2

)1(
c

vn2

n

vn2

n

n2











 

for n=0,1,2, - - - -  

 

Bessel Function of the First Kind:  

Using the coefficients c2n just obtained and r=v, a series solution of (6.10) is y=






0n

vn2

n2 xc  This 

solution is usually denoted by :)x(Jv  

 .
2

x

)nv1(!n

)1(
)x(J

0n

vn2n

v 


















    

 

If v0,  the series converges at least on the interval [o, ). Also, for the second exponent r2= -v we 

obtain, in exactly the same manner, 

  .
2

x

)nv1(!n

)1(
)x(J

0n

vn2n

v 






 











    

 

The functions Jv(x) and J-v(x) are called Bessel functions of the first kind of order v and –v, 

respectively. Depending on the value of v, (6.16) may contain negative powers of x and hence converge 

on (0,  ).
*
 

 

Many Differential equations arising from physical problems are linear but have variable coefficients 

and do not permit a general analytical solution in terms of known functions. Such equations can be 

solved by numerical methods (Unit – I), but in many cases it is easier to find a solution in the form of 

an infinite convergent series. The series solution of certain differential equations gives rise to special 

functions such as Bessel’s function, Legendre’s polynomial. These special functions have many 

applications in engineering.Series solution of the Bessel Differential Equation 
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Consider the Bessel Differential equation of order n in the form 

0)( 22

2

2
2  ynx

dx

dy
x

dx

yd
x      (i) 

Where n is a non negative real constant or parameter. 

We assume the series solution of (i) in the form 







0r

rk

r xay  Where a0  0      (ii) 

Hence,  





0

1)(
r

rk

r xrka
dx

dy
 







0

2

2

2

)1)((
r

rk

r xrkrka
dx

yd
 

 

Substituting these in (i) we get, 

 

 














 
0

22

0

1

0

22 0)()1)((
r

rk

r

r

rk

r

r

rk

r xanxxrkaxxrkrkax  

i.e., 



















 
0

2

0

2

00

0)()1)((
r

rk

r

r

rk

r

r

rk

r

r

rk

r xanxaxrkaxrkrka  

Grouping the like powers, we get 

  0)()1)((
0

2

0

2  











r

rk

r

r

rk

r xaxnrkrkrka  

  0)(
0

2

0

22  











r

rk

r

r

rk

r xaxnrka      (iii) 

 

Now we shall equate the coefficient of various powers of x to zero 

Equating the coefficient of x
k
 from the first term and equating it to zero, we get 

  nknkanka  ,0get    we,0 Since   .0 22

0

22

0  



88 

 

Coefficient of x
k+1

 is got by putting r = 1 in the first term and equating it to zero, we get 

i.e.,   nknkanka  1,gives0)1(  since ,0  gives This   .0)1( 22

1

22

1  

Which is a contradiction to k =  n. 

 

Let us consider the coefficient of x
k+r

 from (iii) and equate it to zero. 

i.e,    .0)( 2

22  rr anrka  

 
 

)( 22

2

nrk

a
a r

r



 

   (iv) 

If k = +n, (iv) becomes 

   nrr

a

nrn

a
a rr

r
2

 
)( 2

2

22

2









 

 

Now putting r = 1,3,5, ….., (odd vales of n) we obtain, 

 

0a,0
9n6

a
a 1

1
3 




   

Similarly a5, a7, are equal to zero. 

i.e.,  a1 = a5 = a7 = …… = 0 

Now, putting r = 2,4,6, ……( even values of n) we get, 

;
)1(444

 00

2










n

a

n

a
a  ;

)2)(1(32168
 02

4








nn

a

n

a
a  

Similarly we can obtain a6, a8, …  

We shall substitute the values of ,,,, 4321 aaaa in the assumed series solution, we get 

)xaxaxaxaa(xxay 4
4

3
3

2
210

k

0r

rk
r 





  

Let y1 be the solution for k = +n 















 4020

01
)2)(1(32)1(4

x
nn

a
x

n

a
axy n
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)2)(1(2)1(2
1.,.

5

4

2

2

01
nn

x

n

x
xayei n

   (v) 

This is a solution of the Bessel’s equation. 

Let y2 be the solution corresponding to k = - n. Replacing n be – n in (v) we get 















  

)2)(1(2)1(2
1

5

4

2

2

02
nn

x

n

x
xay n

   (vi) 

The complete or general solution of the Bessel’s differential equation is y = c1y1 + c2y2, where c1, c2 are 

arbitrary constants. 

Now we will proceed to find the solution in terms of Bessel’s function by choosing 
)1(2

1
 0




n
a

n

and let us denote it as Y1. 

 





































 

2)2)(1(

1

2)1(

1

2
1

)1(2
.,.

42

1
nn

x

n

x

n

x
Yei

n

n

 

             














































 

2)1()2)(1(

1

2)1()1(

1

2)1(

1

2

42

nnn

x

nn

x

n

x
n

 

We have the result (n) = (n – 1) (n – 1) from Gamma function 

Hence, (n + 2)  = (n + 1) (n + 1) and  

 (n + 3)  = (n + 2) (n + 2) = (n + 2) (n + 1) (n + 1) 

Using the above results in Y1, we get 















































 

2)3(

1

2)2(

1

2)1(

1

2

42

1
n

x

n

x

n

x
Y

n

 

Which can be further put in the following form? 





























































 

422100

1
2!2)3(

)1(

2!1)2(

)1(

2!0)1(

)1(

2

x

n

x

n

x

n

x
Y

n
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0

2

2!)1(

)1(

2 r

rrn
x

rrn

x
 

    


















0

2

!)1(

1

2
)1(

r

rn

r

rrn

x
 

This function is called the Bessel function of the first kind of order n and is denoted by Jn(x). 

Thus 


















0

2

!)1(

1

2
)1()(

r

rn

r

n
rrn

x
xJ  

 

Further the particular solution for k = -n ( replacing n by –n ) be denoted as J-n(x). Hence the general 

solution of the Bessel’s equation is given by y = AJn(x) + BJ-n(x), where A and B are arbitrary constants. 

 

Properties of Bessel’s function 

 

1. )x(J)1()x(J n
n

n  , where n is a positive integer. 

 

Proof:  By definition of Bessel’s function, we have 

 


















0

2

!)1(

1

2
)1()(

r

rn

r

n
rrn

x
xJ   ……….(1) 

Hence, 



















0r

r2n
r

n
!r)1rn(

1

2

x
)1()x(J   ……….(2) 

But gamma function is defined only for a positive real number. Thus we write (2) in the following from 

  



















nr

r2n
r

n
!r)1rn(

1

2

x
)1()x(J  ………..(3) 

Let r – n = s or r = s + n. Then (3) becomes 

  




















0s

n2s2n
ns

n
)!ns()1s(

1

2

x
)1()x(J  
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We know that (s+1) = s! and (s + n)! = (s+n+1) 

                                  



















0s

s2n
ns

!s)1ns(

1

2

x
)1(  

   


















0s

s2n
sn

!s)1ns(

1

2

x
)1()1(  

Comparing the above summation with (1), we note that the RHS is Jn(x). 

Thus, (x)J1)((x)J n
n

n   

 

2.  )x(J)x(J)1()x(J nn
n

n  , where n is a positive integer 

 

Proof : By definition, 


















0

2

!)1(

1

2
)1()(

r

rn

r

n
rrn

x
xJ  

  


















0r

r2n
r

n
!r)1rn(

1

2

x
)1()x(J  

  i.e.,      



















0r

r2n
r2nr

!r)1rn(

1

2

x
1)1(  

               


















0r

r2n
rn

!r)1rn(

1

2

x
)1(1  

Thus,  (x)J1)((-x)J n
n

n   

Since, )x(J)x(J)1( nn
n

 , we have  (x)J(x)J1)(x)(J nn
n

n   

 

Recurrence Relations: 

Recurrence Relations are relations between Bessel’s functions of different order. 

Recurrence Relations 1:   )x(Jx)x(Jx
dx

d
1n

n
n

n
  

From definition,  
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0r

)rn(2
r

0r

r2n
rn

n
n

!r)1rn(

1

2

x
)1(

!r)1rn(

1

2

x
)1(x)x(Jx  

   












0r
r2n

1)rn(2
r

n
n

!r)1rn(2

x)rn(2
)1()x(Jx

dx

d
 

  












0r
1r2n

1r2n
rn

!r)rn()rn(2

x)rn(
)1(x  

  
 

)x(Jx
!r)1r1n(

)2/x(
)1(x 1n

n

0r

r21n
rn












  

 Thus,   )x(Jx)x(Jx
dx

d
1n

n
n

n
    --------(1) 

Recurrence Relations 2:   )x(Jx)x(Jx
dx

d
1n

n
n

n


   

From definition,  

  



















0r

r2n
rn

n
n

!r)1rn(

1

2

x
)1(x)x(Jx  

   














0r

r2
r

!r)1rn(

1

2

x
)1(  

   











0r
r2n

1r2
r

n
n

!r)1rn(2

xr2
)1()x(Jx

dx

d
 

   











1r
)1r(21n

)1r(21n
1rn

)!1r()1rn(2

x
)1(x  

Let k = r – 1 

   )x(Jx
!k)1k1n(2

x
)1(x 1n

n

0k
k21n

k21n
kn










 


  

 Thus,   )x(Jx)x(Jx
dx

d
1n

n
n

n


     --------(2) 

Recurrence Relations 3:  )x(J)x(J
n2

x
)x(J 1n1nn    
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We know that   )x(Jx)x(Jx
dx

d
1n

n
n

n
  

Applying product rule on LHS, we get )x(Jx)x(Jnx)x(Jx 1n
n

n
1n/

n
n


   

Dividing by x
n
 we get  )x(J)x(J)x/n()x(J 1nn

/
n  --------(3) 

Also differentiating LHS of   )x(Jx)x(Jx
dx

d
1n

n
n

n


  , we get 

 )x(Jx)x(Jnx)x(Jx 1n
n

n
1n/

n
n


     

Dividing by –x
–n

  we get  )x(J)x(J)x/n()x(J 1nn
/
n  --------(4) 

Adding (3) and (4), we obtain  )x(J)x(Jx)x(nJ2 1n1nn    

i.e.,  )x(J)x(J
n2

x
)x(J 1n1nn    

Recurrence Relations 4:  )x(J)x(J
2

1
)x(J 1n1n

/
n    

Subtracting (4) from (3), we obtain  )x(J)x(J)x(J2 1n1n
/
n    

i.e.,  )x(J)x(J
2

1
)x(J 1n1n

/
n    

Recurrence Relations 5: )x(J)x(J
x

n
)x(J 1nn

/
n   

This recurrence relation is another way of writing the Recurrence relation 2. 

Recurrence Relations 6: )x(J
x

n
)x(J)x(J n1n

/
n    

This recurrence relation is another way of writing the Recurrence relation 1. 

Recurrence Relations 7: )x(J)x(J
x

n2
)x(J 1nn1n    

This recurrence relation is another way of writing the Recurrence relation 3. 

 

Problems: 

Prove that xcos
x

2
)x(J)b(xsin

x

2
)x(J)a( 2/12/1
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By definition, 




















0r

r2n
r

n
!r)1rn(

1

2

x
)1()x(J  

Putting n = ½, we get 




















0r

r22/1
r

2/1
!r)2/3r(

1

2

x
)1()x(J  
































 

!2)2/7(

1

2

x

!1)2/5(

1

2

x

)2/3(

1

2

x
)x(J

42

2/1


 --------(1) 

Using the results (1/2) =  and (n) = (n – 1) (n–1), we get 

8

15
)2/7(,

4

3
)2/5(,

2
)2/3(








   and so on. 

Using these values in (1), we get 












 

2.15

8

16

x

3

4

4

x2

2

x
)x(J

42

2/1


 

 
























 

5353

!5

x

!3

x
x

x

2

120

x

6

x
x

x

2

2

x


 

xsin
x

2
)x(J 2/1


  

Putting n = - 1/2, we get 





















0r

r22/1
r

2/1
!r)2/1r(

1

2

x
)1()x(J  
































 

!2)2/5(

1

2

x

!1)2/3(

1

2

x

)2/1(

1

2

x
)x(J

42

2/1


 --------(2) 

Using the results (1/2) =  and (n) = (n – 1) (n–1) in (2), we get 












 

2.3

4

16

x2

4

x1

x

2
)x(J

42

2/1
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42

!4

x

!2

x
1

x

2


 

xcos
x

2
)x(J 2/1


  

2. Prove the following results: 















 xcos

x

3
xsin

x

x3

x

2
)x(J)a(

2

2

2/5


 And 















 xsin

x

3
xcos

x

x3

x

2
)x(J)b(

2

2

2/5


 

Solution: 

 

We prove this result using the recurrence relation  )x(J)x(J
n2

x
)x(J 1n1nn    ------ (1). 

Putting n = 3/2 in (1), we get )x(J
x

3
)x(J)x(J 2/32/52/1   

)x(J)x(J
x

3
)x(J 2/12/32/5   

xsin
x

2

x

xcosxxsin

x

2

x

3
)x(J.,e.i 2/5










 
  



























 
 xcos

x

3
xsin

x

)x3(

x

2

x

xsinxxcosx3xsin3

x

2
)x(J

2

2

2

2

2/5


 

Also putting n = - 3/2 in (1), we get )x(J
x

3
)x(J)x(J 2/32/12/5    

xcos
x

2

x

xcosxsinx

x

2

x

3
)x(J)x(J

x

3
)x(J 2/12/32/5










 






















 
   











 












 
 xcos

x

x3
xsin

x

3

x

2

x

xcosxxcos3xsinx3

x

2
)x(J.,e.i

2

2

2

2

2/5


 

3. Show that    )x(J)1n()x(nJ
x

2
)x(J)x(J

dx

d 2
1n

2
n

2
1n

2
n    
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Solution: 

L.H.S =   )x(J)x(J2)x(J)x(J2)x(J)x(J
dx

d /
1n1n

/
nn

2
1n

2
n   ------- (1) 

We know the recurrence relations 

  )x(xJ)x(nJ)x(xJ 1nn
/
n    ------- (2) 

  )x(J)1n()x(xJ)x(xJ 1nn
/

1n    ------- (3) 

Relation (3) is obtained by replacing n by n+1 in )x(nJ)x(xJ)x(xJ n1n
/
n    

 

Now using (2) and (3) in (1), we get 

L.H.S   =   






 









  )x(J

x

1n
)x(J)x(J2)x(J)x(J

x

n
)x(J2)x(J)x(J

dx

d
1nn1n1nnn

2
1n

2
n  

 )x(J
x

1n
2)x(J)x(J2)x(J)x(J2)x(J

x

n2 2
1nn1n1nn

2
n 
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Generating Function for Jn(x) 
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If n is an integer then Jn(x) is the coefficient of t
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(using the expansion of exponential function) 
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Similarly, if we collect the coefficients of t
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From the above two expression, in general, if n is a positive integer, we get 
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Orthogonality of Bessel Functions 

 

If  and  are the two distinct roots of Jn(x) = 0, then   
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If  and  are the two distinct roots of Jn(x) = 0, then  Jn() = 0 and Jn() = 0, and hence (4) reduces to 
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This is known as Orthogonality relation of  Bessel functions. 
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