

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad -500 043

ELECTRONICS AND COMMUNICATION ENGINEERING

TUTORIAL QUESTION BANK

Course Title	ELECTRONIC MEASUREMENTS AND INSTRUMENTATION								
Course Code	AECB32	AECB32							
Program	B.Tech	B.Tech							
Semester	FIVE	FIVE							
Course Type	Professional Elective								
Regulation	IARE - R18								
		Theory		Practical					
Course Structure	Lectures	Tutorials	Credits	Laboratory	Credits				
	3	-	3	-	-				
Course Coordinator	Ms. P Annapurna, Assistant Professor								

COURSE OBJECTIVES:

The co	The course should enable the students to:						
Ι	The construction and operation of AC & DC voltmeters and ammeters, signal generators, signal						
	analyzers, transducers and LCR meters.						
II	The application of the principles of electronic measurements to monitor high tension power						
	quality and build spectrum analyzers for scientific and industrial applications.						
III	To explore the applications of measuring instrument in environment monitoring and health						
	monitoring of a smart car.						

COURSE OUTCOMES:

After successful completion of the course, students will be able to:								
	Knowledge Level (Bloom's Taxonomy)							
CO 1	Recall the schematics of measuring systems and performance characteristics of an instrument.	Remember						

CO 2	Explain the measuring instruments and its working principle by using the	Understand
	instrument D'Arsonval Movement.	
CO 3	Demonstrates the various types measuring meters like Digital Voltmeters.	Understand
CO 4	Describe the basic building blocks of Cathode ray oscilloscopes and cathode ray tubes	Understand
CO 5	Compare various types of special purpose oscilloscopes with its applications.	Analyze
CO 6	Draw Lissajous figures or patterns for the given frequencies.	Apply
CO 7	Illustrate the working principles of signal generators and signal analyzers	Understand
CO 8	Design a measuring instrument on requirement basis	Apply
CO 8 CO 9	Design a measuring instrument on requirement basis Describe Transducers and classify them according to their application	Apply Understand
CO 8 CO 9 CO 10	Design a measuring instrument on requirement basisDescribe Transducers and classify them according to their applicationExtend the concepts of balance bridge to find out the unknown parameter with the given specifications.	Apply Understand Analyze
CO 8 CO 9 CO 10 CO 11	Design a measuring instrument on requirement basisDescribe Transducers and classify them according to their applicationExtend the concepts of balance bridge to find out the unknown parameter with the given specifications.Illustrate the working functionality of strain gauges, LVDT	Apply Understand Analyze Understand
CO 8 CO 9 CO 10 CO 11 CO 12	Design a measuring instrument on requirement basisDescribe Transducers and classify them according to their applicationExtend the concepts of balance bridge to find out the unknown parameter with the given specifications.Illustrate the working functionality of strain gauges, LVDTCompare wave analyzers and spectrum analyzers based on its working functionality.	Apply Understand Analyze Understand Understand

MAPPING OF EACH CO WITH PO(s), and PSO(s):

Course	Program Outcomes									Program Specific Outcomes					
outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	2	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 2	2	3	-	-	-	-	-	-	-	-	-	-	-	1	-
CO 3	3	-	-	1	-	-	-	-	-	-	-	-	-	-	-
CO 4	2	1	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 5	-	2	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 6	-	2	-	2	3	-	-	-	-	-	-	-	-	1	-
CO 7	2	3	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 8	-	-	-	1	2	-	-	-	-	-	-	-	-	2	-
CO 9	2	2	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 10	2	-	-	2	-	-	-	-	-	-	-	-	-	3	-
CO 11	2	-	-	1	-	-	-	-	-	-	-	-	-	-	-
CO 12	2	1	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 13	-	-	2	-	2	-	-	-	-	-	-	-	-	-	2

TUTORIAL QUESTION BANK

MODULE-I							
	INTRODUCTION TO MEASURING INSTRUMENTS						
	Part - A (Short Answer Questions)						
S. No	Question	Blooms Taxonomy Level	How does this Subsume the level below	Course Outcome			
1	Define measuring system?	Remember		CO 1			
2	List the classification of performance characteristics of an instrument?	Understand	This would require the learner to recall the performance characteristics of an instrument and classify the performance characteristics	CO 1			
3	Define instrument?	Remember		CO 1			
4	Distinguish between static and dynamic characteristics?	Understand	This would require the learner to recall the concepts of static and dynamic characteristics and compare them	CO 1			
5	Define precision and accuracy.	Remember		CO 1			
6	List out the characteristics of a precision.	Understand	This would require the learner to recall the concepts of static and characteristics	CO 1			
7	What are the different types of errors possible in an instrument?	Understand	This would require the learner to recall the concepts of errors and list out them	CO 1			
8	Explain ohmmeter and its classification?	Understand	This would require the learner to recall the concepts of ohmmeters and list out them base on its construction	CO 1			
9	Explain about DC voltmeters AC voltmeters?	Understand	This would require the learner to recall the concepts of voltmeters and list out them base on its construction	CO 2			
10	Define the terms Accuracy	Remember		CO 1			
11	Define the following terms, Repeatability Reproducibility	Remember		CO 1			
12	What are the different types of static errors in a system?	Understand	This would require the learner to recall the concepts of errors and list out static errors in a system	CO 1			
13	Define measuring instrument	Remember		CO 1			
14	Write short notes on Delay lines.	Understand	This would require the learner to recall the concepts of delay lines used in CROs	CO 1			

15	List out the specifications of instruments	Understand	This would require the learner to recall the concepts of specifications	CO 1
			of instruments	~~~
16	Define successive approximation type of digital voltmeters	Remember		CO 2
17	Define the terms Precision	Remember		CO 1
18	Define the terms Resolution	Remember		CO 1
19	Explain about DC ammeters	Understand	This would require the learner to recall the concepts of ammeters and explain them	CO 2
20	Define sensitivity	Remember		CO 1
	Part	- B (Long Ans	swer Questions)	
1	Discuss about the Aryton Shunt Circuit and explain how current Measurement is done?	Understand	This would require the learner to recall the concepts of ammeters list the different types of ammeters analyze the concepts and advatanges of Aryton Shunt over the remaining meters	CO 2
2	List out the different types of errors that occur in measurements, and explain in detail about them.	Understand	This would require the learner to recall the concepts of error and list its types and analyze the different types of errors that occur in measurements	CO 1
3	Describe the basic performance characteristics of a system? Explain in detail about it.	Understand	This would require the learner to recall the concepts of an instrument list out its performance characteristics and explain them with examples	CO 1
4	Explain the constructional details and difference between Ohmmeter series type and shunt type.	Understand	This would require the learner to recall the concepts of Ohmmeter and analyze the functions of series type and shunt type of ohmmeters and differentiate them	CO 2
5	Explain the working principle of PMMC movement with the help of equations.	Understand	This would require the learner to recall the concepts of PMMC meter and analyze its constructional details with the help of equations	CO 2
6	Define voltmeter sensitivity. What is the loading effect of a DC voltmeter?	Understand	This would require the learner to recall the concepts of voltmeter , voltmeter sensitivity, loading effect of a DC voltmeter and how to overcome the loading effect	CO 2
7	Discuss about D'Arsonval Movement with a neat diagram	Understand	This would require the learner to recall the concepts of D'Arsonval Movement analyze its functionality by using constructional diagram	CO 2

8	Give the block schematic of a	Understand	This would require the learner to	CO 1
	general measuring system and		recall the concepts of measuring	
	explain the same.		system and analyze each block	
9	Explain about different types of	Understand	This would require the learner to	CO 2
	ammeters		recall the concepts of ammeters list	
			them and analyze the operation of	
			ammeters	
10	Explain about different types of	Understand	This would require the learner to	CO 2
	ohmmeters		recall the concepts of ohmmeters	
			list them and analyze the operation	
			of ohmmeters.	
11	Define and express the	Understand	This would require the learner to	CO 1
	following terms,		recall the concepts of static	
	a) Fidelity		characteristics of an instrument list	
	b) Speed of response		out them and analyze static	
	c) Lag		characteristics	
	d) Dynamicerror			
12	Explain in detail about	Understand	This would require the learner to	CO 2
	characteristics and functionality		recall the concepts of Multimeter	
	of the Multimeter.		analyze its working functionality	
10		TTTTTTTTTTTTT	and characteristics	
13	Compare AC and DC	Understand	This would require the learner to	CO 2
	Voltmeters and ammeters		recall the concepts of Voltmeters	
			, ammeters and analyze their	
1.4		T T 1 / 1	characteristics to compare them	<u> </u>
14	Describe the function of DC	Understand	This would require the learner to	CO 2
	voltmeter and multirange		recall the concepts of voltmeters	
	voltmeter with neat operation		list the types of voltmeters analyze	
	explanation?		DC voltmeter and multirange	
15	Frantsin dae meestaine of	The demotent	This second days the base of the	<u> </u>
15	Explain the working of	Understand	This would require the learner to	05
	successive approximation type		recall the concepts of digital	
	of digital voltmeter with the		voltmeter list them analyze the	
	neip of block diagram		working of successive	
			approximation type of digital	
			volumeterwith block diagram	
	Part – C	C (Critical Th	inking Questions)	
1	It is desired to extend the range	Apply	This would require the learner to	CO 2
	of a 10mA Ammeter with		recall the concepts of meter range	
	Rm=100 Ω to measure 15A.		extension and ammeter	
	Draw the circuit and determine		characteristics and describe about	
	the value of R.		ammeter range and identify the	
			formulae assign the mathematical	
			functions to get the result	
2	Determine the Multiplier	Apply	This would require the learner to	CO 2
	resistance on the 50V range of a		recall the concepts of voltmeters	
	DC Voltmeter, which uses		and assign the appropriate formula	
	300mA meter movement having		to find out the resistance	
	internal resistance of 1.2Ω .			

3	A Voltmeter having a	Apply	This would require the learner to	CO 2
	sensitivity of 15k Ω /V reads	11.2	recall the concepts of voltmeter	
	80V on a 100V scale, when		and describe about loading	
	connected across an unknown		effects & apply the formulae to find	
	resistor. The current through the		out the % of error	
	resistor is 2mA Calculate the %			
	of error due to loading Effect			
4	A basic D'Arsonval movement	Apply	This would require the learner to	CO^2
-	with a full scale deflection of	rippiy	recall the concepts of D'Arsonval	002
	100 uA and an internal		movement and find out different	
	resistance of 2000 Ω is		types of voltmeters and apply	
	available. It is to be Converted		appropriate technique to measure	
	into a 0.5V 0.10V 0.25V and		the individual resistors	
	Into a $0-3, 0-10, 0-23$, and 0.50 multi-serve voltageter		the marviaual resistors	
	0-50 v multi range voltmeter			
	using individual multipliers for			
	each range. Calculate the values			
	of the individual resistors.			~~~
5	A Voltmeter having a	Apply	This would require the learner to	CO 2
	Sensitivity of 20k Ω /V reads		recall the concepts of voltmeter and	
	100V units 150V scale, when		describe about loading effects &	
	connected across an unknown		apply the formulae to find out the	
	resistor Rx. The current passing		% of error	
	through the resistor is 2.0mA			
	.Calculate the % error due to			
	loading effect.			
6	A 200 Ω basic movement is to	Apply	This would require the learner to	CO 2
	be used as an ohmmeter		recall the concepts of D'Arsonval	
	requiring full scale deflection of		movement and describe the	
	1 mA and internal battery		function of ohmmeters and	
	voltage of 5 V. A half scale		identify formulae to be used and get	
	deflection marking of 2 k is		the results and then apply the	
	desired. Calculate,		answer for drop in battery voltage	
	The values of R1 and R2			
	. Maximum value of R to			
	compensate for a 3% drop in			
	battery voltage			
7	A voltmeter having a sensitivity	Apply	This would require the learner to	CO 2
	of $1K\Omega/V$ is connected across		recall the concepts of ammeter and	
	an unknown resistance in series		describe its characteristics and	
	with a milli ammeter reading		apply the suitable formulae to find	
	80V on 150V scale. When the		out error due to loading effect	
	milli ammeter reads 10mA,			
	Calculate the,			
	apparent resistance of the			
	unknown resistor			
	Actual resistance of the			
	unknown resistor.			
	Error due to the loading effect of			
	the voltmeter.			
8	Two ammeters are joined in	Apply	This would require the learner to	CO 2
-	series in a circuit carrying	F F -7	recall the concepts ammeter and	

	100A. One ammeter has a		describe its characteristics and					
	resistance of 100000hm		apply them to find out the ammeter					
	shunted by 0.10 ohm while the		reading					
	other ammeter has a resistance							
	of 150 ohm shunted by							
	0.02 ohm if the shunts are							
	interchanged what would be							
	the readings of the instruments							
9	The following values are obtained from the measurements of the value of a resistor:147.2, 147.4, 147.9, 147.1, 147.5, 147.6, 147.4, 147.6, 147.5. Calculate.	Apply	This would require the learner to recall the concepts of Arithmetic mean, Average deviation and Standard Deviation and identify appropriate formulae and apply the appropriate formulae to find out the statistical parameters	CO 1				
	Arithmetic mean							
) Average deviation							
	Standard Deviation							
10	Determine the Multiplier resistance on the 150V range of	Apply	This would require the learner to recall the concepts of voltmeters	CO 3				
	a DC Voltmeter, which uses		and ohmmeters and describe their					
	30mA meter movement having		function then apply mathematical					
	internal resistance of 5.2Ω		formulae to find out the multiplier					
			resistance					
	MODULE-II							
		MODU	LE-II					
		MODU	LE-II SCOPE					
	Part	MODUI OSCILLO - A (Short An	LE-II SCOPE swer Questions)					
1	Part Discuss about the CRT and its internal structure?	MODUI OSCILLO - A (Short An Understand	LE-II SCOPE swer Questions) This would require the learner to recall the concepts of CRT analyze its internal structure	CO 4				
1	Part Discuss about the CRT and its internal structure? Define CRO?	MODUI OSCILLO - A (Short An Understand Remember	LE-II SCOPE swer Questions) This would require the learner to recall the concepts of CRT analyze its internal structure 	CO 4 CO 4				
1 2 3	Part Discuss about the CRT and its internal structure? Define CRO? Discuss vertical amplifier with a near block diagram?	MODUI OSCILLO - A (Short An Understand Remember Understand	SCOPE swer Questions) This would require the learner to recall the concepts of CRT analyze its internal structure This would require the learner to recall the concepts of CRT and	CO 4 CO 4 CO 4				
1 2 3	Part Discuss about the CRT and its internal structure? Define CRO? Discuss vertical amplifier with a neat block diagram?	MODUI OSCILLO - A (Short An Understand Remember Understand	SCOPE swer Questions) This would require the learner to recall the concepts of CRT analyze its internal structure This would require the learner to recall the concepts of CRT and Analyze each block and Explain	CO 4 CO 4 CO 4				
1 2 3	Part Discuss about the CRT and its internal structure? Define CRO? Discuss vertical amplifier with a neat block diagram?	MODUI OSCILLO - A (Short An Understand Remember Understand	SCOPE Swer Questions) This would require the learner to recall the concepts of CRT analyze its internal structure This would require the learner to recall the concepts of CRT and Analyze each block and Explain about vertical amplifiers	CO 4 CO 4 CO 4				
1 2 3 4	Part Discuss about the CRT and its internal structure? Define CRO? Discuss vertical amplifier with a neat block diagram? Describe the roles of horizontal	MODUI OSCILLO - A (Short An Understand Remember Understand	LE-II SCOPE swer Questions) This would require the learner to recall the concepts of CRT analyze its internal structure This would require the learner to recall the concepts of CRT and Analyze each block and Explain about vertical amplifiers This would require the learner to	CO 4 CO 4 CO 4 CO 4				
1 2 3 4	Part Discuss about the CRT and its internal structure? Define CRO? Discuss vertical amplifier with a neat block diagram? Describe the roles of horizontal amplifiers?	MODU OSCILLO - A (Short An Understand Remember Understand	SCOPE swer Questions) This would require the learner to recall the concepts of CRT analyze its internal structure This would require the learner to recall the concepts of CRT and Analyze each block and Explain about vertical amplifiers This would require the learner to recall the concepts of CRT and	CO 4 CO 4 CO 4 CO 4				
1 2 3 4	Part Discuss about the CRT and its internal structure? Define CRO? Discuss vertical amplifier with a neat block diagram? Describe the roles of horizontal amplifiers?	MODUI OSCILLO - A (Short An Understand Remember Understand	SCOPE Swer Questions) This would require the learner to recall the concepts of CRT analyze its internal structure This would require the learner to recall the concepts of CRT and Analyze each block and Explain about vertical amplifiers This would require the learner to recall the concepts of CRT and Analyze each block and Explain about vertical amplifiers	CO 4 CO 4 CO 4 CO 4				
1 2 3 4	Part Discuss about the CRT and its internal structure? Define CRO? Discuss vertical amplifier with a neat block diagram? Describe the roles of horizontal amplifiers?	MODUI OSCILLO - A (Short An Understand Remember Understand Understand	SCOPE Swer Questions) This would require the learner to recall the concepts of CRT analyze its internal structure This would require the learner to recall the concepts of CRT and Analyze each block and Explain about vertical amplifiers This would require the learner to recall the concepts of CRT and Analyze each block and Explain about vertical amplifiers	CO 4 CO 4 CO 4 CO 4				
1 2 3 4 5	Part Discuss about the CRT and its internal structure? Define CRO? Discuss vertical amplifier with a neat block diagram? Describe the roles of horizontal amplifiers? Explain vertical section of CRT?	MODUI OSCILLO - A (Short An Understand Understand Understand Understand	SCOPE Swer Questions) This would require the learner to recall the concepts of CRT analyze its internal structure This would require the learner to recall the concepts of CRT and Analyze each block and Explain about vertical amplifiers This would require the learner to recall the concepts of CRT and Analyze each block and Explain about vertical amplifiers This would require the learner to recall the concepts of CRT and Analyze each block and Explain about horizontal amplifiers This would require the learner to	CO 4 CO 4 CO 4 CO 4 CO 4				
1 2 3 4 5	Part Discuss about the CRT and its internal structure? Define CRO? Discuss vertical amplifier with a neat block diagram? Describe the roles of horizontal amplifiers? Explain vertical section of CRT?	MODUI OSCILLO - A (Short An Understand Remember Understand Understand	SCOPE swer Questions) This would require the learner to recall the concepts of CRT analyze its internal structure This would require the learner to recall the concepts of CRT and Analyze each block and Explain about vertical amplifiers This would require the learner to recall the concepts of CRT and Analyze each block and Explain about vertical amplifiers This would require the learner to recall the concepts of CRT and Analyze each block and Explain about horizontal amplifiers This would require the learner to recall the concepts of CRT and Analyze each block and Explain about horizontal amplifiers This would require the learner to recall the concepts of CRT and	CO 4 CO 4 CO 4 CO 4 CO 4				
1 2 3 4 5	Part Discuss about the CRT and its internal structure? Define CRO? Discuss vertical amplifier with a neat block diagram? Describe the roles of horizontal amplifiers? Explain vertical section of CRT?	MODUI OSCILLO - A (Short An Understand Remember Understand Understand	SCOPE Swer Questions) This would require the learner to recall the concepts of CRT analyze its internal structure This would require the learner to recall the concepts of CRT and Analyze each block and Explain about vertical amplifiers This would require the learner to recall the concepts of CRT and Analyze each block and Explain about vertical amplifiers This would require the learner to recall the concepts of CRT and Analyze each block and Explain about horizontal amplifiers This would require the learner to recall the concepts of CRT and Analyze each block and Explain about horizontal amplifiers This would require the learner to recall the concepts of CRT and analyze vertical section of CRT	CO 4 CO 4 CO 4 CO 4 CO 4				
1 2 3 4 5 6	Part Discuss about the CRT and its internal structure? Define CRO? Discuss vertical amplifier with a neat block diagram? Describe the roles of horizontal amplifiers? Explain vertical section of CRT? Explain about horizontal section of CRT	MODUI OSCILLO - A (Short An Understand Remember Understand Understand Understand	SCOPE swer Questions) This would require the learner to recall the concepts of CRT analyze its internal structure This would require the learner to recall the concepts of CRT and Analyze each block and Explain about vertical amplifiers This would require the learner to recall the concepts of CRT and Analyze each block and Explain about vertical amplifiers This would require the learner to recall the concepts of CRT and Analyze each block and Explain about horizontal amplifiers This would require the learner to recall the concepts of CRT and analyze vertical section of CRT This would require the learner to recall the concepts of CRT and analyze vertical section of CRT	CO 4 CO 4 CO 4 CO 4 CO 4 CO 4				
1 2 3 4 5 6	Part Discuss about the CRT and its internal structure? Define CRO? Discuss vertical amplifier with a neat block diagram? Describe the roles of horizontal amplifiers? Explain vertical section of CRT? Explain about horizontal section of CRT.	MODU OSCILLO - A (Short An Understand Remember Understand Understand Understand	SCOPE swer Questions) This would require the learner to recall the concepts of CRT analyze its internal structure This would require the learner to recall the concepts of CRT and Analyze each block and Explain about vertical amplifiers This would require the learner to recall the concepts of CRT and Analyze each block and Explain about vertical amplifiers This would require the learner to recall the concepts of CRT and Analyze each block and Explain about horizontal amplifiers This would require the learner to recall the concepts of CRT and analyze vertical section of CRT This would require the learner to recall the concepts of CRT and analyze vertical section of CRT This would require the learner to recall the concepts of CRT and analyze vertical section of CRT	CO 4 CO 4 CO 4 CO 4 CO 4 CO 4				
1 2 3 4 5 6	Part Discuss about the CRT and its internal structure? Define CRO? Discuss vertical amplifier with a neat block diagram? Describe the roles of horizontal amplifiers? Explain vertical section of CRT? Explain about horizontal section of CRT.	MODU OSCILLO - A (Short An Understand Remember Understand Understand Understand	LE-II SCOPE swer Questions) This would require the learner to recall the concepts of CRT analyze its internal structure This would require the learner to recall the concepts of CRT and Analyze each block and Explain about vertical amplifiers This would require the learner to recall the concepts of CRT and Analyze each block and Explain about vertical amplifiers This would require the learner to recall the concepts of CRT and Analyze each block and Explain about horizontal amplifiers This would require the learner to recall the concepts of CRT and analyze vertical section of CRT This would require the learner to recall the concepts of CRT and analyze Horizontal section of CRT	CO 4 CO 4 CO 4 CO 4 CO 4 CO 4				

7	Discuss about dual beam CRO?	Understand	This would require the learner to recall the concepts of CRO and analyze dual beam CRO	CO 5
8	Define dual trace oscilloscope?	Remember		CO 5
9	Define sampling oscilloscope?	Remember		CO 5
10	Write briefly about storage oscilloscope?	Understand	This would require the learner to recall the concepts of CRO and analyze storage oscilloscope	CO 5
11	Compare dual trace oscilloscopes and dual beam CRO.	Understand	This would require the learner to recall the concepts of CRO and list out the types CRO	CO 5
12	What are the different types of CRO probes?	Understand	This would require the learner to recall the concepts of CRO probes and list out the types of CRO probes	CO 5
13	Explain about digital CRO	Understand	This would require the learner to recall the concepts of digital CRO	CO 5
14	Discuss about the Lissajous figures	Understand	This would require the learner to recall the concepts of CRO and understand them to measure different parameters of a signal.	CO 6
15	Describe about storage oscilloscopes	Understand	This would require the learner to recall the concepts of oscilloscopes analyze storage oscilloscopes	CO 5
16	Discuss about Phosphor Screen Characteristics	Understand	This would require the learner to recall the concepts of CRO and analyze the Characteristics of Phosphor Screen	CO 5
17	Define Time-base generator	Remember		CO 5
18	Discuss about Triggering circuit	Remember	This would require the learner to recall the concepts of CRO and Explain about Triggering circuit	CO 5
19	List the Applications of CRO	Remember	This would require the learner to recall the concepts of CRO and List the Applications of CRO	CO 5
20	Discuss about Delay line circuit	Understand	This would require the learner to recall the concepts of CRO and how Delay line circuits are used in CRO	CO 5
	Part	- B (Long Ans	swer Questions)	
1	Explain the major parts of CRT with a block diagram.	Understand	This would require the learner to recall the concepts of CRT and analyze every block in CRT explain them in breif	CO 4
2	Draw the neat diagrams of both vertical & horizontal deflection	Understand	This would require the learner to recall the concepts of CRO and	CO 4

	systems and explain briefly		explain vertical & horizontal	
	about their working.		deflection systems in breif	
3	Explain briefly about the	Understand	This would require the learner to	CO 4
	Horizontal deflecting system?		recall the concepts of CRO and	
			explain horizontal deflection	
			systems in breif	
4	Draw the block diagram of	Understand	This would require the learner to	CO 4
	general purpose CRO and		recall the concepts of CRO and	
	explain its working.		explain each block	
5	Explain about storage	Understand	This would require the learner to	CO 4
	oscilloscope with block		recall the concepts of CRO analyze	
	diagram?		the storage oscilloscope and its	
			functionality	
6	Explain the working of Dual	Understand	This would require the learner to	CO 5
	trace CRO with neat block		recall the concepts of CRO and	
	diagram.		explain the concepts of Dual trace	
			CRO	
7	Explain with neat Block	Understand	This would require the learner to	CO 5
	Diagram of Digital Storage		recall the concepts of CRO and	
	oscilloscope?		explain the Digital Storage	
			oscilloscope with neat block	
			diagram	~~~
8	Draw the block diagram of	Understand	This would require the learner to	CO 5
	Sampling oscilloscope and		recall the concepts of CRO and	
	explain its working.		explain the Sampling oscilloscope	
-			with neat block diagram	~~ -
9	Explain the method of finding	Understand	This would require the learner to	CO 6
	phase relationship of two		recall the concepts of Lissajous	
	waveforms using Lissajous		figures and obtain the phase	
10	figures?	T T 1 / 1	relationships using waveforms	<u> </u>
10	Explain the method of finding	Understand	This would require the learner to	CO 6
	frequency relationship of two		recall the concepts of Lissajous	
	waveforms using Lissajous		figures and obtain the frequency	
11	figures?	TT 1 . 1	relationships using waveforms	<u> </u>
11	Explain the working of Dual	Understand	This would require the learner to	05
	Beam CRO with neat block		recall the concepts of CRO and	
	diagram.		explain the Dual Beam CKO with	
12	Eveloin in dotail about Doloy	Understand	This would require the learner to	CO 5
12	Laplan in uctair about Delay	Understand	range the concents of CPO and	
			analyze about dalay lines in the	
	Osemoscopes.		operation of CROs	
13	List out the different types of	Understand	This would require the learner to	CO 5
15	probes used for CROs? Explain	Understand	recall the concents of CRO probes	
	about each of them		list out them analyze its application	
			in the usage of CROs	
14	Explain the Applications of	Understand	This would require the learner to	CO 5
17	Oscilloscopes	Chaerstand	recall the concents of CROS and	
	stemoteopes.		list out the Applications of	

			Oscilloscopes and explain them in	
1.5		XX 1 . 1	brief	<u> </u>
15	Explain how different	Understand	This would require the learner to	CO 6
	Lissajous ligures can be used to		figures to measure frequency and	
	measure various parameters?		phase at different points	
16	Compare Dual trace and dual	Understand	This would require the learner to	CO 5
10	beam CROs	Chacistana	recall the concepts of Dual trace	000
			and dual beam CROs and Compare	
			them with their applications and	
			advantages	
17	Describe about high frequency	Understand	This would require the learner to	CO 5
	CRO considerations and		recall the concepts of CROs and	
	applications		describe them in breif	
18	Explain the operation of Time-	Understand	This would require the learner to	CO 5
	Base Generator Using UJT		recall the concepts of Time-Base	
	Transistor		Generators and how can an UJT	
			will be acting as a Time-Base	
10	Evaluin The encention of High	I In denoten d	Generator This would as suize the learner to	CO 5
19	frequency CPT or Travelling	Understand	recall the concents of CPT and	05
	wave type CRT		explain about High frequency CRT	
	wave type CK1		or Travelling wave type CRT	
20	Give the Characteristics of a	Understand	This would require the learner to	CO 5
	HF CRO	Charlotana	recall the concepts of CRO and	000
			obtain its Characteristics at HF	
	Part –	C (Critical T	hinking Questions)	
1	Determine the secondary	Apply	This would require the learner to	CO 4
	emission ratio S' of a digital	11.5	recall the concepts of CRO and	
	storage oscilloscope, if the value		describe the function of digital	
	secondary emission current IS		storage oscilloscope and apply the	
	is $15\mu A$, and the primary beam		appropriate formulae to find out	
	current Ip is 150µA.		secondary emission ratio	
2	Determine the Velocity of	Apply	This would require the learner to	CO 4
	electron beam of an oscilloscope		recall the concepts of CRO and	
	when voltage applied is 2500V.		describe its mathematical analysis	
			and apply the appropriate formulae	
			to measure the Velocity of electron	
			beam	
3	The deflection sensitivity of a CDT is 0.05 mm ($V_{\rm cons}$ d s	Apply	This would require the learner to	CO 5
	UKI IS U.USMM/V and an		describe the functionality of	
	the horizontal deflection		horizontal deflection plate and	
	plate which shifts the spot by		apply the desired formulae to find	
	5mm towards the right.		the applied voltage	
	Determine the unknown applied			
	voltage.			
4	The x-deflection plates of a	Apply	This would require the learner to	CO 5
	CRT are 20mm long and 5mm		recall the concepts of CRT and	

	apart. The centre of the plate from the screen is 25 cm away. The accelerating voltage is 3000V. Determine the deflection sensitivity and the factor.		describe its operation apply the desired formulae to find out the deflection sensitivity	
5	The x-deflection plates in the CRT are 1mm apart and 25mm long. The centre of the plate is 20cm from the screen. The accelerating voltage is 3000V. Find the V_{rms} of the sinusoidal voltage applied to x-deflection plates if the length of the trace is 10cm. Find the electrostatic deflection sensitivity.	Apply	This would require the learner to recall the concepts of CRT and describe its operation and apply the desired formulae to find out the electrostatic deflection sensitivity.	CO 5
6	Determine the Velocity of electron beam of an oscilloscope when voltage applied is 1400V.	Apply	This would require the learner to recall the concepts of CRO and describe its mathematical analysis and apply the appropriate formulae to measure the Velocity of electron beam	CO 5
7	The x-deflection plates of a CRT are 15mm long and 5mm apart. The centre of the plate from the screen is 20 cm away. The accelerating voltage is 1000V. Determine the deflection sensitivity and the factor.	Apply	This would require the learner to recall the concepts of CRT and describe its operation apply the desired formulae to find out the deflection sensitivity	CO 5
8	The deflection sensitivity of a CRT is 0.08mm/V and an unknown voltage is applied to the horizontal deflection plate, which shifts the spot by 10 mm towards the right. Determine the unknown applied voltage	Apply	This would require the learner to recall the concepts of CRT and describe the need of horizontal deflection plates and apply the desired formulae to find the applied voltage	CO 5
9	Determine the Velocity of electron beam of an oscilloscope when voltage applied is 1200V.	Apply	This would require the learner to recall the concepts of CRO and describe its mathematical analysis and apply the appropriate formulae to measure the Velocity of electron beam	CO 5
10	The deflection sensitivity of a CRT is 0.15mm/V and an unknown voltage is applied to the horizontal deflection plate, which shifts the spot by 15mm towards the right.	Apply	This would require the learner to recall the concepts of CRT and describe the need of horizontal deflection plates and apply the desired formulae to find the applied voltage	CO 5

	Determine the unknown applied					
	voltage.	MODII				
		MODUL	E –111			
	SIGNAL GENE	RATORS A	ND WAVE ANALYZERS			
	Part - A (Short Answer Questions)					
1	Distinguish between square and pulse wave generators?	Understand	This would require the learner to recall the concepts of wave generators and compare square and pulse wave generators	CO 7		
2	Define a Function Generator?	Remember		CO 7		
3	Distinguish between the oscillator and function generator?	Understand	This would require the learner to recall the concepts of oscillator and function generator and compare them with their operation	CO 7		
4	List out the applications of function generator?	Remember	This would require the learner to recall the concepts of function generator and list out the applications	CO 7		
5	What is sweep generator?	Remember		CO 7		
6	Define AF Signal Generator	Remember		CO 7		
7	List the specifications of Signal generators?	Understand	This would require the learner to recall the concepts of Signal generators and obtain its specifications	CO 7		
8	Define duty cycle.	Remember		CO 7		
9	List the requirements of a pulse.	Remember		CO 7		
10	Define a video signal Generator	Remember		CO 7		
11	Define a wave analyzer?	Remember		CO 7		
12	List out the different types of wave analyzers.	Understand	This would require the learner to recall to identify the different types of the wave analyzers	CO 7		
13	Differentiate between AF wave analyzer and RF wave analyzer	Understand	This would require the learner to recall the differences between AF and RF analyzers	CO 7		
14	Define distortion, harmonics and the term 'total harmonic distortion'	Remember		CO 7		
15	Relate harmonic distortion analyzer and spectrum analyzer	Understand	This would require the learner to recall the explanation of relationship between harmonic distortion analyzer and spectrum analyzer	CO 7		
16	What is the meaning of distortion factor?	Remember		CO 7		

17	Explain the term 'heterodyning'?	Understand	This would require the learner to	CO 7
			recall concept of the heterodyning to	
			understand the concept of heterodyne	
			distortion analyzer	
18	Mention the difference between	Understand	This would require the learner to	CO 7
	fixed frequency and variable AF		recall the concept of frequency	
	oscillator.		oscillator, which is used in wave	
			analyzers	
19	State the applications of	Remember		CO 7
	spectrum analyzer			
20	Differentiate Function	Understand	This would require the learner to	CO 7
	generators from Signal		recall concept of types of generators.	
	generators.			
	Part	- B (Long An	swer Questions)	
1	Explain the working of a	Understand	This would require the learner to	CO7
1	standard sweep generator with	Onderstand	recall the concepts of generators list	007
	diagram		out them and analyze the working of	
			standard sweep generator with	
			diagram	
2	Discuss in detail about RF signal	Understand	This would require the learner to	CO 7
	generator operation.		recall the concepts of generators list	
			out them and analyze the working of	
			RF signal generator with diagram	
3	With a neat diagram discuss the	Understand	This would require the learner to	CO 7
	operation of a pulse generator.		recall the concepts of generators list	
			out them and analyze the working of	
			pulse generator with diagram	
4	With the help of block diagram	Understand	This would require the learner to	CO 7
	explain the functioning of a		recall the concepts of generator and	
	conventional standard signal		list out them and analyze the	
	generator.		working of a conventional standard	
			signal generator.	
5	Draw the block diagram of a	Understand	This would require the learner to	CO 7
	function generator and explain		recall the concepts of of generator	
	its operation.		and list out them and analyze the	
			working of a function generator.	
6	What is sweep generator?	Understand	This would require the learner to	CO 7
	Explain in detail.		recall the concepts of of generator	
			and list out them and analyze the	
		TT 1 1	working of a sweep signal generator.	a a a
1	Explain the method of producing	Understand	This would require the learner to	CO 7
	sine waves in a function		recall the concepts of of generator	
	generator.		and list out them and analyze the	
0	Evaluin the exaction of a basis	Undonstan 1	This would require the lastra to	CO 7
ð	Explain the operation of a basic	Understand	recoll the concents of of concenter	01
	signal generator.		and list out them and analyze the	
			and fist out them and analyze the	
1		1	working of a basic signal generator.	

9	How broadband sweep	Understand	This would require the learner to	CO 7
	frequencies are generated using a		recall the concepts of of generator	
	sweep generator.		and explain the generation of sweep	
			frequencies	
10	List various control on the front	Understand	This would require the learner to	CO 7
	panel of a pulse generator.		recall the concepts of of pulse	
	Mention their uses.		generator and list various panels	
			present in the basic model and	
			explain them each.	
11	Outline the working of Basic	Understand	This would require the learner to	CO 7
	Spectrum Analyzer with neat		recall the concept of Spectrum	
	schematic block diagram. List		Analyzer	
	A natural?			
12	With post skatabas surlain the	Undomstand	This would require the learner to	CO 7
12	with heat sketches explain the	Understand	recoll the concert of hermonic	07
	characteristics of suppression		distortion analyzer. And then explain	
	method of harmonic distortion		how the distortion can be eliminated	
	analyzer		now the distortion can be eminiated	
13	Discuss about basic principle of	Understand	This would require the learner to	CO 7
10	AF wave analyzer with neat	enderstand	recall the concept of principle of	007
	block diagram.		wave analyzer	
14	Define Power analyzer? Explain	Understand	This would require the learner to	CO 7
	the working of the Power		recall the concept of Power analyzer	
	analyzer with a neat block		and then explain significance of	
	diagram.		power analyzer.	
15	Explain with a diagram the	Understand	This would require the learner to	CO 7
	operation of a frequency		recall the concept of frequency	
	selective wave analyzer.		selective wave analyzer. And then	
			explain significance of frequency	
			selective wave analyzer.	
16	Mention the considerations to be	Remember		CO 12
	made in choosing an oscillator			
	Instrument or Signal Generator			
17	Instrument?	TT 1 / 1		<u> </u>
1/	Explain in detail about the	Understand	This would require the learner to	07
	concretors and montion its		generators and then explain	
	specifications		significance of Video signal	
	specifications.		generators	
18	With neat sketches explain	Understand	This would require the learner to	CO 7
10	principle of operation of	0.11001.500.10	recall the concept of Arbitrary	001
	Arbitrary waveform generator.		waveform generator along with its	
			application and usages	
19	Why is it necessary to measure	Understand	This would require the learner to	CO 7
	distortion? Explain the wein		recall the concept of harmonic	
	bridge method used for		distortion analyzer. And then explain	
	measurement of harmonic		how the distortion can be eliminated	
	distortion with a neat diagram.			
1				

20	Define and explain the	Remember		CO 7
	following terms associated with			
	Spectrum Analyzer:			
	i) Sensitivity			
	ii) Dynamic Range			
	iii) Harmonic Mixing			
	Part – C	C (Critical Th	iinking Questions)	
1	Draw the block diagram of video	Understand	This would require the learner to	CO 7
	signal generator and explain its		recall the concepts of of generator	
	operation.		and list out them and analyze the	
			working of a video signal generator.	<u> </u>
2	Mention standard specifications	Understand	This would require the learner to	CO 7
	of a signal generator		recall the concepts of of generator	
			and list out them and analyze the	
2	List the verieus central on the	Understand	This would require the learner to	CO 7
3	front nonal of a pulse generator	Understand	recall the concents of of concretor	07
	Montion their uses		and list out them and pulse	
	Mention then uses.		generator	
4	Differentiate between a function	Understand	This would require the learner to	CO 7
-	generator and pulse and square	Onderstand	recall the concepts of pulse and	007
	wave generator		square wave generator and list out	
			them with their applications	
5	Determine the dynamic range of	Analyze	This would require the learner to	CO 7
	a spectrum analyzer with a third-	5	relate the concept of spectrum	
	order intercept point of +40dBm		analyzer and its noise levels with a	
	and a noise level of -100dBm.		known value then identify a	
			mathematical formulae and then	
			apply the conditions to find out the	
			dynamic range of a spectrum	
			analyzer and analyse its dynamic	
			range	
6	What is the minimum detectable	Analyze	This would require the learner to	CO 7
	signal of a spectrum analyzer		relate the concept of spectrum	
	with a noise figure of 20Db and		analyzer and its noise figure with a	
	using a 1-kHz, 3-Db filter?		known value then identify a	
			mathematical formulae and then	
			minimum detectable signal of a	
			spectrum analyzer and analyse its	
			response	
7	Compare the selectivity	Understand	This would require the learner to	CO 12
,	characteristics of the Spectrum	Onderstand	understand the characters tics of	0012
	Analyzer and Heterodyne Wave		Spectrum and Heterodyne Wave	
	Analyzer.		Analyzer	
8	Describe the operation of a	Understand	This would require the learner to	CO 7
	distortion analyzer using		recall the concept of harmonic	
	resonance to suppress the		distortion analyzer. And then explain	
	fundamental frequency.		how the distortion can be eliminated	

0	Eveloin the number during of	I Indonation d	This mould as mine the learning to	CO 12	
9	Explain the procedure of	Understand	This would require the learner to	CO 12	
	listerier enclose a narmonic		recall the concept of narmonic		
	distortion analyzer using a		distortion analyzer. And then explain		
10	bridged-1 type.	XX 1 . 1	how the distortion can be eliminated		
10	How the fundamental frequency	Understand	This would require the learner to	CO 7	
	is suppressed using fundamental		recall the concept of fundamental		
	suppression distortion analyzer?		suppression distortion analyzer and		
	Explain		then explain How the fundamental		
			frequency is suppressed		
		MODUL	E –IV		
		AC AND DC	BRIDGES		
	Part - A (Short Answer Questions)				
1	Define a Bridge? What is the	Remember		CO 8	
	importance of a bridge?				
2	Draw the circuit of a Wheatstone	Remember		CO 8	
	bridge and derive the conditions				
	of balance.				
3	What are the modifications and	Understand	This would require the learner to	CO 8	
C C	additional features incorporated	Chicolotalia	recall the concept of Schering bridge	000	
	in a low voltage Schering bridge		for it to be used on high voltages		
	for it to be used on high		for it to be used on high voltages		
	voltages?				
4	Why is Hay's bridge suited for	Understand	This would require the learner to	CO 8	
	measurement of inductance of	Chacibtana	recall the concept of Hay's bridge	000	
	high O coils?		suited for measurement of		
			inductance of high O coils		
5	How does the basic circuit of	Understand	This would require the learner to	CO 8	
5	Kelvin's bridge differ from that	Chacistana	recall about Kelvin's bridge and	000	
	of a wheatstone's bridge?		how it is differ from others		
6	State the limitations of a	Remember		CO 8	
0	Wheatstone bridge How is it	Remember		000	
	overcome?				
7	Define the term 'null' as applied	Domombor		<u> </u>	
/	to bridge measurement?	Kemember		008	
8	State the two balance conditions	Domombor		<u> </u>	
0	of wion bridge?	Kemember		008	
0	Compare AC and DC bridges	Understand	This would require the learner to	<u> </u>	
9	Compare AC and DC bridges.	Understand	This would require the learner to	00	
			heidage and then evelop how and		
			where to use		
10		D	where to use.		
10	List out the various detectors	Kemember		08	
11	used for ac measurements.	Deres 1		00.0	
	State the two conditions that	Kemember			
	must be satisfied to obtain bridge				
10	balance?	T T 1 . 1			
12	List out the different precautions	Understand	I his would require the learner to	CO 8	
	to be taken when using a Bridge		recall about precautions to be taken		
	with an example.		when using a Bridge		

13	What do you mean by Wagner's	Understand	This would require the learner to	CO 8
	ground connection? What is its		recall the meaning and significance	
	significance?		of Wagner's ground connection	
14	If a basic DC bridge arms are	Apply	This would require the learner to	CO 10
	connected with $R1 = 2.2$ K, $R2 =$		recall the concepts of bridges and	
	3.9 K, R3 = 10 K, find R4.		describe the function of a bridge	
			then identify a appropriate formulae	
			then assign values and find out	
			unknown Resistance	
15	Define Anderson Bridge? write	Understand	This would require the learner to	CO 8
	the advantages of Anderson		recall the concept of Anderson	
	Bridge		Bridge	
16	Write the expressions for the	Understand	This would require the learner to	CO 8
	parallel combination of unknown		recall the concept of Schering bridge	
	resistance and capacitor in		to find the expressions for the parallel	
	Schering bridge.		combination of unknown resistance	
			and capacitor	
17	Write short notes on Opposite	Understand	This would require the learner to	CO 8
	angle Bridge.		recall the concept of Opposite angle	
			Bridge.	
18	Mention the usage of Wagener	Remember		CO 8
	earth connections.			
19	State the limitations of the	Remember		CO 8
	Maxwell's Bridge			
20	State the two conditions that	Understand	This would require the learner to	CO 8
	must be satisfied to obtain bridge		recall the concept of conditions that	
	balance.		must be satisfied to obtain bridge	
			balance.	
	Part	- B (Long Ans	swer Questions)	
1	What are the different problems	Understand	This would require the learner to	CO 8
	associated with measurement of		recall the Kelvin's double bridge and	
	low resistances? Explain the		then explain Kelvin's double bridge	
	principal of working a Kelvin's		is balanced.	
	double bridge. Draw the circuit			
	of a Kelvin's double bridge used			
	for the measurement of low			
	resistances. Write the condition			
	for balance.			
2	What is the significance of	Understand	This would require the learner to	CO 8
	bridge circuit measurements		recall the concept of bridge circuit	
	over direct meter measurements?		measurements	
3	Describe the working of a low	Understand	This would require the learner to	CO 8
	voltage schering bridge. Derive		recall the concept of Schering bridge	
	the equations for capacitance and		for phasor diagram of the bridge	
	dissipation factor. Draw the		under conditions of balance	
	phasor diagram of the bridge			
	under conditions of balance.			
4	Derive the general equations for	Understand	This would require the learner to	CO 8
	8 1		1	

	that the two conditions for		magnitude and phase diagram of the	
	that the two conditions for		magnitude and phase diagram of the	
	magnitude and phase to be		bridge under conditions of balance	
	satisfied to get balance for an ac			
	bridge			
5	Derive the equations of balance	Understand	This would require the learner to	CO 8
	for an Anderson's bridge. Draw		recall the concept of Anderson's	
	the phasor diagram for		bridge for phasor diagram of the	
	conditions under balance.		bridge under conditions of balance	
6	Explain how Wien's bridge can	Understand	This would require the learner to	CO 8
	be used for experimental		recall about Wien's bridge and then	
	determination of frequency.		explain how Wien's bridge can be	
	Derive the expression for		used for experimental determination	
	frequency in terms of bridge		of frequency	
	parameters.			
7	Explain the function and	Understand	This would require the learner to	CO 8
	working of Wagner Earth Device		recall the functionality and	
	connections. List out the uses of		significance of Wagner's ground	
	Wagner Earth Device		connection	
	connections.			
8	Describe how Wheatstone bridge	Understand	This would require the learner to	CO 8
	may be used to control various		recall about Wheatstone bridge and	
	physical parameters		then explain how Wheatstone bridge	
			can be used for experimental	
			determination of various physical	
			parameters	
9	State the limitations of	Understand	This would require the learner to	CO 8
	Wheatstone bridge and how to		recall about Wheatstone bridge and	
	overcome those limitations.		then explain how to overcome those	
			limitations.	
10	State Hay's Bridge? Draw the	Understand	This would require the learner to	CO 8
	circuit and obtain the balance		recall about Hay's Bridge	
	condition of Hay's Bridge?			
11	A Schering bridge has the	Apply	This would require the learner to	CO 10
	following constants - Capacitor		recall the concepts of bridges and	
	of 0.5 μ F in parallel with 1 k Ω		describe its functionality identify the	
	resistance in arm AB, resistance		formula and then apply the	
	of 2 k Ω in arm AD, capacitor of		appropriate mathematical formulae to	
	0.5µF in arm BC and unknown		Solve unknown capacitance and	
	capacitor Cx and RX in series.		dissipation factor.	
	Assume frequency 1 kHz.		_	
	Determine the unknown			
	capacitance and dissipation			
	factor.			
12	Identify the bridge used for	Analyze	This would require the learner to	CO 8
	measurement of inductance and	-	relate the concepts of different	
	avalain the construction and		bridges and identify the appropriate	
	explain the construction and		orrages and racinary the appropriate	
	operation of this bridge.		formula and then apply the formulae	
	operation of this bridge.		formula and then apply the formulae to measure u nknown inductance	
13	operation of this bridge. The basic AC bridge consists of	Apply	formula and then apply the formulae to measure u nknown inductance This would require the learner to	CO 10

	AB: R=400, BC: R=150, CD: unknown and DA: R=100 in series with L=10mH. Oscillator frequency is 1KHz. Determine		describe its functionality identify the formula and then apply formulae to Determine the constants of arm CD.	
1.4	the constants of arm CD.	A	This mould require the learner to	CO 10
14	A Maxwell bridge is used to measure inductive impedance. The bridge constants at balance are C1=0.01 μ F, R1=520k Ω , R2=6.2k Ω and R3=200k Ω . Find the series equivalent of the unknown impedance?	Арріу	recall the concepts of bridges and describe its functionality identify the formula and then apply the appropriate mathematical formulae to Solve unknown impedance.	
15	What are the limitation of Wheat stone's bridge? Derive the balance equation of Kelvin's double bridge for unknown low resistance.	Apply	This would require the learner to recall the concepts of bridges and describe its functionality identify the formula and then apply the appropriate mathematical formulae to Solve unknown resistance.	CO 10
16	In a certain Wheatstone bridge circuit measurements, RA=200k Ω , RB=400k Ω , RC=100k Ω , RD=300k Ω . E=1.5V, Rg=100 Ω , with usual notation. Determine the current through the detector galvanometer.	Apply	This would require the learner to relate the concepts of different bridges and describe the functionality of a bridge then identify the formula and then apply the appropriate mathematical formulae to find out the current	CO 10
17	In the case of a Schering Bridge, arm Ac has $R=4.7k\Omega$. Arm CD has unknown elements. Arm BD has C=0.1 μ F Arm AB=4.7K Ω is shunt with 1MF. Determine Values of components is the arm CD.	Apply	This would require the learner to recall the concepts of bridges and describe its functionality identify the formula and then apply formulae to Determine the constants of arm CD.	CO 10
18	An unbalanced Wheatstone bridge has the following standard arms: R1=1K Ω , R2=2K Ω , R3=3K Ω , R4=4K Ω , Rg=300 Ω and E=5V. Calculate the current through the galvanometer	Apply	This would require the learner to relate the concepts of different bridges and describe the functionality of a bridge then identify the formula and then apply the appropriate mathematical formulae to find out the current.	CO 10
19	Draw the phasor diagram and write the equations for balance conditions in the case of Maxwell's Inductance Bridge.	Understand	This would require the learner to recall the concepts of bridges and find out the condition for balanced bridge	CO 10
20	A Kelvin's Bridge consist of Ra=1600Rb, R1=800Rb and R1=1.25R2.Calculate the value of Rx, if applied DC voltage is 1.5V.	Apply	This would require the learner to recall the concepts of bridges and describe its functionality identify the formula and then apply the formulae to measure unknown resistance.	CO 10

	Part – C (Critical Thinking Questions)				
1	For a Maxwell bridge R1=235 k, R2=255k,R1=35k ,C1=0.012mF, C2=0.025mF calculate unknown inductive impedance in series.	Apply	This would require the learner to recall the concepts of bridges and describe its functionality identify the formula and then apply the appropriate mathematical formulae to calculate unknown impedance	CO 10	
2	A Maxwell bridge is used to measure inductive impedance. The bridge constants at balance are C1= 0.01μ F, R1= $470k \Omega$, R2= $5.1k \Omega$ and R3= $100k\Omega$. Find the series equivalent of the unknown impedance?	Apply	This would require the learnerto define a bridge and describe its functionality then identify the formula and apply the appropriate mathematical formulae to Solve unknown impedance.	CO 10	
3	In a certain Wheatstone bridge Rb=400k Ω , Rb=100k Ω , Rd=300k Ω usual notation. Determine the current through the detector galvanometer.	Apply	This would require the learner to relate the concepts of different bridges and describe the functionality of a bridge then identify the formula and then apply the appropriate mathematical formulae to find out the current	CO 10	
4	A Maxwell bridge is used to measure inductive impedance. The bridge constants at balance are C1= 0.03μ F, R1= $500k \Omega$, R2= $5k \Omega$ and R3= $10k\Omega$. Find the series equivalent of the unknown impedance	Apply	This would require the learner to define a bridge and describe its functionality then identify the formula and apply the appropriate mathematical formulae to Solve unknown impedance	CO 10	
5	In a Wien bridge oscillator R1 = R2 =75k, C1=C.2= 400pf with usual notation. Determine the frequency of oscillations?	Apply	This would require the learner to recall the concepts of bridges and describe its functionality identify the formula and then apply the appropriate mathematical formulae Determine the frequency of oscillations	CO 10	
6	Given the Opposite-Angle (Hay's) bridge of Figure. Find, i. The equivalent series resistance, R_x . ii. The inductance, L_x . $F_{1}=1K\Omega_{x}$ $R_{2}=100\Omega$ $R_{3}=100\Omega$	Evaluate	This would require the learner to recall the concepts of bridges and describe its functionality identify the formula and then apply the appropriate mathematical formulae to Calculate inductance	CO 10	

7	Find the equivalent series	Apply	This would require the learner to	CO 10
	element for the unknown	11.5	recall the concepts of bridges and	
	impedance of the Schering		describe its functionality identify	
	bridge network whose		the formula and then apply the	
	impedance measurements are to		appropriate mathematical formulae	
	be made at null.		to find the equivalent series element	
	$R_1 = 470 \text{ kO}$			
	$C_1 = 0.01 \text{ mF}$			
	$P_{1} = 0.01 \text{ m}$			
	$R_2 = 100 \text{ Ks}_2$ $C_1 = 0.1 \text{ mE}_2$			
0	$C_3 = 0.1 \text{ IIIF}$	A	This would as suize the learner to	CO 10
8	The four arms of an Hay's	Арріу	This would require the learner to	CO 10
	alternating current bridge are		recall the concepts of bridges and	
	arranged as follows: AB is coll		describe its functionality identify	
	of unknown impedance, BC is		the formula and then apply the	
	non-reactive resistor of 1000Ω ,		formula to measure equivalent	
	CD is a non-reactive of 833Ω in		series element and also draw the	
	series with a standard capacitor		phasor diagram under balanced	
	of 0.38μ F, DA is non-reactive		conditions.	
	resistor of 16800Ω . If the supply			
	frequency is 50Hz, determine the			
	inductance and resistance at the			
	balanced conditions. Derive the			
	conditions for balance and draw			
	the phasor diagram under			
	balanced conditions.			
9	An unbalanced wheatstone	Evaluate	This would require the learner to	CO 10
	bridge is given in figures.		relate the concepts of different	
	Calculate the current through the		bridges and describe the	
	galvanometer.		functionality of a bridge then	
			identify the formula and then apply	
	1κΩ 2.5ΚΩ		the appropriate mathematical	
	NR1 R22		formulae then analyse the	
			performance of a bridge ,from this	
	TRA		evaluate its output	
	3.5KQ 10KQ			
10				00.10
10	A sample Bakelite was tested by	Apply	This would require the learner to	CO 10
	the bridge method(Schering) at		recall the concepts of bridges and	
	11KV, 50Hz. Balance was		describe its functionality identify	
	obtained at the following values		the formula and then apply the	
	AB- dielectric material under		appropriate mathematical formulae	
	test in the form of a capacitor		to Solve unknown capacitance and	
	BC - a standard air capacitor at		equivalent series resistance	
	100pF CD - capacitor of 0.6µF in			
	parallel with a non-reactive			
	resistance of 300ΩDA-			
	nonreactive resistance of 100Ω .			
	Calculate the capacitance and			
	equivalent series resistance of			
	the sample			

	MODULE -V				
TRANSDUCERS					
Part - A (Short Answer Questions)					
1	Define transducer?	Remember		CO 9	
2	List the classification of transducers?	Remember		CO 9	
3	Define strain gauge and gauge factor.	Remember		CO 11	
4	State the various parameters of electrical transducers	Remember		CO 11	
5	Write brief notes on thermocouples?	Understand	This would require the learner to recall the concept of thermocouples	CO 9	
6	Differentiate between primary and secondary transducers	Understand	This would require the learner to recall the concept of different types f transducers	CO 11	
7	What is difference between active and passive transducers	Understand	This would require the learner to recall the concept of different types f transducers	CO 11	
8	List out the factors to be considered while selecting a transducer	Understand	This would require the learner to understand the concept of transducers and explain the factors to select a transducer	CO 9	
9	List out the advantages and limitations of thermocouples	Remember		CO 9	
10	State the basic principle of hot wire Anemometer.	Remember		CO 9	
11	What do you understand by electrical transducers?	Understand	This would require the learner to recall the electrical transducers	CO 13	
12	State the advantages and disadvantages of potentiometer	Remember		CO 10	
13	Why are strain gauges used in bridge arrangement?	Understand	This would require the learner to recall the concept of strain gauges	CO 10	
14	How can inductors are used as a transducer.	Understand	This would require the learner to recall How can inductors are used as a transducer	CO 10	
15	List out the different methods of varying self inductance	Remember		CO 10	
16	Define the principles of LVDT and RVDT.	Remember		CO 11	
17	List out the various types of temperature transducer with an application of each one	Remember		CO 11	
18	List out the five physical quantities that the transducer measures.	Remember		CO 11	

19	What is the method for the	Understand	This would require the learner to	CO 11
	measurement of Liquid level?		recall the measurement of Liquid	
	I I I I I I I I I I I I I I I I I I I		level	
20	Differentiate between thermistors	Remember		CO 11
_	and thermocouple.			
21	State the various advantages.	Understand	This would require the learner to	CO 11
	disadvantages and applications		recall the concept of thermocouple.	
	of thermocouple.		I I I I I I I I I I I I I I I I I I I	
22	Give the principle of capacitive	Understand	This would require the learner to	CO 11
	transducers.		recall the concept of principle of	
			capacitive transducers	
23	Give the operating principle	Understand	This would require the learner to	CO 9
	involved in piezoelectric		recall the concept of principle	
	transducers.		involved in piezoelectric transducers.	
24	What is mean by gauge factor?	Understand	This would require the learner to	CO 11
	Give its expression.		recall the concept of strain gauges	
	Part	. B (Long And	swer Questions)	
				~ .
1	Define a transducer? Write the	Understand	This would require the learner to	C 9
	classifications of transducers?		recall the concept of primary sensors	
	Explain the difference between		and transducers	
	primary sensors and transducers			
	with help of examples.			~~~
2	Explain working of strain gauge	Understand	This would require the learner to	CO 11
	and what are its specific		recall the concept of strain gauge	
	advantages and limitations?	XX 1 . 1		GO 0
3	Define Piezo-electric effect?	Understand	This would require the learner to	CO 9
	Describe with the diagram the		recall the concept of piezo electric	
	operations of a piezo electric		transducer. And explain Piezo-	
4	transducer.	I In danatan d	electric effect	<u> </u>
4	what is mean by thermocouples	Understand	This would require the learner to	09
	explain the desirable		recan the concept of thermocouples	
5	Explain in detail about method of	Understand	This would require the learner to	CO 11
5	Explain in detail about method of	Understand	recoll about the Displacement	COTI
	using Displacement transducers		transducers and then explain	
	using Displacement transducers.		measurement of displacement	
6	Define resistance thermometers?	Understand	This would require the learner to	600
0	Discuss in detail about resistance	Chaerstand	recall about earner to recall the	007
	thermometers		resistance thermometers	
7	What are capacitive transducers?	Understand	This would require the learner to	CO 9
	Give the expression for a		recall the concept of capacitive	
	capacitance of a capacity		transducers and then Give the	
	transducer.		expression for a capacitance	
8	Define Magneto Strictive	Understand	This would require the learner to	CO 9
	transducers?		recall the concept of Magneto	
	Explain the working of Magneto		Strictive transducers and then explain	
	Strictive transducers with a neat		the how to use Magneto Strictive	
	diagram.		transducers for measurement	

9	Explain the Principle, working,	Understand	This would require the learner to	CO 9
	Construction, characteristics and		recall the concept of thermistors and	
	applications of thermistors.		then explain the how to use	
			thermistors for measurement	
10	What are Strain gauges? Explain	Understand	This would require the learner to	CO 11
	the Principle and working of		recall the concept of Strain gauges	
	Strain gauges		and then explain the how to use	
			Strain gauges for measurement	
11	Distinguish between	Understand	This would require the learner to	CO 9
	thermocouple and thermistor?		recall the concept of thermistors and	
	State the limitations of		thermocouple	
	thermocouple.			
12	Explain the principle, working,	Understand	This would require the learner to	CO 11
	construction, Characteristics and		recall the concept of LVDT and then	
	applications of LVDTs		explain the how to use LVDT for	
			measurement	
13	List out the Salient features of	Remember	This would require the learner to	CO 11
	Semiconductor Strain gauges?		recall the concept of Strain gauges	
	Explain the working principle of		and then explain the how to use	
	Semiconductor Strain gauges?		Semiconductor Strain gauges for	
			measurement	
14	Define and Explain the principle	Understand	This would require the learner to	CO 9
	and working of Hot-wire		recall the concept of Hot-wire	
	Anemometer		Anemometer and then explain the	
			how to use Hot-wire Anemometer	
			for measurement	
15	Describe the operations of	Understand	This would require the learner to	CO 9
	resistance thermometer and state		recall the concept of resistance	
	the advantages and limitations.		thermometer and then explain the	
			how to use resistance thermometer	
1.6		** 1 . 1	for measurement	GO 11
16	Show that a parallel plate	Understand	This would require the learner to	COTT
	capacitor serves as the most		recall how to measure linear and	
	suitable transducer for		angular displacements.	
	measurement of linear and			
17	angular displacements.	D		<u> </u>
1/	what are the factors to be	Remember		009
	better trans due and Europein			
10	Describe the construction and	Undonatord	This would require the learner to	COO
18	Describe the construction and	Understand	This would require the learner to	009
	resistance transducer for		type resistance transducer	
	measuring linear displacement		type resistance transducer	
10	Explain the method f measuring	Understand	This would require the learner to	CO 9
	displacement using I VDT State	Chaerstand	recall the concent of LVDT and how	
	advantages and disadvantages of		to measure displacement using	
	LVDT.		LVDT.	
20	List out different types of Strain	Remember	This would require the learner to	CO 11
	Gauges used Transducer and		recall the concept of Strain Gauges	2011
	explain any one in detail.			

Part – C (Critical Thinking Questions)				
1	A resistance strain gauge with a guage factor of 2 is cemented to a steel member, which is subjected to a strain of 1x10-6. If original resistance value of the gauge is 130 Ω , calculate the change in resistance.	Apply	This would require the learner to recall the concepts of a transducer and describe the function of a resistance tranducer then obtain the appropriate formula and apply the formulae to calculate the change in resistance.	CO11
2	 2 An ac LVDT has the following data. Input = 6.3V, Output = 5.2V, range ±0.5 in. Determine, Calculate the output voltage vs core position for a core movement going from +0.45in. to -0.30 in. The output voltage when the core is -0.25 in. from the centre. 	Apply	This would require the learner to recall the concepts of a transducer and describe the function of a resistance tranducer then obtain the appropriate formula and apply the formulae to calculate the change in resistance	CO11
3	A resistance strain gage with a gage factor of 2 is fastened to a steel member subjected to a stress of 1050 kg/cm2. The modulus of elasticity of steel is approximately 2.1×106 kg/cm2. Calculate the change in resistance ΔR , of the strain-gage element due to the applied stress.	Apply	This would require the learner to recall the concepts of a transducer and describe the function of a resistance tranducer then obtain the appropriate formula and apply the formulae to calculate the change in resistance.	CO11
4	A 100Ω strain guage with a guage factor of 1 is affixed to a metal bar. The bar is stretched and this causes a change in resistance of 0.001Ω . Find the change in length if the original length is 10cm.	Apply	This would require the learner to recall the concepts of a transducer and describe the function of a tranducer then obtain the appropriate formula and apply the formulae to calculate the change in Length	CO11
5	A thermistor has a resistance of 3980 Ω at the ice point0°c and 749 Ω at 50°c.the resistance temperature relationship is RT=a R0 eb/T. Find the values of a and b. Calculate the resistance to be measured in case of temperature varies from 400C to 100°c	Apply	This would require the learner to recall the concepts of a transducer and describe the function of a resistance tranducer then obtain the appropriate formula and apply the formulae to calculate the Value of resistance.	CO11
6	A transducer that measures force has nominal resting resistance of 300 W .and is excited by 7.5V. When a 980 dyne force is applied, all four equal resistance	Apply	This would require the learner to recall the concepts of a transducer and describe the function of a resistance tranducer then obtain the appropriate formula	CO11

	bridge elements change resistance by 5.2W. Find the		and apply the formulae to calculate output voltage	
	output voltage Eo.			
7	A platinum thermometer has a	Apply	This would require the learner to	CO11
	resistance of 100Ω at 25C.		recall the concepts of a transducer	
	1. Find its resistance at 65 C if		and describe the function of a	
	the platinum resistance		resistance tranducer then obtain the	
	temperature co-efficient of		appropriate formula and apply the	
	0.00392/C.		formulae to calculate the resistance.	
	11. If the thermometer has a			
	resistance of 15052,			
	calculate the temperature.	A 1		0011
8	An LVDI has a secondary	Apply	I his would require the learner to	COII
	voltage of 5.0 v for a		recall the concepts of a transducer	
	displacement of 12.5 mm.		and describe the function of a	
	Determine the output voltage for		LVD1 then obtain the appropriate	
	a core displacement of 8.0 mm		formula and apply the formulae to	
	from its central position	A 1	calculate the output voltage	0011
9	A resistance strain gauge with a	Apply	This would require the learner to	COII
	guage factor of 5 is cemented to a		recall the concepts of a transducer	
	steel member, which is subjected		and describe the function of a	
	to a strain of 2.5x10-6.1f original		resistance tranducer	
	resistance value of the gauge is		then obtain the appropriate formula	
	120Ω , calculate the change in		and apply the formulae to calculate	
10	resistance.		the change in resistance.	0011
10	2 An ac LVDT has the following	Apply	This would require the learner to	COIT
	data. Input = 8.3 V , Output =		recall the concepts of a transducer	
	$2.2V$, range $\pm 0.41n$.		and describe the function of a	
	Determine,		resistance tranducer	
	1. Calculate the output voltage		then obtain the appropriate formula	
	vs core position for a core		and apply the formulae to calculate	
	movement going from		the change in resistance	
	+0.551 to -0.40 m.			
	11. The output voltage when the same is 0.25 in from the			
	the core is -0.25 in. from the			
	centre.			

Prepared by: Ms. P Annapurna, Assistant Professor

HOD, ECE