INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

ELECTRONICS AND COMMUNICATION ENGINEERING

COURSE DESCRIPTOR

Course Title	EMBEDDED SYSTEMS					
Course Code	AEC016	AEC016				
Program	B.Tech	B.Tech				
Semester	SEVEN					
Course Type	Core					
Regulation	IARE - R10	5				
		Theory		Prac	etical	
Course Structure	Lectures Tutorials Credits Laboratory Credi				Credits	
	3	-	3	3	2	
Chief Coordinator	Mr. S Lakshmanachari, Assistant Professor.					

I. **COURSE OVERVIEW:**

Embedded systems course is continuous of the microprocessor and microcontrollers, is intended to designing, implementing and testing of embedded applications. The topics covered are definition of embedded systems, history, classification, and major applications. Introduction to embedded C and interfacing modules, embedded firmware design and development, RTOS, task scheduling, threads, multitasking, task communication, task synchronization. Finally discussing about the introduction of advanced architectures like ARM and SHARC processors.

II. **COURSE PRE-REQUISITES:**

Level	Course Code	Semester	Prerequisites
B.Tech	ACS007	IV	Operating Systems
B.Tech	AEC013	VI	Microprocessors and Microcontrollers

III. MARKS DISTRIBUTION:

Subject	SEE Examination	CIA Examination	Total Marks
Embedded Systems	70 Marks	30 Marks	100

IV. DELIVERY / INSTRUCTIONAL METHODOLOGIES:

•	РРТ	~	Chalk & Talk	✓	Assignments	X	MOOCs
~	Open Ended Experiments	~	Seminars	X	Mini Project	>	Videos
~	Others:						

V. EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for SEE. Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIA examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into five units and each unit carries equal weightage in terms of marks distribution. The question paper pattern is as follows: Two full questions with "either" or "choice" are drawn from each unit of the syllabus. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The expected percentage of cognitive level of the questions is broadly based on the criteria given in Table: 1.

Percentage of Cognitive Level	Blooms Taxonomy Level
10 %	Remember
50 %	Understand
25 %	Apply
15 %	Analyze
0 %	Evaluate
0 %	Create

Table 1: The expected percentage of cognitive level of questions in SEE.

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 2), with 20 marks for Continuous Internal Examination (CIE), 05 marks for Quiz and 05 marks for Alternative Assessment Tool (Table 3).

Table 2: Assessment	pattern for CIA
---------------------	-----------------

Component	Theory			Total Marka
Type of Assessment	CIE Exam	I UTAI IVIAFKS		
CIA Marks	20	05	05	30

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8th and 16th week of the semester respectively. The CIE exam is conducted for 20 marks of 2 hours duration consisting of five descriptive type questions out of which four questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams

Quiz – Online Examination:

Two Quiz exams shall be online examination consisting of 25 multiple choice questions and are to be answered by choosing the correct answer from a given set of choices (commonly four). Such a question paper shall be useful in testing of knowledge, skills, application, analysis, evaluation and understanding of the students. Marks shall be awarded considering the average of two quiz examinations for every course.

Alternative Assessment Tool (AAT):

This AAT enables faculty to design own assessment patterns during the CIA. The AAT converts the classroom into an effective learning center. The AAT may include tutorial hours/classes, seminars, assignments, term paper, open ended experiments, METE (Modeling and Experimental Tools in Engineering), five minutes video, MOOCs etc. The AAT chosen for this course is given in table 3.

5 Minutes Video	Assignment	Tech-talk	Seminar	Open Ended Experiment
20%	30%	30%	10%	10%

VI. COURSE OBJECTIVES:

The stu	dents will try to learn:
Ι	The fundamental concepts of embedded computing, embedded C, RTOS and embedded
	software development tools for implementing of real time embedded systems.
II	The embedded C is required to develop the software for different applications of the
	embedded systems.
III	The basics of various development tools are necessary to develop an embedded software.
IV	The architecture and memory organization of advanced general purpose microprocessors
	and digital signal processors like ARM and SHARC.

VII. COURSE OUTCOMES:

After su	After successful completion of the course, students will be able to:					
	Course Outcomes	Knowledge Level (Bloom's Taxonomy)				
CO 1	Summarize the applications of embedded systems in various domains.	Understand				
CO 2	Analyze the embedded system design process, characteristics and quality attributes of an embedded system.	Analyze				

CO 3	Apply the looping structure concept to the programming of embedded C.	Apply
CO 4	Analyze the concepts of interfacing modules using embedded C	Analyze
	programming.	
CO 5	Evaluate the basic techniques used in interfacing in terms of reading and	Evaluate
	writing data from I/O port pins.	
CO 6	Develop the embedded software using the basics and fundamentals of	Apply
	RTOS.	
CO 7	Demonstrate the multiprocessing and multitasking in real time	Understand
	operating system to estimate the performance of embedded system.	
CO 8	Describe the process of task communication using shared memory and	Understand
	message passing.	
CO 9	Illustrate the implementation of real-time operating system using task	Understand
	communication and task synchronization.	
CO 10	List the embedded software development tools for getting embedded	Remember
	software into the target system.	
CO 11	Describe the concepts of advanced processors in terms of ARM and	Understand
	SHARC processors.	
CO 12	Explain the memory organization and instruction level parallelism in	Understand
	advanced processors.	

COURSE KNOWLEDGE COMPETENCY LEVELS

VIII. HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program Outcomes	Strength	Proficiency Assessed by
PO 1	Engineering knowledge: Apply the knowledge of	3	CIE/Quiz/AAT
	mathematics, science, engineering fundamentals, and an		
	engineering specialization to the solution of complex		
	engineering problems.		
PO 2	Problem analysis: Identify, formulate, review research	10	CIE/Quiz/AAT
	literature, and analyze complex engineering problems		
	reaching substantiated conclusions using first principles of		
	mathematics, natural sciences, and engineering sciences.		
PO 5	Modern tool usage: Create, select, and apply appropriate	1	Assignments/
	techniques, resources, and modern engineering and IT tools		Discussion

Program Outcomes	Strength	Proficiency Assessed by
including prediction and modeling to complex engineering activities with an understanding of the limitations.		

3 = High; **2** = Medium; **1** = Low

IX. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program Specific Outcomes	Strength	Proficiency assessed by
PSO 1	Formulate and Evaluate the applications in the field of	1	SEE
	Intelligent Embedded and Semiconductor technologies.		
PSO 2	Focus on the practical experience of ASIC prototype	2	Research papers/
	designs, Virtual Instrumentation and SOC designs.		Group
			discussion/ Short
			term courses
PSO 3	Build the Embedded hardware design and software	3	Research papers /
	programming skills for entry level job positions to meet		Industry exposure
	the requirements of employers.		

3 = **High**; **2** = **Medium**; **1** = Low

X. MAPPING OF EACH CO WITH PO(s), PSO(s):

Course					Pro	gram	Outco	omes					Program Specific Outcomes		
Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	\checkmark		-	-	-	-	-	-	-	-	-	-		-	-
CO 2	\checkmark	-	-	-	-	-	-	-	-	-	-	-	-	-	
CO 3	\checkmark	-	-	-		-	-	-	-	-	-	-	-	-	-
CO 4	\checkmark		-	-	-	-	-	-	-	-	-	-		-	-
CO 5	\checkmark		-	-	-	-	-	-	-	-	-	-	-	-	-
CO 6	\checkmark	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 7	\checkmark		-	-	-	-	-	-	-	-	-	-	-	-	-
CO 8	\checkmark	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 9	-		-	-	-	-	-	-	-	-	-	-	-		-
CO 10	\checkmark	-	-	-		-	-	-	-	-	-	-	-	-	-
CO 11	\checkmark	-	-	-	-	-	-	-	-	-	-	-		-	-
CO 12	\checkmark	-	-	-	-	-	-	-	-	-	-	-	-	-	-

XI. JUSTIFICATIONS FOR CO-PO MAPPING:

Course Outcomes	POs / PSOs	Justification for mapping (Students will be able to)	No. of key competencies
CO 1	PO 1	Summarize the applications (knowledge) of embedded systems in various domains by applying the principles of	2
	DO 1	Science and engineering fundamentals.	1
	PO 2	complex engineering problems	1
	DSO 1	Understand and evaluate the applications in the field of	1
	1501	intelligent embedded systems	1
CO 2	PO 1	Analyze the embedded system design process through various	2
02	101	steps by applying the principles of mathematics . science to	2
		the solutions of complex engineering problems.	
	PSO 3	Understand the embedded system design process by using the	1
		embedded software skills.	
CO 3	PO 1	Apply the looping structures to the programming of	1
		embedded C by analyzing complex engineering problems.	
	PO 5	Create the embedded C program and apply appropriate	1
		techniques to simulate using the tool Keil IDE software.	
CO 4	PO 1	Analyze (Understand) the concepts of interfacing modules	1
		through the embedded C programming by applying	
		engineering fundamentals.	
	PO 2	Identify the various modules to interface with the	2
		microcontroller and analyze its interfacing program using	
	DCO 1	embedded C.	2
	PSO 1	Understand now the different interfacing modules are	2
		evaluating the applications in the field of intelligent	
		embedded technologies	
CO 5	PO 1	Evaluate the basic techniques used in interfacing in terms of	1
		reading and writing data from I/O port pins by applying the	
		principles of science for engineering problems.	
	PO 2	Identify the basic technique used in interfacing for analyzing	2
		the complex engineering problems in reading and writing	
		data from I/O port pins.	
CO 6	PO 1	Develop the embedded software using the basics and	1
		fundamentals of real time operating systems (RTOS) by	
	D O 1	applying engineering fundamentals.	1
CO 7	PO 1	Demonstrate the multiprocessing and multitasking in real	1
		time operating system to estimate the performance of	
		fundementals	
	PO 2	Identify and analyze the differences between the	2
	102	multiprocessing and multitasking in real time operating	2
		system.	
CO 8	PO 1	Describe (Knowledge) the process of task communication	2
		using shared memory and message passing by applying the	
		science and engineering fundamentals.	
CO 9	PO 2	Analyze the implementation of real-time operating system	1
		using task communication and task synchronization.	
	PSO2	Illustrate the implementation of real-time operating system	1
		using task communication and task synchronization by	
		focusing on the practical experience of ASIC prototype	
		designs.	

Course Outcomes	POs / PSOs	Justification for mapping (Students will be able to)	No. of key competencies
CO 10	PO 1	List the embedded software development tools for getting	1
		embedded software into the target system by applying	
		fundamentals for complex engineering problems.	
	PO 5	Apply the appropriate techniques to implant the embedded	1
		software development tools for getting embedded software	
		into the target system.	
CO 11	PO 1	Describe the concepts of advanced processors in terms of	1
		ARM and SHARC processors by applying the engineering	
		fundamentals.	
	PSO 1	Understand the architectures of the advanced processors	1
		ARM and SHARC in the field of intelligent embedded	
		systems.	
CO 12	PO 1	Understand the memory organization and instruction level	1
		parallelism in advanced processors by applying engineering	
		fundamentals.	

XII. TOTAL COUNT OF KEY COMPETENCIES FOR CO – (PO, PSO) MAPPING

Course		Prog	ram C	Outcon	nes / N	No. of	Key (Compe	etenci	es Ma	tched		PSOs/ Number of key competencies			
Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
	3	10	10	11	1	5	3	3	12	5	12	8	1	3	2	
CO 1	2	1	-	-	-	-	-	-	-	-	-	-	1	-	-	
CO 2	2	-	-	-	-	-	-	-	-	-	-	-	-	-	1	
CO 3	1	-	-	-	1	-	-	-	-	-	-	-	-	-	-	
CO 4	1	2	-	-	-	-	-	-	-	-	-	-	1	-	-	
CO 5	1	2	-	-	-	-	-	-	-	-	-	-	-	-	-	
CO 6	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
CO 7	1	2	-	-	-	-	-	-	-	-	-	-	-	-	-	
CO 8	2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
CO 9	-	1	-	-	-	-	-	-	-	-	-	-	-	1	-	
CO 10	1	-	-	-	1	-	-	-	-	-	-	-	-	-	-	
CO 11	1	-	-	-	-	-	-	-	-	-	-	-	1	-	-	
CO 12	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	

Course		P	Progra	am Ou	itcom	es / N	o. of k	key co	mpete	encies			PSOs/ No. of key competencies		
Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	3	10	10	11	1	5	3	3	12	5	12	12	1	3	2
CO 1	66.7	10.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	100.0	0.0	0.0
CO 2	66.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	50.0
CO 3	33.3	0.0	0.0	0.0	100.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	00
CO 4	33.3	20.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	100.0	0.0	0.0
CO 5	33.3	20.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
CO 6	33.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
CO 7	33.3	20.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
CO 8	66.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
CO 9	0.0	10.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	33.3	0.0
CO 10	33.3	0.0	0.0	0.0	100.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
CO 11	33.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	100.0	0.0	0.0
CO 12	33.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

XIII.PERCENTAGE OF KEY COMPETENCIES FOR CO-(PO/PSO):

XIV. COURSE ARTICULATION MATRIX (CO-PO/PSO MAPPING)

COs and POs and COs and PSOs on the scale of 0 to 3, 0 being no correlation, 1 being the low correlation, 2 being medium correlation and 3 being high correlation.

- $0 0 \le C \le 5\%$ -No correlation
- **2**-40 % <**C**< 60% –Moderate

 $3-60\% \leq C < 100\% - Substantial / High$

Course Outcomes		Program Outcomes													Program Specific Outcomes		
Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		
CO 1	3	1	-	-	-	-	-	-	-	-	-	-	3	-	-		
CO 2	3	-	-	-	-	-	-	-	-	-	-	-	-	-	2		
CO 3	1	-	-	-	3	-	-	-	-	-	-	-	-	-	-		
CO 4	1	1	-	-	-	-	-	-	-	-	-	-	3	-	-		
CO 5	1	1	-	-	-	-	-	-	-	-	-	-	-	-	-		
CO 6	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-		

CO 7	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 8	3	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 9	-	1	-	-	-	-	-	-	-	-	-	-	-	1	-
CO 10	1	-	-	-	3	-	-	-	-	-	-	-	-	-	-
CO 11	1	-	-	-	-	-	-	_	-	-	-	-	3	-	-
CO 12	1	-	-	-	-	-	-	_	-	-	-	-	-	-	-
TOTAL	17	5			6								9	1	2
AVERAGE	1.41	0.41			0.5								0.75	0.08	0.16

XV. ASSESSMENT METHODOLOGIES – DIRECT

CIE Exams	PO 1,PO 2	SEE Exams	PO 1,PO 2, PO 5,PO 9	Assignment	PO 1,PO 2, PO 5,PO 9	Seminars	PO 9, PO 10, PO 12
Laboratory Practices	-	Student Viva	-	Mini Project	-	Certification	-
Term Paper	PO 4,PO 5						

XVI. ASSESSMENT METHODOLOGIES - INDIRECT

~	Early Semester Feedback	>	End Semester OBE Feedback
×	Assessment of Mini Projects by Experts		

XVII. SYLLABUS

MODULE-I	EMBEDDED COMPUTING					
Definition of embedded system, embedded systems vs. general computing systems, history of embedded systems, complex systems and microprocessor, classification, major application areas, the embedded system design process, characteristics and quality attributes of embedded systems, formalisms for system design, design examples						
MODULE-II	INTRODUCTION TO EMBEDDED C AND APPLICATIONS					
C looping structures, register allocation, function calls, pointer aliasing, structure arrangement, bit fields, unaligned data and endianness, inline functions and inline assembly, portability issues; Embedded systems programming in C, binding and running embedded C program in Keil IDE, dissecting the program, building the hardware; Basic techniques for reading and writing from I/O port pins, switch bounce; Applications: Switch bounce, LED interfacing, interfacing with keyboards, displays, D/A and A/D conversions, multiple interrupts, serial data communication using embedded C interfacing.						
MODULE-III	RTOS FUNDAMENTALS AND PROGRAMMING					
Operating system basics, types of operating systems, tasks and task states, process and threads, multiprocessing and multitasking, how to choose an RTOS, task scheduling, semaphores and queues, hard real-time scheduling considerations, saving memory and power.						

Task communication: Shared memory, message passing, remote procedure call and sockets; Task synchronization: Task communication synchronization issues, task synchronization techniques, device drivers.

MODULE-IV EMBEDDED SOFTWARE DEVELOPMENT TOOLS

Host and target machines, linker/locators for embedded software, getting embedded software into the target system; Debugging techniques: Testing on host machine, using laboratory tools, an example system.

MODULE-V

INTRODUCTION TO ADVANCED PROCESSORS

Introduction to advanced architectures: ARM and SHARC, processor and memory organization and instruction level parallelism; Networked embedded systems: Bus protocols, I2C bus and CAN bus; Internet-Enabled systems, design example-Elevator controller.

Text Books:

- 1. Shibu K.V, "Introduction to Embedded Systems", Tata McGraw Hill Education Private Limited, 2^{nd} Edition, 2009.
- 2. Raj Kamal, "Embedded Systems: Architecture, Programming and Design", Tata McGraw-Hill Education, 2nd Edition, 2011.
- 3. Andrew Sloss, Dominic Symes, Wright, "ARM System Developer's Guide Designing and Optimizing System Software", 1st Edition, 2004.

Reference Books:

- 1. Wayne Wolf, "Computers as Components, Principles of Embedded Computing Systems Design", Elsevier, 2nd Edition, 2009.
- 2. Dr. K. V. K. K. Prasad, "Embedded / Real-Time Systems: Concepts, Design & Programming", dreamtech publishers, 1st Edition, 2003.
- 3. Frank Vahid, Tony Givargis, "Embedded System Design", John Wiley & Sons, 3rd Edition, 2006.
- 4. Lyla B Das, "Embedded Systems", Pearson Education, 1st Edition, 2012.
- 5. David E. Simon, "An Embedded Software Primer", Addison-Wesley, 1st Edition, 1999.
- 6. Michael J.Pont, "Embedded C", Pearson Education, 2nd Edition, 2008.

XVIII. COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

Lecture No	Topics to be Covered	COs	Reference
1-2	Definition of embedded system vs general computing system history of embedded systems.	CO 1	T1-1.1
3-4	Complex systems and microprocessor, classification, major application areas, the embedded system design process.	CO 2	T1-1.2
5-6	Analyze the Characteristics and quality attributes of embedded systems, formalisms for system design.	CO 2	T1-1.3
7	Design examples.	CO 2	T2-1.4
8-9	Explain about the C looping structures, register allocation, function calls, pointer aliasing.	CO 3	T2-1.5
10-12	Describe the Structure arrangement, bit fields, unaligned data and endianness, inline functions and inline assembly.	CO 3	R2-1.2
13-14	Identify the Portability issues; Embedded systems programming in C, binding and running embedded C program in Keil IDE.	CO 4	T3-1.3
15-16	Dissecting the program, building the hardware; Basic techniques for reading and writing from I/O port pins, switch bounce.	CO 5	T3-2.4

Lecture No	Topics to be Covered	COs	Reference
17-18	List the Applications: Switch bounce, LED interfacing, interfacing with keyboards, displays.	CO 4	T3-2.5
19-20	List the A/D and D/A conversions.	CO 5	T3-2.6
21-22	Multiple interrupts, serial data communication using embedded C interfacing.		T3-2.7
23-24	Recall Operating system basics, types of operating systems, tasks and task states.		T3-2.8
25-26	Describe the Process and threads, multiprocessing and multitasking, how to choose an RTOS, task scheduling, semaphores.	CO 7	T3-2.9
27-28	Queues, hard real-time scheduling considerations, saving memory and power. Task communication: Shared memory.	CO 8	R2-3.1
29-30	Explain about the Message passing, remote procedure call and sockets; Task synchronization.	CO 9	R2-3.2
31-32	Task communication synchronization issues, task synchronization techniques.	CO 9	R2-3.3
33-34	Explain the Device drivers.	CO 9	R2-3.4
35-36	Explain the Host and target machines.	CO 10	R2-3.5
37-38	Recall the Linker/locators for embedded software.	CO 9	R2-3.6
39-40	Getting embedded software into the target system; Debugging techniques.	CO 10	R3-3.7
41-42	Testing on host machine, using laboratory tools.	CO 10	R3-3.8
43-44	Example programs.	CO 10	R3-4.1
45-46	Example programs.	CO 10	R3-4.2
47-48	Explain about the Introduction to advanced architectures.	CO 11	R3-4.3
49-50	Describe about the ARM and SHARC, processor and memory organization.	CO 12	R3-4.4
51-52	Describe the Instruction level parallelism; Networked embedded systems.	CO 12	R3-4.5
53-54	List the Bus protocols, I2C bus and CAN bus.	CO 11	T2-8.1
55-56	Recognize the Internet-Enabled systems.	CO 10	T2-8.2
57-58	Design example-Elevator controller.	CO 11	T2-8.3
59-60	Example programs.	CO 11	T2-8.4

Prepared by: Mr. S Lakshmanachari, Assistant Professor

HOD, ECE