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UNIT-I 

EMBEDDED COMPUTING 

 

---------------------------------------------------------------------------------------------------------------- 

SYLLABUS: 

 

Definition of embedded system, embedded systems vs. general computing systems, history of 

embedded systems, complex systems and microprocessor, classification, major application 

areas, the embedded system design process, characteristics and quality attributes of 

embedded systems, formalisms for system design, design examples. 

 

 -------------------------------------------------------------------------------------------------------------------------- 

INTRODUCTION: 

 

System Definition: 

 

A way of working, organizing or performing one or many tasks according to a fixed set 

of rules, program or plan.   

Also an arrangement in which all units assemble and work together according to a 

program or plan. 

Examples of Systems: 

 Time display system – A watch 

 Automatic cloth washing system – A washing machine 

Embedded System Definitions: 

 

“An embedded system is a system that has software embedded into computer-hardware, 

which makes a system dedicated for an application (s) or specific part of an application 

or product or part of a larger system.” 

(Or) 

An embedded system is one that has dedicated purpose software embedded in computer 

hardware. 

(Or) 

It is a dedicated computer based system for an application(s) or product. It may be an 

independent system or a part of large system. Its software usually embeds into a 

ROM (Read Only Memory) or flash.” 

(Or) 

It is any device that includes a programmable computer but is not itself intended to be a 

general purpose computer.” 

 

In simple words, Embedded System = (Hardware + Software) dedicated for a 

particular task with its own memory. 

 

 

 



 

 

The components of embedded system hardware: 

 

MICROPROCESSOR: 

 Microprocessor is a multipurpose, programmable device that accepts digital data as 

input, processes it according to instructions stored in its memory, and provides 

results as output. 

or 

 A microprocessor is a multipurpose, programmable, clock-driven, register-based 

electronic device that reads binary instructions from a storage device called memory 

accepts binary data as input and processes data according to instructions, and 

provides result as output. 

 
 

MICROCONTROLLER: 

 

 A microcontroller (sometimes abbreviated µC, uC or MCU) is a small computer 

on a single integrated circuit containing a processor core, memory, and 

programmable input/output peripherals. Program memory in the form of NOR 

flash or OTP ROM is also often included on chip, as well as a typically small 

amount of RAM. 

or 

 CPUs with integrated memory or peripheral interfaces 

 

DIGITAL SIGNAL PROCESSOR: 

 

 Dedicated processors .A digital signal processor (DSP) is a specialized 

microprocessor (or a SIP block), with its architecture optimized for the 

operational needs of digital signal processing 

 

IMAGE PROCESSOR: 

 
 An image processor, image processing engine, also called media processor, is a 

specialized digital signal processor (DSP) used for image processing in digital 
cameras, mobile phones or other devices. 



 

 

EMBEDDED COMPUTING SYSTEM: 

 

 An embedded system is a special-purpose system in which the computer is 

completely encapsulated by the device it controls. Unlike a general-purpose 

computer, such as a personal computer, an embedded system performs pre-

defined tasks, usually with very specific requirements. Since the system is 

dedicated to a specific task, design engineers can optimize it, reducing the size 

and cost of the product. 

 

 Some examples of embedded systems include ATMs, cell phones, printers, 
thermostats, calculators, and videogame consoles. 

 

THE CLASSIFICATION OF EMBEDDED SYSTEM IS BASED ON FOLLOWING 

CRITERIA’S: 

1. On generation 

2. On complexity & performance 

3. On deterministic behaviour 

4. On triggering 

1. On generation: 

(i) First generation (1G): 

 Built around 8bit microprocessor & microcontroller. 

 Simple in hardware circuit & firmware developed.  

 Examples: Digital telephone keypads. 

(ii) Second generation (2G): 

 Built around 16-bit μp & 8-bit μc. 

 They are more complex & powerful than 1G μp & μc. 

Examples: SCADA systems 

(iii) Third generation (3G): 
 Built around 32-bit μp & 16-bit μc. 
 Concepts like Digital Signal Processors (DSPs), Application Specific Integrated 
Circuits (ASICs) solved. Examples: Robotics, Media, etc. 

(iv) Fourth generation: 

 Built around 64-bit μp & 32-bit μc. 

 The concept of System on Chips (SoC), Multicore Processors evolved. 

 Highly complex & very powerful. Examples: Smart Phones. 

2. On complexity & performance 

(i) Small-scale Embedded Systems: 
o Simple in application need 

o Performance not time-critical. 

o Built around low performance & low cost 8 or 16 bit μp/μc. 

Example: an electronic toy 



 

 

(ii) Medium-scale Embedded Systems: 
o Slightly complex in hardware & firmware requirement. 

o Built around medium performance & low cost 16 or 32 bit μp/μc. 

o Usually contain operating system. Examples: Industrial machines. 

(iii) Large-scale Embedded Systems: 
 Highly complex hardware & firmware. 

 Built around 32 or 64 bit RISC μp/μc or PLDs or Multicore Processors. 

 Response is time-critical. Examples: Mission critical applications. 

3. On deterministic behavior 

This classification is applicable for “Real Time” systems. The task execution 

behavior for an embedded system may be deterministic or non-deterministic. Based 

on execution behavior Real Time embedded systems are divided into two types 

 Hard Real Time embedded systems 

 Soft Real Time embedded systems 

4 On triggering 

Embedded systems which are “Reactive” in nature can be based on triggering. Reactive 

systems can be: 
 Event triggered 
 Time triggered 

 

COMPLEX SYSTEM AND MICROPROCESSORS: 

 

 Three main tasks or components in embedded system design: 

o Selecting and integrating hardware to give computer like functionalities 

o Dumping main application software generally into flash or ROM and the 

application software performs concurrently the number of tasks. 

o Integrating with a real time operating system (RTOS), this supervises the 

application software tasks running on the hardware and organizes the 

accesses to system resources according to priorities and timing constraints of 

tasks in the system. 

Embedding Computers: 

 

 Whirlwind, a computer designed at MIT in the late 1940s and early 1950s. 

Whirlwind was also the first computer designed to support real-time operation and 

was originally conceived as a mechanism for controlling an aircraft simulator. It 

was extremely large physically compared to today’s computers (e.g., it contained 

over 4,000 vacuum tubes). 

 



 

 

 Very-large-scale integration (VLSI) is the process of creating an integrated circuit 

(IC) by combining thousands of transistors into a single chip. VLSI began in the 

1970s. A microprocessor is a single-chip CPU. Very large scale integration 

(VLSI) technology allowed us to put a complete CPU on a single chip since 

1970s, but those CPUs were very simple. 

 In 1971 the first microprocessor the Intel 4004 invented by Ted Hoff, was 

designed for an embedded application, namely, a calculator. The calculator was 

not a general-purpose computer—it merely provided basic arithmetic functions. 

The HP-35 was the first handheld calculator to perform transcendental 

functions. It was introduced in 1972, so it used several chips to implement the 

CPU, rather than a single-chip microprocessor. 

 Automobile designers started making use of the microprocessor soon after single-

chip CPUs became available. The most important and sophisticated use of 

microprocessors in automobiles was to control the engine: determining when 

spark plugs fire, controlling the fuel/air mixture, and so on. 

 Microprocessors are usually classified according to their word length. 

 

o  An 8-bit microcontroller is designed for low-cost applications and 

includes on-board memory and I/O devices 

o  16-bit microcontroller is often used for more sophisticated 

applications that may require either longer word lengths or off-chip 

I/O and memory; 

o 32-bit RISC microprocessor offers very high performance for computation-

intensive applications. 

 House Hold uses of microprocessor: 

o The typical microwave oven has at least one microprocessor to control oven 

operation. 

o Many houses have advanced thermostat systems, which change the 

temperature level at various times during the day. 

o The modern camera is a prime example of the powerful features that 

can be added under microprocessor control. 

o Digital Television uses embedded processors 

 

APPLICATIONS OF EMBEDDED SYSTEMS IN VARIOUS SECTORS: 

We can find applications of embedded systems in following sectors: 

 
 Daily Life Electronic appliances( Lift, Microwave Oven, Refrigerator, Washing 

Machine) 
 Health Care( X-ray, ECG, Cardiograph, diseases diagnosis devices etc) 
 Education (Laptop or desktop, projector, printer, calculator, lab equipments etc) 
 Communication( Mobile phone, satellite, Modem, Network Hub, Router, Telephone, 



 

 

Fax) 
 Security System( CC Camera, X ray Scanner, RFID System, Password 

protected door, Face detection) 
 Entertainment(Television etc) 
 Banking System(ATM etc) 
 Automation 
 Navigation 
 Consumer Electronics: Camcorders, Cameras 
 Household appliances: Washing machine, Refrigerator. 
 Automotive industry: Anti-lock breaking system(ABS), engine control 
 Home automation & security systems: Air conditioners, sprinklers, fire alarms. 
 Telecom: Cellular phones, telephone switches. 
 Computer peripherals: Printers, scanners. 
 Computer networking systems: Network routers and switches. 

 Healthcare: EEG, ECG machines. 

 Banking & Retail: Automatic teller machines, point of sales. 
 Card Readers: Barcode, smart card readers 

EXAMPLE: 

 

BMW 850i brake and stability control system 

 The BMW 850i was introduced with a sophisticated system for controlling the 

wheels of the car. 

 An antilock brake system (ABS) reduces skidding by pumping the brakes. An 

automatic stability control (ASC _ T) system intervenes with the engine during 

maneuvering to improve the car’s stability. 

 These systems actively control critical systems of the car; as control systems, 

they require inputs from and output to the automobile. 

 Let’s first look at the ABS. The purpose of an ABS is to temporarily release the 

brake on a wheel when it rotates too slowly—when a wheel stops turning, the 

car starts skidding and becomes hard to control. It sits between the hydraulic 

pump, which provides power to the brakes, and the brakes themselves as seen in 

the below diagram. The ABS system uses sensors on each wheel to measure the 

speed of the wheel. The wheel speeds are used by the ABS system to determine 

how to vary the hydraulic fluid pressure to prevent the wheels from skidding. 

 
 
 
  
 
 



 

 

 

 

 The ASC _ T system’s job is to control the engine power and the brake to 

improve the car’s stability. The ASC _ T controls four different systems: 

throttle, ignition timing, differential brake, and (on automatic transmission cars) 

gear shifting. 

Characteristics of Embedded Computing Applications: 

 

a. Complex Algorithms 

b. User Interface 

c. Real Time 

d. Multirate 

e. Manufacturing Cost 

f. Power 

 Complex algorithms: The operations performed by the microprocessor may be 

very sophisticated. For example, the microprocessor that controls an 

automobile engine must perform complicated filtering functions to optimize the 

performance of the car while minimizing pollution and fuel utilization. 

 User interface: Microprocessors are frequently used to control complex user 

interfaces that may include multiple menus and many options. The moving 

maps in Global Positioning System (GPS) navigation are good examples of 

sophisticated user interfaces. 

To make things more difficult, embedded computing operations must often be 

performed to meet deadlines: 

 Real time: Many embedded computing systems have to perform in real time— if 

the data is not ready by a certain deadline, the system breaks. In some cases, 

failure to meet a deadline is unsafe and can even endanger lives. In other cases, 

missing a deadline does not create safety problems but does create unhappy 

customers—missed deadlines in printers, for example, can result in scrambled 

pages. 

 



 

 

 Multirate: Not only must operations be completed by deadlines, but many 

embedded computing systems have several real-time activities going on at the 

same time. They may simultaneously control some operations that run at slow 

rates and others that run at high rates. Multimedia applications are prime examples 

of multirate behaviour. The audio and video portions of a multimedia stream run 

at very different rates, but they must remain closely synchronized. Failure to meet 

a deadline on either the audio or video portions spoils the perception of the entire 

presentation. 

 

Costs of various sorts are also very important: 

 

 Manufacturing cost: The total cost of building the system is very important in 

many cases. Manufacturing cost is determined by many factors, including the 

type of microprocessor used, the amount of memory required, and the types of 

I/O devices. 

 Power and energy: Power consumption directly affects the cost of the hardware, 

since a larger power supply may be necessary. Energy consumption affects battery 

life, which is important in many applications, as well as heat consumption, which 

can be important even in desktop applications. 

Why Use Microprocessors? 

 

 There are many ways to design a digital system: custom logic, field-programmable 

gate arrays (FPGAs), and so on. 

 Why use microprocessors? There are two answers: 

o Microprocessors are a very efficient way to implement digital systems. 

o Microprocessors make it easier to design families of products that can be 

built to provide various feature sets at different price points and can be 

extended to provide new features to keep up with rapidly changing 

markets. 

Other reasons are 

 

 Predesigned instruction set processor may in fact result in faster implementation of 

your application than designing your own custom logic. 

 But there are two factors that work together to make microprocessor-based designs fast. 

o First, microprocessors execute programs very efficiently. Modern RISC 

processors can execute one instruction per clock cycle most of the time and 

high performance processors can  execute several instructions per cycle. 

o Second, microprocessor manufacturers spend a great deal of money to 

make their CPUs run very fast. With the slight changes designer can make 

the microprocessor to run at the highest possible speed. 



 

 

 Microprocessors are efficient utilizers of logic 

 Microprocessors can be used for many different algorithms simply by changing the 

program it executes. 

 The microprocessors allow program design to be separated from the design of 

hardware on which programs will be running. 

 

Challenges in Embedded Computing System Design: 

i. How much hardware do we need? 

ii. How do we meet deadlines? 

iii. How do we minimize power consumption? 

iv. How do we design for upgradability? 

v. Does it really work? 

vi. Complex testing 

vii. Limited observability and controllability 

viii. Restricted development environments 

External constraints are one important source of difficulty in embedded system design. 

Let’s consider some important problems that must be taken into account in embedded 

system design. 

How much hardware do we need? 

We have a great deal of control over the amount of computing power we apply to our 

problem. We cannot only select the type of microprocessor used, but also select the 

amount of memory, the peripheral devices, and more. Since we often must meet both 

performance deadlines and manufacturing cost constraints, the choice of hardware is 

important—too little hardware and the system fails to meet its deadlines, too much 

hardware and it becomes too expensive. 

How do we meet deadlines? 

The brute force way of meeting a deadline is to speed up the hardware so that the 

program runs faster. Of course, that makes the system more expensive. It is also 

entirely possible that increasing the CPU clock rate may not make enough difference to 

execution time, since the program’s speed may be limited by the memory system. 

 

How do we minimize power consumption? 

In battery-powered applications, power consumption is extremely important. Even in 

non battery applications, excessive power consumption can increase heat dissipation. 

One way to make a digital system consume less power is to make it run more slowly, 

slowing down the system can obviously lead to missed deadlines. Careful design is 



 

 

required to slow down the noncritical parts of the machine for power consumption 

while still meeting necessary performance goals. 

How do we design for upgradability? 

The hardware platform may be used over several product generations or for several 

different versions of a product in the same generation, with few or no changes. 

However, we want to be able to add features by changing software. 

Does it really work? 

Reliability is always important when selling products—customers rightly expect that 

products they buy will work. Reliability is especially important in some applications. If 

we wait until we have a running system and try to eliminate the bugs, we will be too 

late—we won’t find enough bugs, it will be too expensive to fix them, and it will take 

more time. 

Let’s consider some ways in which the nature of embedded computing machines makes 

their design more difficult. 

Complex testing: Exercising an embedded system is generally more difficult than 

typing in some data. We may have to run a real machine in order to generate the proper 

data. The timing of data is often important, meaning that we cannot separate the testing 

of an embedded computer from the machine in which it is embedded. 

Limited observability and controllability: Embedded computing systems usually do 

not come with keyboards and screens. This makes it more difficult to see what is going 

on and to affect the system’s operation. We may be forced to watch the values of 

electrical signals on the microprocessor bus, for example, to know what is going on 

inside the system. Moreover, in real-time applications we may not be able to easily stop 

the system to see what is going on inside. 

Restricted development environments: The development environments for embedded 

systems (the tools used to develop software and hardware) are often much more limited 

than those available for PCs and workstations. We generally compile code on one type 

of machine, such as a PC, and download it onto the embedded system. To debug the 

code, we must usually rely on programs that run on the PC or workstation and then 

look inside the embedded system. 

 

 

 

 

 

 

 

 



 

 

THE EMBEDDED SYSTEM DESIGN PROCESS 

 

 The embedded system design process aimed at two objectives. 

o First, it will give us an introduction to the various steps in embedded system 

design Second, it will allow us to consider the design methodology itself 

 A design methodology is important for three reasons. 

o First, to ensure that we have done everything we need. 

o Second, it allows us to develop computer-aided design tools. 
o Third, it makes members of a design team to 

communicate easily Designing can be done in two ways. 
They are 

■ Top down 

■ Bottom –up 

Figure 1.1 summarizes the major steps in the embedded system design process. In this 

top–down view, we start from the system requirements. In bottom up approach we 

start with components. Specification, we create a more detailed description of what we 

want. But the specification states only how the system behaves, not how it is built. 

The details of the system’s internals begin to take shape when we develop the 

architecture, which gives the system structure in terms of large components. Once we 

know the components we need, we can design those components, including both 

software modules and any specialized hardware we need. Based on those components, 

we can finally build a complete system. In this section we will consider design from the 

top–down—we will begin with the most abstract description of the system. 

The alternative is a bottom–up view in which we start with components to build a 

system. Bottom–up design steps are shown in the figure as dashed-line arrows. We 

need bottom–up design because we do not have perfect insight into how later stages 

of the design process will turn out. 

 



 

 

We need to consider the major goals of the design: 

 Manufacturing cost; 

 Performance (both overall speed and deadlines); and 

 Power consumption. 

We must also consider the tasks we need to perform at every step in the design 

process. At each step in the design, we add detail: 

 We must analyze the design at each step to determine how we can meet the 

specifications. 

 We must then refine the design to add detail. 

 And we must verify the design to ensure that it still meets all system goals, such 

as cost, speed, and so on. 

 

1. Requirements: 

Clearly, before we design a system, we must know what we are designing. The initial 

stages of the design process capture this information for use in creating the architecture 

and components. We generally proceed in two phases: 

1. First, we gather an informal description from the customers known as 

requirements; 

2. Second we refine the requirements into a specification that contains enough 

information to begin designing the system architecture. 

Separating out requirements analysis and specification is often necessary 

because of the large gap between what the customers can describe about the 

system they want and what the architects need to design the system. 

Requirements may be functional or non functional. 

Typical non functional requirements include: 

 Performance: The speed of the system is often a major consideration both for the 

usability of the system and for its ultimate cost. As we have noted, performance may 

be a combination of soft performance metrics such as approximate time to perform a 

user-level function and hard deadlines by which a particular operation must be 

completed. 

 Cost: The target cost or purchase price for the system is almost always a 

consideration. Cost typically has two major components: 

 Manufacturing cost includes the cost of components and assembly 

 Nonrecurring engineering (NRE) costs include the personnel and other 

costs of designing the system. 



 

 

 Physical size and weight: The physical aspects of the final system can vary greatly 

depending upon the application. An industrial control system for an assembly line 

may be designed to fit into a standard-size rack with no strict limitations on 

weight. A handheld device typically has tight requirements on both size and 

weight that can ripple through the entire system design. 

 Power consumption: Power, of course, is important in battery-powered systems 

and is often important in other applications as well. Power can be specified in the 

requirements stage in terms of battery life. 

 Validating a set of requirements is ultimately a psychological task since it requires 

understanding both what people want and how they communicate those needs. One 

good way to refine at least the user interface portion of a system’s requirements is to 

build a mock-up. The mock-up may use scanned data to simulate functionality in a 

restricted demonstration, and it may be executed on a PC or a workstation. 

 Requirements analysis for big systems can be complex and time consuming. 

However, capturing a relatively small amount of information in a clear, simple 

format is a good start towards understanding system requirements. As part of 

system design to analyze requirements, we will use a simple requirements 

methodology. Figure 1.2 shows a sample requirements form that can be filled out 

at the start of the project. Let’s consider the entries in the form: 

 

 

■ Name: This is simple but helpful. Giving a name to the project should tell the purpose 

of the machine. 

■ Purpose: This should be a brief one- or two-line description of what the system is 

supposed to do. If you can’t describe the essence of your system in one or two lines, 

chances are that you don’t understand it well enough. 

■ Inputs and outputs: These two entries are more complex than they seem. The inputs 

and outputs to the system encompass a wealth of detail: 

— Types of data: Analog electronic signals? Digital data? Mechanical inputs? 



 

 

— Data characteristics: Periodically arriving data, such as digital audio samples? 
How many bits per data element? 

— Types of I/O devices: Buttons? Analog/digital converters? Video displays? 

■ Functions: This is a more detailed description of what the system does. A good way 

to approach this is to work from the inputs to the outputs: When the system receives an 

input, what does it do? How do user interface inputs affect these functions? How do 

different functions interact? 

■ Performance: Many embedded computing systems spend at least some time to 

control physical devices or processing data coming from the physical world. In most of 

these cases, the computations must be performed within a certain time. 

■ Manufacturing cost: This includes primarily the cost of the hardware components. 

Even if you don’t know exactly how much you can afford to spend on system 

components, you should have some idea of the eventual cost range. Cost has a 

substantial influence on architecture. 

■ Power: Similarly, you may have only a rough idea of how much power the system 

can consume, but a little information can go a long way. Typically, the most important 

decision is whether the machine will be battery powered or plugged into the wall. 

Battery-powered machines must be much more careful about how they spend energy. 

■ Physical size and weight: You should give some indication of the physical size of the 

system that helps to take architectural decisions. 

After writing the requirements, you should check them for internal consistency. To 

practice the capture  of system requirements, Example 1.1 creates the requirements 

for a GPS moving map system. 

Example 1.1 

Requirements analysis of a GPS moving map 

The moving map is a handheld device that displays for the user a map of the terrain 

around the user’s current position; the map display changes as the user and the map 

device change position. The moving map obtains its position from the GPS, a 

satellite-based navigation system. The moving map display might look something 

like the following figure. 

 



 

 

 

 

 

What requirements might we have for our GPS moving map? Here is an initial list: 

■ Functionality: This system is designed for highway driving and similar uses. The 

system should show major roads and other landmarks available in standard 

topographic databases. 

■ User interface: The screen should have at least 400_600 pixel resolution. The 

device should be controlled by no more than three buttons. A menu system should 

pop up on the screen when buttons are pressed to allow the user to make selections 

to control the system. 

■ Performance: The map should scroll smoothly. Upon power-up, a display should 

take no more than one second to appear, and the system should be able to verify its 

position and display the current map within 15 sec. 

■ Cost: The selling cost of the unit should be no more than $100. 

■ Physical size and weight: The device should fit comfortably in the palm of the hand. 

 

■ Power consumption: The device should run for at least eight hours on four batteries. 

Requirements form for GPS moving map system: 

 

Name GPS moving map 

Purpose Consumer-grade moving map for driving use 

Inputs Power button, two control buttons 

Outputs Back-lit LCD display 400 _ 600 



 

 

 

Functions 

Uses 5-receiver GPS system. Three user-

selectable resolutions: always display current 

latitude and l longitude 

Performance 
Updates screen within 0.25 seconds upon 

movement 

Manufacturing cost $30 

Power 100mW 

Physical size and weight No more than 2” _ 6,” 12 ounces 

The selling price is four to five times the cost of goods sold (the total of all the component 

costs). 

 

2. Specification: 

 

 The specification is more precise—it serves as the contract between the customer and 

the architects. 

 The specification must be carefully written so that it accurately reflects the customer’s 

requirements 

and that can be clearly followed during design. 

 An unclear specification leads different types of problems. 

 If the behaviour of some feature in a particular situation is unclear from the 

specification, the designer may implement the wrong functionality. 

 If global characteristics of the specification are wrong or incomplete, the overall 

system architecture derived from the specification may be inadequate to meet the 

needs of implementation. 

 A specification of the GPS system would include several components: 

o Data received from the GPS satellite constellation. 

o Map data 

o User interface. 

o Operations that must be performed to satisfy customer requests. 

o Background actions required to keep the system running, such as operating 

the GPS receiver. 

3. Architecture Design: 

 

 The architecture is a plan for the overall structure of the system that will be used 

later to design the components that make up the architecture. 

 To understand what an architectural description is, let’s look at sample 

architecture for the moving map of Example 1.1. 

 Figure 1.3 shows a sample system architecture in the form of a block 

diagram that shows major operations and data flows among them. 



 

 

 

 

 The topographic database and to render (i.e., draw) the results for the display. 

 We have chosen to separate those functions so that we can potentially do them 

in parallel— performing rendering separately from searching the database may 

help us update the screen more fluidly. 

 For more implementation details we should refine that system block 

diagram into two block diagrams: 

o Hardware block diagram (Hardware architecture) 

o Software block diagram(Software architecture) 

 These two more refined block diagrams are shown in Figure 1.4 

 The hardware block diagram clearly shows that we have one central CPU 

surrounded by memory and I/O devices. 

 We have chosen to use two memories: 

o A frame buffer for the pixels to be displayed 

o A separate program/data memory for general use by the CPU 

 The software block diagram fairly closely follows the system block diagram. 

 We have added a timer to control when we read the buttons on the user interface 

and render data onto the screen. 

 

 
 



 

 

 

 Architectural descriptions must be designed to satisfy both functional and 

nonfunctional requirements. 

 Not only must all the required functions be present, but we must meet cost, speed, 

power and other nonfunctional constraints. 

 Starting out with system architecture and refining that to hardware and software 

architectures is one good way to ensure that we meet all specifications: 

 We can concentrate on the functional elements in the system block diagram, and 

then consider the nonfunctional constraints when creating the hardware and 

software architectures. 

4. Designing Hardware and Software Components 

 

 The architectural description tells us what components we need. 

 In general the components will include both hardware—FPGAs, boards, and 

so on—and software modules. 

 Some of the components will be ready-made. 

 The CPU, for example, will be a standard component in almost all cases, as will 

memory chips and many other components. 

 In the moving map, the GPS receiver is a good example of a specialized component 

that will nonetheless be a predesigned, standard component. 

 We can also make use of standard software modules. One good example is the 

topographic database. 

 Standard topographic databases exist, and you probably want to use standard 

routines to access the database—the data in a predefined format and it is highly 

compressed to save storage. 

 Using standard software for these access functions not only saves us design time. 

 

5. System Integration: 

 

 Putting hardware and software components together will give complete working 

system. 

 Bugs are typically found during system integration, and good planning can help 

us to find the bugs quickly. 

 If we debug only a few modules at a time, we are more likely to uncover the 

simple bugs and able to easily recognize them. 



 

 

 System integration is difficult because it usually uncovers problems. It is often hard to 

observe the system in sufficient detail to determine exactly what is wrong— the 

debugging facilities for embedded systems are usually much more limited than what 

you would find on desktop systems. As a result, determining why things do not work 

correctly and how they can be fixed is a challenge in itself. 

4. FORMALISMS FOR SYSTEM DESIGN 

 

 We perform a number of different design tasks at different levels of abstraction: 

creating requirements and specifications, architecting the system, designing code, and 

designing tests. It is often helpful to conceptualize these tasks in diagrams. 

 The Unified Modeling Language (UML). UML was designed to be useful at many 

levels of abstraction in the design process. UML is an object-oriented modeling 

language. 

 The design in terms of actual objects helps us to understand the natural structure of the 

system. 

 

 Object-oriented specification can be seen in two complementary ways: 

 Object-oriented specification allows a system to be described in a way that 

closely models real- world objects and their interactions. 

 Object-oriented specification provides a basic set of primitives that can be 

used to describe systems with particular attributes, irrespective of the 

relationships of those systems’ components to real-world objects. 

 What is the relationship between an object-oriented specification and an object 

oriented programming language? 

 A specification language may not be executable. But both object-oriented 

specification and programming languages provide similar basic methods for 

structuring large systems. 

 

Structural Description: 

 

 By structural description, we mean the basic components of the system. 

 The principal component of an object-oriented design is object. An object includes a 

set of attributes 

that define its internal state. 

 When implemented in a programming language, these attributes usually become 

variables or constants held in a data structure. In some cases, we will add the type of 

the attribute after the attribute name for clarity, but we do not always have to specify 

a type for an attribute. 

 An object describing a display (such as a CRT screen) is shown in UML notation in 

Figure 1.5. 

 



 

 

 

 
 

 The text in the folded-corner page icon is a note; it does not correspond to an object 

in the system and only serves as a comment. 

 The attribute is, in this case, an array of pixels that holds the contents of the display. 

 The object is identified in two ways: It has a unique name, and it is a member of a class. 

 The name is underlined to show that this is a description of an object and not of a class. 

 A class is a form of type definition—all objects derived from the same 

class have the same characteristics, although their attributes may have 

different values. 

 A class defines the attributes that an object may have. It also defines the 

operations that determine how the object interacts with the rest of the world. 

 In a programming language, the operations would become pieces of code used 

to manipulate the object. 

 The UML description of the Display class is shown in Figure 1.6. 

 

 The class has the name that we saw used in the d1 object since d1 is an instance of 

class Display. The 

Display class defines the pixels attribute seen in the object; 

 A class defines both the interface for a particular type of object and that object’s 

implementation. 

 There are several types of relationships that can exist between objects and classes: 

o Association occurs between objects that communicate with each 

other but have no ownership relationship between them. 

o Aggregation describes a complex object made of smaller objects. 



 

 

o Composition is a type of aggregation in which the owner does not 

allow access to the component objects. 

o Generalization allows us to define one class in terms of another 

 

Derived class: 

 

 Unified Modeling Language, like most object-oriented languages, allows us to 

define one class in terms of another. 

  An example is shown in Fig1.7, where we derive two particular types of displays. 

The first, BW_display, describes a black and- white display. This does not require 

us to add new attributes or operations, but we can specialize both to work on one-

bit pixels. 

 A derived class inherits all the attributes and operations from its base class. 

 Here Display is the base class for the two derived classes. A derived class is 

defined to include all the attributes of its base class. This relation is transitive—if 

Display were derived from another class, both BW_display and 

Color_map_display would inherit all the attributes and operations of Display’s 

base class as well. 

 

 

 Inheritance has two purposes. 

o It allows us to describe one class that shares some characteristics with 

another class. 

o It captures those relationships between classes and documents them 



 

 

 Unified Modeling Language considers inheritance to be one form of 

generalization. A generalization relationship is shown in a UML diagram as an 

arrow with an open (unfilled) arrowhead. Both BW_display and 

Color_map_display are specific versions of Display, so Display generalizes both 

of them. 

Multiple inheritances: 

 

 In which a class is derived from more than one base class. 

 An example of multiple inheritances is shown in Figure 1.8; In this case, we have 

created a 

Multimedia display class by combining the Display class with a Speaker class for 

sound. 

 The derived class inherits all the attributes and operations of both its base 

classes, Display and 

Speaker. 

 

 

Link: 

 

 A link describes a relationship between objects; association is to link as class is to 

object. 

 Fig1.9 shows an example of links and an association. 



 

 

 

 

 When we consider the actual objects in the system, there is a set of messages that 

keeps track of the current number of active messages (two in this example) and 

points to the active messages. In this case, the link defines the contains relation. 

 When generalized into classes, we define an association between the message 

set class and the message class. The association is drawn as a line between the 

two labeled with the name of the association, namely, contains. The ball and 

the number at the message class end indicate that the message set may include 

zero or more message objects. 

Behavioral Description: 

 

 We have to specify the behavior of the system as well as its structure. One way to 

specify the behavior of an operation is a state machine. 

 Fig1.10 shows UML states; the transition between two states is shown by arrow. 

These state machines will not rely on the operation of a clock, as in hardware; 

rather, changes from one state to another are triggered by the occurrence of events. 



 

 

 

 

 An event is some type of action. Events are divided into two categories. They are: 

o External events: The event may originate outside the system, such as a user 

pressing a button. 

o Internal events: It may also originate inside, such as when one routine 

finishes its computation and passes the result on to another routine. 

 We will concentrate on the following three types of events defined by UML, as 

illustrated in figure 1.11(signal and call event) and (Time out event) 

o A signal is an asynchronous occurrence. It is defined in UML by an object 

that is labeled as a 

<<signal>>. The object in the diagram serves as a declaration of the event’s 

existence. 

Because it is an object, a signal may have parameters that are passed to the 

signal’s receiver. 

o A call event follows the model of a procedure call in a programming 

language. 

o A time-out event causes the machine to leave a state after a certain amount 

of time. The  label tm (time-value) on the edge gives the amount of time 

after which the transition occurs. A time-out is generally implemented with 

an external timer. 

 



 

 

 
 

Unconditional and conditional transitions: 

 

 The states in the state machine represent different conceptual operations. 

 In some cases, we take conditional transitions out of states based on inputs or the 

results of some computation done in the state. 

 In other cases, we make an unconditional transition to the next state. Both the 

unconditional and conditional transitions make use of the call event. 

 Let’s consider a simple state machine specification to understand the semantics of 

UML state machines. A state machine for an operation of the display is shown in 

Fig1.12. The start and stop states are special states that help us to organize the flow 

of the state machine. 

 



 

 

 
 

Sequence diagram: 

 It is sometimes useful to show the sequence of operations over time, 

particularly when several objects are involved. 

 In this case, we can create a sequence diagram, like the one for a mouse click 

scenario shown in Fig1.13. 

 A sequence diagram is somewhat similar to a hardware timing diagram, 

although the time flows vertically in a sequence diagram, whereas time 

typically flows horizontally in a timing diagram. 

 The sequence diagram is designed to show a particular scenario or choice of 

events. In this case, the sequence shows what happens when a mouse click is on 

the menu region. 

 

 Processing includes three objects shown at the top of the diagram. Extending 

below each object is its lifeline, a dashed line that shows how long the object is 

alive. In this case, all the objects remain alive for the entire sequence, but in other 



 

 

cases objects may be created or destroyed during processing. 

 The boxes along the lifelines show the focus of control in the sequence, that is, 

when the object is actively processing. 

  In this case, the mouse object is active only long enough to create the mouse_click 

event. The display object remains in play longer; it in turn uses call events to 

invoke the menu object twice: once to determine which menu item was selected 

and again to actually execute the menu call. 

  The find region ( ) call is internal to the display object, so it does not 

appear as an event in the diagram. 

 

DESIGN EXAMPLE: MODEL TRAIN CONTROLLER: 

 

 The model train controller, which is shown in the below figure. 

i. The user sends messages to the train with the control box attached to the tracks. 

ii. The control box may have familiar controls such as throttle, emergency stop 

button and so on. 

iii. Since train receives its electrical power from the track, the control box can 

send a signal to the train over the track by modulating the power supply 

voltage. 

iv. As shown Fig1.14, the control panel sends packet over the tracks to the 

receiver on the train. Each packet includes an address so that the console can 

control several trains on the same track. The packet also includes an error 

correction code (ECC) to guard against transmission errors. This is a one-way 

communication system- the model train cannot send commands back to the 

user. 

Requirements: 

 Here is a basic set of requirements for the system: 

o The console shall be able to control up to eight trains on a single track. 

o The speed of each train shall be controllable by a throttle to at least 63 

different levels in each direction (forward and reverse). 

o There shall be an inertia control that shall allow the user to adjust the 

responsiveness of the train to commanded changes in speed. Higher inertia 

means that the train responds more slowly to a change in the throttle, 

simulating the inertia of a large train. The inertia control will provide at 

least eight different levels. 

o There shall be an emergency stop button. 

o An error detection scheme will be used to transmit messages. 

 

 



 

 

 
 

 We can put the requirements into our chart format: 

 

Name Model train controller 

Purpose Control speed of up to eight model trains 

Inputs Throttle, inertia setting, emergency stop, train number 

Outputs Train control signal 

Functions 
Set engine speed based upon inertia 

settings, Respond to emergency stop 

Performance Can update train speed at least 10 times per second 

Manufacturing cost $50 

Power 10W (plugs into walls) 

Physical size and weight 
Console should be comfortable for two hands, 

approximate size of standard keyboard. Weight less than 

2 pounds 



 

 

CONCEPTUAL SPECIFICATION OF MODEL TRAIN CONTROLLER: 

 

1. Objects: Console , Train 

2. Commands: set speed, set inertia, Estop. 

3. Console: panel, formatter, transmitter 

4. Train: receiver, controller, motor interface 

 

 The conceptual specification allows us to understand the system little better. 

Writing of conceptual specification will help us to write a detailed specification. 

Defining the messages will help us understand the functionality of the components. 

The set of commands that we can use to implement the requirements placed on the 

system. 

 The system console controls the train by sending messages on to the tracks. The 

transmissions are packetized: each packet includes an address and a message. A 

typical sequence of train control commands is shown as a UML sequence diagram. 

Fig: A UML sequence diagram for a typical sequence of train control commands 

 

 The focus of the control bars shows the both the console and receiver run 

continuously. The packets can be sent at any time—there is no global clock 

controlling when the console sends and the train receives, we do not have to worry 

about detecting collisions among the packets. 

 Set- inertia message will send infrequently. Most of the message commands are 

speed commands. When a train receives speed command, it will speed up and slow 

down the train smoothly at rate determined by the set-inertia command. 

 An emergency stop command may be received, which causes the train receiver to 

immediately shut down the train motor. 

 We can model the commands in UML with two level class hierarchy as shown in 

the Fig1.16. Here we have one base class command, there are three sub classes set-

speed, set-inertia, Estop, derived from base class. One for each specific type of 

command. 



 

 

 
 

 We now need to model the train control system itself. There are clearly two major 

subsystems: the control-box and the train board component. Each of these 

subsystems has its own internal structure. 

 The figure 1.17 Shows relationship between console and receiver (ignores role of 

track): 

 

 The console and receiver are each represented by objects: the console sends a 

sequence of packets to the train receiver, as illustrated by the arrow. The notation 

on the arrow provides both the type of message sent and its sequence in a flow of 

messages .we have numbered the arrow’s messages as 

1…n . 

 Let’s break down the console and receiver into three major components. 

 The console needs to perform three functions 
o Console: 

 Read state of front panel 

 Format messages 

 Transmit messages. 

 The train receiver must also perform three major functions 

o Train receiver: 

 receive message 

 interpret message 

 control the train 

 The UML class diagram is show in the below figure 1.18 

 

 Console class roles: 

 

 Panel: Describes the console front panel, which contains analog knobs and 

interface hardware to interface to the digital parts of the system. 



 

 

 Formatter: It knows how to read the panel knobs and creates bit stream for 

message. 

 Transmitter: Send the message along the track. 

 

 Knobs* describes the actual analog knobs, buttons, and levers on the control 

panel. 

 Sender* describes the analog electronics that send bits along the track. 

 

 Train class roles: 

• Receiver: It knows how to turn the analog signal on the track into digital form. 

 

• Controller: Interprets received commands and figures out how to control the 

motor. 

 

• Motor interface: Generates the analog signals required to control the motor. 

 

 

 

 

 We define two classes to represent analog components: 

o Detector* detects analog signals on the track and converts them into 

digital form. 

o Pulser* turns digital commands into the analog signals required 

to control the motor speed. 



 

 

DETAILED SPECIFICATION: 

 

 Conceptual specification that defines the basic classes, let’s refine it to create a 

more detailed specification. We won’t make a complete specification. But we 

will add details to the class. We can now fill in the details of the conceptual 

specification. Sketching out the spec first helps us understand the basic 

relationships in the system. 

 We need to define the analog components in a little more detail because there 

characteristics will strongly influence the formatter and controller. Fig1.19 shows a 

little more detail than Fig 1.18, It includes attributes and behavior of these classes. 

The panel has three knobs: train number (which train is currently being 

controlled), speed (which can be positive or negative), and inertia. It also has one 

button for emergency-stop. 

 The Sender and Detector classes are relatively simple: They simply put out and 

pick up a bit, respectively. 

 

 To understand the Pulser class, let’s consider how we actually control the train 

motor’s speed. As shown in Figure 1.20, the speed of electric motors is commonly 

controlled using pulse-width modulation: Power is applied in a pulse for a fraction 

of some fixed interval, with the fraction of the time that power is applied 

determining the speed. 



 

 

 

 Figure 1.21 shows the classes for the panel and motor interfaces. These classes 

form the software interfaces to their respective physical devices. 

 

 The Panel class defines a behavior for each of the controls on the panel; 

 The new-settings behavior uses the set-knobs behavior of the Knobs* class to 

change the knobs settings whenever the train number setting is changed. 

 The Motor-interface defines an attribute for speed that can be set by other classes. 

 The Transmitter and Receiver classes are shown in Figure 1.22.They provides the 

software interface to the physical devices that send and receive bits along the track. 



 

 

 

 

 The Transmitter provides a distinct behavior for each type of message that can 

be sent; it internally takes care of formatting the message. 

 The Receiver class provides a read-cmd behavior to read a message off the tracks. 

 The Formatter class is shown in Figure 1.23. The formatter holds the current 

control settings for all of the trains. 

 The send-command method is a utility function that serves as the interface to the 

transmitter. 

 The operate function performs the basic actions for the object. 

 The panel-active behaviour returns true whenever the panel’s values do not 

correspond to the 

current values. 

 

 

 
 

 The role of the formatter during the panel’s operation is illustrated by the 

sequence diagram of Figure 1.24. 

 



 

 

 

 

 The figure shows two changes to the knob settings: first to the throttle, inertia, 

or emergency stop; then to the train number. 

 The panel is called periodically by the formatter to determine if any control 

settings have changed. If a setting has changed for the current train, the formatter 

decides to send a command, issuing a send- command behavior to cause the 

transmitter to send the bits. 

 Because transmission is serial, it takes a noticeable amount of time for the 

transmitter to finish a command; in the meantime, the formatter continues to 

check the panel’s control settings. 

  If the train number has changed, the formatter must cause the knob settings 

to be reset to the proper values for the new train. 

 The state diagram for a very simple version of the operate behavior of the 

Formatter class is shown in Figure 1.25. 

 This behavior watches the panel for activity: If the train number changes, it 

updates the panel display; otherwise, it causes the required message to be 

sent. 

 



 

 

 

 

 Figure 1.26 shows a state diagram for the panel-active behavior. 

 

 

 The definition of the train’s Controller class is shown in Figure 1.27 

 The operate behavior is called by the receiver when it gets a new command; 

operate looks at the contents of the message and uses the issue-command 

behavior to change the speed, direction, and inertia settings as necessary. 

 



 

 

 

 

 A specification for operate is shown in Figure 1.28. 

 

 

 

 The operation of the Controller class during the reception of a set-speed 

command is illustrated in Figure 1.29. 

 



 

 

UNIT-II 

 

INTRODUCTION TO EMBEDDED C AND APPLICATIONS  
 

------------------------------------------------------------------------------------------------------- 

SYLLABUS: 

 

C looping structures, register allocation, function calls, pointer aliasing, structure 

arrangement, bit fields, unaligned data and endianness, inline functions and inline assembly, 

portability issues; Embedded systems programming in C, binding and running embedded C 

program in Keil IDE, dissecting the program, building the hardware; Basic techniques for 

reading and writing from I/O port pins, switch bounce; Applications: Switch bounce, LED 

interfacing, interfacing with keyboards, displays, D/A and A/D conversions, multiple 

interrupts, serial data communication using embedded C interfacing.  

 ------------------------------------------------------------------------------------------------------- 

 2.1 C LOOPING STRUCTURES 

This section looks at the most efficient ways to code for and while loops on the ARM. We 

start by looking at loops with a fixed number of iterations and then move on to loops with a 

variable number of iterations. Finally we look at loop unrolling. 

 

 2.1.1  LOOPS WITH A FIXED NUMBER OF ITERATIONS 

What is the most efficient way to write a for  loop on the ARM? Let’s return to our checksum 

example and look at the looping structure. 

 

Here is the last version of the 64-llword packet checksum routine we studied in Section 5.2. 

This shows how the compiler treats a loop with incrementing count i++. 

int checksum_v5(int *data) 

{ 

unsigned int i;  

int sum=0; 

 

for (i=0; i<64; i++) 

{ 

sum += *(data++); 

} 

return sum; 

} 

This compiles to 

 
checksum_v5  

MOV r2,r0 ; r2 = data 
MOV r0,#0 ; sum = 0 
MOV r1,#0 ;i=0  

        checksum_v5_loop 
LDR r3,[r2],#4 ; r3 = *(data++) 



 

 

= 

ADD r1,r1,#1 ; i++ 
CMP r1,#0x40 ; compare i, 64 
ADD r0,r3,r0 ; sum += r3 
BCC checksum_v5_loop ; if (i<64) goto loop 

MOV pc,r14 ; return sum 

 

It takes three instructions to implement the for  loop structure: 

 An ADD to increment i 

 A compare to check if  i      is less than 64 

 A conditional branch to continue the loop if i < 64 

This is not efficient. On the ARM, a loop should only use two instructions: 

 

 A subtract to decrement the loop counter, which also sets the condition code flags on 

the result 

 A conditional branch instruction 

 

The key point is that the loop counter should count down to zero rather than counting up 

to some arbitrary limit. Then the comparison with zero is free since the result is stored in the 

condition flags. Since we are no longer using i as an array index, there is no problem in 

counting down rather than up. 

 

 

 

2.1.2  LOOPS USING A VARIABLE NUMBER OF ITERATIONS 

Now suppose we want our checksum routine to handle packets of arbitrary size. We pass in a 

variable N giving the number of words in the data packet. Using the lessons from the last 

section we count down until N 0 and don’t require an extra loop counter i. 

The checksum_v7 example shows how the compiler handles a for loop with a variable 

number of iterations N. 

int checksum_v7(int *data, unsigned int N) 

{ 

int sum=0; 

 

for (; N!=0; N--) 

{ 

sum += *(data++); 

} 

return sum; 

} 

 

This compiles to 

 

checksum_v7  

MOV r2,#0 ; sum = 0 



 

 

CMP r1,#0 ; compare N, 0 

BEQ checksum_v7_end ; if (N==0) goto end 

 

checksum_v7_loop 

LDR r3,[r0],#4 ; r3 = *(data++) 

SUBS r1,r1,#1 ; N-- and set flags 

ADD r2,r3,r2 ; sum += r3 

BNE checksum_v7_loop ; if (N!=0) goto loop 

              checksum_v7_end 

MOV r0,r2    ; r0 = sum 

MOV pc,r14    ; return r0 

 

Notice that the compiler checks that N is nonzero on entry to the function. Often this check is 

unnecessary since you know that the array won’t be empty. In this case a do-while loop gives 

better performance and code density than a for  loop. 

 

 2.1.3 LOOP UNROLLING 

We saw in Section 5.3.1 that each loop iteration costs two instructions in addition to     the 

body of the loop: a subtract to decrement the loop count and a conditional branch. 

 

We call these instructions the loop overhead. On ARM7 or ARM9 processors the subtract 

takes one cycle and the branch three cycles, giving an overhead of four cycles per loop. 

You can save some of these cycles by unrolling a loop—repeating the loop body several 

times, and reducing the number of loop iterations by the same proportion. For example, let’s 

unroll our packet checksum example four times. 

 

EXAMPLE4 

The following code unrolls our packet checksum loop by four times. We assume that the 

number of words in the packet N is a multiple of four. 

 

int checksum_v9(int *data, unsigned int N) 

{ 

int sum=0; 

 

do 

{ 

sum += *(data++);  

sum += *(data++);  

sum += *(data++);  

sum += *(data++);  

N -= 4; 

} while (N!=0);  



 

 

= 
= 

return sum; 

} 

 

This compiles to 

 

checksum_v9 

      MOV       r2,#0                          ; sum = 0 

checksum_v9_loop 

LDR r3,[r0],#4 ; r3 = *(data++) 

SUBS r1,r1,#4 ; N -= 4 & set flags 

ADD r2,r3,r2 ; sum += r3 

LDR r3,[r0],#4 ; r3 = *(data++) 

ADD r2,r3,r2 ; sum += r3 

LDR r3,[r0],#4 ; r3 = *(data++) 

ADD r2,r3,r2 ; sum += r3 

LDR r3,[r0],#4 ; r3 = *(data++) 

ADD r2,r3,r2 ; sum += r3 

BNE checksum_v9_loop ; if (N!=0) goto 

loop 

MOV r0,r2 ; r0 = sum 

MOV pc,r14 ; return r0 

We have reduced the loop overhead from 4N cycles to (4N)/4 N cycles. On the ARM7TDMI, 

this accelerates the loop from 8 cycles per accumulate to 20/4 5 cycles per accumulate, nearly 

doubling the speed! For the ARM9TDMI, which has a faster load instruction, the benefit is 

even higher. ■ 

There are two questions you need to ask when unrolling a loop: 

■ How many times should I unroll the loop? 

■ What if the number of loop iterations is not a multiple of the unroll amount? For example, 

what if N is not a multiple of four in checksum_v9? 

 

To start with the first question, only unroll loops that are important for the overall 

performance of the application. Otherwise unrolling will increase the code size with little 

performance benefit. Unrolling may even reduce performance by evicting more important 

code from the cache. 

Suppose the loop is important, for example, 30% of the entire application. Suppose you 

unroll the loop until it is 0.5 KB in code size (128 instructions). Then the loop overhead is at 

most 4 cycles compared to a loop body of around 128 cycles. The loop overhead cost is 

3/128, roughly 3%. Recalling that the loop is 30% of the entire application, overall the loop 

overhead is only 1%. Unrolling the code further gains little extra performance, but has a 

significant impact on the cache contents. It is usually not worth unrolling further when the 

gain is less than 1%. 

For the second question, try to arrange it so that array sizes are multiples of your unroll 

amount. If this isn’t possible, then you must add extra code to take care of the leftover cases.  



 

 

 2.2 REGISTER ALLOCATION 

The compiler attempts to allocate a processor register to each local variable you use in    a C 

function. It will try to use the same register for different local variables if the use of the 

variables do not overlap. When there are more local variables than available registers, the 

compiler stores the excess variables on the processor stack. These variables are called spilled 

or swapped out variables since they are written out to memory (in a similar way virtual 

memory is swapped out to disk). Spilled variables are slow to access compared to variables 

allocated to registers. 

To implement a function efficiently, you need to 

 

■ minimize the number of spilled variables 

■ ensure that the most important and frequently accessed variables are stored in 

registers 

 

First let’s look at the number of processor registers the ARM C compilers have avail- able 

for allocating variables. Table 5.3 shows the standard register names and usage when 

following the ARM-Thumb procedure call standard (ATPCS), which is used in code 

generated by C compilers. 

 

Provided the compiler is not using software stack checking or a frame pointer, then the C 

compiler can use registers r0 to r12 and r14 to hold variables. It must save the callee values of 

r4 to r11 and r14 on the stack if using these registers. 

 

In theory, the C compiler can assign 14 variables to registers without spillage. In practice, 

some compilers use a fixed register such as r12 for intermediate scratch working and do not 

assign variables to this register. Also, complex expressions require intermediate working 

registers to evaluate. Therefore, to ensure good assignment to registers, you should try to limit 

the internal loop of functions to using at most 12 local variables. 

If the compiler does need to swap out variables, then it chooses which variables to swap out 

based on frequency of use. A variable used inside a loop counts multiple times. You can guide 

the compiler as to which variables are important by ensuring these variables are used within 

the innermost loop. 

The register keyword in C hints that a compiler should allocate the given variable to a 

register. However, different compilers treat this keyword in different ways, and different 

architectures have a different number of available registers (for example, Thumb and ARM). 

Therefore we recommend that you avoid using register and rely on the compiler’s normal 

register allocation routine. 

 

 

 

 



 

 

Table 2.1 C compiler register usage. 

 
 

SUMMARY Efficient Register Allocation 

 
■ Try to limit the number of local variables in the internal loop of functions to 12. The 

compiler should be able to allocate these to ARM registers. 

■ You can guide the compiler as to which variables are important by ensuring these 

variables are used within the innermost loop. 

 

 2.3 FUNCTION CALLS 

The ARM Procedure Call Standard (APCS) defines how to pass function arguments and 

return values in ARM registers. The more recent ARM-Thumb Procedure Call Standard 

(ATPCS) covers ARM and Thumb interworking as well. 

The first four integer arguments are passed in the first four ARM registers: r0, r1, r2, and 

r3. Subsequent integer arguments are placed on the full descending stack, ascending in 

memory as in Figure 5.1. Function return integer values are passed in r0. 

This description covers only integer or pointer arguments. Two-word arguments such as 

long long or double are passed in a pair of consecutive argument registers and returned in r0, r1. 

The compiler may pass structures in registers or by reference according to command line 

compiler options. 



 

 

The first point to note about the procedure call standard is the four-register rule. Functions 

with four or fewer arguments are far more efficient to call than functions with five or more 

arguments. For functions with four or fewer arguments, the compiler can pass all the 

arguments in registers. For functions with more arguments, both the caller and callee must 

access the stack for some arguments. Note that for C++ the first argument to an object method 

is the this pointer. This argument is implicit and additional to the explicit arguments. 

If your C function needs more than four arguments,  or your C++ method more     than 

three explicit arguments, then it is almost always more efficient to use structures. Group 

related arguments into structures, and pass a structure pointer rather than mul- tiple 

arguments. Which arguments are related will depend on the structure of your software. 

 

 

The next example illustrates the benefits of using a structure pointer. First we show a 

typical routine to insert N bytes from array data into a queue. We implement the queue using a 

cyclic buffer with start address Q_start (inclusive) and end address Q_end (exclusive). 

 

char *queue_bytes_v1( 

char *Q_start, /* Queue buffer start address */  

char *Q_end, /* Queue buffer end address */ 

char *Q_ptr, /* Current queue pointer position */  

char *data, /* Data to insert into the queue */  

unsigned int N) /* Number of bytes to insert */ 
{ 

do 

{ 

*(Q_ptr++) = *(data++); 

 

if (Q_ptr == Q_end) 

{ 

Q_ptr = Q_start; 

} 

} while (--N); return Q_ptr; 
} 
 

This compiles to 

 

queue_bytes_v1 



 

 

STR r14,[r13,#-4]! ; save lr on the stack 
LD
R 

r12,[r13,#4] ; r12 = N 

queue_v1_loop 
LDRB r14,[r3],#1 ; r14 = *(data++) 
STRB r14,[r2],#1 ; *(Q_ptr++) = r14 
CMP r2,r1 ; if (Q_ptr == 

Q_end) 
MOVE
Q 

r2,r0 ; {Q_ptr = 
Q_start;} 

SUBS r12,r12,#1 ; --N and set flags 
BNE queue_v1_l

oop 
; if (N!=0) goto loop 

MOV r0,r2 ; r0 = Q_ptr 
LDR pc,[r13],#4 ; return r0 

 

Compare this with a more structured approach using three function arguments. 

 

 POINTER ALIASING: 

Two pointers are said to alias when they point to the same address. If you write to one 

pointer, it will affect the value you read from the other pointer.  

In a function, the compiler often doesn’t know which pointers can alias and which pointers 

can’t. The compiler must be very pessimistic and assume that any write to a pointer may 

affect the value read from any other pointer, which can significantly reduce code efficiency.  

 

 UNALIGNED DATA AND ENDIANNESS: 

Unaligned data and endianness are two issues that can complicate memory accesses and 

portability. In computing endianness is the ordering or sequencing of bytes of a word of 

digital data in computer memory storage or during transmission. A big-endian system stores 

the most significant byte of a word at the smallest memory address and the least significant 

byte at the largest memory address. 

A memory access is said to be aligned when the data being accessed is n bytes long and 

the datum address is n-byte aligned. ... A memory pointer that refers to primitive data that is n 

bytes long is said to be aligned if it is only allowed to contain addresses that are n-

byte aligned, otherwise it is said to be unaligned.  

 

 INLINE FUNCTIONS AND INLINE ASSEMBLY: 

Generally the inline term is used to instruct the compiler to insert the code of a function into 

the code of its caller at the point where the actual call is made. Such functions are called 

"inline functions". ... It is just a set of assembly instructions written as inline functions. 

 

 

 

 

 

  



 

 

 EMBEDDED SYSTEMS PROGRAMMING IN C: 

The embedded firmware is responsible for controlling the various peripherals of the 

embedded hard-ware and generating response in accordance with the functional requirements 

mentioned in the requirements for the particular embedded product.  

Firmware is considered as the master brain of the embedded system. 

Imparting intelligence to an embedded system is a onetime process and it can happen at any 

stage, it can be immediately after the fabrication of the embedded hardware or at a later stage.  

 

Whenever the conventional 'C' Language and its extensions are used for programming 

embedded systems, it is referred as 'Embedded C’ programming. Programming in 

'Embedded C' is quite different from conventional Desktop application development using 'C' 

language for a particular OS platform.  

Desktop computers contain working memory in the range of Megabytes (Nowadays Giga 

bytes) and storage memory in the range of Giga bytes. For a desktop application developer, 

the resources available are surplus in quantity and they can be very lavish in the usage of 

RAM and ROM and no restrictions are imposed at all. This is not the case for embedded 

application developers.  

Almost all embedded systems are limited in both storage and working memory resources.  

Embedded application developers should be aware of this fact and should develop 

applications in the best possible way which optimizes the code memory and working memory 

usage as well as performance.  

In other words, the hands of an embedded application developer are always tied up in the 

memory usage context. 

 

'C' v/s. 'Embedded C':  

'C' is a well structured, well defined and standardized general purpose programming language 

with extensive bit manipulation support.  

'C' offers a combination of the features of high level language and assembly and helps in 

hardware access programming (system level programming) as well as business package 

developments (Application developments like pay roll systems, banking applications, etc).  

The conventional 'C' language follows ANSI(American National Standards Institute) standard 

and it incorporates various library files for different operating systems.  

A platform (operating system) specific application, known as, compiler is used for the 

conversion of programs written in 'C' to the target processor (on which the OS is running) 

specific binary files. Hence it is a platform specific development.  

Embedded 'C' can be considered as a subset of conventional 'C' language. Embedded 'C' 

supports all 'C' instructions and incorporates a few target processor specific 

functions/instructions.  

It should be noted that the standard ANSI 'C' library implementation is always tailored to the 

target processor/controller library files in Embedded 'C'.  

A software program called 'Cross-compiler' is used for the conversion of programs written in 

Embedded 'C' to target processor/controller specific instructions (machine language).  

 

 



 

 

Compiler vs. Cross-Compiler: 

Compiler is a software tool that converts a source code written in a high level language on 

top of a particular operating system running on a specific target processor architecture (e.g. 

Intel x86/Pentium).  

Here the operating system, the compiler program and the application making use of the 

source code run on the same target processor. The source code is converted to the target 

processor specific machine instructions.  

The development is platform specific (OS as well as target processor on which the OS is 

running). Compilers are generally termed as 'Native Compilers'. A native compiler generates 

machine code for the same machine (processor) on which it is running.  

Cross-compilers are the software tools used in cross-platform development applications. In 

cross-platform development, the compiler running on a particular target processor/OS 

converts the source code to machine code for a target. 

Embedded system development is a typical example for cross-platform development where 

embedded firmware is developed on a machine with Intel/AMD or any other target 

processors and the same is converted into machine code for any other target processor 

architecture (e.g. 8051, PIC, ARM, etc).  

Keil C51 is an example for cross-compiler. The term 'Compiler' is used interchangeably with 

'Cross-compiler' in embedded firmware applications. Whenever you see the term 'Compiler' 

related to any embedded firmware application, please understand that it is referring to the 

cross-compiler.  

 
 

Using ‘C’ in ‘Embedded C’: 

Let us brush up whatever we learned in conventional 'C' programming. Remember we will 

only go through the peripheral aspects and will not go in deep.  

 

Keywords and Identifiers: 

Keywords are the reserved names used by the 'C' language. All keywords have a fixed 

meaning in the 'C' language context and they are not allowed for programmers for naming 

their own variables or functions. ANSI 'C' supports 32 keywords and they are listed below.  

All 'C' supported keywords should be written in 'lowercase' letters.  

 



 

 

C Keywords are predefined, reserved words used in programming that have special 

meanings to the compiler. 

 
Identifiers are user defined names and labels. Identifiers can contain letters of English 

alphabet (both upper and lower case) and numbers. The starting character of an identifier 

should be a letter. The only special character allowed in identifier is underscore ( _ ).  

Ex: Root, _getchar, _sin, x_1, x1, If 

 

Data Types: 

 Data type represents the type of data held by a variable. The various data types supported, 

their storage space (bits) and storage capacity for 'C' language are tabulated below. 

 
 

 

 

 

 

 



 

 

Arithmetic and Relational Operations: 

 

The list of arithmetic operations supported by ‘C’ are listed below.

 
 

Logical Operations: 

Logical operations are usually performed for decision making and program control transfer. 

 

 
Looping Instructions: 

Looping instructions are used for executing a particular block of code repeatedly till a 

condition is met or wait till an event is fired. 

 Embedded programming often uses the looping instructions for checking the status of certain 

I/O ports, registers, etc. and also for producing delays. Certain devices allow write/read 

operations to and from some registers of the device only when the device is ready and the 

device ready is normally indicated by a status register or by setting/clearing certain bits of 

status registers.  

Hence the program should keep on reading the status register till the device ready indication 

comes. The reading operation forms a loop. The looping instructions supported by are listed 

below.  

Looping Instructions:  

//while statement 

While (expression) 

{ 

Body of while loop 

}  



 

 

//do while statement 

do 

{ 

Body of do loop 

} 

While (expression) 

//for loop 

for (initialization; test for condition; update variable) 

{ 

Body of for loop 

} 

 

Arrays and Pointers: 

Array is a collection of related elements (data types).  

Arrays are usually declared with data type of array, name of the array and the number of 

related elements to be placed in the array.  

For example the following array declaration declares a character array with name ‘arr’ and 

reserves space for 5 character elements in the memory as below figure. 

 

 

 

 

 

char arr [5] 

          0x10                0x10               0x23                   0x03                  0x45    (contents) 

arr[0]  arr[1]  arr[2]  arr[3]  arr[4]  

            0x8000             0x8001            0x8002           0x8003              0x8004  (Addresses)  

 

The elements of an array are accessed by using the array index or subscript.  

The index of the first element is '0'. For the above example the first element is accessed by 

arr[0], second element by arr[1], and so on. In the above example, the array starts at memory 

location 0x8000 (arbitrary value taken for illustration) and the address of the first element is 

0x8000.  

The `address of operator (&) returns the address of the memory location where the variable is 

stored. Hence &arr[0] will return 0x8000 and &arr[1] will return 0x8001, etc.. The name of 

the array itself with no index (subscript) always returns the address of the first element. If we 

examine the first element arr[0] of the above array, we can see that the variable arr[0] is 

allocated a memory location 0x8000 and the contents of that memory location holds the value 

for arr[0].  

  



 

 

Pointers: 

Pointer is a flexible at the same time most dangerous feature, capable of creating potential 

damages leading to firmware crash, if not used properly.  

Pointer is a memory pointing based technique for variable access and modification. Pointers 

are very helpful in  

1. Accessing and modifying variables  

2. Increasing speed of execution  

3. Accessing contents within a block of memory  

4. Passing variables to functions by eliminating the use of a local copy of variables  

5. Dynamic memory.  

 

 

 BINDING AND RUNNING EMBEDDED C PROGRAM IN KEIL IDE: 

 

Embedded system means some combination of computer hardware and programmable 

software which is specially designed for a particular task like displaying message on LCD. If 

you are still wondering about an embedded system, just take a look at these circuit 

applications using 8051 microcontroller. You can call these applications embedded systems 

as it involves hardware (8051 microcontroller) and software (the code written in assembly 

language). 

 

Some real life examples of embedded systems may involve ticketing machines, vending 

machines, temperature controlling unit in air conditioners etc. Microcontrollers are nothing 

without a Program in it. 

 

One of the important part in making an embedded system is loading the software/program we 

develop into the microcontroller. Usually it is called “burning software” into the controller. 

Before “burning a program” into a controller, we must do certain prerequisite operations with 

the program. This includes writing the program in assembly language or C language in a text 

editor like notepad, compiling the program in a compiler and finally generating the hex code 

from the compiled program. Earlier people used different softwares/applications for all these 

3 tasks. Writing was done in a text editor like notepad/WordPad, compiling was done using a 

separate software (probably a dedicated compiler for a particular controller like 8051), 

converting the assembly code to hex code was done using another software etc.  It takes lot of 

time and work to do all these separately, especially when the task involves lots of error 

debugging and reworking on the source code. 

Keil MicroVision is free software which solves many of the pain points for an embedded 

program developer. This software is an integrated development environment (IDE), which 

integrated a text editor to write programs, a compiler and it will convert your source code to 

hex files too. 

Here is simple guide to start working with Keil uVision which can be used for 

https://www.circuitstoday.com/embedded-systems-an-introduction


 

 

 Writing programs in C/C++ or Assembly language 

 Compiling and Assembling Programs 

 Debugging program 

 Creating Hex and Axf file 

 Testing your program without Available real Hardware (Simulator Mode) 

This is simple guide on Keil uVision 4 though also applicable on previous versions also. 

 

These are the simple steps to get off the mark your inning! 

Step 1: After opening Keil uV4, Go to Project tab and 

Create new uVision project 

Now Select new folder and give name to Project. 

 
 

Step 2: After Creating project now Select your device model. Example.NXP-LPC2148   

[You can change it later from project window.]

 

https://www.circuitstoday.com/wp-content/uploads/2012/11/step1.jpg
https://www.circuitstoday.com/wp-content/uploads/2012/11/step2.jpg


 

 

Step 3: so now your project is created and Message window will appear to add startup file of 

your Device click on Yes so it will be added to your project folder 

 
 

Step 4: Now go to File and create new file and save it with .C extension if you will write 

program in C language or save with .asm for assembly language. 

i.e., Led.c 

 

 
 

 

Step 5: Now write your program and save it again. You can try example given at end of this 

tutorial. 

 

Step 6: After that on left you see project window [if it’s not there….go to View tab and click 

on project window] 

Now come on Project window. 

 
 

https://www.circuitstoday.com/wp-content/uploads/2012/11/step3.jpg
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Right click on target and click on options for target 

Here you can change your device also. 

 

 
 

Click output tab here & check create Hex file if you want to generate hex file 

Now click on ok so it will save changes 

 

 
 

Step 7: Now Expand target and you will see source group 

Right click on group and click on Add files to source group 

https://www.circuitstoday.com/wp-content/uploads/2012/11/step6-2.jpg
https://www.circuitstoday.com/wp-content/uploads/2012/11/step6-3.jpg


 

 

 
 

Now add your program file which you have written in C/assembly. 

You can see program file added under source group. 

Step 8: Now Click on Build target.You can find it under Project tab or in toolbar.It can also 

be done by pressing F7 key. 

https://www.circuitstoday.com/wp-content/uploads/2012/11/step7.jpg


 

 

 
 

Step 9:  you can see Status of your program in Build output window 

[If it’s not there go to view and click on Build output window]    

 
 

Now you are done with your program.  
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 BASIC TECHNIQUES FOR READING FROM PORT PINS: 

 

As we saw in Chapter 3, control of the 8051 ports is carried out using 8-bit latches (SFRs). 

We can send some data to Port 1 as follows: 

 

sfr P1 = 0x90; // Usually in header file 

P1 = 0x0F; // Write 00001111 to Port 1 

 

In exactly the same way, we can read from Port 1 as follows: 

unsigned char Port_data; 

P1 = 0xFF; // Set the port to 'read mode' 

Port_data = P1; // Read from the port 

 

After the 8051 microcontroller is reset, the port latches all have the value 0xFF (11111111 in 

binary): that is, all the port-pin latches are set to values of ‘1’. It is tempting to assume that 

writing data to the port is therefore unnecessary, and that we can get away with the following 

version: 

 

unsigned char Port_data; 

// Assume nothing written to port since reset 

// – DANGEROUS!!! 

Port_data = P1; 

 

The problem with this code is that, in simple test programs it works: this can lull the 

developer into a false sense of security. If, at a later date, someone modifies the program to 

include a routine for writing to all or part of the same port, this code will not generally work 

as required: 

 

unsigned char Port_data; 

P1 = 0x00; 

. . . 

// Assumes nothing written to port since reset 

// – WON’T WORK 

Port_data = P1; 

 

In most cases, initialization functions are used to set the port pins to a known state at the start 

of the program. Where this is not possible, it is safer to always write ‘1’ to any port pin 

before reading from it. 

 



 

 

 
 

;Toggle all bits of continuously.  

      MOV A,#55  

BACK: MOV P2,A  

      ACALL DELAY  

      CPL A ;complement(inv) reg.A  

      SJMP BACK  

 

Reading and writing bits: 

 Demonstrated how to read from or write to an entire port. However, suppose we have 

a switch connected to Pin 1.1 and an LED connected to Pin 2.1.  

 We might also have input and output devices connected to the other pins on Port 1. 

 These pins may be used by totally different parts of the same system, and the code to 

access them may be produced by other team members, or other companies.  

 It is therefore essential that we are able to read-from or write-to individual port pins 

without altering the values of other pins on the same port. 

 We provided a simple example to illustrates how we can read from Pin 1.1, and write 

to Pin 2.1, without disrupting any other pins on this (or any other) port.  

  



 

 

#include<reg51.h>  

sbit Led = P2^1;       //pin connected to toggle Led 

sbit Switch =P1^1;  //Pin connected to toggle led 

void main(void) 

{ 

Led = 0;           //configuring as output pin 

Switch = 1;      //Configuring as input pin 

while(1)          //Continuous monitor the status of the switch. 

{ 

if(Switch == 0) 

{ 

Led =1;          //Led On 

} 

else  

{ 

Led =0; //Led Off 

} 

} 

return 0; 

} 

 

SWITCH BOUNCE: 

In an ideal world, this change in voltage obtained by connecting a switch to the port pin of an 

8051 microcontroller would take the form illustrated in Figure 4.8 (top). In practice, all 

mechanical switch contacts bounce (that is, turn on and off, repeatedly, for a short period of 

time) after the switch is closed or opened. As a result, the actual input waveform looks more 

like that shown in Figure 4.8 (bottom). Usually, switches bounce for less than 20 ms: 

however large mechanical switches exhibit bounce behaviour for 50 ms or more. 

 

When you turn on the lights in your home or office with a mechanical switch, the switches 

will bounce. As far as humans are concerned, this bounce is imperceptible. 

 



 

 

However, as far as the microcontroller is concerned, each ‘bounce’ is equivalent to one press 

and release of an ‘ideal’ switch. Without appropriate software design, this can give rise to a 

number of problems, not least: 

 

_ Rather than reading ‘A’ from a keypad, we may read ‘AAAAA’. 

_ Counting the number of times that a switch is pressed becomes extremely difficult. 

_ If a switch is depressed once, and then released some time later, the ‘bounce’ may 

make it appear as if the switch has been pressed again (at the time of release). 

 

 APPLICATIONS: 

 LED INTERFACING WITH 8051 TO A SINGLE PIN:  

 
Program: 

#include<reg51.h>  // special function register declarations  

sbit LED = P2^0;  // Defining LED pin  

void Delay(void);  // Function prototype declaration  

void main (void)  

{  

while(1)   // infinite loop  

{  

LED = 0;   // LED ON  

Delay();  

LED = 1;   // LED OFF  

Delay();  

}  

}  

void Delay(void)  

{  

int j;  

int i;  

for(i=0;i<10;i++)  

{  

for(j=0;j<10000;j++)  

{  



 

 

}  

     } 

       } 

 

LED’s interfacing with Port, P1 of 8051:  

 
Program: 

#include<REG51.H> 

#define LEDPORT P1 

void delay(unsigned int);  

void main(void) 

{ 

LEDPORT =0x00; 

while(1) 

{ 

LEDPORT = 0X00; 

delay(250);  

LEDPORT = 0xff; 

delay(250); 

} 

} 

void delay(unsigned int itime) 

{ 

unsigned int i,j;  

for(i=0;i<itime;i++) 

{ 

for(j=0;j<250;j++); 

} 

}  

  



 

 

 4X4 MATRIX KEYPAD INTERFACING WITH 8051 MICROCONTROLLER: 

 

Keypads/Keyboards are widely used input devices being used in various electronics and 

embedded projects. They are used to take inputs in the form of numbers and alphabets, and 

feed the same into system for further processing. In this tutorial we are going to interface a 

4x4 matrix keypad/Keyboard with 8051 microcontroller.  

Before we interface the keypad with microcontroller, first we need to understand how it 

works. Matrix keypad consists of set of Push buttons, which are interconnected. Like in our 

case we are using 4X4 matrix keypad, in which there are 4 push buttons in each of four rows. 

And the terminals of the push buttons are connected according to diagram. In first row, one 

terminal of all the 4 push buttons are connected together and another terminal of 4 push 

buttons are representing each of 4 columns, same goes for each row. So we are getting 8 

terminals to connect with a microcontroller. 

 
 

Interfacing keypad with 8051 microcontroller (P89V51RD2) 

 



 

 

As shown in above circuit diagram, to interface Keypad, we need to connect 8 terminals of 

the keypad to any port (8 pins) of the microcontroller. Like we have connected keypad 

terminals to Port 1 of 8051. Whenever any button is pressed we need to get the location of the 

button, means the corresponding ROW an COLUMN no. Once we get the location of the 

button, we can print the character accordingly.  

Now the question is how to get the location of the pressed button? I am going to explain this 

in below steps and also want you to look at the code: 

1. First we have made all the Rows to Logic level 0 and all the columns to Logic level 1. 

2. Whenever we press a button, column and row corresponding to that button gets shorted 

and makes the corresponding column to logic level 0. Because that column becomes 

connected (shorted) to the row, which is at Logic level 0. So we get the column no. See 

main() function. 

 
3. Now we need to find the Row no., so we have created four functions corresponding to each 

column. Like if any button of column one is pressed, we call function row_finder1(), to find 

the row no. 

4. In row_finder1() function, we reversed the logic levels, means now all the Rows are 1 and 

columns are 0. Now Row of the pressed button should be 0 because it has become connected 

(shorted) to the column whose button is pressed, and all the columns are at 0 logic. So we 

have scanned all rows for 0. 

  



 

 

 
5. So whenever we find the Row at logic 0, means that is the row of pressed button. So now 

we have column no (got in step 2) and row no., and we can print no. of that button using 

lcd_data function. 

Same procedure follows for every button press, and we are using while(1), to continuously 

check, whether button is pressed or not. 

Code: 

#include<reg51.h> 

#define display_port P2       //Data pins connected to port 2 on microcontroller 

sbit rs = P3^0;    //RS pin connected to pin 2 of port 3 

sbit rw = P3^1;    // RW pin connected to pin 3 of port 3 

sbit e =  P3^2;    //E pin connected to pin 4 of port 3 

 

sbit C4 = P1^0;       // Connecting keypad to Port 1 

sbit C3 = P1^1; 

sbit C2 = P1^2; 

sbit C1 = P1^3; 

sbit R4 = P1^4; 

sbit R3 = P1^5; 

sbit R2 = P1^6; 

sbit R1 = P1^7; 

 

void msdelay(unsigned int time)  // Function for creating delay in milliseconds. 

{ 

    unsigned i,j ; 

    for(i=0;i<time;i++)     

    for(j=0;j<1275;j++); 

} 

void lcd_cmd(unsigned char command)  //Function to send command instruction to LCD 

{ 

    display_port = command; 



 

 

    rs= 0; 

    rw=0; 

    e=1; 

    msdelay(1); 

    e=0; 

} 

void lcd_data(unsigned char disp_data)  //Function to send display data to LCD 

{ 

    display_port = disp_data; 

    rs= 1; 

    rw=0; 

    e=1; 

    msdelay(1); 

    e=0; 

} 

 void lcd_init()    //Function to prepare the LCD  and get it ready 

{ 

    lcd_cmd(0x38);  // for using 2 lines and 5X7 matrix of LCD 

    msdelay(10); 

    lcd_cmd(0x0F);  // turn display ON, cursor blinking 

    msdelay(10); 

    lcd_cmd(0x01);  //clear screen 

    msdelay(10); 

    lcd_cmd(0x81);  // bring cursor to position 1 of line 1 

    msdelay(10); 

} 

 

void row_finder1() //Function for finding the row for column 1 

{ 

R1=R2=R3=R4=1; 

C1=C2=C3=C4=0; 

 

if(R1==0) 

lcd_data('7'); 

if(R2==0) 

lcd_data('4'); 

if(R3==0) 

lcd_data('1'); 

if(R4==0) 

lcd_data('N'); 

} 

 

void row_finder2() //Function for finding the row for column 2 

{ 



 

 

R1=R2=R3=R4=1; 

C1=C2=C3=C4=0; 

 

if(R1==0) 

lcd_data('8'); 

if(R2==0) 

lcd_data('5'); 

if(R3==0) 

lcd_data('2'); 

if(R4==0) 

lcd_data('0'); 

} 

void row_finder3() //Function for finding the row for column 3 

{ 

R1=R2=R3=R4=1; 

C1=C2=C3=C4=0; 

 

if(R1==0) 

lcd_data('9'); 

if(R2==0) 

lcd_data('6'); 

if(R3==0) 

lcd_data('3'); 

if(R4==0) 

lcd_data('='); 

} 

 

void row_finder4() //Function for finding the row for column 4 

{ 

R1=R2=R3=R4=1; 

C1=C2=C3=C4=0; 

 

if(R1==0) 

lcd_data('%'); 

if(R2==0) 

lcd_data('*'); 

if(R3==0) 

lcd_data('-'); 

if(R4==0) 

lcd_data('+'); 

} 

 

void main() 

{ 



 

 

    lcd_init(); 

    while(1) 

    {     

        msdelay(30);  

        C1=C2=C3=C4=1; 

          R1=R2=R3=R4=0; 

          if(C1==0) 

          row_finder1(); 

          else if(C2==0) 

           row_finder2(); 

           else if(C3==0) 

        row_finder3(); 

        else if(C4==0) 

        row_finder4(); 

    } 

 

} 

 

 7 SEGMENT DISPLAY INTERFACING WITH 8051 MICROCONTROLLER: 

  

 
This is how to interface a seven segment LED display to an 8051 microcontroller. 7 segment 

LED display is  very popular and it can display digits from 0 to 9 and quite a few characters. 

Knowledge about how to interface a seven segment display to a micro controller is very 

essential in designing embedded systems. Seven segment displays are of two types, common 

cathode and common anode.  

In common cathode type , the cathode of all LEDs are tied together to a single terminal which 

is usually labeled as ‘com‘   and the anode of all LEDs are left alone as individual pins 

labeled as a, b, c, d, e, f, g &  h (or dot) .  



 

 

In common anode type, the anodes of all LEDs are tied together as a single terminal and 

cathodes are left alone as individual pins.  

 
 

 

 
 

 

 

Program: 

 

/*Program to interface seven segment display unit.*/  

#include <REG51.H> 

#define LEDPORT P0 

#define ZERO 0x3f  

#define ONE 0x06 

#define TWO 0x5b 

#define THREE 0x4f 

#define FOUR 0x66 

#define FIVE 0x6d 

#define SIX 0x7d 

#define SEVEN 0x07 

#define EIGHT 0x7f 

#define NINE 0x6f 



 

 

#define TEN 0x77  

#define ELEVEN 0x7c  

#define TWELVE 0x39  

#define THIRTEEN 0x5e 

#define FOURTEEN 0x79 

#define FIFTEEN 0x71  

void Delay(void); 

void main (void) 

{ 

while(1) 

{ 

LEDPORT = ZERO; 

Delay();  

LEDPORT = ONE; 

Delay(); 

LEDPORT = TWO; 

Delay(); 

LEDPORT = THREE; 

Delay(); 

LEDPORT = FOUR; 

Delay();  

LEDPORT = FIVE; 

Delay();  

LEDPORT = SIX; 

Delay(); 

LEDPORT = SEVEN; 

Delay(); 

LEDPORT = FOURTEEN; 

Delay(); 

LEDPORT = FIFTEEN; 

Delay(); 

} 

} 

void Delay(void) 

{ 

int j; int i; 

for(i=0;i<30;i++) 

{ 

for(j=0;j<10000;j++) 

{ 

} 

} 

} 

  



 

 

LCD DISPLAY INTERFACING WITH 8051 MICROCONTROLLER: 

  

In this, we will have brief discussion on how to interface 16×2 LCD module to P89V51RD2, 

which is an 8051 family microcontroller. We use LCD display for the displaying messages in 

a more interactive way to operate the system or displaying error messages etc. Interfacing 

16×2 LCD with 8051 microcontroller is very easy if you understanding the working of LCD. 

16×2 Liquid Crystal Display which will display the 32 characters at a time in two rows (16 

characters in one row). Each character in the display is of size 5×7 pixel matrix.  

 

 
 

 

PIN 

NO 
NAME FUNCTION 

1 VSS Ground pin  

2 VCC Power supply pin of 5V  

3 VEE Used for adjusting the contrast commonly attached to the 

potentiometer.  

4 RS RS is the register select pin used to write display data to the LCD 

(characters), this pin has to be high when writing the data to the 

LCD. During the initializing sequence and other commands this pin 

should low.  

5 R/W Reading and writing data to the LCD for reading the data R/W pin 

should be high (R/W=1) to write the data to LCD R/W pin should be 

low (R/W=0)  

6 E Enable pin is for starting or enabling the module. A high to low 

pulse of about 450ns pulse is given to this pin.  

7 DB0 DB0-DB7 Data pins for giving data(normal data like numbers 

characters or command data) which is meant to be displayed  

8 DB1 DB0-DB7 Data pins for giving data  

9 DB2 DB0-DB7 Data pins for giving data  



 

 

10 DB3 DB0-DB7 Data pins for giving data  

11 DB4 DB0-DB7 Data pins for giving data  

12 DB5 DB0-DB7 Data pins for giving data  

13 DB6 DB0-DB7 Data pins for giving data  

14 DB7 DB0-DB7 Data pins for giving data  

15 LED+ Back light of the LCD which should be connected to Vcc  

16 LED- Back light of LCD which should be connected to ground.  

 

 

 
 

Follow these simple steps for displaying a character or data 

E=1; enable pin should be high 

RS=1; Register select should be high 

R/W=0; Read/Write pin should be low. 

 

To send a command to the LCD just follows these steps: 

E=1; enable pin should be high 

RS=0; Register select should be low 

R/W=0; Read/Write pin should be low. 

 

Program: 

#include<reg51.h> 

sbit rs=P3^0; 

sbit rw=P3^1; 

sbit en=P3^2; 



 

 

void lcdcmd(unsigned char); 

void lcddat (unsigned char); 

void delay(); 

void main() 

{ 

P2=0x00; 

while(1) 

{ 

lcdcmd(0x38); 

 

delay(); 

lcdcmd(0x01); 

 

delay(); 

lcdcmd(0x10); 

 

delay(); 

lcdcmd(0x0c); 

 

delay(); 

lcdcmd(0x81); 

 

delay(); 

lcddat('I'); 

delay(); 

lcddat('A'); 

 

delay(); 

lcddat('R'); 

 

delay(); 

lcddat('E'); 

 

delay(); 

} 

} 

void lcdcmd(unsigned char val) 

{ 

P2=val; 

rs=0; 

rw=0; 

en=1; 

delay(); 

en=0; 



 

 

} 

void lcddat(unsigned char val) 

{ 

P2=val; 

rs=1; 

rw=0; 

en=1; 

delay(); 

en=0; 

} 

void delay() 

{unsigned int i; 

for(i=0;i<6000;i++); 

} 

 

 

ADC (ADC0808) INTERFACING WITH 8051 MICROCONTROLLER: 

 

ADC0808/ADC0809 is an 8 channel 8-bit analog to digital converter. Unlike ADC0804 

which has one Analog channel, this ADC has 8 multiplexed analog input channels. This 

tutorial will provide you basic information regarding this ADC, testing in free run mode and 

interfacing example with 8051 with sample program in C and assembly. 

 

 IN0-IN7: Analog Input channels 

 D0-D7: Data Lines 

 A, B, C: Analog Channel select lines; A is LSB and C is MSB 

 OE: Output enable signal 

 ALE: Address Latch Enable 

 EOC: End of Conversion signal 

 Vref+/Vref-: Differential Reference voltage input 

 Clock: External ADC clock input 

 Normally analogue-to-digital converter (ADC) needs interfacing through a microprocessor 

to convert analogue data into digital format. This requires hardware and necessary 



 

 

software, resulting in increased complexity and hence the total cost. The circuit of A-to-D 

converter shown here is configured around ADC 0808, avoiding the use of a 

microprocessor. The ADC 0808 is an 8-bit A-to-D converter, having data lines D0-D7. It 

works on the principle of successive approximation. It has a total of eight analogue input 

channels, out of which any one can be selected using address lines A, B and C. Here, in 

this case, input channel IN0 is selected by grounding A, B and C address lines. 

 Usually the control signals EOC (end of conversion), SC (start conversion), ALE (address 

latch enable) and OE (output enable) are interfaced by means of a microprocessor. 

However, the circuit shown here is built to operate in its continuous mode without using 

any microprocessor. Therefore the input control signals ALE and OE, being active-high, 

are tied to Vcc (+5 volts). The input control signal SC, being active-low, initiates start of 

conversion at falling edge of the pulse, whereas the output signal EOC becomes high after 

completion of digitization. This EOC output is coupled to SC input, where falling edge of 

EOC output acts as SC input to direct the ADC to start the conversion. 

 As the conversion starts, EOC signal goes high. At next clock pulse EOC output again 

goes low, and hence SC is enabled to start the next conversion. Thus, it provides 

continuous 8-bit digital output corresponding to instantaneous value of analogue input. 

The maximum level of analogue input voltage should be appropriately scaled down below 

positive reference (+5V) level. 

 The ADC 0808 IC requires clock signal of typically 550 kHz, which can be easily derived 

from an Astable multivibrator, constructed using 7404 inverter gates. In order to visualize 

the digital output, the row of eight LEDs (LED1 through LED8) have been used, where in 

each LED is connected to respective data lines D0 through D7. Since ADC works in the 

continuous mode, it displays digital output as soon as analogue input is applied. The 

decimal equivalent digital output value D for a given analogue input voltage Vin can be 

calculated from the relationship. 

 
  



 

 

 
 

 

Program: 

#include <reg51.h> 

#define ALE P3_4 

#define OE P3_7 

#define START P3_5 

#define EOC P3_6 

#define SEL_A P3_1 

#define SEL_B P3_2 

#define SEL_C P3_3 

#define ADC_DATA P1 

void main()  

{  

unsigned char adc_data;  

 /* Data port to input */ 

ADC_DATA = 0xFF;  

  

EOC = 1;  /* EOC as input */ 

ALE = OE = START = 0;  

 while (1)  

{  

/* Select channel 1 */ 

SEL_A = 1;  /* LSB */ 

SEL_B = 0;  

SEL_C = 0;  /* MSB */ 

  

/* Latch channel select/address */ 

ALE = 1;  



 

 

 /* Start conversion */ 

START = 1;  

 ALE = 0;  

START = 0;  

/* Wait for end of conversion */ 

while (EOC == 1);  

while (EOC == 0);  

  /* Assert Read signal */ 

OE = 1; 

/* Read Data */ 

adc_data = ADC_DATA; 

OE = 0; 

 /* Now adc data is stored */ 

/* start over for next conversion */ 

} 

} 

 

 

DAC INTERFACING WITH 8051 MICROCONTROLLER: 

 

This section will show how to interface a DAC (digital-to-analog converter) to the 8051. 

Then we demonstrate how to generate a sine wave on the scope using the DAC. 

 

Digital-to-analog (DAC) converter 

The digital-to-analog converter (DAC) is a device widely used to convert digital pulses to 

analog signals. In this section we discuss the basics of interfacing a DAC to the 8051. 

Recall from your digital electronics book the two methods of creating a DAC:  

1. Binary weighted. 

2. R/2R ladder.  

The vast majority of integrated circuit DACs, including the MC1408 (DAC0808) used in this 

section use the R/2R method since it can achieve a much higher degree of precision. The first 

criterion for judging a DAC is its resolution, which is a function of the number of binary 

inputs. The common ones are 8, 10, and 12 bits. The number of data bit inputs decides the 

resolution of the DAC since the number of analog output levels is equal to 2″, where n is the 

number of data bit inputs.  

 

Therefore, an 8-input DAC such as the DAC0808 provides 256 discrete voltage (or current) 

levels of output. Similarly, the 12-bit DAC provides 4096 discrete voltage levels. There are 

also 

16-bit DACs, but they are more expensive. 

 

MC1408 DAC (or DAC0808) 

In the MC1408 (or DAC0808), the digital inputs are converted to current (Iout), and by 

connecting a resistor to the Iout pin, we convert the result to voltage. 



 

 

The total current provided by the Iout pin is a function of the binary numbers at the DO – D7 

inputs of the DAC0808 and the reference current (Iref), and is as follows: 

 

𝐼𝑜𝑢𝑡 = 𝐼𝑟𝑒𝑓(
𝐷7
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+
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+
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Where DO is the LSB, D7 is the MSB for the inputs, and Iref is the input current that must be 

applied to pin 14. The Iref current is generally set to 2.0 mA. Figure shows the generation of 

current reference (setting Iref = 2 mA) by using the standard 5-V power supply and IK and 

1.5K-ohm standard resistors. Some DACs also use the zener diode (LM336), which 

overcomes any fluctuation associated 

 

 
Figure: 8051 Connection to DAC808 

 

Converting lout to voltage in DAC0808 

 

Ideally we connect the output pin Iout to a resistor, convert this current to voltage, and monitor 

the output on the scope. In real life, however, this can cause inaccuracy since the input 

resistance of the load where it is connected will also affect the output voltage. For this reason, 

the Iref current output is isolated by connecting it to an op-amp such as the 741 with Rf = 5K 

ohms for the feedback resistor. Assuming that R = 5K ohms, by changing the binary input, 

the output voltage changes. 

 

Generating a sine wave: 

To generate a sine wave, we first need a table whose values represent the magnitude of the 

sine of angles between 0 and 360 degrees. The values for the sine function vary from -1.0 to 

+1.0 for 0- to 360-degree angles. Therefore, the table values are integer numbers representing 

the voltage magnitude for the sine of theta. This method ensures that only integer numbers 

are output to the DAC by the 8051 microcontroller. Table shows the angles, the sine values, 

the voltage magnitudes, and the integer values representing the voltage magnitude for each 



 

 

angle (with 30-degree increments). To generate Table 13-7, we assumed the full-scale voltage 

of 10 V for DAC output. Full-scale output of the DAC is achieved when all the data inputs of 

the DAC are high. Therefore, to achieve the full-scale 10 V output, we use the following 

equation. 

 
Vout of DAC for various angles is calculated and shown in Table 13-7. See Example 13-5 for 

verification of the calculations. 

Angle θ 

(degrees) 
Sin θ 

Vout (Voltage Magnitude) 

5 V + (5 V x sin θ) 

Values Sent to DAC (decimal) 

(Voltage Mag. X 25.6) 

0 0 5 128 

30 0.5 7.5 192 

60 0.866 9.33 238 

90 1.0 10 255 

120 0.866 9.33 238 

150 0.5 7.5 192 

180 0 5 128 

210 -0.5 2.5 64 

240 -0.866 0.669 17 

270 -1.0 0 0 

300 -0.866 0.669 17 

330 -0.5 2.5 64 

360 0 5 128 

 

Program: 

 

#include <reg51.h> 

sfr DACDATA = Pl; 

void main () 

{  

unsigned char WAVEVALUE [12]={128,192,238,255, 238,192,128,64, 17,0,17,64} ; 

unsigned char x , 

while (1) 

{ 

for(x=0;x<12;x++) 

{ 

DACDATA = WAVEVALUE[x]; 

} 

} 

 

} 

  



 

 

 
Figure: Angle vs. Voltage Magnitude for Sine Wave 

 

 

 

MULTIPLE INTERRUPTS IN 8051 MICROCONTROLLER: 

Interrupts vs. polling: 

A single microcontroller can serve several devices. There are two ways to do that: interrupts 

or polling.  In the interrupt method, whenever any device needs its service the device notifies 

the microcontroller by sending it an interrupt signal. Upon receiving an interrupt signal, the 

microcontroller interrupts whatever it is doing and serves the device.  

The program associated with the interrupt is called the interrupt service routine (ISR) or 

interrupt handler.  

In polling, the microcontroller continuously monitors the status of a given device; when the 

status condition is met, it performs the service. After that, it moves on to monitor the next 

device until each one is serviced. Although polling can monitor the status of several devices 

and serve each of them as certain conditions are met, it is not an efficient use of the 

microcontroller.  

 

The advantage of interrupts is that the microcontroller can serve many devices (not all at the 

same time, of course); each device can get the attention of the microcontroller based on the 

priority assigned to it.  

The polling method cannot assign priority since it checks all devices in a round robin fashion. 

 

SIX INTERRUPTS IN THE 8051 MICROCONTROLLER: 

In reality, only five interrupts are available to the user in the 8051, but many manufacturers 

data sheets state that there are six interrupts since they include reset. The six interrupts in the 

8051 are allocated as follows. 

1. Reset. When the reset pin is activated, the 8051 jumps to address location 0000. This is the 

power-up reset. 

2. Two interrupts are set aside for the timers: one for Timer 0 and one for Timer1. Memory 

locations 000BH and 001BH in the interrupt vector table belong to Timer 0 and Timer 1, 

respectively. 

3. Two interrupts are set aside for hardware external hardware interrupts, Pin numbers 12 



 

 

(P3.2) and 13 (P3.3) in port 3 are for the external hardware interrupts INT 0 and INT 1, 

respectively. These external interrupts are also referred to as EX 1 and EX 2. Memory 

locations 0003H and 0013H In the interrupt vector table are assigned to INT0 and INT1, 

respectively.  

4. Serial communication has a single interrupt that belongs to both receive and transmit. The 

interrupt vector table location 0023H belongs to this interrupt.  

 
Table: Interrupt Vector Table for the 8051 

 

Enabling and Disabling an interrupt: 

Upon reset, all interrupts are disabled (masked), meaning that none will be responded to by 

the microcontroller if they are activated. The interrupts must be enabled by software in order 

for the microcontroller to respond to them. There is a register called IE (interrupt enable) that 

is responsible for enabling (unmasking) and disabling (masking) the interrupts.  

Figure shows the IE register. Note that IE is a bit-addressable register. 

From figure notice that bit D7 in the IE register is called EA (enable all). This must be set to 

1 in order for the rest of the register to take effect. D6 is unused. D5 is used by the 8052. The 

D4 bit is for the serial interrupt, and so on. 

 

Steps in enabling an interrupt: 

To enable an interrupts, we take the following steps: 

1. Bit D7 of the IE register (EA) must be set to high to allow the rest of register to take the 

effect. 

2. If EA =1, interrupts are enabled and will be responded to if their corresponding bits in IE 

are high. If EA=0, no interrupt will be responded to, even if the associated bit in the IE 

register is high. 

 

 

 

IE (Interrupt Enable) Register: 

• This register is responsible for enabling and disabling the interrupt.  

• EA register is set to 1 for enabling interrupts and  

• EA register is set to 0 for disabling the interrupts.  

• Its bit sequence and their meanings are shown in the following figure.  



 

 

 
 

EA  IE.7  

It disables all interrupts.  

When EA = 0 no interrupt will be acknowledged and  

When EA = 1 enables the interrupt individually.  

-  IE.6  Reserved for future use.  

-  IE.5  Reserved for future use.  

ES  IE.4  Enables/disables serial port interrupt.  

ET1  IE.3  Enables/disables timer1 overflow interrupt.  

EX1  IE.2  Enables/disables external interrupt1.  

ET0  IE.1  Enables/disables timer0 overflow interrupt.  

EX0  IE.0  Enables/disables external interrupt0.  

 

 

 

SERIAL COMMUNICATION PROGRAMMING:  

 

Serial Communication can be 

 Asynchronous 

 Synchronous 

Synchronous Communication: 

Synchronous methods transfer a block of data (characters) at a time 

The events are referenced to a clock 

Example: SPI bus, I2C bus 

Asynchronous Communication: 

Asynchronous methods transfer a single byte at a time 

There is no clock. The bytes are separated by start and stop bits. 

Example: UART 

 

1. Serial port programming in assembly 

 

Since IBM PC/compatible computers are so widely used to communicate with 8051-based 

systems, serial communications of the 8051 with the COM port of the PC will be 



 

 

emphasized. To allow data transfer between the PC and an 8051 system without any error, 

we must make sure that the baud rate of the 8051 system matches the baud rate of the PC‟s 

COM port. 

 

 Baud rate in the 8051 

 

The 8051 transfers and receives data serially at many different baud rates. Serial 

communications of the 8051 is established with PC through the COM port. It must make sure 

that the baud rate of the 8051 system matches the baud rate of the PC's COM port/ any 

system to be interfaced. The baud rate in the 8051 is programmable. This is done with the 

help of Timer. When used for serial port, the frequency of timer tick is determined by 

(XTAL/12)/32 and 1 bit is transmitted for each timer period (the time duration from timer 

start to timer expiry). 

 

The Relationship between the crystal frequency and the baud rate in the 8051 is that the 8051 

divides the crystal frequency by 12 to get the machine cycle frequency which is shown in 

figure1. Here the oscillator is XTAL = 11.0592 MHz, the machine cycle frequency is 921.6 

kHz. 8051's UART divides the machine cycle frequency of 921.6 kHz by 32 once more 

before it is used by Timer 1 to set the baud rate. 921.6 kHz divided by 32 gives 28,800 Hz. 

Timer 1 must be programmed in mode 2, that is 8-bit, auto-reload. 

 

 

Baud rate supported by Pentium / IBM 486 PC are 

 

 Calculation of baud rate: 

 

In serial communication if data transferred with a baud rate of 9600 and XTAL used is 

11.0592 then following is the steps followed to find the TH1 value to be loaded. 

 

Clock frequency of timer clock: f = (11.0592 MHz / 12)/32 = 28,800Hz 



 

 

Time period of each clock tick: T0 = 1/f = 1/28800 

Duration of timer : n*T0 (n is the number of clock ticks) 

9600 baud ->duration of 1 symbol: 1/9600 

1/9600 = n*T0 = n*1/28800 

n = f/9600 = 28800/9600 = 3 ->TH1 =-3 

Similarly, for baud 2400 

n = f/2400 = 12 ->TH1 = -12 

 

Example: set baud rate at 9600 

MOV TMOD, #20H ; timer 1,mode 2(auto reload) MOV 

TH1, #-3 ;  To set 9600 baud rate  

SETB TR1; start timer 1 

 

 Baud rate selection 

 

Baud rate is selected by timer1 and when Timer 1 is used to set the baud rate it must be 

programmed in mode 2 that is 8-bit, auto-reload. To get baud rates compatible with the PC, 

we must load TH1 with the values shown in Table 1. 

Table.1 Timer 1 THI register values for different baud rates 

 

 Registers for serial communication 

 SBUF (serial buffer) register: 

It is an 8 bit register used solely for serial communication in the 8051.A byte of data to be 

transferred via the TxD line must be placed in the SBUF register. SBUF holds the byte of 

data when it is received by the RxD line. It can be accessed like any other register 

MOV SBUF, #'D' ; load SBUF=44H, ASCII for 'D„ 

MOV SBUF, A   ; copy accumulator into  

SBUF MOV A, SBUF    ; copy SBUF into accumulator 

when a byte is written, it is framed with the start and stop bits and transferred serially via 

the TxD pin. when the bits are received serially via RxD, it is deframed by eliminating the 

stop and start bits, making a byte out of the data received, and then placing it in the SBUF. 

 SCON (serial control) register: 

It is an 8 bit register used to program start bit, stop bit, and data bits of data framing, among 

other things. 



 

 

 

Figure 2. SCON register 

The first two bits are SM0, SM1 which is the serial port mode bits. It is used to specify 

framing format, how to calculate baud. For example if (SM0, SM1) = (0,1), mode 1: 8-bit 

data, 1 start bit, 1 stop bit, variable baud rate can be set by timer. The other three modes are 

rarely used and they are (SM0,SM1) = (0,0), mode 0: fixed baud = XTAL/12,(SM0, SM1) = 

(1,0), mode 2: 9-bit data, fixed baud,(SM0, SM1) = (1, 1), mode 3: 9-bit data, variable baud. 

The third bit is used to select the type of processor used for communication. If SM2 is 0 

means it is single processor communication. If SM2 is 1, then it is multiprocessor 

communication. The fourth bit REN is Receive Enable which is used to enable/disable 

reception. If REN=1,then 8051 will accept incoming data from serial port. If REN=0, then 

the receiver is disabled. E.g. SETB REN,CLR REN, SETB SCON.4, CLR SCON.4. 

 

The fifth bit is TB8 which is used by modes 2 and 3 for the 8-bit transmission. When mode 1 

is used the pin TB8 should be cleared. The sixth bit RB8 is used by modes 2 and 3 for the 

reception of bit 8. It is used by mode1 to store the stop bit. The seventh bit is TI which is the 

Transmit Interrupt. When 8051 finishes the transfer of the 8-bit character, it sets TI to ''1'' to 

indicate that it is ready to transfer the next character. The TI is raised at the beginning of the 

stop bit. The last bit is the RI which is the receive interrupt. When 8051 receives a 

character,the UART removes start bit and stop bit. The UART puts the 8-bit character in 

SBUF. RI is set to „1‟ to indicate that a new byte is ready to be picked up in SBUF.RI is 

raised halfway through the stop bit 

 

 Steps to send data serially: 

1. Set baud rate by loading TMOD register with the value 20H, this indicating timer 1 in 

mode 

      2 (8-bit auto-reload) to set baud rate 

2. The TH1 is loaded with proper values to set baud rate for serial data transfer 

3. The SCON register is loaded with the value 50H, indicating serial mode 1, where an 8- 

bit data is    

        framed with start and stop bits 

4. TR1 is set to 1 to start timer 1 

5. TI is cleared by CLR TI instruction 

6. The character byte to be transferred serially is written into SBUF register 

7. The TI flag bit is monitored with the use of instruction JNB TI,xx to see if the character 

has been transferred completely 

8. To transfer the next byte, go to step 5. 



 

 

 Program to transfer letter “D” serially at 9800baud, continuously: 

MOV TMOD,#20H ; timer 1,mode 2(auto reload) 

MOV TH1, #-3 ; 9600 baud rate 

MOV SCON, #50H  ; 8-bit, 1 stop, REN enabled  

SETB TR1  ; start timer 1 

AGAIN: MOV SBUF, #”D”  ; letter “D” to transfer  

HERE: JNB TI, HERE  ; wait for the last bit 

CLR TI  ;clear TI for next char  

SJMP AGAIN  ; keep sending A 

 

 Importance of the TI flag: 

Check the TI flag bit, we know whether or not 8051 is ready to transfer another byte. TI flag 

bit is raised by the 8051 after transfer of data. TI flag is cleared by the programmer by 

instruction like “CLR TI”. When writing a byte into SBUF, before the TI flag bit is raised, it 

may lead to loss of a portion of the byte being transferred. 

 Steps to receive data serially: 

1. Set baud rate by loading TMOD register with the value 20H, this indicating timer 1 in 

mode 2 (8-bit auto-reload) to set baud rate 

2. The TH1 is loaded with proper values to set baud rate 

3. The SCON register is loaded with the value 50H, indicating serial mode 1, where an 8- 

bit data is framed with start and stop bits 

4. TR1 is set to 1 to start timer 1 

5. RI is cleared by CLR RI instruction 

6. The RI flag bit is monitored with the use of instruction JNB RI,xx to see if an 

entire character has been received yet 

7. When RI is raised, SBUF has the byte; its contents are moved into a safe place 

8. To receive next character, go to step 5 

 

 Program to receive bytes of data serially, and put them in P2, set the baud rate at 9600, 

8-bit data, and 1 stop bit: 

MOV TMOD, #20H ; timer 1,mode 2(auto reload)  

MOV TH1, #-3 ; 9600 baud rate 

MOV SCON, #50H ; 8-bit, 1 stop, REN enabled  

SETB TR1 ; start timer 1 

HERE: JNB RI, HERE ; wait for char to come in  

MOV A, SBUF ; saving incoming byte in A 

MOV P2, A ; send to port 1 



 

 

CLR RI  ; get ready to receive next byte  

SJMP HERE  ; keep getting data 

    Importance of the RI flag bit: 

 

It receives the start bit, next bit is the first bit of the character about to be received. When 

the last bit is received, a byte is formed and placed in SBUF. when stop bit is received, it 

makes RI = 1 indicating entire character byte has been received and can be read before 

overwritten by next data. When RI=1, received byte is in the SBUF register, copy SBUF 

contents to a safe place. After the SBUF contents are copied the RI flag bit must be 

cleared to 0. 

 Increasing the baud rate: 

 

Baud rate can be increase by two ways- 

 

1. Increasing frequency of crystal 

 

2. Change bit in PCON register 

 

PCON 

It is 8-bit register. When 8051 is powered up, SMOD is zero. By setting the SMOD, baud rate 

can be doubled. If SMOD = 0 (which is its value on reset), the baud rate is 1/64 the oscillator 

frequency. If SMOD = 1, the baud rate is 1/32 the oscillator frequency. 

 

 

 

Table 2. Comparison of Baud rate 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



 

 

OS manages 

resources and 

available to 

the system 

makes  them 

the user 

applications/tasks on a need basis 

The primary functions of an Operating system is 

 Make the system convenient to use 

 Organize and manage the system resources efficiently andcorrectly 

User Applications 
   Application Programming 

Interface (API) 

Underlying Hardware 

Device Driver 

Interface 

I/O System Management 

File System Management 

Time Management 

Process Management 

Memory Management 

UNIT-III 

RTOS BASED EMBEDDED SYSTEM DESIGN 

Operating System Basics: 

 The Operating System acts as a bridge between the user applications/tasks and the 

underlying system resources through a set of system functionalities and services 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: The Architecture of Operating System 
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The Kernel: 

 The kernel is the core of the operating system 

 It is responsible for managing the system resources and the communication among 

the hardware and other system services 

 Kernel acts as the abstraction layer between system resources and user 

applications 

 Kernel contains a set of system libraries and services. 

 For a general purpose OS, the kernel contains different services like 

 Process Management 

 Primary Memory Management 

 File System management 

 I/O System (Device) Management 

 Secondary Storage Management 

 Protection 

 Time management 

 Interrupt Handling 

Kernel Space and User Space: 

 The program code corresponding to the kernel applications/services are kept in a 

contiguous area (OS dependent) of primary (working) memory and is protected from 

the un-authorized access by user programs/applications 

 The memory space at which the kernel code is located is known as ‘Kernel Space’ 

 All user applications are loaded to a specific area of primary memory and this 

memory area is referred as ‘User Space’ 

 The partitioning of memory into kernel and user space is purely Operating System 

dependent 

 An operating system with virtual memory support, loads the user applications into its 

corresponding virtual memory space with demand paging technique. Most of the 

operating systems keep the kernel application code in main memory and it is not 

swapped out into the secondary memory  



 

 

Monolithic Kernel: 

 All kernel services run in the kernel space 

 All kernel modules run within the same memory space under a single kernel thread 

 The tight internal integration of kernel modules in monolithic kernel 

architecture allows the effective utilization of the low-level features of the 

underlying system 

 The major drawback of monolithic kernel is that any error or failure in any one  

 of the kernel modules leads to the crashing of the entire kernel application 

 LINUX, SOLARIS, MS-DOS kernels are examples of monolithic kernel 

 
 

Figure 2: The Monolithic Kernel Model 

 

 

 

  

  Microkernel:  

The microkernel design incorporates only the essential set of Operating System services into 

the kernel.  

 The rest of the Operating System services are implemented in programs known as 

'Servers' which runs in user space.  

 The kernel design is highly modular provides OS-neutral abstraction. 

 Memory management, process management, timer systems and interrupt handlers are  



 

 

examples of essential services, which forms the part of the microkernel. 

Examples for microkernel: QNX, Minix 3 kernels. 

 

Benefits of Microkernel: 

 Robustness: If a problem is encountered in any services in server can reconfigured and 

re-started without the need for re-starting the entire OS. 

 Configurability: Any services , which run as ‘server’ application can be changed 

without need to restart the whole system. 

 

Types of Operating Systems: 

Depending on the type of kernel and kernel services, purpose and type of computing 

systems where the OS is deployed and the responsiveness to applications, Operating Systems 

are classified into 

1. General Purpose Operating System (GPOS). 

2. Real Time Purpose Operating System (RTOS). 

 

 

1. General Purpose Operating System (GPOS): 

i. Operating Systems, which are deployed in general computing systems 

ii. The kernel is more generalized and contains all the required services to execute 

generic applications 

iii. Need not be deterministic in execution behavior 

iv. May inject random delays into application software and thus cause slow 

responsiveness of an application at unexpected times 

v. Usually deployed in computing systems where deterministic behavior is not an 

important criterion 

vi. Personal Computer/Desktop system is a typical example for a system where GPOSs 

are deployed. 

vii. Windows XP/MS-DOS etc are examples of General Purpose Operating System 

  



 

 

2. Real Time Purpose Operating System (RTOS): 

i. Operating Systems, which are deployed in embedded systems demanding real-

time response 

ii. Deterministic in execution behavior. Consumes only known amount of time for 

kernel applications 

iii. Implements scheduling policies for executing the highest

 priority task/application always 

iv. Implements policies and rules concerning time-critical allocation of a 

system’s resources 

v. Windows CE, QNX, VxWorks , MicroC/OS-II etc are examples of Real Time 

Operating Systems (RTOS) 

 

The Real Time Kernel: The kernel of a Real Time Operating System is referred as Real 

Time kernel. In complement to the conventional OS kernel, the Real Time kernel is highly 

specialized and it contains only the minimal set of services required for running the user 

applications/tasks. The basic functions of a Real Time kernel are 

a) Task/Process management 

b) Task/Process scheduling 

c) Task/Process synchronization 

d) Error/Exception handling 

e) Memory Management 

f) Interrupt handling 

g) Time management 

 Real Time Kernel Task/Process Management: Deals with setting up the memory space 

for the tasks, loading the task’s code into the memory space, allocating system resources, 

setting up a Task Control Block (TCB) for the task and task/process termination/deletion. 

A Task Control Block (TCB) is used for holding the information corresponding to a task. 

TCB usually contains the following set of information 

 Task ID: Task Identification Number 

  



 

 

 Task State: The current state of the task. (E.g. State= ‘Ready’ for a task which 

is ready to execute) 

 Task Type: Task type. Indicates what is the type for this task. The task can be a 

hard real time or soft real time or background task. 

 Task Priority: Task priority (E.g. Task priority =1 for task with priority = 1) 

 Task Context Pointer: Context pointer. Pointer for context saving 

 Task Memory Pointers: Pointers to the code memory, data memory and stack 

memory for the task 

 Task System Resource Pointers: Pointers to system resources (semaphores, mutex 

etc) used by the task 

 Task Pointers: Pointers to other TCBs (TCBs for preceding, next and waiting 

tasks) 

 Other Parameters Other relevant task parameters 

The parameters and implementation of the TCB is kernel dependent. The TCB parameters 

vary across different kernels, based on the task management implementation 

 Task/Process Scheduling: Deals with sharing the CPU among various tasks/processes. A 

kernel application called ‘Scheduler’ handles the task scheduling. Scheduler is nothing 

but an algorithm implementation, which performs the efficient and optimal scheduling of 

tasks to provide a deterministic behavior. 

Task/Process Synchronization: Deals with synchronizing the concurrent access of a 

resource, which is shared across multiple tasks and the communication between various 

tasks. 

Error/Exception handling: Deals with registering and handling the errors 

occurred/exceptions raised during the execution of tasks. Insufficient memory, timeouts, 

deadlocks, deadline missing, bus error, divide by zero, unknown instruction execution etc, 

are examples of errors/exceptions. Errors/Exceptions can happen at the kernel level 

services or at task level. Deadlock is an example for kernel level exception, whereas 

timeout is an example for a task level exception. The OS kernel gives the information 

about the error in the form of a system call (API). 

  



 

 

Memory Management: 

 The memory management function of an RTOS kernel is slightly different 

compared to the General Purpose Operating Systems. The memory allocation time 

increases depending on the size of the block of memory needs to be allocated and 

the state of the allocated memory block (initialized memory block consumes more 

allocation time than un- initialized memory block) 

 Since predictable timing and deterministic behavior are the primary focus for an 

RTOS, RTOS achieves this by compromising the effectiveness of memory 

allocation 

 RTOS generally uses ‘block’ based memory allocation technique, instead of the 

usual dynamic memory allocation techniques used by the GPOS. 

 RTOS kernel uses blocks of fixed size of dynamic memory and the block is 

allocated for a task on a need basis. The blocks are stored in a ‘Free buffer 

Queue’. 

 Most of the RTOS kernels allow tasks to access any of the memory blocks without 

any memory protection to achieve predictable timing and avoid the timing 

overheads 

 RTOS kernels assume that the whole design is proven correct and protection is 

unnecessary. Some commercial RTOS kernels allow memory protection as 

optional and the kernel enters a fail-safe mode when an illegal memory access 

occurs 

 The memory management function of an RTOS kernel is slightly different 

compared to the General Purpose Operating Systems 

 A few RTOS kernels implement Virtual Memory concept for memory allocation if 

the system supports secondary memory storage (like HDD and FLASH memory). 

 In the ‘block’ based memory allocation, a block of fixed memory is always 

allocated for tasks on need basis and it is taken as a unit. Hence, there will not be 

any memory fragmentation issues. 

 The memory allocation can be implemented as constant functions and thereby it 

consumes fixed amount of time for memory allocation. This leaves the 

deterministic behavior of the RTOS kernel untouched. 

Interrupt Handling: 

 Interrupts inform the processor that an external device or an associated task 

requires immediate attention of the CPU. 

  



 

 

 Interrupts can be either Synchronous or Asynchronous. 

 Interrupts which occurs in sync with the currently executing task is known as 

Synchronous interrupts. Usually the software interrupts fall under the Synchronous 

Interrupt category. Divide by zero, memory segmentation error etc are examples of 

Synchronous interrupts. 

 For synchronous interrupts, the interrupt handler runs in the same context of the 

interrupting task. 

 Asynchronous interrupts are interrupts, which occurs at any point of execution of 

any task, and are not in sync with the currently executing task. 

 The interrupts generated by external devices (by asserting the Interrupt line of the 

processor/controller to which the interrupt line of the device is connected) 

connected to the processor/controller, timer overflow interrupts, and serial data 

reception / transmission interrupts etc are examples for asynchronous interrupts. 

 For asynchronous interrupts, the interrupt handler is usually written as 

separate task (Depends on OS Kernel implementation) and it runs in a 

different context. Hence, a context switch happens while handling the 

asynchronous interrupts. 

 Priority levels can be assigned to the interrupts and each interrupts can be enabled 

or disabled individually. 

 Most of the RTOS kernel implements ‘Nested Interrupts’ architecture. Interrupt 

nesting allows the pre-emption (interruption) of an Interrupt Service Routine (ISR), 

servicing an interrupt, by a higher priority interrupt. 

Time Management: 

 Interrupts inform the processor that an external device or an associated task 

requires immediate attention of the CPU. 

 Accurate time management is essential for providing precise time reference for all 

applications 

 The time reference to kernel is provided by a high-resolution Real Time Clock 

(RTC) hardware chip (hardware timer) 

 The hardware timer is programmed to interrupt the processor/controller at a fixed 

rate. This timer interrupt is referred as ‘Timer tick’ 

 The ‘Timer tick’ is taken as the timing reference by the kernel. The ‘Timer tick’  



 

 

interval may vary depending on the hardware timer. Usually the ‘Timer tick’ varies  

in the microseconds range 

 The time parameters for tasks are expressed as the multiples of the ‘Timer tick’ 

 The System time is updated based on the ‘Timer tick’ 

 If the System time register is 32 bits wide and the ‘Timer tick’ interval  

is 1microsecond, the System time register will reset in 

232 * 10-6/ (24 * 60 * 60) = 49700 Days =~ 0.0497 Days = 1.19 Hours 

 

If the ‘Timer tick’ interval is 1 millisecond, the System time register will reset in 

232 * 10-3 / (24 * 60 * 60) = 497 Days = 49.7 Days =~ 50 Days 

The ‘Timer tick’ interrupt is handled by the ‘Timer Interrupt’ handler of kernel. The 

‘Timer tick’ interrupt can be utilized for implementing the following actions. 

 Save the current context (Context of the currently executing task) 

 Increment the System time register by one. Generate timing error and reset the 

System time register if the timer tick count is greater than the maximum range 

available for System time register 

 Update the timers implemented in kernel (Increment or decrement the timer registers 

for each timer depending on the count direction setting for each register. Increment 

registers with count direction setting = ‘count up’ and decrement registers with count 

direction setting = ‘count down’) 

 Activate the periodic tasks, which are in the idle state 

 Invoke the scheduler and schedule the tasks again based on the scheduling algorithm 

 Delete all the terminated tasks and their associated data structures (TCBs) 

 Load the context for the first task in the ready queue. Due to the re- scheduling, the 

ready task might be changed to a new one from the task, which was pre-empted by the 

‘Timer Interrupt’ task 

Hard Real-time System: 

 A Real Time Operating Systems which strictly adheres to the timing constraints 

for a task. 

 A Hard Real Time system must meet the deadlines for a task without any slippage 



 

 

 Missing any deadline may produce catastrophic results for Hard Real Time 

Systems, including permanent data lose and irrecoverable damages to the 

system/users 

 Emphasize on the principle ‘A late answer is a wrong answer’ 

 Air bag control systems and Anti-lock Brake Systems (ABS) of vehicles are 

typical examples of Hard Real Time Systems 

 As a rule of thumb, Hard Real Time Systems does not implement the virtual 

memory model for handling the memory. This eliminates the delay in swapping in 

and out the code corresponding to the task to and from the primary memory 

 The presence of Human in the loop (HITL) for tasks introduces un- expected 

delays in the task execution. Most of the Hard Real Time Systems are automatic 

and does not contain a ‘human in the loop’ 

 Soft Real-time System: 

 Real Time Operating Systems that does not guarantee meeting deadlines, but, 

offer the best effort to meet the deadline 

 Missing deadlines for tasks are acceptable if the frequency of deadline missing 

is within the compliance limit of the Quality of Service(QoS) 

 A Soft Real Time system emphasizes on the principle ‘A late answer is an 

acceptable answer, but it could have done bit faster’ 

 Soft Real Time systems most often have a ‘human in the loop (HITL)’ 

 Automatic Teller Machine (ATM) is a typical example of Soft Real Time System. If 

the ATM takes a few seconds more than the ideal operation time, nothing fatal 

happens. 

 An audio video play back system is another example of Soft Real Time system. No 

potential damage arises if a sample comes late by fraction of a second, for play 

back. 

Tasks, Processes & Threads: 

 In the Operating System context, a task is defined as the program in execution and 

the related information maintained by the Operating system for the program 

 Task is also known as ‘Job’ in the operating system context 

 A program or part of it in execution is also called a ‘Process’ 

 The terms ‘Task’, ‘job’ and ‘Process’ refer to the same entity in the Operating 

System context and most often they are used interchangeably 



 

 

Code Memory 

corresponding to the 

Process 

 A process requires various system resources like CPU for executing the process, 

memory for storing the code corresponding to the process and associated 

variables, I/O devices for information exchange etc 

The structure of a Processes 

 The concept of ‘Process’ leads to concurrent execution (pseudo parallelism) of tasks 

and thereby the efficient utilization of the CPU and other system resources 

 Concurrent execution is achieved through the sharing of CPU among the processes. 

 A process mimics a processor in properties and holds a set of registers, process status, 

a Program Counter (PC) to point to the next executable instruction of the process, a 

stack for holding the local variables associated with the process and the code 

corresponding to the process 

 

 

 

 

Process 

 A process, which inherits all 

the properties of the CPU, 

can be considered as a virtual 

processor, awaiting its turn to 

have its properties switched 

into the physical processor 

 

Figure: 4 Structure of a Process 

 When the process gets its turn, its registers and Program counter register 

becomes mapped to the physical registers of the CPU 

  

Stack 

(Stack Pointer) 

 

Working Registers 

 

Status Registers 

 

Program Counter (PC) 

 



 

 

Memory organization of Processes: 

The memory occupied by the process is segregated into three regions namely; Stack 

memory, Data memory and Code memory. 

 

The Stack memory holds all temporary data such as variables local to the process 

 

Data memory holds all global data for the process 

 

The Code memory contains the program code (instructions) corresponding to the 

process 

 

 

Fig: Memory organization of a Process 

 

Process States & State Transition 

 The creation of a process to its termination is not a single step operation 

 The process traverses through a series of states during its transition from the newly 

created state to the terminated state 

 The cycle through which a process changes its state from ‘newly created’ to 

‘execution completed’ is known as ‘Process Life Cycle’. The various states through 

which a process traverses through during a Process Life Cycle indicates the current 

status of the process with respect to time and also provides information on what it is 

allowed to do next 

Process States & State Transition: 

 Created State: The state at which a process is being created is referred as ‘Created 

State’. The Operating System recognizes a process in the ‘Created State’ but no 

resources are allocated to the process



 

 

Ready State: The state, where a process is incepted into the memory and awaiting 

the processor time for execution, is known as ‘Ready State’. At this stage, the process 

is placed in the ‘Ready list’ queue maintained by the OS 

 Running State: The state where in the source code instructions corresponding to the 

process is being executed is called ‘Running State’. Running state is the state at 

which the process execution happens 

 

 . Blocked State/Wait State: Refers to a state where a running process is temporarily 

suspended from execution and does not have immediate access to resources. The 

blocked state might have invoked by various conditions like- the process enters a 

wait state for an event to occur (E.g. Waiting for user inputs such as keyboard input) 

or waiting for getting access to a shared resource like semaphore, mutex etc 

 
 

Figure 6.Process states and State transition 

  



 

 

 Completed State: A state where the process completes its execution 

 The transition of a process from one state to another is known as ‘State transition’ 

 When a process changes its state from Ready to running or from running to 

blocked or terminated or from blocked to running, the CPU allocation for the 

process may also change 

Threads 

 A thread is the primitive that can execute code 

 A thread is a single sequential flow of control within a process 

 ‘Thread’ is also known as lightweight process 

 A process can have many threads of execution 

 

 Different threads, which are part of a 

process, share the same address space; 

meaning they share the data memory, code 

memory and heap memory area 

 Threads maintain their own thread status 

(CPU register values), Program Counter (PC) 

and stack 

               Figure 7 Memory organization of process and its associated Threads  

Thread V/s Process 

 

Thread  Process 

Thread is a single unit of execution and is part of 

process. 

Process is a program in execution and 

contains one or more threads. 

A thread does not have its own data memory and 

heap memory. It shares the data memory and heap 

memory with other threads of the same process. 

Process has its own code memory, data 

memory and stack memory. 

A thread cannot live independently; it lives within 

the process. 

A process contains at least one thread. 



 

 

There can be multiple threads in a process. The first 

thread (main thread) calls the main function and 

occupies the start of the stack memory of the 

process. 

Threads within a process share the code, data 

and heap memory. Each thread holds 

separate memory area for stack (shares the 

total stack memory of the process). 

Threads are very inexpensive to create Processes are very expensive to create. 

Involves many OS overhead. 

Context switching is inexpensive and fast Context switching is complex and involves 

lot of OS overhead and is comparatively 

slower. 

If a thread expires, its stack is reclaimed by the 

process. 

If a process dies, the resources allocated to it 

are reclaimed by the OS and all the 

associated threads of the process also dies. 

 

Advantages of Threads: 

1. Better memory utilization: Multiple threads of the same process share the address 

space for data memory. This also reduces the complexity of inter thread 

communication since variables can be shared across the threads. 

2. Efficient CPU utilization: The CPU is engaged all time. 

 

3. Speeds up the execution of the process: The process is split into different threads, 

when one thread enters a wait state, the CPU can be utilized by other threads of the 

process that do not require the event, which the other thread is waiting, for processing. 

Multiprocessing & Multitasking 

 The ability to execute multiple processes simultaneously is referred as 

multiprocessing 

 Systems which are capable of performing multiprocessing are known as 

multiprocessor systems 

 Multiprocessor systems possess multiple CPUs and can execute multiple processes 

simultaneously 

 The ability of the Operating System to have multiple programs in memory, which are 

ready for execution, is referred as multiprogramming  



 

 

 Multitasking refers to the ability of an operating system to hold multiple processes in 

memory and switch the processor (CPU) from executing one process to another 

process 

 Multitasking involves ‘Context switching’, ‘Context saving’ and ‘Context retrieval’ 

 Context switching refers to the switching of execution context from task to other 

 When a task/process switching happens, the current context of execution should be 

saved to (Context saving) retrieve it at a later point of time when the CPU executes 

the process, which is interrupted currently due to execution switching 

 During context switching, the context of the task to be executed is retrieved from the 

saved context list. This is known as Context retrieval. 

 

Multitasking – Context Switching: 
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Process 1 

 

 

 

 

 

 

 

 

Types of Multitasking: 
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Figure 9 Context Switching 

Multiprogramming: The ability of the Operating System to have multiple 

Programs in memory, which are ready for execution, is referred as multiprogramming. 

Running Idle Waits in ‘Ready’ Queue Running 

dy’ Queue Waits in ‘Re Running Idle 

Delay inexecution of 

Process 1 happened 

due to ‘Context 
Switching’ 

Delay inexecution of 

Process 2 happened 

due to ‘Context 
Switching’ 



 

 

Depending on how the task/process execution switching act is implemented, 

multitasking can is classified into 

• Co-operative Multitasking: Co-operative multitasking is the most primitive form of 

multitasking in which a task/process gets a chance to execute only when the currently 

executing task/process voluntarily relinquishes the CPU. In this method, any 

task/process can avail the CPU as much time as it wants. Since this type of 

implementation involves the mercy of the tasks each other for getting the CPU time 

for execution, it is known as co-operative multitasking. If the currently executing task 

is non-cooperative, the other tasks may have to wait for a long time to get the CPU 

• Preemptive Multitasking: Preemptive multitasking ensures that every task/process gets 

a chance to execute. When and how much time a process gets is dependent on the 

implementation of the preemptive scheduling. As the name indicates, in preemptive 

multitasking, the currently running task/process is preempted to give a chance to other 

tasks/process to execute. The preemption of task may be based on time slots or 

task/process priority 

• Non-preemptive Multitasking: The process/task, which is currently given the CPU time, 

is allowed to execute until it terminates (enters the ‘Completed’ state) or enters the 

‘Blocked/Wait’ state, waiting for an I/O. The co- operative and non-preemptive 

multitasking differs in their behavior when they are in the ‘Blocked/Wait’ state. In co-

operative multitasking, the currently executing process/task need not relinquish the 

CPU when it enters the ‘Blocked/Wait’ sate, waiting for an I/O, or a shared resource 

access or an event to occur whereas in non-preemptive multitasking the currently 

executing task relinquishes the CPU when it waits for an I/O. 

Task Scheduling: 

 In a multitasking system, there should be some mechanism in place to share the CPU 

among the different tasks and to decide which process/task is to be executed at a 

given point of time 

 Determining which task/process is to be executed at a given point of time is known as 

task/process scheduling 

 Task scheduling forms the basis of multitasking 

 Scheduling policies forms the guidelines for determining which task is to be executed 

when  



 

 

To summarize, a good scheduling algorithm has high CPU utilization, minimum 

Turn around Time (TAT), maximum throughput and least response time. 

 The scheduling policies are implemented in an algorithm and it is run by the kernel as 

a service 

 The kernel service/application, which implements the scheduling algorithm, is known 

as ‘Scheduler’ 

 The task scheduling policy can be pre-emptive, non-preemptive or co- operative 

 Depending on the scheduling policy the process scheduling decision may take place 

when a process switches its state to 

 ‘Ready’ state from ‘Running’ state 

 ‘Blocked/Wait’ state from ‘Running’ state 

 ‘Ready’ state from ‘Blocked/Wait’ state 

 ‘Completed’ state 

 

Task Scheduling - Scheduler Selection: 

The selection of a scheduling criteria/algorithm should consider the following factors: 

• CPU Utilization: The scheduling algorithm should always make the CPU utilization 

high. CPU utilization is a direct measure of how much percentage of the CPU is being 

utilized. 

• Throughput: This gives an indication of the number of processes executed per unit 

of time. The throughput for a good scheduler should always be higher. 

• Turnaround Time: It is the amount of time taken by a process for completing its 

execution. It includes the time spent by the process for waiting for the main memory, 

time spent in the ready queue, time spent on completing the I/O operations, and the 

time spent in execution. The turnaround time should be a minimum for a good 

scheduling algorithm. 

• Waiting Time: It is the amount of time spent by a process in the ‘Ready’ queue 

waiting to get the CPU time for execution. The waiting time should be minimal for a 

good scheduling algorithm. 

• Response Time: It is the time elapsed between the submission of a process and the 

first response. For a good scheduling algorithm, the response time should be as least 

as possible. 

 

  



 

 

Task Scheduling - Queues 

The various queues maintained by OS in association with CPU scheduling are: 

• Job Queue: Job queue contains all the processes in the system 

• Ready Queue: Contains all the processes, which are ready for execution and waiting 

for CPU to get their turn for execution. The Ready queue is empty when there is no 

process ready for running. 

• Device Queue: Contains the set of processes, which are waiting for an I/O device 

Task Scheduling – Task transition through various Queues 

 

 
 

Non-preemptive scheduling – First Come First Served (FCFS)/First In First Out 

(FIFO) Scheduling: 

 Allocates CPU time to the processes based on the order in which they enters the 

‘Ready’ queue 

 The first entered process is serviced first 

 It is same as any real world application where queue systems are used; E.g. 

Ticketing 

Drawbacks: 

 Favors monopoly of process. A process, which does not contain any I/O 

operation, continues its execution until it finishes its task  



 

 

P1 

 
P2 P3 

 In general, FCFS favors CPU bound processes and I/O bound processes may have to 

wait until the completion of CPU bound process, if the currently executing process is 

a CPU bound process. This leads to poor device utilization. 

 The average waiting time is not minimal for FCFS scheduling algorithm 

EXAMPLE: Three processes with process IDs P1, P2, P3 with estimated completion time 

10, 5, 7 milliseconds respectively enters the ready queue together in the order P1, P2, P3. 

Calculate the waiting time and Turn around Time (TAT) for each process and the Average 

waiting time and Turn Around Time (Assuming there is no I/O waiting for the processes). 

Solution: The sequence of execution of the processes by the CPU is represented as 

 

0 10 15 22 

10 5 7 

Assuming the CPU is readily available at the time of arrival of P1, P1 starts executing 

without any waiting in the ‘Ready’ queue. Hence the waiting time for P1 is zero. 

Waiting Time for P1 = 0 ms (P1 starts executing first) 

Waiting Time for P2 = 10 ms (P2 starts executing after completing P1)  

Waiting Time for P3 = 15 ms (P3 starts executing after completing P1 and P2)  

Average waiting time = (Waiting time for all processes) / No. of Processes 

= (Waiting time for (P1+P2+P3)) / 3 

= (0+10+15)/3 = 25/3 = 8.33 milliseconds 

Turn Around Time (TAT) for P1 = 10 ms (Time spent in Ready Queue + 

Execution Time) 

 

Turn Around Time (TAT) for P2 = 15 ms (-

Do-) Turn Around Time (TAT) for P3 = 22 ms (-

Do-) 

Average Turn around Time= (Turn around Time for all processes) / No. of Processes 

  

 
P1 

 
P3 

 



 

 

= (Turn Around Time for (P1+P2+P3)) / 3 

= (10+15+22)/3 = 47/3 

= 15.66 milliseconds 

Non-preemptive scheduling – Last Come First Served (LCFS)/Last In First Out 

(LIFO) Scheduling: 

 Allocates CPU time to the processes based on the order in which they are entered 

in the ‘Ready’ queue 

 The last entered process is serviced first 

 

 LCFS scheduling is also known as Last In First Out (LIFO) where the process, which 

is put last into the ‘Ready’ queue, is serviced first 

Drawbacks: 

 Favors monopoly of process. A process, which does not contain any I/O operation, 

continues its execution until it finishes its task 

 In general, LCFS favors CPU bound processes and I/O bound processes may have to 

wait until the completion of CPU bound process, if the currently executing process is 

a CPU bound process. This leads to poor device utilization. 

 The average waiting time is not minimal for LCFS scheduling algorithm 

EXAMPLE: Three processes with process IDs P1, P2, P3 with estimated completion time 

10, 5, 7 milliseconds respectively enters the ready queue together in the order P1, P2, P3 

(Assume only P1 is present in the ‘Ready’ queue when the scheduler picks up it and P2, P3 

entered ‘Ready’ queue after that). Now a new process P4 with estimated completion time 6ms 

enters the ‘Ready’ queue after 5ms of scheduling P1. Calculate the waiting time and Turn 

around Time (TAT) for each process and the Average waiting time and Turn around Time 

(Assuming there is no I/O waiting for the processes).Assume all the processes contain only 

CPU operation and no I/O operations are involved. 

Solution: Initially there is only P1 available in the Ready queue and the scheduling sequence 

will be P1, P3, P2. P4 enters the queue during the execution of P1 and becomes the last 

process entered the ‘Ready’ queue. Now the order of execution changes to P1, P4, P3, and P2 

as given below.  



 

 

 

 

           P1 

 

      P4 

 

        P3 

 

     P2 

0 10 16 23 28 

10 6 7 5 

 

The waiting time for all the processes are given as Waiting 

Time for P1 = 0 ms (P1 starts executing first) 

Waiting Time for P4 = 5 ms (P4 starts executing after completing P1. But P4 arrived after 

5ms of execution of P1. Hence its waiting time = Execution start time 

– Arrival Time = 10-5 = 5) 

Waiting Time for P3 = 16 ms (P3 starts executing after completing P1 and P4)  

Waiting Time for P2 = 23 ms (P2 starts executing after completing P1, P4 and P3)  

Average waiting time = (Waiting time for all processes) / No. of Processes 

= (Waiting time for (P1+P4+P3+P2)) / 4 

= (0 + 5 + 16 + 23)/4 = 44/4 

= 11 milliseconds 

Turn around Time (TAT) for P1 = 10 ms (Time spent in Ready Queue + Execution Time) 

Turn around Time (TAT) for P4 = 11 ms (Time spent in Ready Queue + 

Execution Time = (Execution Start Time – Arrival Time) 

+ Estimated Execution Time =  (10-5) + 6 = 5 + 6) 

Turn around Time (TAT) for P3 = 23 ms (Time spent in Ready Queue + Execution Time) 

Turn Around Time (TAT) for P2 = 28 ms (Time spent in Ready Queue + Execution Time) 

Average Turn Around Time = (Turn Around Time for all processes) / No. of Processes 

= (Turn Around Time for (P1+P4+P3+P2)) / 4 

= (10+11+23+28)/4 = 72/4 

= 18 milliseconds 

  



 

 

Non-preemptive scheduling – Shortest Job First (SJF) Scheduling. 

 Allocates CPU time to the processes based on the execution completion time for tasks 

 The average waiting time for a given set of processes is minimal in SJF scheduling 

 Optimal compared to other non-preemptive scheduling like FCFS 

Drawbacks: 

 A process whose estimated execution completion time is high may not get a chance to 

execute if more and more processes with least estimated execution time enters the 

‘Ready’ queue before the process with longest estimated execution time starts its 

execution 

 May lead to the ‘Starvation’ of processes with high estimated completion time 

 Difficult to know in advance the next shortest process in the ‘Ready’ queue for 

scheduling since new processes with different estimated execution time keep entering 

the ‘Ready’ queue at any point of time. 

Non-preemptive scheduling – Priority based Scheduling 

 A priority, which is unique or same is associated with each task 

 The priority of a task is expressed in different ways, like a priority number, the time 

required to complete the execution etc. 

 In number based priority assignment the priority is a number ranging from 0 to the 

maximum priority supported by the OS. The maximum level of priority is OS 

dependent. 

 Windows CE supports 256 levels of priority (0 to 255 priority numbers, with 0 being 

the highest priority) 

 

 The priority is assigned to the task on creating it. It can also be changed dynamically 

(If the Operating System supports this feature) 

 The non-preemptive priority based scheduler sorts the ‘Ready’ queue based on the 

priority and picks the process with the highest level of priority for execution. 

  



 

 

EXAMPLE: Three processes with process IDs P1, P2, P3 with estimated completion time 

10, 5, 7 milliseconds and priorities 0, 3, 2 (0- highest priority, 3 lowest priority) respectively 

enters the ready queue together. Calculate the waiting time and Turn Around Time (TAT) for 

each process and the Average waiting time and Turn Around Time (Assuming there is no I/O 

waiting for the processes) in priority based scheduling algorithm. 

Solution: The scheduler sorts the ‘Ready’ queue based on the priority and schedules the 

process with the highest priority (P1 with priority number 0) first and the next high priority 

process (P3 with priority number 2) as second and so on. The order in which the processes 

are scheduled for execution is represented as 

 

 

P1 

 

P3 

 

P2 

0 10 17 22 

10 7 5 

 

The waiting time for all the processes are given as Waiting 

Time for P1 = 0 ms (P1 starts executing first) 

Waiting Time for P3 = 10 ms (P3 starts executing after completing P1)  

Waiting Time for P2 = 17 ms (P2 starts executing after completing P1 and P3)  

Average waiting time = (Waiting time for all processes) / No. of Processes 

= (Waiting time for (P1+P3+P2)) / 3 

 

= (0+10+17)/3 = 27/3 

= 9 milliseconds 

Turn Around Time (TAT) for P1 = 10 ms (Time spent in Ready Queue + Execution Time) 

Turn Around Time (TAT) for P3 = 17 ms (-

Do-) Turn Around Time (TAT) for P2 = 22 ms (-

Do-) 

Average Turn Around Time= (Turn Around Time for all processes) / No. of Processes 

= (Turn Around Time for (P1+P3+P2)) / 3 

= (10+17+22)/3 = 49/3 

= 16.33 milliseconds 

  



 

 

Drawbacks: 

 Similar to SJF scheduling algorithm, non-preemptive priority based algorithm also 

possess the drawback of ‘Starvation’ where a process whose priority is low may not 

get a chance to execute if more and more processes with higher priorities enter the 

‘Ready’ queue before the process with lower priority starts its execution. 

 ‘Starvation’ can be effectively tackled in priority based non-preemptive scheduling by 

dynamically raising the priority of the low priority task/process which is under 

starvation (waiting in the ready queue for a longer time for getting the CPU time) 

 The technique of gradually raising the priority of processes which are waiting in the 

‘Ready’ queue as time progresses, for preventing ‘Starvation’, is known as ‘Aging’. 

Preemptive scheduling: 

 Employed in systems, which implements preemptive multitasking model 

 Every task in the ‘Ready’ queue gets a chance to execute. When and how often each 

process gets a chance to execute (gets the CPU time) is dependent on the type of 

preemptive scheduling algorithm used for scheduling the processes 

 The scheduler can preempt (stop temporarily) the currently executing task/process 

and select another task from the ‘Ready’ queue for execution 

 When to pre-empt a task and which task is to be picked up from the ‘Ready’ queue for 

execution after preempting the current task is purely dependent on the scheduling 

algorithm 

 A task which is preempted by the scheduler is moved to the ‘Ready’ queue. The act of 

moving a ‘Running’ process/task into the ‘Ready’ queue by the scheduler, without the 

processes requesting for it is known as‘Preemption’ 

 Time-based preemption and priority-based preemption are the two important 

approaches adopted in preemptive scheduling 

 

Preemptive scheduling – Preemptive SJF Scheduling/ Shortest Remaining Time (SRT): 

 The non preemptive SJF scheduling algorithm sorts the ‘Ready’ queue only after the 

current process completes execution or enters wait state, whereas the preemptive SJF 

scheduling algorithm sorts the ‘Ready’ queue when a new process enters the ‘Ready’ 

queue and checks whether the execution time of the new process is shorter than the 

remaining of the total estimated execution time of the currently executing process 

 If the execution time of the new process is less, the currently executing process is 



 

 

preempted and the new process is scheduled for execution 

 

 Always compares the execution completion time (ie the remaining execution time for 

the new process) of a new process entered the ‘Ready’ queue with the remaining time 

for completion of the currently executing process and schedules the process with 

shortest remaining time for execution. 

EXAMPLE: Three processes with process IDs P1, P2, P3 with estimated completion time 

10, 5, 7 milliseconds respectively enters the ready queue together. A new process P4 with 

estimated completion time 2ms enters the ‘Ready’ queue after 2ms. Assume all the processes 

contain only CPU operation and no I/O operations are involved. 

Solution: At the beginning, there are only three processes (P1, P2 and P3) available in the 

‘Ready’ queue and the SRT scheduler picks up the process with the Shortest remaining time 

for execution completion (In this example P2 with remaining time 5ms) for scheduling. Now 

process P4 with estimated execution completion time 2ms enters the ‘Ready’ queue after 2ms 

of start of execution of P2. The processes are re-scheduled for execution in the following 

order 
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0 2 4 7 14 24 

2 2 3 7 10 

 

 

The waiting time for all the processes are given as 

Waiting Time for P2 = 0 ms + (4 -2) ms = 2ms (P2 starts executing first and is 

interrupted by P4 and has to wait till the completion of P4 to 

get the next CPU slot) 

Waiting Time for P4 = 0 ms (P4 starts executing by preempting P2 since the 

execution time for completion of P4 (2ms) is less than that 

of the Remaining time for execution completion of P2 

(Here it is 3ms)) 

Waiting Time for P3 = 7 ms (P3 starts executing after completing P4 and P2) 

Waiting Time for P1 = 14 ms (P1 starts executing after completing P4, P2 and P3)  

Average waiting time = (Waiting time for all the processes) / No. of Processes 

= (Waiting time for (P4+P2+P3+P1)) / 4 

= (0 + 2 + 7 + 14)/4 = 23/4 



 

 

= 5.75 milliseconds 

Turn around Time (TAT) for P2 = 7 ms (Time spent in Ready Queue + Execution Time) 

Turn Around Time (TAT) for P4 = 2 ms (Time spent in Ready Queue + Execution Time  

= (Execution Start Time – Arrival Time) + Estimated Execution Time = (2-2) + 2) 

Turn around Time (TAT) for P3 = 14 ms (Time spent in Ready Queue + Execution Time) 

Turn around Time (TAT) for P1 = 24 ms   (Time spent in Ready Queue +Execution Time) 

Average Turn around Time = (Turn around Time for all the processes) / No. of Processes 

= (Turn Around Time for (P2+P4+P3+P1)) / 4 

= (7+2+14+24)/4 = 47/4 

= 11.75 milliseconds 

Preemptive scheduling – Round Robin (RR) Scheduling: 

The term Round Robin is very popular among the sports and games activities. You might 

have heard about 'Round Robin' league or 'Knock out' league associated with any football or 

cricket tournament. In the 'Round Robin' league each team in a group gets an equal chance 

to play against the rest of the teams in the same group whereas in the 'Knock out' league the 

losing team in a match moves out of the tournament . 

In Round Robin scheduling, each process in the 'Ready' queue is executed for a pre-defined 

time slot.  

The execution starts with picking up the first process in the 'Ready' queue. It is executed for 

a pre-defined time and when the pre-defined time elapses or the process completes (before 

the pre-defined time slice), the next process in the 'Ready' queue is selected for execution.  

This is repeated for all the processes in the 'Ready' queue. Once each process in the 'Ready' 

queue is executed for the pre-defined time period, the scheduler comes back and picks the 

first process in the 'Ready' queue again for execution.  

The sequence is repeated. This reveals that the Round Robin scheduling is similar to the 

FCFS scheduling and the only difference is that a time slice based preemption is added to 

switch the execution between the processes in the `Ready' queue.  

 



 

 

 
 

Figure: Round Robin Scheduling 

 This is repeated for all the processes in the ‘Ready’ queue 

 Once each process in the ‘Ready’ queue is executed for the pre-defined time period, 

the scheduler comes back and picks the first process in the ‘Ready’ queue again for 

execution. 

 Round Robin scheduling is similar to the FCFS scheduling and the only difference is 

that a time slice based preemption is added to switch the execution between the 

processes in the ‘Ready’ queue 

EXAMPLE: Three processes with process IDs P1, P2, P3 with estimated completion time 6, 

4, 2 milliseconds respectively, enters the ready queue together in the order P1, P2, P3. 

Calculate the waiting time and Turn Around Time (TAT) for each process and the Average 

waiting time and Turn Around Time (Assuming there is no I/O waiting for the processes) in 

RR algorithm with Time slice= 2ms. 

Solution: The scheduler sorts the ‘Ready’ queue based on the FCFS policy and picks up the 

first process P1 from the ‘Ready’ queue and executes it for the time slice 2ms. When the time 

slice is expired, P1 is preempted and P2 is scheduled for execution. The Time slice expires 

after 2ms of execution of P2. Now P2 is preempted and P3 is picked up for execution. P3 

completes its execution within the time slice and the scheduler picks P1 again for execution 

for the next time slice. This procedure is repeated till all the processes are serviced. The order 

in which the processes are scheduled for execution is represented as 
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The waiting time for all the processes are given as 

Waiting Time for P1 = 0 + (6-2) + (10-8) = 0+4+2= 6ms (P1 starts executing first 

and waits for two time slices to get execution back and 

again 1 time slice for getting CPU time) 

Waiting Time for P2 = (2-0) + (8-4) = 2+4 = 6ms (P2 starts executing after P1 

executes for 1 time slice and waits for two time 

slices to get the CPU time) 

Waiting Time for P3 = (4 -0) = 4ms (P3 starts executing after completing the first time 

slices for P1 and P2 and completes its execution in a single time slice.) 

Average waiting time = (Waiting time for all the processes) / No. of Processes 

= (Waiting time for (P1+P2+P3)) / 3 

= (6+6+4)/3 = 16/3 

= 5.33 milliseconds 

Turn around Time (TAT) for P1 = 12 ms (Time spent in Ready Queue + Execution Time) 

Turn Around Time (TAT) for P2 = 10 ms (-Do-) 

Turn Around Time (TAT) for P3 = 6 ms (-Do-) 

Average Turn around Time = (Turn around Time for all the processes) / No. of Processes 

= (Turn Around Time for (P1+P2+P3)) / 3 

= (12+10+6)/3 = 28/3 

= 9.33 milliseconds. 

  



 

 

Preemptive scheduling – Priority based Scheduling 

 Same as that of the non-preemptive priority based scheduling except for the switching 

of execution between tasks 

 In preemptive priority based scheduling, any high priority process entering the 

‘Ready’ queue is immediately scheduled for execution whereas in the non-preemptive 

scheduling any high priority process entering the ‘Ready’ queue is scheduled only 

after the currently executing process completes its execution or only when it 

voluntarily releases the CPU 

 The priority of a task/process in preemptive priority based scheduling is indicated in 

the same way as that of the mechanisms adopted for non- preemptive multitasking. 

EXAMPLE: Three processes with process IDs P1, P2, P3 with estimated completion time 

10, 5, 7 milliseconds and priorities 1, 3, 2 (0- highest priority, 3 lowest priority) respectively 

enters the ready queue together. A new process P4 with estimated completion time 6ms and 

priority 0 enters the ‘Ready’ queue after 5ms of start of execution of P1. Assume all the 

processes contain only CPU operation and no I/O operations are involved. 

Solution: At the beginning, there are only three processes (P1, P2 and P3) available in the 

‘Ready’ queue and the scheduler picks up the process with the highest priority (In this 

example P1 with priority 1) for scheduling. Now process P4 with estimated execution 

completion time 6ms and priority 0 enters the ‘Ready’ queue after 5ms of start of execution of 

P1. The processes are re-scheduled for execution in the following order 

 

 

P1 

 

P4 

 

P1 

 

P3 

 

P2 

 

0 5 11 16 

5 6 5 7 

23 28 

5 



 

 

The waiting time for all the processes are given as 

Waiting Time for P1 = 0 + (11-5) = 0+6 =6 ms (P1 starts executing first and gets 

Preempted by P4 after 5ms and again gets the CPU time after 

completion of P4) 

Waiting Time for P4 = 0 ms (P4 starts executing immediately on entering the 

‘Ready’ queue, by preempting P1) 

Waiting Time for P3 = 16 ms (P3 starts executing after completing P1 and P4)  

Waiting Time for P2 = 23 ms (P2 starts executing after completing P1, P4 and P3)  

Average waiting time = (Waiting time for all the processes) / No. of Processes 

= (Waiting time for (P1+P4+P3+P2)) / 4 

= (6 + 0 + 16 + 23)/4 = 45/4 

= 11.25 milliseconds 

Turn Around Time (TAT) for P1 = 16 ms (Time spent in Ready Queue + Execution Time) 

Turn Around Time (TAT) for P4 = 6ms (Time spent in Ready Queue + Execution Time 

= (Execution Start Time – Arrival Time) + Estimated Execution Time = (5-5) + 6 = 0 + 6) 

 

Turn Around Time (TAT) for P3 = 23 ms (Time spent in Ready Queue + Execution 

Time) Turn Around Time (TAT) for P2 = 28 ms (Time spent in Ready Queue + 

Execution Time) Average Turn Around Time= (Turn Around Time for all the processes) / 

No. of Processes 

= (Turn Around Time for (P2+P4+P3+P1)) / 4 

= (16+6+23+28)/4 = 73/4 

= 18.25 milliseconds 

 

 

 

 

 

 

How to choose RTOS: 



 

 

The decision of an RTOS for an embedded design is very critical. 

A lot of factors need to be analyzed carefully before making a decision on the 

selection of an RTOS. 

These factors can be either 

1. Functional 

2. Non-functional requirements. 

1. Functional Requirements: 

1. Processor support: 

 It is not necessary that all RTOS’s support all kinds of processor 

architectures. 

 It is essential to ensure the processor support by the RTOS 

2. Memory Requirements: 

 The RTOS requires ROM memory for holding the OS files and it is 

normally stored in a non-volatile memory like FLASH. 

 OS also requires working memory RAM for loading the OS service. 

 Since embedded systems are memory constrained, it is essential to evaluate the 

minimal RAM and ROM requirements for the OS under consideration. 

3. Real-Time Capabilities: 

 It is not mandatory that the OS for all embedded systems need to be Real- 

Time and all embedded OS’s are ‘Real-Time’ in behavior. 

 The Task/process scheduling policies plays an important role in the Real- 

Time behavior of an OS. 

 

4.   Kernel and Interrupt Latency: 

 The kernel of the OS may disable interrupts while executing certain services and it 

may lead to interrupt latency. 

 For an embedded system whose response requirements are high, this latency should 

be minimal. 

5. Inter process Communication (IPC) and Task Synchronization:        

 The implementation of IPC and Synchronization is OS kernel dependent. 

6. Modularization Support: 



 

 

 Most of the OS’s provide a bunch of features. 

 It is very useful if the OS supports modularization where in which the developer can 

choose the essential modules and re-compile the OS image for functioning. 

7. Support for Networking and Communication: 

 The OS kernel may provide stack implementation and driver support for a bunch of 

communication interfaces and networking. 

 Ensure that the OS under consideration provides support for all the interfaces required 

by the embedded product. 

8. Development Language Support: 

 Certain OS’s include the run time libraries required for running applications written in 

languages like JAVA and C++. 

 The OS may include these components as built-in component, if not; check the 

availability of the same from a third party. 

2. Non-Functional Requirements: 

1. Custom Developed or Off the Shelf: 

 It is possible to go for the complete development of an OS suiting the embedded system 

needs or use an off the shelf, readily available OS. 

 It may be possible to build the required features by customizing an open source OS. 

 The decision on which to select is purely dependent on the development cost, licensing 

fees for the OS, development time and availability of skilled resources. 

2. Cost: 

 The total cost for developing or buying the OS and maintaining it in terms of 

commercial product and custom build needs to be evaluated before taking a decision on 

the selection of OS. 

3. Development and Debugging tools Availability: 

 The availability of development and debugging tools is a critical decision making factor 

in the selection of an OS for embedded design. 

 Certain OS’s may be superior in performance, but the availability of tools for 

supporting the development may be limited. 

4. Ease of Use: 

 How easy it is to use a commercial RTOS is another important feature that needs to be 

considered in the RTOS selection. 

5. After Sales: 



 

 

 For a commercial embedded RTOS, after sales in the form of e-mail, on-call services 

etc. for bug fixes, critical patch updates and support for production issues etc. should be 

analyzed thoroughly. 

 

 



 

 

3.2 TASK COMMUNICATION: 

In a multitasking system, multiple tasks/processes run concurrently (in pseudo parallelism) 

and each process may or may not interact between.  Based on the degree of interaction, the 

processes running on an OS are classified as, 

1. Co-operating Processes: In the co-operating interaction model one process requires the 

inputs from other processes to complete its execution. 

2. Competing Processes: The competing processes do not share anything among themselves 

but they share the system resources. The competing processes compete for the system 

resources such as file, display device, etc.  

Co-operating processes exchanges information and communicate through the following 

methods.  

Co-operation through Sharing: The co-operating process exchange data through some 

shared resources.  

Co-operation through Communication: No data is shared between the processes. But they 

communicate for synchronization.  

The mechanism through which processes/tasks communicate each other is known as “Inter 

Process/Task Communication (IPC)”. Inter Process Communication is essential for process 

co-ordination. The various types of Inter Process Communication (IPC) mechanisms adopted 

by process are kernel (Operating System) dependent. Some of the important IPC mechanisms 

adopted by various kernels are explained below.  

3.2.1 Shared Memory: 

Processes share some area of the memory to communicate among them. Information to be 

communicated by the process is written to the shared memory area. Other processes which 

require this information can read the same from the shared memory area. It is same as the real 

world example where 'Notice Board' is used by corporate to publish the public information 

among the employees (The only exception is; only corporate have the right to modify the-

information published on the Notice board and employees are given 'Read' only access, 

meaning it is only a one way channel). 

 

Figure: Concept of shared memory 

The implementation of shared memory concept is kernel dependent. Different 

mechanisms are adopted by different kernels for implementing this. A few among them are: 

3.2.1.1 Pipes: 



 

 

'Pipe' is a section of the shared memory used by processes for communicating. Pipes follow 

the client-server architecture. A process which creates a pipe is known as a pipe server and a 

process which connects to a pipe is known as pipe client. A pipe can be considered as a 

conduit for information flow and has two conceptual ends. It can be unidirectional, allowing 

information flow in one direction or bidirectional allowing bi-directional information flow. A 

unidirectional pipe allows the process connecting at one end of the pipe to write to the pipe 

and the process connected at the other end of the pipe to read the data, whereas a bi-

directional pipe allows both reading and writing at one end. The unidirectional pipe can be 

visualized as  

 

The implementation of ‘pipes’ is also OS dependent. Microsoft® Windows Desktop 

Operating Systems support two types of 'Pipes' for Inter Process Communication. They are:  

Anonymous Pipes: The anonymous pipes-are unnamed, unidirectional pipes used for data 

transfer between two processes.  

Named Pipes: Named pipe is a named, unidirectional or bi-directional pipe for data 

exchange between processes. Like anonymous pipes, the process which creates the named 

pipe is known as pipe server. A process which connects to the named pipe is known as pipe 

client.  

With named pipes, any process can act as both client and server allowing point-to-point 

communication. Named pipes can be used for communicating between processes running on 

the same machine or between processes running on different machines connected to a 

network.  

Please refer to the Online Learning Centre for details on the Pipe implementation 

under Windows Operating Systems.  

Under VxWorks kernel, pipe is a special implementation of message queues. We will 

discuss the same in a latter chapter. 

3.2.1.2 Memory Mapped Objects: 

Memory mapped object is a shared memory technique adopted by certain Real-Time 

Operating Systems for allocating a shared block of memory which can be accessed by 

multiple process simultaneously (of course certain synchronization techniques should be 

applied to prevent inconsistent results). In this approach a mapping object is created and 

physical storage for it is reserved and committed. A process can map the entire committed 

physical area or a block of it to its virtual address space. All read and write operation to this 

virtual address space by a process is directed to its committed physical area. Any process 



 

 

which wants to share data with other processes can map the physical memory area of the 

mapped object to its virtual memory space and use it for sharing the data. 

3.2.2 Message Passing: 

Message passing-is an (a) synchronous information exchange mechanism used for Inter 

Process/Thread Communication. The major difference between shared memory and message 

passing technique is that, through shared memory lots of data can be shared whereas only 

limited amount of info/data is passed through message passing. Also message passing is 

relatively fast and free from the synchronization overheads compared to shared memory. 

Based on the message passing operation between the processes, message passing is classified 

into: 

 Message Queue. 

 Mailbox. 

 Signaling. 

3.2.2.1 Message Queue: Usually the process which wants to talk to another process posts the 

message to a First-In-First-Out (FIFO) queue called 'Message queue', which stores the 

messages temporarily in a system defined memory object, to pass it to the desired process 

(Fig. 10.20). Messages are sent and received through send (Name of the process to which the 

message is to be sent,-message) and receive (Name of the process from which the message is 

to be received, message) methods. The messages are exchanged through a message queue. 

The implementation of the message queue, send and receive methods are OS kernel 

dependent. The Windows XP OS kernel maintains a single system message queue and one 

process/thread (Process and threads are used interchangeably here, since thread is the basic 

unit of process in windows) specific message queue. A thread which wants to communicate 

with another thread posts the message to the system message queue. The kernel picks up the 

message from the system message queue one at a time and examines the message for finding 

the destination thread and then posts the message to the message queue of the corresponding 

thread. For posting a message to a thread's message queue, the kernel fills a message structure 

MSG and copies it to the message queue of the thread. The message structure MSG contains 

the handle of the process/thread for which the message is intended, the message parameters, 

the time at which the message is posted, etc. A thread can simply post a message to another 

thread and can continue its operation or it may wait for a response from the thread to which 

the message is posted. The messaging mechanism is classified into synchronous and 

asynchronous based on the behaviour of the message posting thread. In asynchronous 

messaging, the message posting thread just posts the message to the queue and it will not wait 

for an acceptance (return) from the thread to which the message is posted, whereas in 

synchronous messaging, the thread which posts a message enters waiting state and waits for 

the message result from the thread to which the message is posted. The thread which invoked 

the send message becomes blocked and the scheduler will not pick it up for scheduling. The 

PostMessage (HWND hWnd, UINT Msg, WPARAM wParam, LPARAM /Param) or 

PostThreadMessage (DWORD idThread, UNT Msg, WPARAM wParam, LPARAM IParam) 



 

 

API is used by a thread in Windows for posting a message to its own message queue or to the 

message queue of another thread.  

 

Figure: Concept of message queue based indirect messaging for IPC. 

The PostMessage API does not always guarantee the posting of messages to message queue. 

The PostMessage API will not post a message to the message queue when the message queue 

is full. Hence it is recommended to check the return value of PostMessage API to confirm the 

posting of message. The SendMessage (HWND hWnd, U1NT Msg, WPARAM wParam, 

LPARAM 1Param) API call sends a message to the thread specified by the handle hWnd and 

waits for the callee thread to process the message. The thread which calls the SendMessage 

API enters waiting state and waits for the message result from the thread to which the 

message is posted. The thread which invoked the SendMessage API call becomes blocked 

and the scheduler will not pick it up for scheduling.  

The Windows CE operating system supports a special Point-to-Point Message queue 

implementation. The OS maintains a First In First Out (FIFO) buffer for storing the messages 

and each process can access this buffer for reading and writing messages. The OS also 

maintains a special queue, with single message storing capacity, for storing high priority 

messages Werlmessages).  

3.2.2.2 Mailbox: 

Mailbox is an alternate form of 'Message queues' and it is used in certain Real-Time 

Operating Systems for IPC. Mailbox technique for IPC in RTOS is usually used for one way 

messaging. The task/thread which wants to send a message to other tasks/threads creates a 

mailbox for posting the messages. The threads which are interested in receiving the messages 

posted to the mailbox by the mailbox creator thread can subscribe to the mailbox.  

 

The thread which creates the mailbox is known. as 'mailbox server' and the threads which 

subscribe to the mailbox are known as 'mailbox clients'. The mailbox server posts messages 

to the mailbox and notifies it to the clients which are subscribed to the mailbox. The clients 

read the message from the mailbox on receiving the notification.  



 

 

 

Figure: Concept of mailbox based indirect messaging for IPC. 

The mailbox creation, subscription, message reading and writing are achieved through OS 

kernel provided API calls. Mailbox and message queues are same in functionality. The only 

difference is in the number of messages supported by them. Both of them are used for passing 

data in the form of message(s) from a task to another task(s).  

Mailbox is used for exchanging a single, message between two tasks or between an Interrupt 

Service Routine (ISR) and a task. Mailbox associates a pointer pointing to the mailbox and a 

wait list to hold the tasks waiting for a message to appear in the mailbox. The implementation 

of mailbox is OS kernel dependent. The MicroC/OS-II implements mailbox as a mechanism 

for inter-task communication. 

3.2.2.3 Signaling: 

Signaling is a primitive way of communication between process-es/threads. Signals are used 

for asynchronous notifications where one process/thread fires a signal, indicating the 

occurrence of a scenario which the other process(es)/thread(s) is waiting. Signals are not 

queued and they do not carry any data. The communication mechanisms used in RTX51 Tiny 

OS is an example for Signaling. The amend signal kernel call under RTX 51 sends a signal 

from one task to a specified task. Similarly the os_wait kernel call waits for a specified 

signal. The VxWorks RTOS kernel also implements 'signals' for inter process 

communication. Whenever a signal occurs it is handled in a signal handler associated with 

the signal. 

  



 

 

3.2.3 Remote Procedure Call (RPC) and Sockets: 

Remote Procedure Call or RPC is the Inter Process Communication (IPC) mechanism used 

by a process to call a procedure of another process running on the same CPU or on a different 

CPU which is interconnected in a network. In the object oriented language terminology RPC 

is also known as Remote Invocation or Remote Method Invocation (RMI). RPC is mainly 

used for distributed applications like client-server applications. With RPC it is possible to 

communicate over a heterogeneous network (i.e. Network where Client and server 

applications are running on different Operating systems). The CPU/process containing the 

procedure which needs to be invoked remotely is known as server. The CPU/process which 

initiates an RPC request is known as client.  

 

Figure: Concept of Remote Procedure Call (RPC) for IPC 

It is possible to implement RPC communication with different invocation interfaces. In order 

to make the RPC communication compatible across all platforms, it should stick on to certain 

standard formats. Interface Definition Language (IDL) defines the interfaces for RPC.  

  



 

 

Microsoft Interface Definition Language (MIDL) is the IDL implementation from Microsoft 

for all Microsoft platforms. The RPC communication can be either Synchronous (Blocking) 

or Asynchronous (Non-blocking). In the Synchronous communication, the process which 

calls the remote procedure is blocked until it receives a response back from the other process. 

In asynchronous RPC calls, the calling process continues its execution while the remote 

process performs the execution of the procedure. The result from the remote procedure is 

returned back to the caller through mechanisms like callback functions. 

On security front, RPC employs authentication mechanisms to protect the systems against 

vulnerabilities. The client applications (processes)-should authenticate themselves with the 

server for getting access. Authentication mechanisms like IDs, public-key cryptography, etc. 

are used by the client for authentication. Without authentication, any client can access the 

remote procedure. This may lead to potential security risks.  

Sockets are used for RPC communication. The socket is a logical endpoint in a two-way 

communication link between two applications running on a network. A port number is 

associated with a socket so that the network layer of the communication channel can deliver 

the data to the designated application. Sockets are of different types, namely, Internet sockets 

(INET), UNIX sockets, etc. The INET socket works on internet communication protocol 

TCP/IP, UDP (User Datagram Protocol), etc. are the communication protocols used by INET 

sockets. INET sockets are classified into:  

1. Stream sockets  

2. Datagram sockets  

 

Stream sockets are connection-oriented and they use TCP to establish liable connection. On 

the other hand, Datagram sockets rely on UDP for establishing a connection. The UDP 

connection is unreliable when compared to TCP. The client-server communication model 

uses a socket at the client-side and a socket at the server-side. A port number is assigned to 

both of these sockets. The client and server should be aware of the port number associated 

with the socket. In order to start the communication, the client needs to send a connection 

request to the server at the specified port number. 

The client should be aware of the name of the server along with its port number. The server 

always listens to the specified port number on the network. Upon receiving a connection 

request from the client, based on the success of authentication, the server grants the 

connection request and a communication channel is established between the client and server. 

The client uses the hostname and port number of the server for sending requests and the 

server uses the client's name and port number for sending responses.  

 

  



 

 

3.3 TASK SYNCHRONISATION: 

In a multitasking environment, multiple processes run concurrently (in pseudo parallelism) 

and share the system resources. Apart from this, each process has its own boundary wall and 

they communicate with each other with different IPC mechanisms including shared memory 

and variables. Imagine a situation where two processes try to access display hardware 

connected to the system or two processes try to access a shared memory area where one 

process tries to write to a memory location when the other process is trying to read from this.  

What could be the result in these scenarios? Obviously unexpected results. How these issues 

can be addressed? The solution is, make each process aware of the access of a shared 

resource either directly or indirectly. The act of making processes aware of the access of 

shared resources by each process to avoid conflicts is known as `Task/Process 

Synchronization'. Various synchronization issues may arise in a multitasking environment if 

processes are not synchronized properly.  

The following sections describe the major task communication/ synchronization issues 

observed in multitasking and the commonly adopted synchronization techniques to overcome 

these issues. 

3.3.1 Task Communication/Synchronization Issues: 

3.3.1.1 Racing: Let us have a look at the following piece of code. 

 

 



 

 

 

From a programmer perspective, the value of the counter will be 10 at the end of the 

execution of processes A & B. But 'it need not be always' in a real-world execution of this 

piece of code under a multitasking kernel. The results depend on the process scheduling 

policies adopted by the OS kernel. The program statement counter++; looks like a single 

statement from a high-level programming language (`C' language) perspective. The low-level 

implementation of this statement is dependent on the underlying processor instruction set and 

the (cross) compiler in use. The low-level implementation of the high-level program 

statement counter++; under Windows XP operating system running on an Intel Centrino Duo 

processor is given below. 

mov eax, dword ptr [ebp-4] ; Load counter in Accumulator 

add eax,1   ; Increment Accumulator by 1 

mov dword ptr [ebp-4], eax  ; Store counter with Accumulator 

 

At the processor instruction level, the value of the variable counter is loaded to the 

Accumulator register (EAX register). The memory variable counter is represented using a 

pointer. The base pointer register (EBP register) is used for pointing to the memory variable 

counter. After loading the contents of the variable-counter to the Accumulator, the 

Accumulator content is incremented by one using the add instruction. Finally the content of 

Accumulator is loaded to the memory location which represents the variable counter. Both 



 

 

the processes Process A and Process B contain the program statement counter++; Translating 

this into the machine instruction. 

 

Imagine a situation where a process switching (context switching) happens from Process A to 

Process B when Process A is executing the counter++; statement. Process A accomplishes the 

counter++; statement through three different low-level instructions. Now imagine that the 

process switching happened at the point where Process A executed the low-level instruction, 

`mov eax,dword ptr [ebp-4]' and is about to execute the next instruction 'add eax,1'. 

 

Figure: Race condition 

Though the variable counter is incremented by Process B, Process A is unaware of it and it 

increments the variable with the old value. This leads to the loss of one increment for the 

Variable counter. This problem occurs due to non-atomic Operation on variables. This issue 

wouldn't have been occurred if the underlying actions corresponding to the program 

statement counter++; is finished in a single CPU execution cycle. The best way to avoid this 

situation is make the access and modification of shared variables mutually exclusive; 

meaning when one process accesses a shared variable, prevent the other processes from 

accessing it.  

  



 

 

To summarize, Racing or Race condition is the situation in which multiple processes compete 

(race) each other to access and manipulate shared data concurrently. In a Race condition, the 

final value of the shared data depends on the process which acted on the data finally. 

3.3.1.2 Deadlock: 

A race condition produces incorrect results whereas a deadlock condition creates a situation 

where none of the processes are able to make any progress in their execution, resulting in a 

get of deadlocked processes. A situation very similar to our traffic jam issues in a junction.  

 

Figure: Deadlock Visualization  

In its simplest form 'deadlock' is the condition in which a process is waiting for a resource 

held by another process which is waiting for a resource held by the first process.  

To elaborate: Process A holds a resource x and it wants a resource y held by Process B. 

Process B is currently holding resource y and it wants the resource x which is currently held 

by Process A. Both hold the respective resources and they compete each other to get the 

resource held by the respective processes. The result of the competition is 'deadlock'. None of 

the competing processes will be able to access the resources held by other processes since 

they are locked by the respective processes. 

 

The different conditions favoring a deadlock situation are listed below. 



 

 

Mutual Exclusion: The criteria that only one process can hold resource at a time. Meaning 

processes should access shared resources with mutual exclusion. Typical example is the 

accessing of display hardware in an embedded device.  

Hold and Walt: The condition in which a process holds a shared resource by acquiring the 

lock controlling the shared access and waiting for additional resources held by other 

processes.  

No Resource Preemption: The criteria that operating system cannot take back a resource 

from a process which is currently holding it and the resource can only be released voluntarily 

by the process holding it.  

Circular Wait: A process is waiting for a resource which is currently held by another 

process which in turn is waiting for a resource held by the first process. In general, there 

exists a set of waiting process P0, P1, Pn with P0 is waiting for a resource held by P1 and P1 

is waiting for a resource held P0, Pn is waiting for a resource held by P0 and P0 is waiting for 

a resource held by Pn and so on... This forms a circular wait queue. 

Deadlock Handling: A smart OS may foresee the deadlock condition and will act 

proactively to avoid such a situation. Now if a deadlock occurred, how the OS responds to it? 

The reaction to deadlock condition by OS is nonuniform. The OS may adopt any of the 

following techniques to detect and prevent deadlock conditions.  

(i).Ignore Deadlocks: Always assume that the system design is deadlock free. This is 

acceptable for the reason the cost of removing a deadlock is large compared to the chance of 

happening a deadlock. UNIX is an example for an OS following this principle. A life critical 

system cannot pretend that it is deadlock free for any reason.  

(ii). Detect and Recover: This approach suggests the detection of a deadlock situation and 

recovery from it. This is similar to the deadlock condition that may arise at a traffic junction.  

When the vehicles from different directions compete to cross the junction, deadlock (traffic 

jam) condition is resulted. Once a deadlock (traffic jam) is happened at the junction, the only 

solution is to back up the vehicles from one direction and allow the vehicles from opposite 

direction to cross the junction. If the traffic is too high, lots of vehicles may have to be 

backed up to resolve the traffic jam. This technique is also known as `back up cars' technique.  

Operating systems keep a resource graph in their memory. The resource graph is updated on 

each resource request and release.  

Avoid Deadlocks: Deadlock is avoided by the careful resource allocation techniques by the 

Operating System. It is similar to the traffic light mechanism at junctions to avoid the traffic 

jams.  

Prevent Deadlocks: Prevent the deadlock condition by negating one of the four conditions 

favoring the deadlock situation.  



 

 

• Ensure that a process does not hold any other resources when it requests a resource. This 

can be achieved by implementing the following set of rules/guidelines in allocating resources 

to processes.  

1.  A process must request all its required resource and the resources should be allocated 

before the process begins its execution.  

2.  Grant resource allocation requests from processes only if the process does not hold a 

resource currently.  

• Ensure that resource preemption (resource releasing) is possible at operating system level. 

This can be achieved by implementing the following set of rules/guidelines in resources 

allocation and releasing.  

1. Release all the resources currently held by a process if a request made by the 

process for a new resource is not able to fulfil immediately.  

 

2. Add the resources which are preempted (released) to a resource list describing the 

resources which the process requires to complete its execution.  

 

3.   Reschedule the process for execution only when the process gets its old resources 

and the new resource which is requested by the process.  

Imposing these criterions may introduce negative impacts like low resource utilization and 

starvation of processes.  

 

Livelock: The Livelock condition is similar to the deadlock condition except that a process in 

livelock condition changes its state with time. While in deadlock a process enters in wait state 

for a resource and continues in that state forever without making any progress in the 

execution, in a livelock condition a process always does something but is unable to make any 

progress in the execution completion. The livelock condition is better explained with the real 

world example, two people attempting to cross each other in a narrow corridor. Both the 

persons move towards each side of the corridor to allow the opposite person to cross. Since 

the corridor is narrow, none of them are able to cross each other. Here both of the persons 

perform some action but still they are unable to achieve their target, cross each other. We will 

make the livelock, the scenario more clear in a later section—The Dining Philosophers ' 

Problem, of this chapter.  

Starvation: In the multitasking cont on is the condition in which a process does not get the 

resources required to continue its execution for a long time. As time progresses the process 

starves on resource. Starvation may arise due to various conditions like byproduct of 

preventive measures of deadlock, scheduling policies favoring high priority tasks and tasks 

with shortest execution time, etc. 

3.3.1.3 The Dining Philosophers' Problem: The 'Dining philosophers 'problem' is an 

interesting example for synchronization issues in resource utilization. The terms 'dining', 

'philosophers', etc. may sound awkward in the operating system context, but it is the best way 

to explain technical things abstractly using non-technical terms. Now coming to the problem 

definition:  



 

 

Five philosophers (It can be 'n'. The number 5 is taken for illustration) are sitting 

around a round table, involved in eating and brainstorming. At any point of time each 

philosopher will be in any one of the three states: eating, hungry or brainstorming. (While 

eating the philosopher is not involved in brainstorming and while brainstorming the 

philosopher is not involved in eating). For eating, each philosopher requires 2 forks. There 

are only 5 forks available on the dining table ('n' for 'n' number of philosophers) and they are 

arranged in a fashion one fork in between two philosophers. The philosopher can only use the 

forks on his/her immediate left and right that too in the order pickup the left fork first and 

then the right fork. Analyze the situation and explain the possible outcomes of this scenario.  

Let's analyze the various scenarios that may occur in this situation.  

Scenario 1: All the philosophers involve in brainstorming together and try to eat together. 

Each philosopher picks up the left fork and is unable to proceed since two forks are required 

for eating the spaghetti present in the plate. Philosopher 1 thinks that Philosopher 2 sitting to 

the right of him/her will put the fork down and waits for it. Philosopher 2 thinks that 

Philosopher 3' sitting to the right of him/her will 

 

Figure: Visualization of the ‘Dining Philosophers' Problem’ 

put the fork down and waits for it, and so on. This forms a circular chain of un-granted 

requests. If the philosophers continue in this state waiting for the fork from the philosopher 

sitting to the right of each, they will not make any progress in eating and this will result in 

starvation of the philosophers and deadlock.  

Scenario 2: All the philosophers start brainstorming together. One of the philosophers is 

hungry and he/ she picks up the left fork. When the philosopher is about to pick up the right 

fork, the philosopher sitting. to his right also become hungry and tries to grab the left fork 

which is the right fork of his neighboring philosopher who is trying to lift it, resulting in a 

'Race condition'..  



 

 

Scenario 3: All the philosophers involve in brainstorming together and by to eat together. 

Each philosopher picks up the left fork and is unable to proceed, since two forks are required 

for eating the spaghetti present in the plate. Each of them anticipates that the adjacently 

sitting philosopher will put his/her fork down and waits for a fixed duration grid after this 

puts the fork down. Each of them again tries to lift the fork after a fixed duration of time. 

Since all philosophers are trying to lift the fork at the same time, none of them will be able to 

grab two forks. This condition leads to livelock and starvation of philosophers, where each 

philosopher tries to do something, but they are unable to make any progress in achieving the 

target.  

Figure illustrates these scenarios.  

Solution: We need to find out alternative solutions to avoid the.deadlock, livelock, racing 

and starvation condition that may arise due to the concurrent access of forks by philosophers. 

This situation can be handled in many ways by allocating the forks in different allocation 

techniques including round Robin allocation, FIFO allocation: etc.  

But the requirement is that the solution should be optimal, avoiding deadlock and starvation 

of the philosophers and allowing maximum number of philosophers to eat at a time. One 

solution that we could think of is:  

• Imposing rules in accessing the forks by philosophers, like: The philosophers should put 

down the fork he/she already have in hand (left fork) after waiting for a fixed duration for the 

second fork (right fork) and should wait for a fixed time before making the next attempt.  

This solution works fine to some extent, but, if all the philosophers try to lift the forks 

at the same time, a livelock situation is resulted.  

Another solution which gives maximum concurrency that can be thought of is each 

philosopher ac-quires a semaphore (mutex) before picking up any fork. When a philosopher 

feels hungry he/she checks whether the philosopher sitting to the left and right of him is 

already using the fork, by checking the state of the associated semaphore. If the forks are in 

use by the neighboring philosophers, the philosopher waits till the forks are available. A 

philosopher when finished eating puts the forks down and informs the philosophers sitting to 

his/her left and right, who are hungry (waiting for the forks), by signaling the semaphores 

associated with the forks.  



 

 

 

Figure: The 'Real Problems' in the 'Dining Philosophers problem' (a) Starvation 

and Deadlock (b) Racing (c) Livelock and Starvation 

We will discuss about semaphores and mutexes at a latter section of this chapter. In the 

operating system context, the dining philosophers represent the processes and forks represent 

the resources. The dining philosophers' problem is an analogy of processes competing for 

shared resources and the different problems like racing, deadlock, starvation and livelock 

arising from the competition. 

3.3.1.4 Producer-Consumer/Bounded Buffer Problem: Producer-Consumer problem is a 

common data sharing problem where two processes concurrently access a shared buffer with 

fixed size. A thread/process which produces data is called 'Producer thread/process' and a 

thread/process which consumes the data produced by a producer thread/process is known as 

'Consumer thread/process'. Imagine a situation where the producer thread keeps on producing 

data and puts it into the buffer and the consumer thread keeps on consuming the data from the 

buffer and there is no synchronization between the two. There may be chances where in 

which the producer produces data at a faster rate than the rate at which it is consumed by the 

consumer. This will lead to 'buffer overrun' where the producer tries to put data to a full 

buffer. If the consumer consumes data at a faster rate than the rate at which it is produced by 



 

 

the producer, it will lead to the situation `buffer under-run' in which the consumer tries to 

read from an empty buffer. Both of these conditions will lead to inaccurate data and data loss. 

The following code snippet illustrates the producer-consumer problem 

 

 

  



 

 

 

Here the 'producer thread' produces random numbers and puts it in a buffer of size 20. If the 

'producer thread' fills the buffer fully it re-starts the filling of the buffer from the bottom. The 

'consumer thread' consumes the data produced by, the 'producer thread'. For consuming the 

data, the 'consumer thread' reads the buffer which is shared with the 'producer thread'. Once 

the 'consumer thread' consumes all the data, it starts consuming the data from the bottom of 

the buffer. These two threads run independently and are scheduled for execution based on the 

scheduling policies adopted by the OS. The different situations that may arise based on the 

scheduling of the 'producer thread' and 'consumer thread' is listed below.  

1. 'Producer thread' is scheduled more frequently than the 'consumer thread': There are 

chances for overwriting the data in the buffer by the 'producer thread'. This leads to 

inaccurate data.  

2. Consumer thread' is scheduled more frequently than the 'producer thread': There are 

chances for reading the old data in the buffer again by the 'consumer thread'. This will also 

lead to inaccurate data.  

The output of the above program when executed on a Windows XP machine is shown in Fig. 

10.29. The output shows that the consumer thread runs faster than the producer thread and 

most often leads to buffer under-run and thereby inaccurate data. 

 

 

 

The producer-consumer problem can be rectified in various methods. One simple solution is 

the `sleep and wake-up'. The 'sleep and wake-up' can be implemented in various process 

synchronization techniques like semaphores, mutex, monitors, etc. We will discuss it in a 

latter section of this chapter. 

Note 

It should be noted that the scheduling of the threads 'producer_thread' ,and ‘consumer_thread’ 

is OS kernel scheduling policy dependent and you may not get the same output all the time 

when you run this piece of code in Windows XP.  
 



 

 

 

Figure: Output of win32 program illustrating producer-consumer problem 

3.3.1.5 Readers-Writers Problem: Tire Readers-Writers problem is a common issue 

observed in processes competing for limited shared resources. The Readers-Writers problem 

is characterized by multiple processes trying to read and write shared data concurrently. A 

typical real-world example for the Readers-Writers problem is the banking system where one 

process tries to read the account information like available balance and the other process tries 

to update the available balance for that account. This may result in inconsistent results. If 

multiple processes try to read a shared data concurrently it may not create any impacts, 

whereas when multiple processes try to write and read concurrently it will definitely create 

inconsistent results. Proper synchronization techniques should be applied to avoid the 

readers-writers problem. We will discuss about the various synchronization techniques in a 

later section of this chapter. 

  



 

 

3.3.1.6 Priority Inversion: Priority inversion is the byproduct of the combination of 

blocking based (lock based) process synchronization and pre-emptive priority scheduling. 

'Priority inversion' is the condition in which a high priority task needs to wait for a low 

priority task to release a resource which is shared between the high priority task and the low 

priority task, and a medium priority task which doesn't require the shared resource continue 

its execution by preempting the low priority task. Priority based preemptive scheduling 

technique ensures that a high priority task is always executed first, whereas the lock based 

process synchronization mechanism (like mutex, semaphore, etc.) ensures that a process will 

not access a shared resource, which is currently in use by another process. The 

synchronization technique is only interested in avoiding conflicts that may arise due to the 

concur-rent access of the shared resources and not at all bothered about the priority of the 

process which tries to access the shared resource. In fact, the priority based preemption and 

lock based synchronization are the two contradicting OS primitives. Priority inversion is 

better explained with the following scenario: Let Process A, Process B and Process C be three 

processes with priorities High, Medium and Low respectively. Process A and Process C share 

a variable 'X' and the access to this variable is synchronized through a mutual exclusion 

mechanism like Binary Semaphore S.  

 

Imagine a situation where Process C is ready and is picked up for execution by the scheduler 

and 'Process C' tries to access the shared variable 'X'. 'Process C' acquires the 'Semaphore S' 

to indicate the other processes that it is accessing the shared variable 'X'. Immediately after 

'Process C' acquires the 'Semaphore S', 'Process B' enters the 'Ready' state. Since 'Process B' 

is of higher priority compared to 'Process C', 'Process C' is preempted, and 'Process B' starts 

executing. Now imagine 'Process A' enters the 'Ready' state at this stage. Since 'Process A' is 

of higher priority than 'Process B', 'Process B' is preempted, and 'Process A' is scheduled for 

execution. 'Process A' involves accessing of shared variable 'X' which is currently being 

accessed by 'Process C'. Since 'Process C' acquired the semaphore for signaling the access of 

the shared variable 'X', 'Process A' will not be able to access it. Thus 'Process A' is put into 



 

 

blocked state (This condition is called Pending on resource). Now 'Process B' gets the CPU 

and it continues its execution until it relinquishes the CPU voluntarily or enters a wait state or 

preempted by another high priority task. The highest priority process 'Process A' has to wait 

till 'Process C' gets a chance to execute and release the semaphore. This produces unwanted 

delay in the execution of the high priority task which is supposed to be executed immediately 

when it was 'Ready'. Priority inversion may be sporadic in nature but can lead to potential 

damages as a result f missing critical deadlines. Literally speaking, priority inversion 'inverts' 

the priority of a high priority task with that of a low priority task. Proper workaround 

mechanism should be adopted for handling the priority inversion problem. The commonly 

adopted priority inversion workarounds are: 

through a mutual exclusion mechanism like Binary Semaphore S. Imagine a situation where 

Process C is ready and is picked up for execution by the scheduler and 'Process C' tries to 

access the shared variable 'X'. 'Process C' acquires the 'Semaphore S' to indicate the other 

processes that it is accessing the shared variable 'X'. Immediately after 'Process C' acquires 

the 'Semaphore S', 'Process B' enters the 'Ready' state. Since 'Process B' is of higher priority 

compared to 'Process C', 'Process C' is preempted, and 'Process B' starts executing. Now 

imagine 'Process A' enters the 'Ready' state at this stage. Since 'Process A' is of higher priority 

than 'Process B', 'Process B' is preempted, and 'Process A' is scheduled for execution. 'Process 

A' involves accessing of shared variable 'X' which is currently being accessed by 'Process C'. 

Since 'Process C' acquired the semaphore for signaling the access of the shared variable 'X', 

'Process A' will not be able to access it. Thus 'Process A' is put into blocked state (This 

condition is called Pending on resource). Now 'Process B' gets the CPU and it continues its 

execution until it relinquishes the CPU voluntarily or enters a wait state or preempted by 

another high priority task. The highest priority process 'Process A' has to wait till 'Process C' 

gets a chance to execute and release the semaphore. This produces unwanted delay in the 

execution of the high priority task which is supposed to be executed immediately when it was 

'Ready'. Priority inversion may be sporadic in nature but can lead to potential damages as a 

result f missing critical deadlines. Literally speaking, priority inversion 'inverts' the priority of 

a high priority task with that of a low priority task. Proper workaround mechanism should be 

adopted for handling the priority inversion problem. The commonly adopted priority 

inversion workarounds are: 

Priority Inheritance: A low-priority task that is currently accessing (by holding the lock) a 

shared resource requested by a high-priority task temporarily 'inherits' the priority of that 

high-priority task, from the moment the high-priority task raises the request. Boosting the 

priority of the low priority task to that of the priority of the task which requested the shared 

resource holding by the low priority task eliminates the preemption of the low priority task by 

other tasks whose priority are below that of the task requested the shared resource 'and 

thereby reduces the delay in waiting to get the resource requested by the high priority task. 

The priority of the low priority task which is temporarily boosted to high is brought to the 

original value when it releases the shared resource. Implementation of Priority inheritance 

workaround in the priority inversion problem discussed for Process A, Process B and Process 

C example will change the execution sequence as shown in Figure. 



 

 

 

Figure: Handling Priority Inversion problem with priority Inheritance. 

Priority inheritance is only a work around and it will not eliminate the delay in 

waiting the high priority task to get the resource from the low priority task. The only thing is 

that it helps the low priority task to continue its execution and release the shared resource as 

soon as possible. The moment, at which the low priority task releases the shared resource, the 

high priority task kicks the low priority task out and grabs the CPU - A true form of 

selfishness. Priority inheritance handles priority inversion at the cost of run-time overhead at 

scheduler. It imposes the overhead of checking the priorities of all tasks which tries to access 

shared resources and adjust the priorities dynamically.  

Priority Ceiling: In 'Priority Ceiling', a priority is associated with each shared resource. The 

priority associated to each resource is the priority of the highest priority task which uses this 

shared resource. This priority level is called 'ceiling priority'. Whenever a task accesses a 

shared resource, the scheduler elevates the priority of the task to that of the ceiling priority of 

the resource. If the task which accesses the shared resource is a low priority task, its priority 

is temporarily boosted to the priority of the highest priority task to which the resource is also 

shared. This eliminates the pre-emption of the task by other medium priority tasks leading to 

priority inversion. The priority of the task is brought back to the original level once the task 

completes the accessing of the shared resource. 'Priority Ceiling' brings the added advantage 

of sharing resources without the need for synchronization techniques like locks. Since the 

priority of the task accessing a shared resource is boosted to the highest priority of the task 

among which the resource is shared, the concurrent access of shared resource is automatically 

handled. Another advantage of 'Priority Ceiling' technique is that all the overheads are at 

compile time instead of run-time. Implementation of 'priority ceiling' workaround in the 

priority inversion problem discussed for Process A, Process B and Process C example will 

change the execution sequence as shown in Figure. 



 

 

 

Figure: Handling Priority Inversion problem with priority Ceiling. 

The biggest drawback of 'Priority Ceiling' is that it may produce hidden priority inversion. 

With 'Priority Ceiling' technique, the priority of a task is always elevated no matter another 

task wants the shared resources. This unnecessary priority elevation always boosts the 

priority of a low priority task to that of the highest priority tasks among which the resource is 

shared and other tasks with priorities higher than that of the low priority task is not allowed to 

preempt the low priority task when it is accessing a shared resource. This always gives the 

low priority task the luxury of running at high priority when accessing shared resources. 

 

 

 

  



 

 

3.3.2 Task Synchronization Techniques 

So far we discussed about the various task/process synchronization issues encountered in 

multitasking systems due to concurrent resource access. Now let's have a discussion on the 

various techniques used for synchronization in concurrent access in multitasking. 

Process/Task synchronization is essential for  

1. Avoiding conflicts in resource access (racing, deadlock, starvation, livelock, etc.) in a 

multitasking environment.  

2. Ensuring proper sequence of operation across processes. The producer consumer 

problem is a typical example for processes requiring proper sequence of operation. In 

producer consumer problem, accessing the shared buffer by different processes is not the 

issue; the issue is the writing process should write to the shared buffer only if the buffer is 

not full and the consumer thread should not read from the buffer if it is empty. Hence 

proper synchronization should be provided to implement this sequence of operations.  

3. Communicating between processes.  

The code memory area which holds the program instructions (piece of code) for accessing a 

shared resource (like shared memory, shared variables, etc.) is known as 'critical section'. In 

order to synchronize the access to shared resources, the access to the critical section should 

be exclusive. The exclusive access to critical section of code is provided through mutual 

exclusion mechanism. Let us have a look at how mutual exclusion is important in concurrent 

access. Consider two processes Process A and Process B running on a multitasking system. 

Process A is currently running and it enters its critical section. Before Process A completes its 

operation in the critical section, the scheduler preempts Process A and schedules Process B 

for execution (Process B is of higher priority compared to Process A). Process B also 

contains the access to the critical section which is already in use by Process A. If Process B 

continues its execution and enters the critical section which is already in use by Process A, a 

racing condition will be resulted. A mutual exclusion policy enforces mutually exclusive 

access of critical sections. Mutual exclusions can be enforced in different ways. Mutual 

exclusion blocks a process. Based on the behaviour of the blocked process, mutual exclusion 

methods can be classified into two categories. In the following section we will discuss them 

in detail. 

3.3.2.1 Mutual Exclusion through Busy Waiting/Spin Lock: 'Busy waiting' is the simplest 

method for enforcing mutual exclusion. The following code snippet illustrates how 'Busy 

waiting' enforces mutual exclusion. 



 

 

 

The 'Busy waiting' technique uses a lock variable for implementing mutual exclusion. Each 

process/ thread checks this lock variable before entering the critical section. The lock is set to 

'1' by a process/ thread if the process/thread is already in its critical section; otherwise the 

lock is set to '0'. The major challenge in implementing the lock variable based 

synchronization is the non-availability of a single atomic instruction which combines the 

reading, comparing and setting of the lock variable. Most often the three different operations 

related to the locks, viz. the operation of Reading the lock variable, checking its present 

value, and setting it are achieved with multiple low-level instructions. The low-level 

implementation of these operations are dependent on the underlying processor instruction set 

and the (cross) compiler in use. The low-level implementation of the 'Busy waiting' code 

snippet, which we discussed earlier, under Windows XP operating system running on an Intel 

Centrino Duo processor is given below. The code snippet is compiled with Microsoft Visual 

Studio 6.0 compiler. 

 



 

 

 

The assembly language instructions reveals that the two high level instructions 

(while(bFlag==false); and bFlag=true;), corresponding to the operation of reading the lock 

variable, checking its present value and setting it is implemented in the processor level using 

six low level instructions. Imagine a situation where ‘Process 1' read the lock variable and 

tested it and found that the lock is available and it is about to set the lock for acquiring the 

critical section. But just before 'Process 1' sets the lock variable, 'Process 2' preempts 'Process 

1' and starts executing. 'Process 2' contains a critical section code and it tests the lock variable 

for its availability. Since 'Process 1' was unable to set the lock variable, its state is still '0' and 

'Process 2' sets it and acquires the critical section. Now the scheduler preempts 'Process 2' and 

schedules 'Process 1' before 'Process 2' leaves the critical section. Remember, `Process l' was 

preempted at a point just before setting the lock variable (‘Process 1' has already tested the 

lock variable just before it is preempted and found that the lock is available). Now 'Process 1' 

sets the lock variable and enters the critical section. It violates the mutual exclusion policy 

and may pro-duce unpredicted results.  

 

Device Driver 

Device driver is a piece of software that acts as a bridge between the operating system and 

the hardware. In an operating system based product architecture, the user applications talk to 

the Operating System kernel for all necessary information exchange including 

communication with the hardware peripherals. The architecture of the OS kernel will not 

allow direct device access from the user application. All the device related access should flow 

through the OS kernel and the OS kernel mutes it to the concerned hardware peripheral. OS 

provides interfaces in the form of Application Programming Interfaces (APIs) for accessing 

the hardware. The device driver abstracts the hardware from user applications. The topology 

of user applications and hardware interaction in an RTOS based system is depicted in Fig. 

  



 

 

Device drivers are responsible for initiating and managing the communication with 

the hardware peripherals. They are responsible for establishing the connectivity, initializing 

the hardware (setting up various registers of the hardware device) and transferring data. An 

embedded product may contain different types of hardware components like Wi-Fi module, 

File systems, Storage device interface, etc. The initialization of these devices and the 

protocols required for communicating with these devices may be different. All these 

requirements are implemented in drivers and a single driver will not be able to satisfy all 

these. Hence each hardware (more specifically each class of hardware) requires a unique 

driver component.  

 

 

 

 

 

 

 

 

 

 

 

Figure: Role of device driver in Embedded OS based products 

Certain drivers come as part of the OS kernel and certain drivers need to be installed 

on the fly. For example, the program storage memory for an embedded product, say NAND 

Flash memory requires a NAND Flash driver to read and write data from/to it. This driver 

should come as part of the OS kernel image. Certainly the OS will not contain the drivers for 

all devices and peripherals under the Sun. It contains only the necessary drivers to 

communicate with the onboard devices (Hardware devices which are part of the platform) 

and for certain set of devices supporting standard protocols and device class (Say USB Mass 

storage device or HID devices like Mouse/keyboard). If an external device, whose driver 

software is not available with OS kernel image, is connected to the embedded device (Say a 

medical device with custom USB class implementation is connected to the USB port of the 

embedded product), the OS prompts the user to install its driver manually. Device drivers 

which are part of the OS image are known as 'Built-in drivers' or 'On-board drivers'. These 

drivers are loaded by the OS at the time of booting the device and are always kept in the 

RAM. Drivers which need to be installed for accessing a device are known. as 'Installable 
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Operating System Services 

Device Drivers 

Hardware 
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drivers'. These drivers are loaded by the OS on a need basis. Whenever the device is 

connected, the OS loads the corresponding driver to memory. When the device is removed, 

the driver is unloaded from memory. The Operating system maintains a record of the drivers 

corresponding to each hardware.  

The implementation of driver is OS dependent. There is no universal implementation for a 

driver. How the driver communicates with the kernel is dependent on the OS structure and 

implementation. Different Operating Systems follow different implementations.  

It is very essential to know the hardware interfacing details like the memory address assigned 

to the device, the Interrupt used, etc. of on-board peripherals for writing a driver for that 

peripheral. It varies on the hardware design of the product. Some Real-Time operating 

systems like 'Windows CE' support a layered architecture for the driver which separates out 

the low level implementation from the OS specific interface. The low level implementation 

part is generally known as Platform Dependent Device (PDD) layer. The OS specific 

interface part is known as Model Device Driver (MDD) or Logical Device Driver (LDD). For 

a standard driver, for a specific operating system, the MDD/LDD always remains the same 

and only the PDD part needs to be modified according to the target hardware for a particular 

class of devices. 

Most of the time, the hardware developer provides the implementation for all on board 

devices for a specific OS along with the platform. The drivers are normally shipped in the 

form of Board Support Package. The Board Support Package contains low level driver 

implementations for the onboard peripherals and OEM Adaptation Layer (OAL) for 

accessing the various chip level functionalities and a bootloader for loading the operating 

system. The OAL facilitates communication between the Operating System (OS) and the 

target device and includes code to handle interrupts, timers, power management, bus 

abstraction; generic I/O control codes (IOCTLs), etc. The driver files are usually in the form 

of a dll file. Drivers can run on either user space or kernel space. Drivers which run in user 

space are known as user mode drivers and the drivers which run in kernel space are known as 

kernel mode drivers. User mode drivers are safer than kernel mode drivers. If an error or 

exception occurs in a user mode driver, it won't affect the services of the kernel. On the other 

hand, if an exception occurs in the kernel mode driver, it may lead to the kernel crash. The 

way how a device driver is written and how the interrupts are handled in it are operating 

system and target hardware specific. However regardless of the OS types, a device driver 

implements the following: 

1. Device (Hardware) Initialization and Interrupt configuration  

2. Interrupt handling and processing  

3. Client interfacing (Interfacing with user applications) 

 

  



 

 

The Device (Hardware) initialisation part of the driver deals with configuring the different 

registers of the device (target hardware). For example configuring the I/O port line of the 

processor as Input or output line and setting its associated registers for building a General 

Purpose IO (GPIO) driver. The interrupt configuration part deals with configuring the 

interrupts that needs to be associated with the hardware. In the case of the GPIO driver, if the 

intention is to generate an interrupt when the Input line is asserted, we need to configure the 

interrupt associated with the I/O port by modifying its associated registers. The basic 

Interrupt configuration involves the following.  

1. Set the interrupt type (Edge Triggered (Rising/Flailing) or Level Triggered (Low or 

High)), enable the interrupts and set the interrupt priorities.  

2. Bind the Interrupt with an Interrupt Request (IRQ). The processor identifies an interrupt 

through IRQ. These IRQs are generated by the Interrupt Controller. In order to identify an 

interrupt the interrupt needs to be bonded to an IRQ. 

3. Register an Interrupt Service Routine (ISR) with an Interrupt Request (IRQ). ISR is the 

handler for an Interrupt. In order to service an interrupt, an ISR should be associated with an 

IRQ. Registering an ISR with an IRQ takes care of it.  

With these the interrupt configuration is complete. If an interrupt occurs, depending 

on its priority, it is serviced and the corresponding ISR is invoked. The processing part of an 

interrupt is handled in an ISR. The whole interrupt processing can be done by the ISR itself 

or by invoking an Interrupt Service Thread (IST). The IST performs interrupt processing on 

behalf of the ISR. To make the ISR compact and short, it is always advised to use an IST for 

interrupt processing. The intention of an interrupt is to send or receive command or data to 

and from the hardware device and make the received data available to user programs for 

application specific processing. Since interrupt processing happens at kernel level, user 

applications may not have direct access to the drivers to pass and receive data. Hence it is the 

responsibility of the Interrupt processing routine or thread to inform the user applications that 

au interrupt is occurred and data is available for further processing. The client interfacing part 

of the device driver takes care of this. The client interfacing implementation makes use of the 

Inter Process communication mechanisms supported by the embedded OS for communicating 

and synchronising with user applications and drivers. For example, to inform a user 

application that an interrupt is occurred and the data received from the device is placed in I 

shared buffer, the client interfacing code can signal (or set) an event. The user application 

creates the event, registers it and waits for the driver to signal it. The driver can share the 

received data through shared memory techniques. IOCTLs, shared buffers, etc. can be used 

for data sharing. The story line is incomplete without performing an interrupt done (Interrupt 

processing completed) functionality in the driver. Whenever an interrupt is asserted, while 

vectoring to its corresponding ISR, all interrupts of equal and low'5riorities are disabled. 

They are re-enable only on executing the interrupt done function (Same as the Return from 

Interrupt RETI instruction execution for 8051) by the driver. The interrupt done function can 

be invoked at the end of corresponding ISR or IST. 



 

 

UNIT-IV 

EMBEDDED SOFTWARE DEVELOPMENT TOOLS 

 ---------------------------------------------------------------------------------------------------------------- 

SYLLABUS: 

 

Host and target machines, linker/locators for embedded software, getting embedded software 

into the target system; Debugging techniques: Testing on host machine, using laboratory 

tools, an example system.  

 

 ---------------------------------------------------------------------------------------------------------------- 

 

I. HOST AND TARGET MACHINES: 

 

• Host: 

– A computer system on which all the programming tools run 

– Where the embedded software is developed, compiled, tested, debugged, 

optimized, and prior to its translation into target device. 

• Target: 

– After writing the program, compiled, assembled and linked, it is moved to target 

– After development, the code is cross-compiled, translated – cross-assembled, 

linked into target processor instruction set and located into the target. 

 

Host System Target Computer System 

Writing, editing a program, 

compiling it, linking it, debugging it 

are done on host system 

After the completion of programming 

work, it is moved from host system to 

target system. 

It is also referred as Work Station No other name 

Software development is done in 

host system for embedded system 

Developed software is shifted to 

customer from host 

Compiler, linker, assembler, debugger 

are used 

Cross compiler is also used 

Unit testing on host system ensures 

software is working properly 

By using cross compiler, unit testing 

allows to recompile code ,execute, test 

on target system 

Stubs are used Real libraries 

Programming centric Customer centric 

 

Cross Compilers: 

 

• A cross compiler that runs on host system and produces the binary 

instructions that will be understood by your target microprocessor. 

 

• A cross compiler is a compiler capable of creating executable code for a 



 

 

platform other than the one on which the compiler is running. For example, 

a compiler that runs on aWindows     7 PC but generates code that runs on 

Android smartphone is a cross compiler. 

• Most desktop systems are used as hosts come with compilers, assemblers, linkers 

that will run on the host. These tools are called native tools. 

 

• Suppose the native compiler on a Windows NT system is based on Intel Pentium. 

This compiler may possible if target microprocessor is also Intel Pentium. This is 

not possible if the target microprocessor is other than Intel i.e. like MOTOROLA, 

Zilog etc. 

 

• A cross compiler that runs on host system and produces the binary instructions that 

will be understood by your target microprocessor. This cross compiler is a program 

which will do the above task. If we write C/C++ source code that could compile on 

native compiler and run on host, we could compile the same source code through 

cross compiler and make run it run on target also. 

 

• That may not possible in all the cases since there is no problem with if, switch and 

loops statements for both compilers but there may be an error with respect to the 

following: 

 In Function declarations 

 The size may be different in host and target 

 Data structures may be different in two machines. 

 Ability to access 16 and 32 bit entries reside at two machines. 

 

Sometimes cross compiler may warn an error which may not be warned by native 

complier. 

 

Cross Assemblers and Tool Chains: 

 

• Cross assembling is necessary if target system cannot run an assembler itself. 

 

• A cross assembler is a program that runs on host produces binary 

instructions appropriate for the target. The input to the cross assembler is 

assembly language file (.asm file) and output is binary file. 

• A cross-assembler is just like any other assembler except that it runs on 

some CPU other than the one for which it assembles code. 



 

 

Tool chain for building embedded software shown below: 

 

 

The figure shows the process of building software for an embedded system. 

 

As you can see in figure the output files from each tool become the input files for 

the next. Because of this the tools must be compatible with each other. 

A set of tools that is compatible in this way is called tool chain. Tool chains that run 

on various hosts and builds programs for various targets. 

II. LINKER/LOCATORS FOR EMBEDDED SOFTWARE: 

 

• Linker: 

 

– a linker or link  editor is  a computer  program that  takes  one   or   

more object   files generated       by        a compiler and        

combines        them        into        a  single executable file, library 

file, or another object file. 

 

• Locator: 

 

• locate embedded binary code into target processors 

 

• produces target machine code (which the locator glues into the 

RTOS) and the combined code (called map) gets copied into the 

target ROM 



 

 

Linking Process shown below: 

 

 

 

• The native linker creates a file on the disk drive of the host system that is 

read by a part of operating system called the loader whenever the user 

requests to run the programs. 

• The loader finds memory into which to load the program, copies the 

program from the disk into the memory 

 

• Address Resolution: 

 

Native Tool Chain: 

 



 

 

Explanation for above native tool chain figure: 

 

• Above Figure shows the process of building application software with native tools. 

One problem in the tool chain must solve is that many microprocessor instructions 

contain the addresses of their operands. 

 

• the above figure MOVE instruction in ABBOTT.C will load the value of variable 

idunno into register R1 must contain the address of the variable. Similarly CALL 

instruction must contain the address of the whosonfirst. This process of solving 

problem is called address resolution. 

• When abbott.c file compiling,the compiler does not have any idea what the address 

of idunno and whosonfirst() just it compiles both separately and leave them as 

object files for linker. 

• Now linker will decide that the address of idunno must be patched to whosonfirst() 

call instructoin. When linker puts the two object files together, it figures out idunno 

and whosonfirst() are in relation for execution and places in executable files. 

• After loader copies the program into memory and exactly knows where idunno and 

whosonfirst()  are in memory. This whole process called as address resolution. 

 

Output File Formats: 

 

In most embedded systems there is no loader, when the locator is done then output will be 

copied to target. 

 

Therefore the locator must know where the program resides and fix up all memories. 

 

Locators have mechanism that allows you to tell them where the program will be in the 

target system. Locators use any number of different output file formats. 

The tools you are using to load your program into target must understand whatever file 

format your locator produces. 

 

1. intel Hex file format 

 

2. Motorola S-Record format 



 

 

1. Intel Hex file format: 

 

below figure shows Intel Hex file format 

 

 

2. Motorola S-Record format 

 



 

 

Loading program components properly: 

 

Another issue that locators must resolve in the embedded environment is that some parts of 

the program need to end up in the ROM and some parts need to end up in RAM. 

For example whosonfirst() end up in ROM and must be remembered even power is off. The 

variable idunno would have to be in RAM, since it data may be changed. 

This issue does not arise with application programming, because the loader copies the entire 

program into RAM. 

Most tools chains deal with this problem by dividing the programs into segments. 

Each segment is a piece of program that the locator can place it in memory 

independently of other segments. 

Segments solve other problems like when processor power on, embedded system 

programmer must ensure where the first instruction is at particular place with the help of 

segments. 

 

 

Figure: How the tool chain uses segments 

 

 



 

 

Figure shows how a tool chain might work in a system in hypothetical system that contains 

three modules X.c, Y.c and Z.asm.The code X.c contains some instructions, some 

uninitialized data and some constant strings. The Y. c contains some instructions, some 

uninitialized and some initialized data. The Z.asm contains some assembly language 

function, start up code and uninitialized code 

.The cross compiler will divide X.c into 3 segments in the object file 

 

First segment: code  

Second segment: udata 

Third segment: constant strings 

 The cross compiler will divide Y.c into 3 segments in the object file First segment: 

code Second segment: udata Third segment: idata 

 The cross compiler Z.asm divides the 

segments into First Segment: 

assembly language functions 

Second Segment: start up code 

Third Segment t: udata 

 

The linker/ Locator reshuffle these segments and places Z.asm start up code at 

where processor begins its execution, it places code segment in ROM and data 

segment in RAM. Most compilers automatically divide the module into two or 

more segments: The instructions (code), uninitialized code, Initialized, Constant 

strings. Cross assemblers also allow you to specify the segment or segments into 

which the output from the assembler should be placed. Locator places the segments 

in memory. The following two lines of instructions tells one commercial locator 

how to build the program. 

 The –Z at the beginning of each line indicates that this line is a list of segments.  

Fig 6: Locator places segments in memory 



 

 

 At the end of each line is the address where the segment should be placed. 

 The locator places the segments one after other in memory, starting with the given 

address. 

 The segments CSTART, IVECS, CODE one after other must be placed at address 

0. 

 The segments IDATA, UDATA AND CTACK at address at 8000. 

 

Some other features of locators are: 

 

 We can specify the address ranges of RAM and ROM, the locator will warn you 

if program does not fit within those functions. 

 We can specify the address at which the segment is to end, then it will place the 

segment below that address which is useful for stack memory. 

 We can assign each segment into group, and then tell the locator where the group 

go and deal with individual segments. 

 

 

Where the variable ifreq must be stored. In the above code, in the first case ifreq the initial 

value must  reside in the ROM (this is the only memory that stores the data while the 

power is off).In the second case  the ifreq must be in RAM, because setfreq () changes it 

frequently. 

 

The only solution to the problem is to store the variable in RAM and store the initial value 

in ROM and copy the initial value into the variable at startup. Loader sees that each 

initialized variable has the correct initial value when it loads the program. But there is no 

loader in embedded system, so that the application must itself arrange for initial values to 

be copied into variables. 

 

The locator deals with this is to create a shadow segment in ROM that contains all of the 

initial values, a segment that is copied to the real initialized - data segment at start up. 

When an embedded system is powdered on the contents of the RAM are garbage. They 

only become all zeros if some start up code in the embedded system sets them as zeros. 



 

 

 

Locator Maps: 

 

• Most locators will create an output file, called map, that lists where the 

locator placed each of the segments in memory. 

 

• A map consists of address of all public functions and global variables. 

 

• These are useful for debugging an ‘advanced’ locator is capable of running a 

startup code in ROM, which load the embedded code from ROM into RAM 

to execute quickly since RAM is faster 

Locator MAP IS SHOWN BELOW: 

 

 

Executing out of RAM: 

 

RAM is faster than ROM and other kinds of memory like flash. The fast microprocessors 

(RISC) execute programs rapidly if the program is in RAM than ROM. But they store the 

programs in ROM, copy them in RAM when system starts up. 

The start-up code runs directly from ROM slowly. It copies rest of the code in RAM for 

fast processing. The code is compressed before storing into the ROM and start up code 

decompresses when it copies to RAM. 

The system will do all this things by locator, locator must build program can be stored at 



 

 

one collection of address ROM and execute at other collection of addresses at RAM. 

Getting embedded software into the target system: 

 

• The locator will build a file as an image for the target software. There 

are few ways to getting the embedded software file into target 

system. 

 

– PROM programmers 

 

– ROM emulators 

 

– In circuit emulators 

 

– Flash 

 

– Monitors 

 

PROM Programmers: 

 

 The classic way to get the software from the locator output file into target system by 

creating file in ROM or PROM. 

 

 Creating ROM is appropriate when software development has been completed, since 

cost to build ROMs is quite high. Putting the program into PROM requires a device 

called PROM programmer device. 

 

 PROM is appropriate if software is small enough, if you plan to make changes to the 

software and debug. To do this, place PROM in socket on the Target than being soldered 

directly in the circuit (the following figure shows). When we find bug, you can remove 

the PROM containing the software with the bug from target and put it into the eraser (if 

it is an erasable PROM) or into the waste basket. Otherwise program a new PROM with 

software which is bug fixed and free, and put that PROM in the socket. We need small 

tool called chip puller (inexpensive) to remove PROM from the socket. We can insert 

the PROM into socket without any tool than thumb (see figure8). If PROM programmer 

and the locator are from different vendors, its upto us to make them compatible. 



 

 

 

 

 

Fig : Semantic edge view of socket 

 

ROM Emulators: 

 

Other mechanism is ROM emulator which is used to get software into target. ROM emulator 

is a device that replaces the ROM into target system. It just looks like ROM, as shown 

figure9; ROM emulator consists of large box of electronics and a serial port or a network 

connection  through which it can be connected to your host. Software running on your host 

can send files created by the locator to the ROM emulator. Ensure the ROM emulator 

understands the file format which the locator creates. 

 

 

Fig: ROM emulator 

 

 



 

 

In circuit emulators: 

 

If we want to debug the software, then we can use overlay memory which is a common 

feature of in-circuit emulators. In-circuit emulator is a mechanism to get software into target 

for debugging purposes. 

 

Flash: 

 

If your target stores its program in flash memory, then one option you always have is to 

place flash memory in socket and treat it like an EPROM .However, If target has a serial 

port, a network connection, or some other mechanism for communicating with the outside 

world, link then target can communicate with outside world, flash memories open up 

another possibility: you can write a piece of software to receive new programs from your 

host across the communication link and write them into the flash memory. Although this 

may seem like difficult 

The reasons for new programs from host: 

 

 You can load new software into your system for debugging, without pulling chip out of 

socket and replacing. 

 Downloading new software is fast process than taking out of socket, programming and 

returning into the socket. 

 If customers want to load new versions of the software onto your product. 

 

The following are some issues with this approach: 

 

 Here microprocessor cannot fetch the instructions from flash. 

 The flash programming software must copy itself into the RAM, locator has to take care all 

these activities how those flash memory instructions are executing. 

 We must arrange a foolproof way for the system to get flash programming software into the  

target i.e target system must be able to download properly even if earlier download crashes 

in the middle. 

 To modify the flash programming software, we need to do this in RAM and then copy to 

flash. 

 

Monitors: 

 

It is a program that resides in target ROM and knows how to load new programs onto the 

system. A typical monitor allows you to send the data across a serial port, stores the 

software in the target RAM, and then runs it. Sometimes monitors will act as locator also, 



 

 

offers few debugging services like setting break points, display memory and register values. 

You can write your own monitor program. 

DEBUGGING TECHNIQUES 

 

I. Testing on host machine 

II. using laboratory tools 

III. an example system 

 

 

Introduction: 

 

While developing the embedded system software, the developer will develop the code with 

the lots of bugs in it. The testing and quality assurance process may reduce the number of 

bugs by some factor. But only the way to ship the product with fewer bugs is to write 

software with few fewer bugs. The world extremely intolerant of buggy embedded systems. 

The testing and debugging will play a very important role in embedded system software 

development process. 

 

Testing on host machine : 

• Goals of Testing process are 

– Find bugs early in the development process 
– Exercise all of the code 

– Develop repeatable , reusable tests 

– Leave an audit trail of test results 

 

Find the bugs early in the development process: 

 

This saves time and money. Early testing gives an idea of how many bugs you have and 

then how much trouble you are in. 

BUT: the target system is available early in the process, or the hardware may be buggy and 

unstable, because hardware engineers are still working on it. 

 

Exercise all of the code: 

 

Exercise all exceptional cases, even though, we hope that they will never happen, exercise 

them and get experience how it works. 

BUT: It is impossible to exercise all the code in the target. For example, a laser printer may 

have code to deal with the situation that arise when the user presses the one of the buttons 

just as a paper jams, but in the real time to test this case. We have to make paper to jam and 

then press the button within a millisecond, this is not very easy to do. 

 



 

 

 

Develop reusable, repeatable tests: 

 

It is frustrating to see the bug once but not able to find it. To make refuse to happen again, 

we need to repeatable tests. 

 

BUT: It is difficult to create repeatable tests at target environment. 

 

Example: In bar code scanner, while scanning it will show the pervious scan results every 

time, the bug will be difficult to find and fix. 

Leave an “Audit trail” of test result: 

 

Like telegraph “seems to work” in the network environment as it what it sends and receives 

is not easy as knowing, but valuable of storing what it is sending and receiving. 

 

BUT: It is difficult to keep track of what results we got always, because embedded systems 

do not have a disk drive. 

Conclusion: Don’t test on the target, because it is difficult to achieve the goals by testing 

software on target system. The alternative is to test your code on the host system. 

 

Basic Technique to Test: 

 

The following figure shows the basic method for testing the embedded software on the 

development host. The left hand side of the figure shows the target system and the right 

hand side shows how the test will be conducted on the host. The hardware independent code 

on the two sides of the figure is compiled from the same source. 

 

 

Figure: Test System 

 

 



 

 

The hardware and hardware dependent code has been replaced with test scaffold software on 

the right side. The scaffold software provides the same entry points as does the hardware 

dependent code on the target system, and it calls the same functions in the hardware 

independent code. The scaffold software takes its instructions from the keyboard or from a 

file; it produces output onto the display or into the log file. 

 

Conclusion: Using this technique you can design clean interface between hardware 

independent software and rest of the code. 

Calling Interrupt Routines by scaffold code: 

 

Based on the occurrence of interrupts tasks will be executed. Therefore, to make the system 

do anything in the test environment, the test scaffold must execute the interrupt routines. 

Interrupts have two parts one which deals with hardware (by hardware dependent interrupt 

calls) and other deals rest of the system (hardware independent interrupt calls). 

 

Calling the timer interrupt routine: 

 

One interrupt routine your test scaffold should call is the timer interrupt routine. In most 

embedded systems initiated the passage of time and timer interrupt at least for some of the 

activity. You could have the passage of time in your host system call the timer interrupt 

routine automatically. So time goes by your test system without the test scaffold software 

participation. It causes your test scaffold to lose control of the timer interrupt routine. So 

your test scaffold must call Timer interrupt routine directly. 

 

Script files and Output files: 

 

A test scaffold that calls the various interrupt routines in a certain sequence and with certain 

data. A test scaffold that reads a script from the keyboard or from a file and then makes calls 

as directed by the script. Script file may not be a project, but must be simple one. 

Example: script file to test the bar code scanner 

 

#frame arrives 

# Dst Src Ctrl mr/56 ab 

#Backoff timeout expires Kt0 

#timeout expires again Kt0 

#sometime pass Kn2 

Kn2 



 

 

#Another beacon frame arrives 

 

Each command in this script file causes the test scaffold to call one of the interrupts in the 

hardware independent part. 

In response to the kt0 command the test scaffold calls one of the timer interrupt routines. In 

response to the command kn followed by number, the test scaffold calls a different timer 

interrupt routine the 

 

indicated number of times. In response to the command mr causes the test scaffold to write 

the data into memory. 

Features of script files: 

 The commands are simple two or three letter commands and we could write the parser more 

quickly. 

 Comments are allowed, comments script file indicate what is being tested, indicate what 

results you expect, and gives version control information etc. 

 Data can be entered in ASCII or in Hexadecimal. 

 

Most advanced Techniques: 

These are few additional techniques for testing on the host. It is useful to have the test 

scaffold software do something automatically. For example, when the hardware 

independent code for the underground tank monitoring system sends a line of data to the 

printer, the test scaffold software must capture the line, and it must call the printer interrupt 

routine to tell the hardware independent code that the printer is ready for the next line. 

There may be a need that test scaffold a switch control because there may be button 

interrupt routine, so that the test scaffold must be able to delay printer interrupt routine. 

There may be low, medium, high priority hardware independent requests, then 

scaffold switches as they appear. Some Numerical examples of test scaffold software: In 

Cordless bar code scanner, when H/W independent code sends a frame the scaffold S/W 

calls the interrupt routine to indicate that the frame has been sent. When H/W independent 

code sets the timer, then test scaffold code call the timer interrupt after some period. The 

scaffold software acts as communication medium, which contains multiple instances of H/W 

independent code with respect to multiple systems in the project. 

Bar code scanner Example: 

Here the scaffold software generate an interrupts when ever frame send and receive. Bar 



 

 

code Scanner A send data frame, captures by test scaffold and calls frame sent interrupt. The 

test scaffold software calls receive frame interrupt when it receives frame. When any one of 

the H/W independent code calls the function to control radio, the scaffold knows which 

instances have turned their radios, and at what frequencies. 

 

Fig2: Test scaffold for the bar- code scanner software 

 

 

 

Targets that have their radios turned off and tuned to different frequencies do not receive 

the frame. 

The scaffold simulates the interference that prevents one or more stations from receiving 

the data. In this way the scaffold tests various pieces of software communication properly 

with each other or not.(see the above figure). 

 

OBJECTIONS, LIMITATIONS AND SHORT COMINGS: 

Engineers raise many objections to testing embedded system code on their host system, 

Because many embedded systems are hardware dependent. Most of the code which is 

tested at host side is hardware dependent code. 

To test at host side embedded systems interacts only with the microprocessor, has no 

direct contact with the hardware. As an example the Telegraph software huge percentage 

of software is hardware independent i.e. this can be tested on the host with an appropriate 

scaffold. There are few objections to scaffold: Building a scaffold is more trouble, making 



 

 

compatible to RTOS is other tedious job. 

 

Using laboratory Tools: 

 Volt meters and Ohm Meters 

 Oscilloscopes 

 Logic Analyzers 

 Logic Analyzers in Timing mode 

 Logic Analyzers in State Mode 

 In-circuit Emulators 

 Getting “ Visibility” into the Hardware 

 Software only Monitors 

 Other Monitors 

 

Volt meters: 

Volt meter is for measuring the voltage difference between two points. The common use of 

voltmeter is to determine whether or not chip in the circuit have power. A system can suffer 

power failure for any number of reasons- broken leads, incorrect wiring, etc. the usual way 

to use a volt meter It is used to turn on the power, put one of the meter probes on a pin that 

should be attached to the VCC and the other pin that should be attached to ground. If volt 

meter does not indicate the correct voltage then we have hardware problem to fix. 

 

Ohm Meters: 

Ohm meter is used for measuring the resistance between two points, the most common use 

of Ohm meter is to check whether the two things are connected or not. If one of the address 

signals from microprocessors is not connected to the RAM, turn the circuit off, and then put 

the two probes on the two points to be tested, if ohm meter reads out 0 ohms, it means that 

there is no resistance between two probes and that the two points on the circuit are therefore 

connected. The product commonly known as Multimeter functions as both volt and Ohm 

meters. 

 

Oscilloscopes: 

It is a device that graphs voltage versus time, time and voltage are graphed horizontal and 

vertical axis respectively. It is analog device which signals exact voltage but not low or high. 

Features of Oscilloscope: 



 

 

 You can monitor one or two signals simultaneously. 

 You can adjust time and voltage scales fairly wide range. 

 You can adjust the vertical level on the oscilloscope screen corresponds to 

ground. With the use of trigger, oscilloscope starts graphing. For example we can tell the 

oscilloscope to start graphing when signal reaches 4.25 volts and is rising. 

 

Oscilloscopes extremely useful for Hardware engineers, but software engineers use them 

for the following purposes: 

1. Oscilloscope used as volt meter, if the voltage on a signal never changes, it will 

display horizontal line whose location on the screen tells the voltage of the signal. 

2. If the line on the Oscilloscope display is flat, then no clocking signal is in 

Microprocessor and it is not executing any instructions. 

3. Use Oscilloscope to see as if the signal is changing as expected. 

4. We can observe a digital signal which transition from VCC to ground and vice versa 

shows there is hardware bug. 

 
 

Fig3: Typical Oscilloscope 

 

 

Figure3 is a sketch of a typical oscilloscope, consists of probes used to connect the 

oscilloscope to the circuit. The probes usually have sharp metal ends holds against the signal 

on the circuit. Witch’s caps fit over the metal points and contain little clip that hold the 

probe in the circuit. Each probe has ground lead a short wire that extends from the head of 



 

 

the probe, it can easily attach to the circuit. It is having numerous adjustment knobs and 

buttons allow you to control. Some may have on screen menus and set of function buttons 

along the side of the screen. 

 

 
 

 

4(a):  A Reasonable clock signal 

4(b): A Questionable clock signal 

 
 

4 (c): A dead clock signal 



 

 

 
 

4(d): A ROM chip selection signal 

Figure4 (a) to 4(d) shows some typical oscilloscope displays.fig (a) shows a microprocessor 

input clock signal. Fig (b) shows a questionable clock signal, it differs from 4(a) in that it 

does not go from lo to high cleanly and stay high for a period of time. Instead it draft from 

low to high .fig(c) shows a clock circuit that is not working at all.fig(d) shows chip enable 

signal. 

 

Logic Analyzers: 

This tool is similar to oscilloscope, which captures signals and graphs them on its screen. 

But it differs  with oscilloscope in several fundamental ways 

 A logic analyzer track many signals simultaneously. 

 The logic analyzer only knows 2 voltages, VCC and Ground. If the voltage is in 

between VCC and ground, then logical analyzer will report it as VCC or Ground but 

not like exact voltage. 

 All logic analyzers are storage devices. They capture signals first and display them 

later. 

 Logic analyzers have much more complex triggering techniques than oscilloscopes. 

 Logical analyzers will operate in state mode as well as timing mode. 

 

Logical analyzers in Timing Mode: 

Some situations where logical analyzers are working in Timing mode 

 If certain events ever occur. 

 Example: In bar code scanner software ever turns the radio on, we can attach logic 

analyzer to the signals that controls the power to the radio. 

 We can measure how long it takes for software to respond. 

 We can see software puts out appropriate signal patterns to control the hardware. The 



 

 

underground tank monitoring system to find out how long it will takes the software to 

turn off the bell when you push a button shown in fig5. 

 

Example: After finishing the data transmitting, we can attach the logical analyzer to RTS 

and its signal to find out if software lowers RTS at right time or early or late. We can also 

attach the logical analyzer, to ENABLE/ CLK and DATA signals to EEPROM to find if it 

works correctly or not.(see fig6). 

 

 

 

 

Fig5 : Logic analyzer timing display: Button and Alarm signal 



 

 

 

Fig6 : Logic Analyzer timing Display: Data and RTS signal 

 

 

 
 

Fig7 : Logic analyzer 

 

 

Figure7 shows a typical logic analyzer. They have display screens similar to those of 

oscilloscopes. Most logic analyzers present menus on the screen and give you a keyboard to 

enter choices, some may have mouse as well as network connections to control from work 

stations. Logical analyzers include hard disks and diskettes. It can be attached to many 

signals through ribbons. Since logic analyzer can attach to many signals simultaneously, one 

or more ribbon cables typically attach to the analyzer. 



 

 

 

Logical Analyzer in State Mode: 

In the timing mode, logical analyzer is self clocked. That is, it captures data without 

reference to any events on the circuit. In state mode, they capture data when some particular 

event occur, called a clock occurs in the system. In this mode the logical analyzer see what 

instructions the microprocessor fetched and what data it read from and write to its memory 

and I/O devices. To see what instructions the microprocessor fetched, you connect logical 

analyzer probes to address and data signals of the system and RE signal on the ROM. 

Whenever RE signal raise then logical analyzer capture the address and data signals. The 

captured data is called as trace. The data is valid when RE signal raise. State mode analyzers 

present a text display as state of signals in row as shown in the below figure. 

 

Fig8 : Typical logic analyzer state mode display 

 

The logical analyzer in state mode extremely useful for the software engineer, 

1. Trigger the logical analyzer, if processor never fetch if there is no memory. 

2. Trigger the logical analyzer, if processor writes an invalid value to a particular 

address in RAM. 

3. Trigger the logical analyzer, if processor fetches the first instruction of ISR and 

executed. 

4. If we have bug that rarely happens, leave processor and analyzer running overnight 

and check results in the morning. 

5. There is filter to limit what is captured. 

 

 

Logical analyzers have short comings: 

Even though analyzers tell what processor did, we cannot stop, break the processor, even if it 

did wrong. By the analyzer the processors registers are invisible only we know the contents 

of memory in which the processors can read or write. If program crashes, we cannot examine 

anything in the system. We cannot find if the processor executes out of cache. Even if the 



 

 

program crashes, still emulator let make us see the contents of memory and registers. Most 

emulators capture the trace like analyzers in the state mode. Many emulators have a feature 

called overlay memory, one or more blocks of memory inside the emulator, emulated 

microprocessor can use instead of target machine. 

 

In circuit emulators: 

In-circuit emulators also called as emulator or ICE replaces the processor in target system. 

Ice appears as processor and connects all the signals and drives. It can perform debugging, 

set break points after break point is hit we can examine the contents of memory, registers, 

see the source code, resume the execution. Emulators are extremely useful, it is having the 

power of debugging, acts as logical analyzer. Advantages of logical analyzers over 

emulators: 

 Logical analyzers will have better trace filters, more sophisticated triggering 

mechanisms. 

 Logic analyzers will also run in timing mode. 

 Logic analyzers will work with any microprocessor. 

 With the logic analyzers you can hook up as many as or few connections as you like. 

With the emulator you must connect all of the signal. 

 Emulators are more invasive than logic analyzers. 

 

Software only Monitors: 

One widely available debugging tool often called as Monitor .monitors allow you to run 

software on the actual target, giving the debugging interface to that of In circuit emulator. 

Monitors typically work as follows: 

 One part of the monitor is a small program resides in ROM on the target, this knows how to 

receive software on serial port, across network, copy into the RAM and run on it. Other 

names for monitor are target agent, monitor, debugging kernel and so on. 

 Another part the monitor run on host side, communicates with debugging kernel, provides 

debugging interface through serial port communication network. 

 You write your modules and compile or assemble them. 

 The program on the host cooperates with debugging kernel to download compiled module 

into the target system RAM. Instruct the monitor to set break points, run the system and so 

on. 

 You can then instruct the monitor to set breakpoints. 



 

 

Fig 9: software only the monitor 

 

 

See the above figure, Monitors are extraordinarily valuable, gives debugging interface 

without any modifications. 

 

Disadvantages of Monitors: 

 The target hardware must have communication port to communicate the debugging 

kernel with host program. We need to write the communication hardware driver to 

get the monitor working. 

 At some point we have to remove the debugging kernel from your target system and 

try to run the software without it. 

 Most of the monitors are incapable of capturing the traces like of those logic 

analyzers and emulators. 

 Once a breakpoint is hit, stop the execution can disrupt the real time operations so 

badly. 

Other Monitors: 

The other two mechanisms are used to construct the monitors, but they differ with normal 

monitor in how they interact with the target. The first target interface is with through a ROM 

emulator. This will do the downing programs at target side, allows the host program to set 

break points and other various debugging techniques. 
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UNIT V 

INTRODUCTION TO ADVANCED PROCESSORS  

---------------------------------------------------------------------------------------------------------------- 

SYLLABUS: 

 

Introduction to advanced architectures: ARM and SHARC, processor and memory 

organization and instruction level parallelism; Networked embedded systems: Bus protocols, 

I2C bus and CAN bus; Internet-Enabled systems, design example-Elevator controller.  

 

---------------------------------------------------------------------------------------------------------------- 

 

Unit V contents at a glance: 

 

I. Introduction to advanced architectures 

II. ARM , 

III. SHARC,  

IV. processor and memory organization and instruction level parallelism; 

 

Networked embedded systems:  

I. bus protocols, 

II. I2C bus and CAN bus;  

III. internet-enabled systems,  

IV. design example-elevator controller.  

 

I. INTRODUCTION TO ADVANCED ARCHITECTURES: 

 

Two Computing architectures are available: 

1. von Neumann architecture computer 

2. Harvard architecture 

 

von Neumann architecture computer: 

 

 The memory holds both data and instructions, and can be read or written when given 

an address. A computer whose memory holds both data and instructions is known as a 

von Neumann machine 

 

 The CPU has several internal registers that store values used internally. One of those 

registers is the program counter (PC) ,which holds the address in memory  of an 

instruction. 

 

 The CPU fetches the instruction from memory, decodes the instruction, and executes 

it.  

 

 The program counter does not directly determine what the machine does next, but 

only indirectly by pointing to an instruction in memory.  

 



 

180 
 

 

2. Harvard architecture: 

 

 Harvard machine has separate memories for data and program.  

 The program counter points to program memory, not data memory. 

 As a result, it is harder to write self-modifying programs (programs that write data 

values, then use 

Those values as instructions) on Harvard machines. 

 

 
 

    Advantage: 

 The separation of program and data memories provides higher performance for digital 

signal processing. 

 

 Differences between Von neumann and harvard architecture: 

VON NEUMANN HARVARD ARCHITECTURE 

Same memory holds data, instructions Separate memories for data and instructions 

A single set of address/data buses between  

CPU and memory 

Two sets of address/data buses between  

CPU and memory 

Single memory fetch operation 

 

Harvard allows two simultaneous memory  

fetches 

The code is executed serially and takes more 

clock cycles 

The code is executed in parallel 

Not exactly suitable for DSP  Most DSPs use Harvard architecture for  
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streaming data: 

• greater memory bandwidth; 

• more predictable bandwidth 

There is no exclusive Multiplier It has MAC (Multiply Accumulate) 

No Barrel Shifter is there Barrel Shifter help in shifting and rotating 

operations of the data 

The programs can be optimized in lesser size The program tend to grow big in size 

Used in conventional processors found in 

PCs and Servers, and embedded systems 

with only control functions. 

Used in DSPs and other processors found in 

latest embedded systems and Mobile 

communication systems, audio, speech, image 

processing systems 

 

RISC and CISC Processors: 

RISC CISC 

RISC stands for Reduced Instruction Set 

Computer 

CISC stands for Complex Instruction Set 

Computer 

Hardware plays major role in CISC 

processors 

Software plays major role in CISC 

processors 

RISC processors use single clock to execute 

an instruction 

CISC processors use multiple clocks for 

execution. 

Memory-to-memory access is used for data 

manipulations is RISC processors 

intermediate registers are used for data 

manipulation 

In RISC processors, single word instructions 

are given as inputs 

In CISC processors, instructions of variable 

lengths are given as input, based upon the 

task to be performed 

More lines of code and large memory 

footprint 

High code density 

Compact, uniform instructions and hence 

facilitate pipelining 

Many addressing modes and long 

instructions 

Allow effective compiler optimization Often require manual optimization of 

assembly code  

for embedded systems 

These machines provided a variety of 

instructions that may perform very complex 

tasks, such as string searching 

 

These computers tended to provide 

somewhat fewer and simpler instructions. 
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II. ARM(Advanced RISC Machine) Processor: 

 ARM uses RISC architecture 

 ARM uses assembly language for writing programs 

 ARM instructions are written one per line, starting after the first column.  

 Comments begin with a semicolon and continue to the end of the line.  

 A label, which gives a name to a memory location, comes at the beginning of the line, 

starting in the first column.  

Here is an example:  

           LDR r0,[r8]; a comment  

label  ADD r4,r0,r1 

 

Memory Organization in ARM Processor: 

The ARM architecture supports two basic types of data:  

 The standard ARM word is 32 bits long.  

 The word may be divided into four 8-bit byte 

 ARM allows addresses up to 32 bits long 

 The ARM processor can be configured at power-up to address the bytes 

in a word in either little-endian mode (with the lowest-order byte 

residing in the low-order bits of the word) or big-endian mode 
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Data Operations in ARM: 

 In the ARM processor, arithmetic and logical operations cannot be performed 

directly on memory locations. 

 ARM is a load-store architecture—data operands must first be loaded into the CPU 

and then stored back to main memory to save the results 

ARM Programming Model: 

1. Programming model gives information about various registers supported by ARM 

2. ARM has 16 general-purpose registers, r0 to r15 

3. Except for r15, they are identical—any operation that can be done on one of them can 

be done on the other one also 

4. r15 register is also used as program counter(PC) 

5. current program status register (CPSR): 

 This register is set automatically during every arithmetic, logical, or 

shifting operation.  

 The top four bits of the CPSR hold the following useful information 

about the results of that arithmetic/logical operation: 

 The negative (N) bit is set when the result is negative in two’s-

complement arithmetic.  

 The zero (Z) bit is set when every bit of the result is zero.  

 The carry (C) bit is set when there is a carry out of the 

operation.  

 The overflow (V ) bit is set when an arithmetic operation 

results in an overflow. 

 

 
 

Types of Instructions supported by ARM Processor: 

1. Arithmetic Instructions 

2. Logical Instructions 

3. shift / rotate Instructions 
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4. Comparison Instructions 

5. move instructions 

6. Load store instructions 

 

 
 

Instructions examples: 

 

ADD r0,r1,r2  

 This instruction sets register r0 to the sum of the values stored in r1 and r2. 

ADD r0,r1,#2 (immediate operand are allowed during addition) 

RSB r0, r1, r2 sets r0 to be r2-r1. 

bit clear: BIC r0, r1, r2 sets r0 to r1 and not r2. 

Multiplication:  
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   no immediate operand is allowed in multiplication 

  two source operands must be different registers 

  MLA: The MLA instruction performs a multiply-accumulate operation, particularly useful 

in matrix operations and  signal processing 

             MLA r0,r1,r2,r3 sets r0 to the value r1x r2+r3. 

Shift operations:  

   Logical shift(LSL, LSR) 

   Arithmetic shifts (ASL, ASR) 

 A left shift moves bits up toward the most-significant bits,  

 right shift moves bits down to the least-significant bit in the word.  

 The LSL and LSR modifiers perform left and right logical shifts, filling the 

least-significant bits of the operand with zeroes.  

 The arithmetic shift left is equivalent to an LSL, but the ASR copies the sign 

bit—if the sign is 0, a 0 is copied, while if the sign is 1, a 1 is copied. 

Rotate operations: (ROR, RRX) 

 The rotate modifiers always rotate right, moving the bits that fall off the least-

significant bit up to the most-significant bit in the word.  

 The RRX modifier performs a 33-bit rotate, with the CPSR’s C bit being inserted 

above the sign bit of the word; this allows the carry bit to be included in the rotation 

Compare instructions: (CMP, CMN) 

 

 compare instruction modifies flags values (Negative flag, zero flag, carry flag, 

Overflow flag) 

 CMP r0, r1 computes r0 – r1, sets the status bits, and throws away the result of the 

subtraction.  

 CMN uses an addition to set the status bits.  

 TST performs a bit-wise AND on the operands,  

 while TEQ performs an exclusive-or 

 

Load store instructions: 

 

 ARM uses register-indirect addressing 

 The value stored in the register is used as the address to be fetched from memory; the 

result of that fetch is the desired operand value. 

 LDR r0,[r1] sets r0 to the value of memory location 0x100.  

 Similarly, STR r0,[r1] would store the contents of r0 in the memory location whose 

address is given in r1 

LDR r0,[r1, – r2] 
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ARM Register indirect addressing: 

 
 

LDR r0,[r1, #4] loads r0 from the address r1+ 4. 

 

Sample programs using ARM instruction set: 

 

Expression: x = (a+b)-c 

program:  
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Expression:  

y=a*(b+c) 

 

 

program 3: 

 

ARM Base plus offset addressing mode: 

the register value is added to another value to form the address. 

 For instance, LDR r0,[r1,#16]   loads r0 with the value stored at location r1+16.( r1-base 

address, 16 is offset) 

 

 

Base plus offset addressing mode 

 

 

 

auto indexing 

post indexing 
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Auto-indexing updates the base register, such that LDR r0,[r1,#16]!    ----first adds 16 to the 

value of r1, and then uses that new value as the address. The ! operator causes the base 

register to be updated with the computed address so that it can be used again later. 

Post-indexing does not perform the offset calculation until after the fetch has been 

performed. Consequently, 

 LDR r0,[r1],#16 will load r0 with the value stored at the memory location whose address is 

given by r1, and then add 16 to r1 and set r1 to the new value. 

 

FLOW OF CONTROL INSTRUCTIONS (Branch Instructions): 

 

Branch Instructions  

 1. conditional instructions(BGE-- B is branch, GE is condition) 

 2. unconditional instructions(B) 

 

the following branch instruction B #100 will add 400 to the current PC value 
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example for flow of control programs: 

 

  
 

Branch and Link instruction (BL) for implementing functions or sub routines or 

procedures: 
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**Note : for more programs, refer class notes. 

 

III . SHARC Processor: 

 

Features of SHARC processor: 

1.SHARC stands for Super Harvard Architecture Computer 

2.The ADSP-21060 SHARC chip is made by Analog Devices, Inc.  

3.It is a 32-bit signal processor made mainly for sound, speech, graphics, and 

imaging applications. 

4.It is a high-end digital signal processor designed with RISC techniques. 

5. Number formats: 

    i.  32-bit Fixed Format 

                 Fractional/Integer 

                 Unsigned/Signed 

     ii.  Floating Point 

              32-bit single-precision IEEE floating-point data format 

                40-bit version of the IEEE floating-point data format. 

               16-bit shortened version of the IEEE floating-point data format. 

6. 32 Bit floating point, with 40 bit extended floating point capabilities. 

7. Large on-chip memory. 

8. Ideal for scalable multi-processing applications. 

9. Program memory can store data. 

10. Able to simultaneously read or write data at one location and get instructions 

from another place in memory. 

11. 2 buses 

Data memory bus. 

Program bus. 

12. Either two separate memories or a single dual-port memory 

13. The SHARC incorporates features aimed at optimizing such loops. 



 

191 
 

14. High-Speed Floating Point Capability 

15. Extended Floating Point 

16. The SHARC supports floating, extended-floating and non-floating point. 

17. No additional clock cycles for floating point computations. 

18. Data automatically truncated and zero padded when moved between 32-bit 

memory and internal registers. 

 

SHARC PROCESSOR PROGRAMMING MODEL: 

 

Programming model gives the registers details. The following registers are used in 

SHARC processors for various purposes:  

 

 Register files: R0-R15 (aliased as F0-F15 for floating point) 

 Status registers. 

 Loop registers. 

 Data address generator registers(DAG1 and DAG2) 

 Interrupt registers. 

 16 primary registers (R0-R15) 

 16 alternate registers (F0-F15) 

 each register can hold 40 bits 

 R0 – R15 are for Fixed-Point Numbers 

 F0 – F15 are for Floating-Point Numbers  

 

SHARC Programming modelR0  

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13

R14

R15

ASTAT

STKY

MODE1

031

0

0

31

31

 
Status registers:  

ASTAT: arithmetic status. 

STKY: sticky. 

MODE 1: mode 1. 

 The STKY register is a sticky version of ASTAT register, the STKY bits are set 

along with ASTAT register bits but not cleared until cleared by an instruction. 

 The SHARC perform saturation arithmetic on fixed point values, saturation mode is 

controlled by ALUSAT bit in MODE1 register. 

 All ALU operations set AZ (zero), AN (negative), AV (overflow), AC (fixed-point 

carry), AI (floating-point invalid) bits in ASTAT. 
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Data Address Generators(DAG) 

Data Address Generators
There are two data address generators (DAG1 & DAG2) for 

addressing memory indirectly (with pre-modify or post-modify).

Data address generator 1 (DAG1) generates 32-bit addresses on the 

Data Memory Address Bus. 

Data address generator 2 (DAG2) generates 24-bit addresses on the 

Program Memory Address Bus.

Each DAG has four types of registers:

The Index (I) register acts as a pointer to memory.

The Modify (M) register contains the increment value for 

advancing the pointer.

Base and Limit Registers (More on the next page).

 
 Two data address generators (DAGs): 

program memory and data memory. 

DAG1 registers

I0

I1

I2

I3

I4

I5

I6

I7

M0

M1

M2

M3

M4

M5

M6

M7

L0

L1

L2

L3

L4

L5

L6

L7

B0

B1

B2

B3

B4

B5

B6

B7
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DAG2 registers

I8

I9

I10

I11

I12

I13

I14

I15

M8

M9

M10

M11

M12

M13

M14

M15

L8

L9

L10

L11

L12

L13

L14

L15

B8

B9

B10

B11

B12

B13

B14

B15

 
Multifunction computations or instruction level parallel processing: 

Can issue some computations in parallel: 

 dual add-subtract; 

 fixed-point multiply/accumulate and add, subtract, average  

 floating-point multiply and ALU operation 

 multiplication and dual add/subtract 

  

Pipelining in SHARC processor: 

Instructions are processed in three cycles: 

  Fetch instruction from memory 

  Decode the opcode and operand 

  Execute the instruction 

 SHARC supports delayed and non-delayed branches 

 Specified by bit in branch instruction 

 2 instruction branch delay slot 

 Six Nested Levels of Looping in Hardware 
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Bus Architecture: 

Twin Bus Architecture: 

 1 bus for Fetching Instructions 

 1 bus for Fetching Data 

Improves multiprocessing by allowing more steps to occur during each clock 

Addressing modes provided by DAG in SHARC Processor: 

1. The Simplest addressing mode 

2. Absolute address 

3. post modify with update mode 

4. base-plus-offset mode 

5. Circular Buffers 

6. Bit reversal addressing mode 

1. The Simplest addressing mode provides an immediate value that can represent the 

address. 

Example : R0=DM(0X200000) 

R0=DM(_a) i.e load R0 with the contents of the variable a  

2. An Absolute address has entire address in the instruction, space inefficient, address 

occupies the more space. 

3. A post modify with update mode allows the program to sweep through a range of 

address. This uses I register and modifier, I registers shows the address value and modifier 

(M register value or Immediate value) is update the value. 

For load  

R0=DM(I3,M1) 

For store : DM(I3,M1)=R0  

4. The base-plus-offset mode here the address computed as I+M where I is the base and 

M modifier or offset.  

                    Example: R0=DM(M1, I0) 

                    I0=0x2000000 and M0= 4 then the value  for R0 is loaded from 0x2000004 

5. Circular Buffers is an array of n elements is n+1th element is referenced then the 

location is 0. It is wrapping around from end to beginning of the buffer.  
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This mode uses L and B registers, L registers is set with +ve and nonzero value at staring 

point, B register is stored with same value as the I register is store with base address. 

If I register is used in post modify mode, the incremental value is compared to the sum of 

L and B registers, if end of the buffer is reached then I register is wrapped around.  

6. Bit reversal addressing mode : this is used in Fast Fourier Transform (FFT ). Bit 

reversal can be performed only in I0 and I8 and controlled by BR0 and BR8 bits in the 

MODE1 register. 

SHARC allows two fetches per cycle. 

F0=DM(M0,I0);  FROM DATA MEMORY 

F1=PM(M8,I8); FROM PROGRAM MEMORY 

BASIC addressing: 

Immediate value: 

        R0 = DM(0x20000000); 

Direct load: 

        R0 = DM(_a); ! Loads contents of _a 

Direct store: 

         DM(_a)= R0; ! Stores R0 at _a 

SHARC programs examples: 

expression: 

x = (a + b) - c; 

program: 

R0 = DM(_a) ! Load a 

R1 = DM(_b); ! Load b 

R3 = R0 + R1; 

R2 = DM(_c); ! Load c 

R3 = R3-R2; 

DM(_x) = R3; ! Store result in x 

expression : 
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y = a*(b+c); 

program: 

R1 = DM(_b) ! Load b 

R2 = DM(_c); ! Load c 

R2 = R1 + R2; 

R0 = DM(_a); ! Load a 

R2 = R2*R0; 

DM(_y) = R23; ! Store result in y 

note: for programs , refer class notes 

SHARC jump: 

Unconditional flow of control change: 

JUMP foo  

Three addressing modes: 

direct; 

indirect; 

PC-relative. 

ARM vs. SHARC  

• ARM7 is von Neumann architecture  

• ARM9 is Harvard architecture  

• SHARC is modified Harvard architecture. – On chip memory (> 1Gbit) evenly split 

between program memory (PM) and data memory (DM) – Program memory can be used to 

store some data. – Allows data to be fetched from both memory in parallel 
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The SHARC ALU operations: 

1. Fixed point ALU operations 

2. Floating point ALU operations 

               3. Shifter operations in SHARC 

 

Floating point ALU operations: 
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UNIT V - part II  

Network Embedded System 

Contents: 

 

I. bus protocols, 

II. I2 C bus , 

III. CAN bus; 

IV. internet enabled systems,  

V. design example elevator controller. 

  

I. BUS PROTOCOLS: 

For serial data communication between different peripherals components , the following 

standards are used : 

 VME 

 PCI 

 ISA etc 

For distributing embedded applications, the following interconnection network protocols are 

there: 

 I
2
C 

 CAN etc 

 I
2
C : 

 The I 2 C bus  is a well-known bus commonly used to link microcontrollers into 

systems 

 I 2C is designed to be low cost, easy to implement, and of moderate speed up to 100 

KB/s for the standard bus and up to 400 KB/s for the extended bus 

 it uses only two lines: the serial data line (SDL) for data and the serial clock line 

(SCL), which indicates when valid data are on the data line 
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The basic electrical interface of I2C to the bus is shown in Figure 

 

 A pull-up resistor keeps the default state of the signal high, and transistors are used 

in each bus device to pull down the signal when a 0 is to be transmitted.  

 Open collector/open drain signaling allows several devices to simultaneously write 

the bus without causing electrical damage. 

 The open collector/open drain circuitry allows a slave device to stretch a clock signal 

during a read from a slave.  

 The master is responsible for generating the SCL clock, but the slave can stretch the 

low period of the clock 

 The I2C bus is designed as a multimaster bus—any one of several different devices 

may act as the master at various times.  

 As a result, there is no global master to generate the clock signal on SCL. Instead, a 

master drives both SCL and SDL when it is sending data. When the bus is idle, both 

SCL and SDL remain high. 



 

201 
 

 When two devices try to drive either SCL or SDL to different values, the open 

collector/ open drain circuitry prevents errors 

Address of devices: 

 A device address is 7 bits in the standard I2C definition (the extended I2C allows 10-

bit addresses).  

 The address 0000000 is used to signal a general call or bus broadcast, which can be 

used to signal all devices simultaneously. A bus transaction comprised a series of 1-

byte transmissions and an address followed by one or more data bytes.  

data-push programming : 

 I2C encourages a data-push programming style. When a master wants to write a slave, 

it transmits the slave’s address followed by the data.  

 Since a slave cannot initiate a transfer, the master must send a read request with the 

slave’s address and let the slave transmit the data.  

 Therefore, an address transmission includes the 7-bit address and 1 bit for data 

direction: 0 for writing from the master to the slave and 1 for reading from the slave 

to the master  

 

Bus transaction or transmission process: 

1) start signal (SCL high and sending 1 to 0 in SDL) 

2) followed by device address of 7 bits 

3) RW(read / write bit) set to either 0 or 1 

4) after address, now the data will be sent 

5) after transmitting the complete data, the transmission stops. 
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The below figure is showing write and read bus transaction: 

 

State transition graph: 

 

 

Transmitting byte in I2C Bus (Timing Diagram): 

 

1. initially, SCL will be high, SDL will be low. 

2. data byte will be transmitted. 

3. after transmitting every 8 bits, an Acknowledgement will come  

4. then stop signal is issued by setting both SCL and SDL high. 
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I2C interface on a microcontroller: 

 

Controlled Area Network: 

The CAN bus  was designed for automotive electronics and was first used in production cars 

in 1991. 

The CAN bus uses bit-serial transmission. CAN runs at rates of 1 MB/s over a twisted pair 

connection of 40 m.  

An optical link can also be used. The bus protocol supports multiple masters on the bus. 

 

The above figure shows CAN electrical interface:  

 each node in the CAN bus has its own electrical drivers and receivers that connect the 

node to the bus in wired-AND fashion. 



 

204 
 

 In CAN terminology, a logical 1 on the bus is called recessive and a logical 0 is 

dominant.  

 The driving circuits on the bus cause the bus to be pulled down to 0 if any node on the 

bus pulls the bus down (making 0 dominant over 1).  

 When all nodes are transmitting 1s, the bus is said to be in the recessive state; when a 

node transmits a 0, the bus is in the dominant state. Data are sent on the network in 

packets known as data frames. 

CAN DATA FRAME: 

 

Explanation for data frame : 

 A data frame starts with a 1 and ends with a string of seven zeroes. (There are at least 

three bit fields between data frames.)  

 The first field in the packet contains the packet’s destination address and is known as 

the arbitration field. The destination identifier is 11 bits long.  

 The trailing remote transmission request (RTR) bit is set to 0 if the data frame is used 

to request data from the device specified by the identifier.  

 When RTR 1, the packet is used to write data to the destination identifier.  

 The control field provides an identifier extension and a 4-bit length for the data field 

with a 1 in between. The data field is from 0 to 64 bytes, depending on the value 

given in the control field.  

 A cyclic redundancy check (CRC) is sent after the data field for error detection.  

 The acknowledge field is used to let the identifier signal whether the frame was 

correctly received: The sender puts a recessive bit (1) in the ACK slot of the 

acknowledge field; if the receiver detected an error, it forces the value to a dominant 

(0) value. 
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 If the sender sees a 0 on the bus in the ACK slot, it knows that it must retransmit. The 

ACK slot is followed by a single bit delimiter followed by the end-of-frame field. 

Architecture of CAN controller: 

 

 

 The controller implements the physical and data link layers;  

 since CAN is a bus, it does not need network layer services to establish end-to-end 

connections. 

 The protocol control block is responsible for determining when to send messages, 

when a message must be resent due to arbitration losses, and when a message should 

be received. 

INTERNET ENABLED SYSTEMS: 

IP Protocol: 

 The Internet Protocol (IP)  is the fundamental protocol on the Internet. 

 It provides connectionless, packet-based communication. 

 it is an internetworking standard. 

 an Internet packet will travel over several different networks from source to 

destination.  

 The IP allows data to flow seamlessly through these networks from one end user to 

another 

 Figure 8.19 explanation: 

 IP works at the network layer.  
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 When node A wants to send data to node B, the application’s data pass through 

several layers of the protocol stack to send to the IP.  

 IP creates packets for routing to the destination, which are then sent to the data link 

and physical layers.  

 A node that transmits data among different types of networks is known as a router. 

 

IP Packet Format: 

 The header and data payload are both of variable length.  

 The maximum total length of the header and data payload is 65,535 bytes.  

 An Internet address is a number (32 bits in early versions of IP, 128 bits in IPv6). The 

IP address is typically written in the form xxx.xx.xx.xx. 

 packets that do arrive may come out of order. This is referred to as best-effort 

routing. Since routes for data may change quickly with subsequent packets being 

routed along very different paths with different delays, real-time performance of IP 

can be hard to predict. 
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relationships between IP and higher-level Internet services: 

Using IP as the foundation, TCP is used to provide File Transport Protocol for batch file 

transfers, Hypertext Transport Protocol (HTTP) for World Wide Web service, Simple Mail 

Transfer Protocol for email, and Telnet for virtual terminals. A separate transport protocol, 

User Datagram Protocol, is used as the basis for the network management services provided 

by the Simple Network Management Protocol 

 

  


