
LECTURE NOTES

ON

EMBEDDED SYSTEMS

B.Tech VII semester (AEC016)

(Autonomous-IARE-R16)

Mr. S Lakshmanachari

(Assistant Professor)

Dr. S China Venkateswarlu

(Professor)

ELECTRONICS AND COMMUNICATION ENGINEERING

INSTITUTE OF AERONAUTICAL ENGINEERING
(AUTONOMOUS)

DUNDIGAL, HYDERABAD - 500 043

SYALLABUS

Unit-I EMBEDDED COMPUTING

Definition of embedded system, embedded systems vs. general computing systems, history of embedded

systems, complex systems and microprocessor, classification, major application areas, the embedded

system design process, characteristics and quality attributes of embedded systems, formalisms for system
design, design examples

Unit-II INTRODUCTION TO EMBEDDED C AND APPLICATIONS

C looping structures, register allocation, function calls, pointer aliasing, structure arrangement, bit fields,

unaligned data and endianness, inline functions and inline assembly, portability issues; Embedded systems

programming in C, binding and running embedded C program in Keil IDE, dissecting the program,

building the hardware; Basic techniques for reading and writing from I/O port pins, switch bounce;

Applications: Switch bounce, LED interfacing, interfacing with keyboards, displays, D/A and A/D
conversions, multiple interrupts, serial data communication using embedded C interfacing

Unit-III RTOS FUNDAMENTALS AND PROGRAMMING

Operating system basics, types of operating systems, tasks and task states, process and threads,

multiprocessing and multitasking, how to choose an RTOS ,task scheduling, semaphores and queues, hard

real-time scheduling considerations, saving memory and power. Task communication: Shared memory,

message passing, remote procedure call and sockets; Task synchronization: Task communication

synchronization issues, task synchronization techniques, device drivers.

Unit-IV EMBEDDED SOFTWARE DEVELOPMENT TOOLS

Host and target machines, linker/locators for embedded software, getting embedded software into the
target system; Debugging techniques: Testing on host machine, using laboratory tools, an example

system.

Unit-V INTRODUCTION TO ADVANCED PROCESSORS

Introduction to advanced architectures: ARM and SHARC, processor and memory organization and

instruction level parallelism; Networked embedded systems: Bus protocols, I2C bus and CAN bus;
Internet-EnAnalyzed systems, design example-Elevator controller.

Text Books:

1. Shibu K.V, ―Introduction to Embedded Systems‖, Tata McGraw Hill Education Private Limited, 2

nd Edition, 2009.

2. Raj Kamal, ―Embedded Systems: Architecture, Programming and Design‖, Tata McGraw-Hill

Education, 2 nd Edition, 2011.

3. Andrew Sloss, Dominic Symes,Wright, ―ARM System Developer's Guide Designing and

Optimizing System Software‖, 1st Edition, 2004.

Reference Books:

1. Wayne Wolf, ― Computers as Components, Principles of Embedded Computing Systems Design‖,

Elsevier, 2 nd Edition, 2009.
2. Dr. K. V. K. K. Prasad, ― Embedded / Real-Time Systems: Concepts, Design & Programming‖,

dreamtech publishers, 1 st Edition, 2003.

3. Frank Vahid, Tony Givargis, ―Embedded System Design‖, John Wiley & Sons, 3 rd Edition,

2006.

4. Lyla B Das, ―Embedded Systems‖ , Pearson Education, 1 st Edition, 2012.

5. David E. Simon, ―An Embedded Software Primer‖, Addison-Wesley, 1 st Edition, 1999.
6. Michael J. Pont, ―Embedded C‖, Pearson Education, 2nd Edition, 2008.

UNIT-I

EMBEDDED COMPUTING

--

SYLLABUS:

Definition of embedded system, embedded systems vs. general computing systems, history of

embedded systems, complex systems and microprocessor, classification, major application

areas, the embedded system design process, characteristics and quality attributes of

embedded systems, formalisms for system design, design examples.

 --

INTRODUCTION:

System Definition:

A way of working, organizing or performing one or many tasks according to a fixed set

of rules, program or plan.

Also an arrangement in which all units assemble and work together according to a

program or plan.

Examples of Systems:

 Time display system – A watch

 Automatic cloth washing system – A washing machine

Embedded System Definitions:

“An embedded system is a system that has software embedded into computer-hardware,

which makes a system dedicated for an application (s) or specific part of an application

or product or part of a larger system.”

(Or)

An embedded system is one that has dedicated purpose software embedded in computer

hardware.

(Or)

It is a dedicated computer based system for an application(s) or product. It may be an

independent system or a part of large system. Its software usually embeds into a

ROM (Read Only Memory) or flash.”

(Or)

It is any device that includes a programmable computer but is not itself intended to be a

general purpose computer.”

In simple words, Embedded System = (Hardware + Software) dedicated for a

particular task with its own memory.

The components of embedded system hardware:

MICROPROCESSOR:

 Microprocessor is a multipurpose, programmable device that accepts digital data as

input, processes it according to instructions stored in its memory, and provides

results as output.

or

 A microprocessor is a multipurpose, programmable, clock-driven, register-based

electronic device that reads binary instructions from a storage device called memory

accepts binary data as input and processes data according to instructions, and

provides result as output.

MICROCONTROLLER:

 A microcontroller (sometimes abbreviated µC, uC or MCU) is a small computer

on a single integrated circuit containing a processor core, memory, and

programmable input/output peripherals. Program memory in the form of NOR

flash or OTP ROM is also often included on chip, as well as a typically small

amount of RAM.

or

 CPUs with integrated memory or peripheral interfaces

DIGITAL SIGNAL PROCESSOR:

 Dedicated processors .A digital signal processor (DSP) is a specialized

microprocessor (or a SIP block), with its architecture optimized for the

operational needs of digital signal processing

IMAGE PROCESSOR:

 An image processor, image processing engine, also called media processor, is a

specialized digital signal processor (DSP) used for image processing in digital
cameras, mobile phones or other devices.

EMBEDDED COMPUTING SYSTEM:

 An embedded system is a special-purpose system in which the computer is

completely encapsulated by the device it controls. Unlike a general-purpose

computer, such as a personal computer, an embedded system performs pre-

defined tasks, usually with very specific requirements. Since the system is

dedicated to a specific task, design engineers can optimize it, reducing the size

and cost of the product.

 Some examples of embedded systems include ATMs, cell phones, printers,
thermostats, calculators, and videogame consoles.

THE CLASSIFICATION OF EMBEDDED SYSTEM IS BASED ON FOLLOWING

CRITERIA’S:

1. On generation

2. On complexity & performance

3. On deterministic behaviour

4. On triggering

1. On generation:

(i) First generation (1G):

 Built around 8bit microprocessor & microcontroller.

 Simple in hardware circuit & firmware developed.

 Examples: Digital telephone keypads.

(ii) Second generation (2G):

 Built around 16-bit μp & 8-bit μc.

 They are more complex & powerful than 1G μp & μc.

Examples: SCADA systems

(iii) Third generation (3G):
 Built around 32-bit μp & 16-bit μc.
 Concepts like Digital Signal Processors (DSPs), Application Specific Integrated
Circuits (ASICs) solved. Examples: Robotics, Media, etc.

(iv) Fourth generation:

 Built around 64-bit μp & 32-bit μc.

 The concept of System on Chips (SoC), Multicore Processors evolved.

 Highly complex & very powerful. Examples: Smart Phones.

2. On complexity & performance

(i) Small-scale Embedded Systems:
o Simple in application need

o Performance not time-critical.

o Built around low performance & low cost 8 or 16 bit μp/μc.

Example: an electronic toy

(ii) Medium-scale Embedded Systems:
o Slightly complex in hardware & firmware requirement.

o Built around medium performance & low cost 16 or 32 bit μp/μc.

o Usually contain operating system. Examples: Industrial machines.

(iii) Large-scale Embedded Systems:
 Highly complex hardware & firmware.

 Built around 32 or 64 bit RISC μp/μc or PLDs or Multicore Processors.

 Response is time-critical. Examples: Mission critical applications.

3. On deterministic behavior

This classification is applicable for “Real Time” systems. The task execution

behavior for an embedded system may be deterministic or non-deterministic. Based

on execution behavior Real Time embedded systems are divided into two types

 Hard Real Time embedded systems

 Soft Real Time embedded systems

4 On triggering

Embedded systems which are “Reactive” in nature can be based on triggering. Reactive

systems can be:
 Event triggered
 Time triggered

COMPLEX SYSTEM AND MICROPROCESSORS:

 Three main tasks or components in embedded system design:

o Selecting and integrating hardware to give computer like functionalities

o Dumping main application software generally into flash or ROM and the

application software performs concurrently the number of tasks.

o Integrating with a real time operating system (RTOS), this supervises the

application software tasks running on the hardware and organizes the

accesses to system resources according to priorities and timing constraints of

tasks in the system.

Embedding Computers:

 Whirlwind, a computer designed at MIT in the late 1940s and early 1950s.

Whirlwind was also the first computer designed to support real-time operation and

was originally conceived as a mechanism for controlling an aircraft simulator. It

was extremely large physically compared to today’s computers (e.g., it contained

over 4,000 vacuum tubes).

 Very-large-scale integration (VLSI) is the process of creating an integrated circuit

(IC) by combining thousands of transistors into a single chip. VLSI began in the

1970s. A microprocessor is a single-chip CPU. Very large scale integration

(VLSI) technology allowed us to put a complete CPU on a single chip since

1970s, but those CPUs were very simple.

 In 1971 the first microprocessor the Intel 4004 invented by Ted Hoff, was

designed for an embedded application, namely, a calculator. The calculator was

not a general-purpose computer—it merely provided basic arithmetic functions.

The HP-35 was the first handheld calculator to perform transcendental

functions. It was introduced in 1972, so it used several chips to implement the

CPU, rather than a single-chip microprocessor.

 Automobile designers started making use of the microprocessor soon after single-

chip CPUs became available. The most important and sophisticated use of

microprocessors in automobiles was to control the engine: determining when

spark plugs fire, controlling the fuel/air mixture, and so on.

 Microprocessors are usually classified according to their word length.

o An 8-bit microcontroller is designed for low-cost applications and

includes on-board memory and I/O devices

o 16-bit microcontroller is often used for more sophisticated

applications that may require either longer word lengths or off-chip

I/O and memory;

o 32-bit RISC microprocessor offers very high performance for computation-

intensive applications.

 House Hold uses of microprocessor:

o The typical microwave oven has at least one microprocessor to control oven

operation.

o Many houses have advanced thermostat systems, which change the

temperature level at various times during the day.

o The modern camera is a prime example of the powerful features that

can be added under microprocessor control.

o Digital Television uses embedded processors

APPLICATIONS OF EMBEDDED SYSTEMS IN VARIOUS SECTORS:

We can find applications of embedded systems in following sectors:

 Daily Life Electronic appliances(Lift, Microwave Oven, Refrigerator, Washing

Machine)
 Health Care(X-ray, ECG, Cardiograph, diseases diagnosis devices etc)
 Education (Laptop or desktop, projector, printer, calculator, lab equipments etc)
 Communication(Mobile phone, satellite, Modem, Network Hub, Router, Telephone,

Fax)
 Security System(CC Camera, X ray Scanner, RFID System, Password

protected door, Face detection)
 Entertainment(Television etc)
 Banking System(ATM etc)
 Automation
 Navigation
 Consumer Electronics: Camcorders, Cameras
 Household appliances: Washing machine, Refrigerator.
 Automotive industry: Anti-lock breaking system(ABS), engine control
 Home automation & security systems: Air conditioners, sprinklers, fire alarms.
 Telecom: Cellular phones, telephone switches.
 Computer peripherals: Printers, scanners.
 Computer networking systems: Network routers and switches.

 Healthcare: EEG, ECG machines.

 Banking & Retail: Automatic teller machines, point of sales.
 Card Readers: Barcode, smart card readers

EXAMPLE:

BMW 850i brake and stability control system

 The BMW 850i was introduced with a sophisticated system for controlling the

wheels of the car.

 An antilock brake system (ABS) reduces skidding by pumping the brakes. An

automatic stability control (ASC _ T) system intervenes with the engine during

maneuvering to improve the car’s stability.

 These systems actively control critical systems of the car; as control systems,

they require inputs from and output to the automobile.

 Let’s first look at the ABS. The purpose of an ABS is to temporarily release the

brake on a wheel when it rotates too slowly—when a wheel stops turning, the

car starts skidding and becomes hard to control. It sits between the hydraulic

pump, which provides power to the brakes, and the brakes themselves as seen in

the below diagram. The ABS system uses sensors on each wheel to measure the

speed of the wheel. The wheel speeds are used by the ABS system to determine

how to vary the hydraulic fluid pressure to prevent the wheels from skidding.

 The ASC _ T system’s job is to control the engine power and the brake to

improve the car’s stability. The ASC _ T controls four different systems:

throttle, ignition timing, differential brake, and (on automatic transmission cars)

gear shifting.

Characteristics of Embedded Computing Applications:

a. Complex Algorithms

b. User Interface

c. Real Time

d. Multirate

e. Manufacturing Cost

f. Power

 Complex algorithms: The operations performed by the microprocessor may be

very sophisticated. For example, the microprocessor that controls an

automobile engine must perform complicated filtering functions to optimize the

performance of the car while minimizing pollution and fuel utilization.

 User interface: Microprocessors are frequently used to control complex user

interfaces that may include multiple menus and many options. The moving

maps in Global Positioning System (GPS) navigation are good examples of

sophisticated user interfaces.

To make things more difficult, embedded computing operations must often be

performed to meet deadlines:

 Real time: Many embedded computing systems have to perform in real time— if

the data is not ready by a certain deadline, the system breaks. In some cases,

failure to meet a deadline is unsafe and can even endanger lives. In other cases,

missing a deadline does not create safety problems but does create unhappy

customers—missed deadlines in printers, for example, can result in scrambled

pages.

 Multirate: Not only must operations be completed by deadlines, but many

embedded computing systems have several real-time activities going on at the

same time. They may simultaneously control some operations that run at slow

rates and others that run at high rates. Multimedia applications are prime examples

of multirate behaviour. The audio and video portions of a multimedia stream run

at very different rates, but they must remain closely synchronized. Failure to meet

a deadline on either the audio or video portions spoils the perception of the entire

presentation.

Costs of various sorts are also very important:

 Manufacturing cost: The total cost of building the system is very important in

many cases. Manufacturing cost is determined by many factors, including the

type of microprocessor used, the amount of memory required, and the types of

I/O devices.

 Power and energy: Power consumption directly affects the cost of the hardware,

since a larger power supply may be necessary. Energy consumption affects battery

life, which is important in many applications, as well as heat consumption, which

can be important even in desktop applications.

Why Use Microprocessors?

 There are many ways to design a digital system: custom logic, field-programmable

gate arrays (FPGAs), and so on.

 Why use microprocessors? There are two answers:

o Microprocessors are a very efficient way to implement digital systems.

o Microprocessors make it easier to design families of products that can be

built to provide various feature sets at different price points and can be

extended to provide new features to keep up with rapidly changing

markets.

Other reasons are

 Predesigned instruction set processor may in fact result in faster implementation of

your application than designing your own custom logic.

 But there are two factors that work together to make microprocessor-based designs fast.

o First, microprocessors execute programs very efficiently. Modern RISC

processors can execute one instruction per clock cycle most of the time and

high performance processors can execute several instructions per cycle.

o Second, microprocessor manufacturers spend a great deal of money to

make their CPUs run very fast. With the slight changes designer can make

the microprocessor to run at the highest possible speed.

 Microprocessors are efficient utilizers of logic

 Microprocessors can be used for many different algorithms simply by changing the

program it executes.

 The microprocessors allow program design to be separated from the design of

hardware on which programs will be running.

Challenges in Embedded Computing System Design:

i. How much hardware do we need?

ii. How do we meet deadlines?

iii. How do we minimize power consumption?

iv. How do we design for upgradability?

v. Does it really work?

vi. Complex testing

vii. Limited observability and controllability

viii. Restricted development environments

External constraints are one important source of difficulty in embedded system design.

Let’s consider some important problems that must be taken into account in embedded

system design.

How much hardware do we need?

We have a great deal of control over the amount of computing power we apply to our

problem. We cannot only select the type of microprocessor used, but also select the

amount of memory, the peripheral devices, and more. Since we often must meet both

performance deadlines and manufacturing cost constraints, the choice of hardware is

important—too little hardware and the system fails to meet its deadlines, too much

hardware and it becomes too expensive.

How do we meet deadlines?

The brute force way of meeting a deadline is to speed up the hardware so that the

program runs faster. Of course, that makes the system more expensive. It is also

entirely possible that increasing the CPU clock rate may not make enough difference to

execution time, since the program’s speed may be limited by the memory system.

How do we minimize power consumption?

In battery-powered applications, power consumption is extremely important. Even in

non battery applications, excessive power consumption can increase heat dissipation.

One way to make a digital system consume less power is to make it run more slowly,

slowing down the system can obviously lead to missed deadlines. Careful design is

required to slow down the noncritical parts of the machine for power consumption

while still meeting necessary performance goals.

How do we design for upgradability?

The hardware platform may be used over several product generations or for several

different versions of a product in the same generation, with few or no changes.

However, we want to be able to add features by changing software.

Does it really work?

Reliability is always important when selling products—customers rightly expect that

products they buy will work. Reliability is especially important in some applications. If

we wait until we have a running system and try to eliminate the bugs, we will be too

late—we won’t find enough bugs, it will be too expensive to fix them, and it will take

more time.

Let’s consider some ways in which the nature of embedded computing machines makes

their design more difficult.

Complex testing: Exercising an embedded system is generally more difficult than

typing in some data. We may have to run a real machine in order to generate the proper

data. The timing of data is often important, meaning that we cannot separate the testing

of an embedded computer from the machine in which it is embedded.

Limited observability and controllability: Embedded computing systems usually do

not come with keyboards and screens. This makes it more difficult to see what is going

on and to affect the system’s operation. We may be forced to watch the values of

electrical signals on the microprocessor bus, for example, to know what is going on

inside the system. Moreover, in real-time applications we may not be able to easily stop

the system to see what is going on inside.

Restricted development environments: The development environments for embedded

systems (the tools used to develop software and hardware) are often much more limited

than those available for PCs and workstations. We generally compile code on one type

of machine, such as a PC, and download it onto the embedded system. To debug the

code, we must usually rely on programs that run on the PC or workstation and then

look inside the embedded system.

THE EMBEDDED SYSTEM DESIGN PROCESS

 The embedded system design process aimed at two objectives.

o First, it will give us an introduction to the various steps in embedded system

design Second, it will allow us to consider the design methodology itself

 A design methodology is important for three reasons.

o First, to ensure that we have done everything we need.

o Second, it allows us to develop computer-aided design tools.
o Third, it makes members of a design team to

communicate easily Designing can be done in two ways.
They are

■ Top down

■ Bottom –up

Figure 1.1 summarizes the major steps in the embedded system design process. In this

top–down view, we start from the system requirements. In bottom up approach we

start with components. Specification, we create a more detailed description of what we

want. But the specification states only how the system behaves, not how it is built.

The details of the system’s internals begin to take shape when we develop the

architecture, which gives the system structure in terms of large components. Once we

know the components we need, we can design those components, including both

software modules and any specialized hardware we need. Based on those components,

we can finally build a complete system. In this section we will consider design from the

top–down—we will begin with the most abstract description of the system.

The alternative is a bottom–up view in which we start with components to build a

system. Bottom–up design steps are shown in the figure as dashed-line arrows. We

need bottom–up design because we do not have perfect insight into how later stages

of the design process will turn out.

We need to consider the major goals of the design:

 Manufacturing cost;

 Performance (both overall speed and deadlines); and

 Power consumption.

We must also consider the tasks we need to perform at every step in the design

process. At each step in the design, we add detail:

 We must analyze the design at each step to determine how we can meet the

specifications.

 We must then refine the design to add detail.

 And we must verify the design to ensure that it still meets all system goals, such

as cost, speed, and so on.

1. Requirements:

Clearly, before we design a system, we must know what we are designing. The initial

stages of the design process capture this information for use in creating the architecture

and components. We generally proceed in two phases:

1. First, we gather an informal description from the customers known as

requirements;

2. Second we refine the requirements into a specification that contains enough

information to begin designing the system architecture.

Separating out requirements analysis and specification is often necessary

because of the large gap between what the customers can describe about the

system they want and what the architects need to design the system.

Requirements may be functional or non functional.

Typical non functional requirements include:

 Performance: The speed of the system is often a major consideration both for the

usability of the system and for its ultimate cost. As we have noted, performance may

be a combination of soft performance metrics such as approximate time to perform a

user-level function and hard deadlines by which a particular operation must be

completed.

 Cost: The target cost or purchase price for the system is almost always a

consideration. Cost typically has two major components:

 Manufacturing cost includes the cost of components and assembly

 Nonrecurring engineering (NRE) costs include the personnel and other

costs of designing the system.

 Physical size and weight: The physical aspects of the final system can vary greatly

depending upon the application. An industrial control system for an assembly line

may be designed to fit into a standard-size rack with no strict limitations on

weight. A handheld device typically has tight requirements on both size and

weight that can ripple through the entire system design.

 Power consumption: Power, of course, is important in battery-powered systems

and is often important in other applications as well. Power can be specified in the

requirements stage in terms of battery life.

 Validating a set of requirements is ultimately a psychological task since it requires

understanding both what people want and how they communicate those needs. One

good way to refine at least the user interface portion of a system’s requirements is to

build a mock-up. The mock-up may use scanned data to simulate functionality in a

restricted demonstration, and it may be executed on a PC or a workstation.

 Requirements analysis for big systems can be complex and time consuming.

However, capturing a relatively small amount of information in a clear, simple

format is a good start towards understanding system requirements. As part of

system design to analyze requirements, we will use a simple requirements

methodology. Figure 1.2 shows a sample requirements form that can be filled out

at the start of the project. Let’s consider the entries in the form:

■ Name: This is simple but helpful. Giving a name to the project should tell the purpose

of the machine.

■ Purpose: This should be a brief one- or two-line description of what the system is

supposed to do. If you can’t describe the essence of your system in one or two lines,

chances are that you don’t understand it well enough.

■ Inputs and outputs: These two entries are more complex than they seem. The inputs

and outputs to the system encompass a wealth of detail:

— Types of data: Analog electronic signals? Digital data? Mechanical inputs?

— Data characteristics: Periodically arriving data, such as digital audio samples?
How many bits per data element?

— Types of I/O devices: Buttons? Analog/digital converters? Video displays?

■ Functions: This is a more detailed description of what the system does. A good way

to approach this is to work from the inputs to the outputs: When the system receives an

input, what does it do? How do user interface inputs affect these functions? How do

different functions interact?

■ Performance: Many embedded computing systems spend at least some time to

control physical devices or processing data coming from the physical world. In most of

these cases, the computations must be performed within a certain time.

■ Manufacturing cost: This includes primarily the cost of the hardware components.

Even if you don’t know exactly how much you can afford to spend on system

components, you should have some idea of the eventual cost range. Cost has a

substantial influence on architecture.

■ Power: Similarly, you may have only a rough idea of how much power the system

can consume, but a little information can go a long way. Typically, the most important

decision is whether the machine will be battery powered or plugged into the wall.

Battery-powered machines must be much more careful about how they spend energy.

■ Physical size and weight: You should give some indication of the physical size of the

system that helps to take architectural decisions.

After writing the requirements, you should check them for internal consistency. To

practice the capture of system requirements, Example 1.1 creates the requirements

for a GPS moving map system.

Example 1.1

Requirements analysis of a GPS moving map

The moving map is a handheld device that displays for the user a map of the terrain

around the user’s current position; the map display changes as the user and the map

device change position. The moving map obtains its position from the GPS, a

satellite-based navigation system. The moving map display might look something

like the following figure.

What requirements might we have for our GPS moving map? Here is an initial list:

■ Functionality: This system is designed for highway driving and similar uses. The

system should show major roads and other landmarks available in standard

topographic databases.

■ User interface: The screen should have at least 400_600 pixel resolution. The

device should be controlled by no more than three buttons. A menu system should

pop up on the screen when buttons are pressed to allow the user to make selections

to control the system.

■ Performance: The map should scroll smoothly. Upon power-up, a display should

take no more than one second to appear, and the system should be able to verify its

position and display the current map within 15 sec.

■ Cost: The selling cost of the unit should be no more than $100.

■ Physical size and weight: The device should fit comfortably in the palm of the hand.

■ Power consumption: The device should run for at least eight hours on four batteries.

Requirements form for GPS moving map system:

Name GPS moving map

Purpose Consumer-grade moving map for driving use

Inputs Power button, two control buttons

Outputs Back-lit LCD display 400 _ 600

Functions

Uses 5-receiver GPS system. Three user-

selectable resolutions: always display current

latitude and l longitude

Performance
Updates screen within 0.25 seconds upon

movement

Manufacturing cost $30

Power 100mW

Physical size and weight No more than 2” _ 6,” 12 ounces

The selling price is four to five times the cost of goods sold (the total of all the component

costs).

2. Specification:

 The specification is more precise—it serves as the contract between the customer and

the architects.

 The specification must be carefully written so that it accurately reflects the customer’s

requirements

and that can be clearly followed during design.

 An unclear specification leads different types of problems.

 If the behaviour of some feature in a particular situation is unclear from the

specification, the designer may implement the wrong functionality.

 If global characteristics of the specification are wrong or incomplete, the overall

system architecture derived from the specification may be inadequate to meet the

needs of implementation.

 A specification of the GPS system would include several components:

o Data received from the GPS satellite constellation.

o Map data

o User interface.

o Operations that must be performed to satisfy customer requests.

o Background actions required to keep the system running, such as operating

the GPS receiver.

3. Architecture Design:

 The architecture is a plan for the overall structure of the system that will be used

later to design the components that make up the architecture.

 To understand what an architectural description is, let’s look at sample

architecture for the moving map of Example 1.1.

 Figure 1.3 shows a sample system architecture in the form of a block

diagram that shows major operations and data flows among them.

 The topographic database and to render (i.e., draw) the results for the display.

 We have chosen to separate those functions so that we can potentially do them

in parallel— performing rendering separately from searching the database may

help us update the screen more fluidly.

 For more implementation details we should refine that system block

diagram into two block diagrams:

o Hardware block diagram (Hardware architecture)

o Software block diagram(Software architecture)

 These two more refined block diagrams are shown in Figure 1.4

 The hardware block diagram clearly shows that we have one central CPU

surrounded by memory and I/O devices.

 We have chosen to use two memories:

o A frame buffer for the pixels to be displayed

o A separate program/data memory for general use by the CPU

 The software block diagram fairly closely follows the system block diagram.

 We have added a timer to control when we read the buttons on the user interface

and render data onto the screen.

 Architectural descriptions must be designed to satisfy both functional and

nonfunctional requirements.

 Not only must all the required functions be present, but we must meet cost, speed,

power and other nonfunctional constraints.

 Starting out with system architecture and refining that to hardware and software

architectures is one good way to ensure that we meet all specifications:

 We can concentrate on the functional elements in the system block diagram, and

then consider the nonfunctional constraints when creating the hardware and

software architectures.

4. Designing Hardware and Software Components

 The architectural description tells us what components we need.

 In general the components will include both hardware—FPGAs, boards, and

so on—and software modules.

 Some of the components will be ready-made.

 The CPU, for example, will be a standard component in almost all cases, as will

memory chips and many other components.

 In the moving map, the GPS receiver is a good example of a specialized component

that will nonetheless be a predesigned, standard component.

 We can also make use of standard software modules. One good example is the

topographic database.

 Standard topographic databases exist, and you probably want to use standard

routines to access the database—the data in a predefined format and it is highly

compressed to save storage.

 Using standard software for these access functions not only saves us design time.

5. System Integration:

 Putting hardware and software components together will give complete working

system.

 Bugs are typically found during system integration, and good planning can help

us to find the bugs quickly.

 If we debug only a few modules at a time, we are more likely to uncover the

simple bugs and able to easily recognize them.

 System integration is difficult because it usually uncovers problems. It is often hard to

observe the system in sufficient detail to determine exactly what is wrong— the

debugging facilities for embedded systems are usually much more limited than what

you would find on desktop systems. As a result, determining why things do not work

correctly and how they can be fixed is a challenge in itself.

4. FORMALISMS FOR SYSTEM DESIGN

 We perform a number of different design tasks at different levels of abstraction:

creating requirements and specifications, architecting the system, designing code, and

designing tests. It is often helpful to conceptualize these tasks in diagrams.

 The Unified Modeling Language (UML). UML was designed to be useful at many

levels of abstraction in the design process. UML is an object-oriented modeling

language.

 The design in terms of actual objects helps us to understand the natural structure of the

system.

 Object-oriented specification can be seen in two complementary ways:

 Object-oriented specification allows a system to be described in a way that

closely models real- world objects and their interactions.

 Object-oriented specification provides a basic set of primitives that can be

used to describe systems with particular attributes, irrespective of the

relationships of those systems’ components to real-world objects.

 What is the relationship between an object-oriented specification and an object

oriented programming language?

 A specification language may not be executable. But both object-oriented

specification and programming languages provide similar basic methods for

structuring large systems.

Structural Description:

 By structural description, we mean the basic components of the system.

 The principal component of an object-oriented design is object. An object includes a

set of attributes

that define its internal state.

 When implemented in a programming language, these attributes usually become

variables or constants held in a data structure. In some cases, we will add the type of

the attribute after the attribute name for clarity, but we do not always have to specify

a type for an attribute.

 An object describing a display (such as a CRT screen) is shown in UML notation in

Figure 1.5.

 The text in the folded-corner page icon is a note; it does not correspond to an object

in the system and only serves as a comment.

 The attribute is, in this case, an array of pixels that holds the contents of the display.

 The object is identified in two ways: It has a unique name, and it is a member of a class.

 The name is underlined to show that this is a description of an object and not of a class.

 A class is a form of type definition—all objects derived from the same

class have the same characteristics, although their attributes may have

different values.

 A class defines the attributes that an object may have. It also defines the

operations that determine how the object interacts with the rest of the world.

 In a programming language, the operations would become pieces of code used

to manipulate the object.

 The UML description of the Display class is shown in Figure 1.6.

 The class has the name that we saw used in the d1 object since d1 is an instance of

class Display. The

Display class defines the pixels attribute seen in the object;

 A class defines both the interface for a particular type of object and that object’s

implementation.

 There are several types of relationships that can exist between objects and classes:

o Association occurs between objects that communicate with each

other but have no ownership relationship between them.

o Aggregation describes a complex object made of smaller objects.

o Composition is a type of aggregation in which the owner does not

allow access to the component objects.

o Generalization allows us to define one class in terms of another

Derived class:

 Unified Modeling Language, like most object-oriented languages, allows us to

define one class in terms of another.

 An example is shown in Fig1.7, where we derive two particular types of displays.

The first, BW_display, describes a black and- white display. This does not require

us to add new attributes or operations, but we can specialize both to work on one-

bit pixels.

 A derived class inherits all the attributes and operations from its base class.

 Here Display is the base class for the two derived classes. A derived class is

defined to include all the attributes of its base class. This relation is transitive—if

Display were derived from another class, both BW_display and

Color_map_display would inherit all the attributes and operations of Display’s

base class as well.

 Inheritance has two purposes.

o It allows us to describe one class that shares some characteristics with

another class.

o It captures those relationships between classes and documents them

 Unified Modeling Language considers inheritance to be one form of

generalization. A generalization relationship is shown in a UML diagram as an

arrow with an open (unfilled) arrowhead. Both BW_display and

Color_map_display are specific versions of Display, so Display generalizes both

of them.

Multiple inheritances:

 In which a class is derived from more than one base class.

 An example of multiple inheritances is shown in Figure 1.8; In this case, we have

created a

Multimedia display class by combining the Display class with a Speaker class for

sound.

 The derived class inherits all the attributes and operations of both its base

classes, Display and

Speaker.

Link:

 A link describes a relationship between objects; association is to link as class is to

object.

 Fig1.9 shows an example of links and an association.

 When we consider the actual objects in the system, there is a set of messages that

keeps track of the current number of active messages (two in this example) and

points to the active messages. In this case, the link defines the contains relation.

 When generalized into classes, we define an association between the message

set class and the message class. The association is drawn as a line between the

two labeled with the name of the association, namely, contains. The ball and

the number at the message class end indicate that the message set may include

zero or more message objects.

Behavioral Description:

 We have to specify the behavior of the system as well as its structure. One way to

specify the behavior of an operation is a state machine.

 Fig1.10 shows UML states; the transition between two states is shown by arrow.

These state machines will not rely on the operation of a clock, as in hardware;

rather, changes from one state to another are triggered by the occurrence of events.

 An event is some type of action. Events are divided into two categories. They are:

o External events: The event may originate outside the system, such as a user

pressing a button.

o Internal events: It may also originate inside, such as when one routine

finishes its computation and passes the result on to another routine.

 We will concentrate on the following three types of events defined by UML, as

illustrated in figure 1.11(signal and call event) and (Time out event)

o A signal is an asynchronous occurrence. It is defined in UML by an object

that is labeled as a

<<signal>>. The object in the diagram serves as a declaration of the event’s

existence.

Because it is an object, a signal may have parameters that are passed to the

signal’s receiver.

o A call event follows the model of a procedure call in a programming

language.

o A time-out event causes the machine to leave a state after a certain amount

of time. The label tm (time-value) on the edge gives the amount of time

after which the transition occurs. A time-out is generally implemented with

an external timer.

Unconditional and conditional transitions:

 The states in the state machine represent different conceptual operations.

 In some cases, we take conditional transitions out of states based on inputs or the

results of some computation done in the state.

 In other cases, we make an unconditional transition to the next state. Both the

unconditional and conditional transitions make use of the call event.

 Let’s consider a simple state machine specification to understand the semantics of

UML state machines. A state machine for an operation of the display is shown in

Fig1.12. The start and stop states are special states that help us to organize the flow

of the state machine.

Sequence diagram:

 It is sometimes useful to show the sequence of operations over time,

particularly when several objects are involved.

 In this case, we can create a sequence diagram, like the one for a mouse click

scenario shown in Fig1.13.

 A sequence diagram is somewhat similar to a hardware timing diagram,

although the time flows vertically in a sequence diagram, whereas time

typically flows horizontally in a timing diagram.

 The sequence diagram is designed to show a particular scenario or choice of

events. In this case, the sequence shows what happens when a mouse click is on

the menu region.

 Processing includes three objects shown at the top of the diagram. Extending

below each object is its lifeline, a dashed line that shows how long the object is

alive. In this case, all the objects remain alive for the entire sequence, but in other

cases objects may be created or destroyed during processing.

 The boxes along the lifelines show the focus of control in the sequence, that is,

when the object is actively processing.

 In this case, the mouse object is active only long enough to create the mouse_click

event. The display object remains in play longer; it in turn uses call events to

invoke the menu object twice: once to determine which menu item was selected

and again to actually execute the menu call.

 The find region () call is internal to the display object, so it does not

appear as an event in the diagram.

DESIGN EXAMPLE: MODEL TRAIN CONTROLLER:

 The model train controller, which is shown in the below figure.

i. The user sends messages to the train with the control box attached to the tracks.

ii. The control box may have familiar controls such as throttle, emergency stop

button and so on.

iii. Since train receives its electrical power from the track, the control box can

send a signal to the train over the track by modulating the power supply

voltage.

iv. As shown Fig1.14, the control panel sends packet over the tracks to the

receiver on the train. Each packet includes an address so that the console can

control several trains on the same track. The packet also includes an error

correction code (ECC) to guard against transmission errors. This is a one-way

communication system- the model train cannot send commands back to the

user.

Requirements:

 Here is a basic set of requirements for the system:

o The console shall be able to control up to eight trains on a single track.

o The speed of each train shall be controllable by a throttle to at least 63

different levels in each direction (forward and reverse).

o There shall be an inertia control that shall allow the user to adjust the

responsiveness of the train to commanded changes in speed. Higher inertia

means that the train responds more slowly to a change in the throttle,

simulating the inertia of a large train. The inertia control will provide at

least eight different levels.

o There shall be an emergency stop button.

o An error detection scheme will be used to transmit messages.

 We can put the requirements into our chart format:

Name Model train controller

Purpose Control speed of up to eight model trains

Inputs Throttle, inertia setting, emergency stop, train number

Outputs Train control signal

Functions
Set engine speed based upon inertia

settings, Respond to emergency stop

Performance Can update train speed at least 10 times per second

Manufacturing cost $50

Power 10W (plugs into walls)

Physical size and weight
Console should be comfortable for two hands,

approximate size of standard keyboard. Weight less than

2 pounds

CONCEPTUAL SPECIFICATION OF MODEL TRAIN CONTROLLER:

1. Objects: Console , Train

2. Commands: set speed, set inertia, Estop.

3. Console: panel, formatter, transmitter

4. Train: receiver, controller, motor interface

 The conceptual specification allows us to understand the system little better.

Writing of conceptual specification will help us to write a detailed specification.

Defining the messages will help us understand the functionality of the components.

The set of commands that we can use to implement the requirements placed on the

system.

 The system console controls the train by sending messages on to the tracks. The

transmissions are packetized: each packet includes an address and a message. A

typical sequence of train control commands is shown as a UML sequence diagram.

Fig: A UML sequence diagram for a typical sequence of train control commands

 The focus of the control bars shows the both the console and receiver run

continuously. The packets can be sent at any time—there is no global clock

controlling when the console sends and the train receives, we do not have to worry

about detecting collisions among the packets.

 Set- inertia message will send infrequently. Most of the message commands are

speed commands. When a train receives speed command, it will speed up and slow

down the train smoothly at rate determined by the set-inertia command.

 An emergency stop command may be received, which causes the train receiver to

immediately shut down the train motor.

 We can model the commands in UML with two level class hierarchy as shown in

the Fig1.16. Here we have one base class command, there are three sub classes set-

speed, set-inertia, Estop, derived from base class. One for each specific type of

command.

 We now need to model the train control system itself. There are clearly two major

subsystems: the control-box and the train board component. Each of these

subsystems has its own internal structure.

 The figure 1.17 Shows relationship between console and receiver (ignores role of

track):

 The console and receiver are each represented by objects: the console sends a

sequence of packets to the train receiver, as illustrated by the arrow. The notation

on the arrow provides both the type of message sent and its sequence in a flow of

messages .we have numbered the arrow’s messages as

1…n .

 Let’s break down the console and receiver into three major components.

 The console needs to perform three functions
o Console:

 Read state of front panel

 Format messages

 Transmit messages.

 The train receiver must also perform three major functions

o Train receiver:

 receive message

 interpret message

 control the train

 The UML class diagram is show in the below figure 1.18

 Console class roles:

 Panel: Describes the console front panel, which contains analog knobs and

interface hardware to interface to the digital parts of the system.

 Formatter: It knows how to read the panel knobs and creates bit stream for

message.

 Transmitter: Send the message along the track.

 Knobs* describes the actual analog knobs, buttons, and levers on the control

panel.

 Sender* describes the analog electronics that send bits along the track.

 Train class roles:

• Receiver: It knows how to turn the analog signal on the track into digital form.

• Controller: Interprets received commands and figures out how to control the

motor.

• Motor interface: Generates the analog signals required to control the motor.

 We define two classes to represent analog components:

o Detector* detects analog signals on the track and converts them into

digital form.

o Pulser* turns digital commands into the analog signals required

to control the motor speed.

DETAILED SPECIFICATION:

 Conceptual specification that defines the basic classes, let’s refine it to create a

more detailed specification. We won’t make a complete specification. But we

will add details to the class. We can now fill in the details of the conceptual

specification. Sketching out the spec first helps us understand the basic

relationships in the system.

 We need to define the analog components in a little more detail because there

characteristics will strongly influence the formatter and controller. Fig1.19 shows a

little more detail than Fig 1.18, It includes attributes and behavior of these classes.

The panel has three knobs: train number (which train is currently being

controlled), speed (which can be positive or negative), and inertia. It also has one

button for emergency-stop.

 The Sender and Detector classes are relatively simple: They simply put out and

pick up a bit, respectively.

 To understand the Pulser class, let’s consider how we actually control the train

motor’s speed. As shown in Figure 1.20, the speed of electric motors is commonly

controlled using pulse-width modulation: Power is applied in a pulse for a fraction

of some fixed interval, with the fraction of the time that power is applied

determining the speed.

 Figure 1.21 shows the classes for the panel and motor interfaces. These classes

form the software interfaces to their respective physical devices.

 The Panel class defines a behavior for each of the controls on the panel;

 The new-settings behavior uses the set-knobs behavior of the Knobs* class to

change the knobs settings whenever the train number setting is changed.

 The Motor-interface defines an attribute for speed that can be set by other classes.

 The Transmitter and Receiver classes are shown in Figure 1.22.They provides the

software interface to the physical devices that send and receive bits along the track.

 The Transmitter provides a distinct behavior for each type of message that can

be sent; it internally takes care of formatting the message.

 The Receiver class provides a read-cmd behavior to read a message off the tracks.

 The Formatter class is shown in Figure 1.23. The formatter holds the current

control settings for all of the trains.

 The send-command method is a utility function that serves as the interface to the

transmitter.

 The operate function performs the basic actions for the object.

 The panel-active behaviour returns true whenever the panel’s values do not

correspond to the

current values.

 The role of the formatter during the panel’s operation is illustrated by the

sequence diagram of Figure 1.24.

 The figure shows two changes to the knob settings: first to the throttle, inertia,

or emergency stop; then to the train number.

 The panel is called periodically by the formatter to determine if any control

settings have changed. If a setting has changed for the current train, the formatter

decides to send a command, issuing a send- command behavior to cause the

transmitter to send the bits.

 Because transmission is serial, it takes a noticeable amount of time for the

transmitter to finish a command; in the meantime, the formatter continues to

check the panel’s control settings.

 If the train number has changed, the formatter must cause the knob settings

to be reset to the proper values for the new train.

 The state diagram for a very simple version of the operate behavior of the

Formatter class is shown in Figure 1.25.

 This behavior watches the panel for activity: If the train number changes, it

updates the panel display; otherwise, it causes the required message to be

sent.

 Figure 1.26 shows a state diagram for the panel-active behavior.

 The definition of the train’s Controller class is shown in Figure 1.27

 The operate behavior is called by the receiver when it gets a new command;

operate looks at the contents of the message and uses the issue-command

behavior to change the speed, direction, and inertia settings as necessary.

 A specification for operate is shown in Figure 1.28.

 The operation of the Controller class during the reception of a set-speed

command is illustrated in Figure 1.29.

UNIT-II

INTRODUCTION TO EMBEDDED C AND APPLICATIONS

SYLLABUS:

C looping structures, register allocation, function calls, pointer aliasing, structure

arrangement, bit fields, unaligned data and endianness, inline functions and inline assembly,

portability issues; Embedded systems programming in C, binding and running embedded C

program in Keil IDE, dissecting the program, building the hardware; Basic techniques for

reading and writing from I/O port pins, switch bounce; Applications: Switch bounce, LED

interfacing, interfacing with keyboards, displays, D/A and A/D conversions, multiple

interrupts, serial data communication using embedded C interfacing.

 2.1 C LOOPING STRUCTURES

This section looks at the most efficient ways to code for and while loops on the ARM. We

start by looking at loops with a fixed number of iterations and then move on to loops with a

variable number of iterations. Finally we look at loop unrolling.

 2.1.1 LOOPS WITH A FIXED NUMBER OF ITERATIONS

What is the most efficient way to write a for loop on the ARM? Let’s return to our checksum

example and look at the looping structure.

Here is the last version of the 64-llword packet checksum routine we studied in Section 5.2.

This shows how the compiler treats a loop with incrementing count i++.

int checksum_v5(int *data)

{

unsigned int i;

int sum=0;

for (i=0; i<64; i++)

{

sum += *(data++);

}

return sum;

}

This compiles to

checksum_v5

MOV r2,r0 ; r2 = data
MOV r0,#0 ; sum = 0
MOV r1,#0 ;i=0

 checksum_v5_loop
LDR r3,[r2],#4 ; r3 = *(data++)

=

ADD r1,r1,#1 ; i++
CMP r1,#0x40 ; compare i, 64
ADD r0,r3,r0 ; sum += r3
BCC checksum_v5_loop ; if (i<64) goto loop

MOV pc,r14 ; return sum

It takes three instructions to implement the for loop structure:

 An ADD to increment i

 A compare to check if i is less than 64

 A conditional branch to continue the loop if i < 64

This is not efficient. On the ARM, a loop should only use two instructions:

 A subtract to decrement the loop counter, which also sets the condition code flags on

the result

 A conditional branch instruction

The key point is that the loop counter should count down to zero rather than counting up

to some arbitrary limit. Then the comparison with zero is free since the result is stored in the

condition flags. Since we are no longer using i as an array index, there is no problem in

counting down rather than up.

2.1.2 LOOPS USING A VARIABLE NUMBER OF ITERATIONS

Now suppose we want our checksum routine to handle packets of arbitrary size. We pass in a

variable N giving the number of words in the data packet. Using the lessons from the last

section we count down until N 0 and don’t require an extra loop counter i.

The checksum_v7 example shows how the compiler handles a for loop with a variable

number of iterations N.

int checksum_v7(int *data, unsigned int N)

{

int sum=0;

for (; N!=0; N--)

{

sum += *(data++);

}

return sum;

}

This compiles to

checksum_v7

MOV r2,#0 ; sum = 0

CMP r1,#0 ; compare N, 0

BEQ checksum_v7_end ; if (N==0) goto end

checksum_v7_loop

LDR r3,[r0],#4 ; r3 = *(data++)

SUBS r1,r1,#1 ; N-- and set flags

ADD r2,r3,r2 ; sum += r3

BNE checksum_v7_loop ; if (N!=0) goto loop

 checksum_v7_end

MOV r0,r2 ; r0 = sum

MOV pc,r14 ; return r0

Notice that the compiler checks that N is nonzero on entry to the function. Often this check is

unnecessary since you know that the array won’t be empty. In this case a do-while loop gives

better performance and code density than a for loop.

 2.1.3 LOOP UNROLLING

We saw in Section 5.3.1 that each loop iteration costs two instructions in addition to the

body of the loop: a subtract to decrement the loop count and a conditional branch.

We call these instructions the loop overhead. On ARM7 or ARM9 processors the subtract

takes one cycle and the branch three cycles, giving an overhead of four cycles per loop.

You can save some of these cycles by unrolling a loop—repeating the loop body several

times, and reducing the number of loop iterations by the same proportion. For example, let’s

unroll our packet checksum example four times.

EXAMPLE4

The following code unrolls our packet checksum loop by four times. We assume that the

number of words in the packet N is a multiple of four.

int checksum_v9(int *data, unsigned int N)

{

int sum=0;

do

{

sum += *(data++);

sum += *(data++);

sum += *(data++);

sum += *(data++);

N -= 4;

} while (N!=0);

=
=

return sum;

}

This compiles to

checksum_v9

 MOV r2,#0 ; sum = 0

checksum_v9_loop

LDR r3,[r0],#4 ; r3 = *(data++)

SUBS r1,r1,#4 ; N -= 4 & set flags

ADD r2,r3,r2 ; sum += r3

LDR r3,[r0],#4 ; r3 = *(data++)

ADD r2,r3,r2 ; sum += r3

LDR r3,[r0],#4 ; r3 = *(data++)

ADD r2,r3,r2 ; sum += r3

LDR r3,[r0],#4 ; r3 = *(data++)

ADD r2,r3,r2 ; sum += r3

BNE checksum_v9_loop ; if (N!=0) goto

loop

MOV r0,r2 ; r0 = sum

MOV pc,r14 ; return r0

We have reduced the loop overhead from 4N cycles to (4N)/4 N cycles. On the ARM7TDMI,

this accelerates the loop from 8 cycles per accumulate to 20/4 5 cycles per accumulate, nearly

doubling the speed! For the ARM9TDMI, which has a faster load instruction, the benefit is

even higher. ■

There are two questions you need to ask when unrolling a loop:

■ How many times should I unroll the loop?

■ What if the number of loop iterations is not a multiple of the unroll amount? For example,

what if N is not a multiple of four in checksum_v9?

To start with the first question, only unroll loops that are important for the overall

performance of the application. Otherwise unrolling will increase the code size with little

performance benefit. Unrolling may even reduce performance by evicting more important

code from the cache.

Suppose the loop is important, for example, 30% of the entire application. Suppose you

unroll the loop until it is 0.5 KB in code size (128 instructions). Then the loop overhead is at

most 4 cycles compared to a loop body of around 128 cycles. The loop overhead cost is

3/128, roughly 3%. Recalling that the loop is 30% of the entire application, overall the loop

overhead is only 1%. Unrolling the code further gains little extra performance, but has a

significant impact on the cache contents. It is usually not worth unrolling further when the

gain is less than 1%.

For the second question, try to arrange it so that array sizes are multiples of your unroll

amount. If this isn’t possible, then you must add extra code to take care of the leftover cases.

 2.2 REGISTER ALLOCATION

The compiler attempts to allocate a processor register to each local variable you use in a C

function. It will try to use the same register for different local variables if the use of the

variables do not overlap. When there are more local variables than available registers, the

compiler stores the excess variables on the processor stack. These variables are called spilled

or swapped out variables since they are written out to memory (in a similar way virtual

memory is swapped out to disk). Spilled variables are slow to access compared to variables

allocated to registers.

To implement a function efficiently, you need to

■ minimize the number of spilled variables

■ ensure that the most important and frequently accessed variables are stored in

registers

First let’s look at the number of processor registers the ARM C compilers have avail- able

for allocating variables. Table 5.3 shows the standard register names and usage when

following the ARM-Thumb procedure call standard (ATPCS), which is used in code

generated by C compilers.

Provided the compiler is not using software stack checking or a frame pointer, then the C

compiler can use registers r0 to r12 and r14 to hold variables. It must save the callee values of

r4 to r11 and r14 on the stack if using these registers.

In theory, the C compiler can assign 14 variables to registers without spillage. In practice,

some compilers use a fixed register such as r12 for intermediate scratch working and do not

assign variables to this register. Also, complex expressions require intermediate working

registers to evaluate. Therefore, to ensure good assignment to registers, you should try to limit

the internal loop of functions to using at most 12 local variables.

If the compiler does need to swap out variables, then it chooses which variables to swap out

based on frequency of use. A variable used inside a loop counts multiple times. You can guide

the compiler as to which variables are important by ensuring these variables are used within

the innermost loop.

The register keyword in C hints that a compiler should allocate the given variable to a

register. However, different compilers treat this keyword in different ways, and different

architectures have a different number of available registers (for example, Thumb and ARM).

Therefore we recommend that you avoid using register and rely on the compiler’s normal

register allocation routine.

Table 2.1 C compiler register usage.

SUMMARY Efficient Register Allocation

■ Try to limit the number of local variables in the internal loop of functions to 12. The

compiler should be able to allocate these to ARM registers.

■ You can guide the compiler as to which variables are important by ensuring these

variables are used within the innermost loop.

 2.3 FUNCTION CALLS

The ARM Procedure Call Standard (APCS) defines how to pass function arguments and

return values in ARM registers. The more recent ARM-Thumb Procedure Call Standard

(ATPCS) covers ARM and Thumb interworking as well.

The first four integer arguments are passed in the first four ARM registers: r0, r1, r2, and

r3. Subsequent integer arguments are placed on the full descending stack, ascending in

memory as in Figure 5.1. Function return integer values are passed in r0.

This description covers only integer or pointer arguments. Two-word arguments such as

long long or double are passed in a pair of consecutive argument registers and returned in r0, r1.

The compiler may pass structures in registers or by reference according to command line

compiler options.

The first point to note about the procedure call standard is the four-register rule. Functions

with four or fewer arguments are far more efficient to call than functions with five or more

arguments. For functions with four or fewer arguments, the compiler can pass all the

arguments in registers. For functions with more arguments, both the caller and callee must

access the stack for some arguments. Note that for C++ the first argument to an object method

is the this pointer. This argument is implicit and additional to the explicit arguments.

If your C function needs more than four arguments, or your C++ method more than

three explicit arguments, then it is almost always more efficient to use structures. Group

related arguments into structures, and pass a structure pointer rather than mul- tiple

arguments. Which arguments are related will depend on the structure of your software.

The next example illustrates the benefits of using a structure pointer. First we show a

typical routine to insert N bytes from array data into a queue. We implement the queue using a

cyclic buffer with start address Q_start (inclusive) and end address Q_end (exclusive).

char *queue_bytes_v1(

char *Q_start, /* Queue buffer start address */

char *Q_end, /* Queue buffer end address */

char *Q_ptr, /* Current queue pointer position */

char *data, /* Data to insert into the queue */

unsigned int N) /* Number of bytes to insert */
{

do

{

*(Q_ptr++) = *(data++);

if (Q_ptr == Q_end)

{

Q_ptr = Q_start;

}

} while (--N); return Q_ptr;
}

This compiles to

queue_bytes_v1

STR r14,[r13,#-4]! ; save lr on the stack
LD
R

r12,[r13,#4] ; r12 = N

queue_v1_loop
LDRB r14,[r3],#1 ; r14 = *(data++)
STRB r14,[r2],#1 ; *(Q_ptr++) = r14
CMP r2,r1 ; if (Q_ptr ==

Q_end)
MOVE
Q

r2,r0 ; {Q_ptr =
Q_start;}

SUBS r12,r12,#1 ; --N and set flags
BNE queue_v1_l

oop
; if (N!=0) goto loop

MOV r0,r2 ; r0 = Q_ptr
LDR pc,[r13],#4 ; return r0

Compare this with a more structured approach using three function arguments.

 POINTER ALIASING:

Two pointers are said to alias when they point to the same address. If you write to one

pointer, it will affect the value you read from the other pointer.

In a function, the compiler often doesn’t know which pointers can alias and which pointers

can’t. The compiler must be very pessimistic and assume that any write to a pointer may

affect the value read from any other pointer, which can significantly reduce code efficiency.

 UNALIGNED DATA AND ENDIANNESS:

Unaligned data and endianness are two issues that can complicate memory accesses and

portability. In computing endianness is the ordering or sequencing of bytes of a word of

digital data in computer memory storage or during transmission. A big-endian system stores

the most significant byte of a word at the smallest memory address and the least significant

byte at the largest memory address.

A memory access is said to be aligned when the data being accessed is n bytes long and

the datum address is n-byte aligned. ... A memory pointer that refers to primitive data that is n

bytes long is said to be aligned if it is only allowed to contain addresses that are n-

byte aligned, otherwise it is said to be unaligned.

 INLINE FUNCTIONS AND INLINE ASSEMBLY:

Generally the inline term is used to instruct the compiler to insert the code of a function into

the code of its caller at the point where the actual call is made. Such functions are called

"inline functions". ... It is just a set of assembly instructions written as inline functions.

 EMBEDDED SYSTEMS PROGRAMMING IN C:

The embedded firmware is responsible for controlling the various peripherals of the

embedded hard-ware and generating response in accordance with the functional requirements

mentioned in the requirements for the particular embedded product.

Firmware is considered as the master brain of the embedded system.

Imparting intelligence to an embedded system is a onetime process and it can happen at any

stage, it can be immediately after the fabrication of the embedded hardware or at a later stage.

Whenever the conventional 'C' Language and its extensions are used for programming

embedded systems, it is referred as 'Embedded C’ programming. Programming in

'Embedded C' is quite different from conventional Desktop application development using 'C'

language for a particular OS platform.

Desktop computers contain working memory in the range of Megabytes (Nowadays Giga

bytes) and storage memory in the range of Giga bytes. For a desktop application developer,

the resources available are surplus in quantity and they can be very lavish in the usage of

RAM and ROM and no restrictions are imposed at all. This is not the case for embedded

application developers.

Almost all embedded systems are limited in both storage and working memory resources.

Embedded application developers should be aware of this fact and should develop

applications in the best possible way which optimizes the code memory and working memory

usage as well as performance.

In other words, the hands of an embedded application developer are always tied up in the

memory usage context.

'C' v/s. 'Embedded C':

'C' is a well structured, well defined and standardized general purpose programming language

with extensive bit manipulation support.

'C' offers a combination of the features of high level language and assembly and helps in

hardware access programming (system level programming) as well as business package

developments (Application developments like pay roll systems, banking applications, etc).

The conventional 'C' language follows ANSI(American National Standards Institute) standard

and it incorporates various library files for different operating systems.

A platform (operating system) specific application, known as, compiler is used for the

conversion of programs written in 'C' to the target processor (on which the OS is running)

specific binary files. Hence it is a platform specific development.

Embedded 'C' can be considered as a subset of conventional 'C' language. Embedded 'C'

supports all 'C' instructions and incorporates a few target processor specific

functions/instructions.

It should be noted that the standard ANSI 'C' library implementation is always tailored to the

target processor/controller library files in Embedded 'C'.

A software program called 'Cross-compiler' is used for the conversion of programs written in

Embedded 'C' to target processor/controller specific instructions (machine language).

Compiler vs. Cross-Compiler:

Compiler is a software tool that converts a source code written in a high level language on

top of a particular operating system running on a specific target processor architecture (e.g.

Intel x86/Pentium).

Here the operating system, the compiler program and the application making use of the

source code run on the same target processor. The source code is converted to the target

processor specific machine instructions.

The development is platform specific (OS as well as target processor on which the OS is

running). Compilers are generally termed as 'Native Compilers'. A native compiler generates

machine code for the same machine (processor) on which it is running.

Cross-compilers are the software tools used in cross-platform development applications. In

cross-platform development, the compiler running on a particular target processor/OS

converts the source code to machine code for a target.

Embedded system development is a typical example for cross-platform development where

embedded firmware is developed on a machine with Intel/AMD or any other target

processors and the same is converted into machine code for any other target processor

architecture (e.g. 8051, PIC, ARM, etc).

Keil C51 is an example for cross-compiler. The term 'Compiler' is used interchangeably with

'Cross-compiler' in embedded firmware applications. Whenever you see the term 'Compiler'

related to any embedded firmware application, please understand that it is referring to the

cross-compiler.

Using ‘C’ in ‘Embedded C’:

Let us brush up whatever we learned in conventional 'C' programming. Remember we will

only go through the peripheral aspects and will not go in deep.

Keywords and Identifiers:

Keywords are the reserved names used by the 'C' language. All keywords have a fixed

meaning in the 'C' language context and they are not allowed for programmers for naming

their own variables or functions. ANSI 'C' supports 32 keywords and they are listed below.

All 'C' supported keywords should be written in 'lowercase' letters.

C Keywords are predefined, reserved words used in programming that have special

meanings to the compiler.

Identifiers are user defined names and labels. Identifiers can contain letters of English

alphabet (both upper and lower case) and numbers. The starting character of an identifier

should be a letter. The only special character allowed in identifier is underscore (_).

Ex: Root, _getchar, _sin, x_1, x1, If

Data Types:

 Data type represents the type of data held by a variable. The various data types supported,

their storage space (bits) and storage capacity for 'C' language are tabulated below.

Arithmetic and Relational Operations:

The list of arithmetic operations supported by ‘C’ are listed below.

Logical Operations:

Logical operations are usually performed for decision making and program control transfer.

Looping Instructions:

Looping instructions are used for executing a particular block of code repeatedly till a

condition is met or wait till an event is fired.

 Embedded programming often uses the looping instructions for checking the status of certain

I/O ports, registers, etc. and also for producing delays. Certain devices allow write/read

operations to and from some registers of the device only when the device is ready and the

device ready is normally indicated by a status register or by setting/clearing certain bits of

status registers.

Hence the program should keep on reading the status register till the device ready indication

comes. The reading operation forms a loop. The looping instructions supported by are listed

below.

Looping Instructions:

//while statement

While (expression)

{

Body of while loop

}

//do while statement

do

{

Body of do loop

}

While (expression)

//for loop

for (initialization; test for condition; update variable)

{

Body of for loop

}

Arrays and Pointers:

Array is a collection of related elements (data types).

Arrays are usually declared with data type of array, name of the array and the number of

related elements to be placed in the array.

For example the following array declaration declares a character array with name ‘arr’ and

reserves space for 5 character elements in the memory as below figure.

char arr [5]

 0x10 0x10 0x23 0x03 0x45 (contents)

arr[0] arr[1] arr[2] arr[3] arr[4]

 0x8000 0x8001 0x8002 0x8003 0x8004 (Addresses)

The elements of an array are accessed by using the array index or subscript.

The index of the first element is '0'. For the above example the first element is accessed by

arr[0], second element by arr[1], and so on. In the above example, the array starts at memory

location 0x8000 (arbitrary value taken for illustration) and the address of the first element is

0x8000.

The `address of operator (&) returns the address of the memory location where the variable is

stored. Hence &arr[0] will return 0x8000 and &arr[1] will return 0x8001, etc.. The name of

the array itself with no index (subscript) always returns the address of the first element. If we

examine the first element arr[0] of the above array, we can see that the variable arr[0] is

allocated a memory location 0x8000 and the contents of that memory location holds the value

for arr[0].

Pointers:

Pointer is a flexible at the same time most dangerous feature, capable of creating potential

damages leading to firmware crash, if not used properly.

Pointer is a memory pointing based technique for variable access and modification. Pointers

are very helpful in

1. Accessing and modifying variables

2. Increasing speed of execution

3. Accessing contents within a block of memory

4. Passing variables to functions by eliminating the use of a local copy of variables

5. Dynamic memory.

 BINDING AND RUNNING EMBEDDED C PROGRAM IN KEIL IDE:

Embedded system means some combination of computer hardware and programmable

software which is specially designed for a particular task like displaying message on LCD. If

you are still wondering about an embedded system, just take a look at these circuit

applications using 8051 microcontroller. You can call these applications embedded systems

as it involves hardware (8051 microcontroller) and software (the code written in assembly

language).

Some real life examples of embedded systems may involve ticketing machines, vending

machines, temperature controlling unit in air conditioners etc. Microcontrollers are nothing

without a Program in it.

One of the important part in making an embedded system is loading the software/program we

develop into the microcontroller. Usually it is called “burning software” into the controller.

Before “burning a program” into a controller, we must do certain prerequisite operations with

the program. This includes writing the program in assembly language or C language in a text

editor like notepad, compiling the program in a compiler and finally generating the hex code

from the compiled program. Earlier people used different softwares/applications for all these

3 tasks. Writing was done in a text editor like notepad/WordPad, compiling was done using a

separate software (probably a dedicated compiler for a particular controller like 8051),

converting the assembly code to hex code was done using another software etc. It takes lot of

time and work to do all these separately, especially when the task involves lots of error

debugging and reworking on the source code.

Keil MicroVision is free software which solves many of the pain points for an embedded

program developer. This software is an integrated development environment (IDE), which

integrated a text editor to write programs, a compiler and it will convert your source code to

hex files too.

Here is simple guide to start working with Keil uVision which can be used for

https://www.circuitstoday.com/embedded-systems-an-introduction

 Writing programs in C/C++ or Assembly language

 Compiling and Assembling Programs

 Debugging program

 Creating Hex and Axf file

 Testing your program without Available real Hardware (Simulator Mode)

This is simple guide on Keil uVision 4 though also applicable on previous versions also.

These are the simple steps to get off the mark your inning!

Step 1: After opening Keil uV4, Go to Project tab and

Create new uVision project

Now Select new folder and give name to Project.

Step 2: After Creating project now Select your device model. Example.NXP-LPC2148

[You can change it later from project window.]

https://www.circuitstoday.com/wp-content/uploads/2012/11/step1.jpg
https://www.circuitstoday.com/wp-content/uploads/2012/11/step2.jpg

Step 3: so now your project is created and Message window will appear to add startup file of

your Device click on Yes so it will be added to your project folder

Step 4: Now go to File and create new file and save it with .C extension if you will write

program in C language or save with .asm for assembly language.

i.e., Led.c

Step 5: Now write your program and save it again. You can try example given at end of this

tutorial.

Step 6: After that on left you see project window [if it’s not there….go to View tab and click

on project window]

Now come on Project window.

https://www.circuitstoday.com/wp-content/uploads/2012/11/step3.jpg
https://www.circuitstoday.com/wp-content/uploads/2012/11/step4.jpg
https://www.circuitstoday.com/wp-content/uploads/2012/11/step6-1.jpg

Right click on target and click on options for target

Here you can change your device also.

Click output tab here & check create Hex file if you want to generate hex file

Now click on ok so it will save changes

Step 7: Now Expand target and you will see source group

Right click on group and click on Add files to source group

https://www.circuitstoday.com/wp-content/uploads/2012/11/step6-2.jpg
https://www.circuitstoday.com/wp-content/uploads/2012/11/step6-3.jpg

Now add your program file which you have written in C/assembly.

You can see program file added under source group.

Step 8: Now Click on Build target.You can find it under Project tab or in toolbar.It can also

be done by pressing F7 key.

https://www.circuitstoday.com/wp-content/uploads/2012/11/step7.jpg

Step 9: you can see Status of your program in Build output window

[If it’s not there go to view and click on Build output window]

Now you are done with your program.

https://www.circuitstoday.com/wp-content/uploads/2012/11/step8.jpg
https://www.circuitstoday.com/wp-content/uploads/2012/11/step9.jpg

 BASIC TECHNIQUES FOR READING FROM PORT PINS:

As we saw in Chapter 3, control of the 8051 ports is carried out using 8-bit latches (SFRs).

We can send some data to Port 1 as follows:

sfr P1 = 0x90; // Usually in header file

P1 = 0x0F; // Write 00001111 to Port 1

In exactly the same way, we can read from Port 1 as follows:

unsigned char Port_data;

P1 = 0xFF; // Set the port to 'read mode'

Port_data = P1; // Read from the port

After the 8051 microcontroller is reset, the port latches all have the value 0xFF (11111111 in

binary): that is, all the port-pin latches are set to values of ‘1’. It is tempting to assume that

writing data to the port is therefore unnecessary, and that we can get away with the following

version:

unsigned char Port_data;

// Assume nothing written to port since reset

// – DANGEROUS!!!

Port_data = P1;

The problem with this code is that, in simple test programs it works: this can lull the

developer into a false sense of security. If, at a later date, someone modifies the program to

include a routine for writing to all or part of the same port, this code will not generally work

as required:

unsigned char Port_data;

P1 = 0x00;

. . .

// Assumes nothing written to port since reset

// – WON’T WORK

Port_data = P1;

In most cases, initialization functions are used to set the port pins to a known state at the start

of the program. Where this is not possible, it is safer to always write ‘1’ to any port pin

before reading from it.

;Toggle all bits of continuously.

 MOV A,#55

BACK: MOV P2,A

 ACALL DELAY

 CPL A ;complement(inv) reg.A

 SJMP BACK

Reading and writing bits:

 Demonstrated how to read from or write to an entire port. However, suppose we have

a switch connected to Pin 1.1 and an LED connected to Pin 2.1.

 We might also have input and output devices connected to the other pins on Port 1.

 These pins may be used by totally different parts of the same system, and the code to

access them may be produced by other team members, or other companies.

 It is therefore essential that we are able to read-from or write-to individual port pins

without altering the values of other pins on the same port.

 We provided a simple example to illustrates how we can read from Pin 1.1, and write

to Pin 2.1, without disrupting any other pins on this (or any other) port.

#include<reg51.h>

sbit Led = P2^1; //pin connected to toggle Led

sbit Switch =P1^1; //Pin connected to toggle led

void main(void)

{

Led = 0; //configuring as output pin

Switch = 1; //Configuring as input pin

while(1) //Continuous monitor the status of the switch.

{

if(Switch == 0)

{

Led =1; //Led On

}

else

{

Led =0; //Led Off

}

}

return 0;

}

SWITCH BOUNCE:

In an ideal world, this change in voltage obtained by connecting a switch to the port pin of an

8051 microcontroller would take the form illustrated in Figure 4.8 (top). In practice, all

mechanical switch contacts bounce (that is, turn on and off, repeatedly, for a short period of

time) after the switch is closed or opened. As a result, the actual input waveform looks more

like that shown in Figure 4.8 (bottom). Usually, switches bounce for less than 20 ms:

however large mechanical switches exhibit bounce behaviour for 50 ms or more.

When you turn on the lights in your home or office with a mechanical switch, the switches

will bounce. As far as humans are concerned, this bounce is imperceptible.

However, as far as the microcontroller is concerned, each ‘bounce’ is equivalent to one press

and release of an ‘ideal’ switch. Without appropriate software design, this can give rise to a

number of problems, not least:

_ Rather than reading ‘A’ from a keypad, we may read ‘AAAAA’.

_ Counting the number of times that a switch is pressed becomes extremely difficult.

_ If a switch is depressed once, and then released some time later, the ‘bounce’ may

make it appear as if the switch has been pressed again (at the time of release).

 APPLICATIONS:

 LED INTERFACING WITH 8051 TO A SINGLE PIN:

Program:

#include<reg51.h> // special function register declarations

sbit LED = P2^0; // Defining LED pin

void Delay(void); // Function prototype declaration

void main (void)

{

while(1) // infinite loop

{

LED = 0; // LED ON

Delay();

LED = 1; // LED OFF

Delay();

}

}

void Delay(void)

{

int j;

int i;

for(i=0;i<10;i++)

{

for(j=0;j<10000;j++)

{

}

 }

 }

LED’s interfacing with Port, P1 of 8051:

Program:

#include<REG51.H>

#define LEDPORT P1

void delay(unsigned int);

void main(void)

{

LEDPORT =0x00;

while(1)

{

LEDPORT = 0X00;

delay(250);

LEDPORT = 0xff;

delay(250);

}

}

void delay(unsigned int itime)

{

unsigned int i,j;

for(i=0;i<itime;i++)

{

for(j=0;j<250;j++);

}

}

 4X4 MATRIX KEYPAD INTERFACING WITH 8051 MICROCONTROLLER:

Keypads/Keyboards are widely used input devices being used in various electronics and

embedded projects. They are used to take inputs in the form of numbers and alphabets, and

feed the same into system for further processing. In this tutorial we are going to interface a

4x4 matrix keypad/Keyboard with 8051 microcontroller.

Before we interface the keypad with microcontroller, first we need to understand how it

works. Matrix keypad consists of set of Push buttons, which are interconnected. Like in our

case we are using 4X4 matrix keypad, in which there are 4 push buttons in each of four rows.

And the terminals of the push buttons are connected according to diagram. In first row, one

terminal of all the 4 push buttons are connected together and another terminal of 4 push

buttons are representing each of 4 columns, same goes for each row. So we are getting 8

terminals to connect with a microcontroller.

Interfacing keypad with 8051 microcontroller (P89V51RD2)

As shown in above circuit diagram, to interface Keypad, we need to connect 8 terminals of

the keypad to any port (8 pins) of the microcontroller. Like we have connected keypad

terminals to Port 1 of 8051. Whenever any button is pressed we need to get the location of the

button, means the corresponding ROW an COLUMN no. Once we get the location of the

button, we can print the character accordingly.

Now the question is how to get the location of the pressed button? I am going to explain this

in below steps and also want you to look at the code:

1. First we have made all the Rows to Logic level 0 and all the columns to Logic level 1.

2. Whenever we press a button, column and row corresponding to that button gets shorted

and makes the corresponding column to logic level 0. Because that column becomes

connected (shorted) to the row, which is at Logic level 0. So we get the column no. See

main() function.

3. Now we need to find the Row no., so we have created four functions corresponding to each

column. Like if any button of column one is pressed, we call function row_finder1(), to find

the row no.

4. In row_finder1() function, we reversed the logic levels, means now all the Rows are 1 and

columns are 0. Now Row of the pressed button should be 0 because it has become connected

(shorted) to the column whose button is pressed, and all the columns are at 0 logic. So we

have scanned all rows for 0.

5. So whenever we find the Row at logic 0, means that is the row of pressed button. So now

we have column no (got in step 2) and row no., and we can print no. of that button using

lcd_data function.

Same procedure follows for every button press, and we are using while(1), to continuously

check, whether button is pressed or not.

Code:

#include<reg51.h>

#define display_port P2 //Data pins connected to port 2 on microcontroller

sbit rs = P3^0; //RS pin connected to pin 2 of port 3

sbit rw = P3^1; // RW pin connected to pin 3 of port 3

sbit e = P3^2; //E pin connected to pin 4 of port 3

sbit C4 = P1^0; // Connecting keypad to Port 1

sbit C3 = P1^1;

sbit C2 = P1^2;

sbit C1 = P1^3;

sbit R4 = P1^4;

sbit R3 = P1^5;

sbit R2 = P1^6;

sbit R1 = P1^7;

void msdelay(unsigned int time) // Function for creating delay in milliseconds.

{

 unsigned i,j ;

 for(i=0;i<time;i++)

 for(j=0;j<1275;j++);

}

void lcd_cmd(unsigned char command) //Function to send command instruction to LCD

{

 display_port = command;

 rs= 0;

 rw=0;

 e=1;

 msdelay(1);

 e=0;

}

void lcd_data(unsigned char disp_data) //Function to send display data to LCD

{

 display_port = disp_data;

 rs= 1;

 rw=0;

 e=1;

 msdelay(1);

 e=0;

}

 void lcd_init() //Function to prepare the LCD and get it ready

{

 lcd_cmd(0x38); // for using 2 lines and 5X7 matrix of LCD

 msdelay(10);

 lcd_cmd(0x0F); // turn display ON, cursor blinking

 msdelay(10);

 lcd_cmd(0x01); //clear screen

 msdelay(10);

 lcd_cmd(0x81); // bring cursor to position 1 of line 1

 msdelay(10);

}

void row_finder1() //Function for finding the row for column 1

{

R1=R2=R3=R4=1;

C1=C2=C3=C4=0;

if(R1==0)

lcd_data('7');

if(R2==0)

lcd_data('4');

if(R3==0)

lcd_data('1');

if(R4==0)

lcd_data('N');

}

void row_finder2() //Function for finding the row for column 2

{

R1=R2=R3=R4=1;

C1=C2=C3=C4=0;

if(R1==0)

lcd_data('8');

if(R2==0)

lcd_data('5');

if(R3==0)

lcd_data('2');

if(R4==0)

lcd_data('0');

}

void row_finder3() //Function for finding the row for column 3

{

R1=R2=R3=R4=1;

C1=C2=C3=C4=0;

if(R1==0)

lcd_data('9');

if(R2==0)

lcd_data('6');

if(R3==0)

lcd_data('3');

if(R4==0)

lcd_data('=');

}

void row_finder4() //Function for finding the row for column 4

{

R1=R2=R3=R4=1;

C1=C2=C3=C4=0;

if(R1==0)

lcd_data('%');

if(R2==0)

lcd_data('*');

if(R3==0)

lcd_data('-');

if(R4==0)

lcd_data('+');

}

void main()

{

 lcd_init();

 while(1)

 {

 msdelay(30);

 C1=C2=C3=C4=1;

 R1=R2=R3=R4=0;

 if(C1==0)

 row_finder1();

 else if(C2==0)

 row_finder2();

 else if(C3==0)

 row_finder3();

 else if(C4==0)

 row_finder4();

 }

}

 7 SEGMENT DISPLAY INTERFACING WITH 8051 MICROCONTROLLER:

This is how to interface a seven segment LED display to an 8051 microcontroller. 7 segment

LED display is very popular and it can display digits from 0 to 9 and quite a few characters.

Knowledge about how to interface a seven segment display to a micro controller is very

essential in designing embedded systems. Seven segment displays are of two types, common

cathode and common anode.

In common cathode type , the cathode of all LEDs are tied together to a single terminal which

is usually labeled as ‘com‘ and the anode of all LEDs are left alone as individual pins

labeled as a, b, c, d, e, f, g & h (or dot) .

In common anode type, the anodes of all LEDs are tied together as a single terminal and

cathodes are left alone as individual pins.

Program:

/*Program to interface seven segment display unit.*/

#include <REG51.H>

#define LEDPORT P0

#define ZERO 0x3f

#define ONE 0x06

#define TWO 0x5b

#define THREE 0x4f

#define FOUR 0x66

#define FIVE 0x6d

#define SIX 0x7d

#define SEVEN 0x07

#define EIGHT 0x7f

#define NINE 0x6f

#define TEN 0x77

#define ELEVEN 0x7c

#define TWELVE 0x39

#define THIRTEEN 0x5e

#define FOURTEEN 0x79

#define FIFTEEN 0x71

void Delay(void);

void main (void)

{

while(1)

{

LEDPORT = ZERO;

Delay();

LEDPORT = ONE;

Delay();

LEDPORT = TWO;

Delay();

LEDPORT = THREE;

Delay();

LEDPORT = FOUR;

Delay();

LEDPORT = FIVE;

Delay();

LEDPORT = SIX;

Delay();

LEDPORT = SEVEN;

Delay();

LEDPORT = FOURTEEN;

Delay();

LEDPORT = FIFTEEN;

Delay();

}

}

void Delay(void)

{

int j; int i;

for(i=0;i<30;i++)

{

for(j=0;j<10000;j++)

{

}

}

}

LCD DISPLAY INTERFACING WITH 8051 MICROCONTROLLER:

In this, we will have brief discussion on how to interface 16×2 LCD module to P89V51RD2,

which is an 8051 family microcontroller. We use LCD display for the displaying messages in

a more interactive way to operate the system or displaying error messages etc. Interfacing

16×2 LCD with 8051 microcontroller is very easy if you understanding the working of LCD.

16×2 Liquid Crystal Display which will display the 32 characters at a time in two rows (16

characters in one row). Each character in the display is of size 5×7 pixel matrix.

PIN

NO
NAME FUNCTION

1 VSS Ground pin

2 VCC Power supply pin of 5V

3 VEE Used for adjusting the contrast commonly attached to the

potentiometer.

4 RS RS is the register select pin used to write display data to the LCD

(characters), this pin has to be high when writing the data to the

LCD. During the initializing sequence and other commands this pin

should low.

5 R/W Reading and writing data to the LCD for reading the data R/W pin

should be high (R/W=1) to write the data to LCD R/W pin should be

low (R/W=0)

6 E Enable pin is for starting or enabling the module. A high to low

pulse of about 450ns pulse is given to this pin.

7 DB0 DB0-DB7 Data pins for giving data(normal data like numbers

characters or command data) which is meant to be displayed

8 DB1 DB0-DB7 Data pins for giving data

9 DB2 DB0-DB7 Data pins for giving data

10 DB3 DB0-DB7 Data pins for giving data

11 DB4 DB0-DB7 Data pins for giving data

12 DB5 DB0-DB7 Data pins for giving data

13 DB6 DB0-DB7 Data pins for giving data

14 DB7 DB0-DB7 Data pins for giving data

15 LED+ Back light of the LCD which should be connected to Vcc

16 LED- Back light of LCD which should be connected to ground.

Follow these simple steps for displaying a character or data

E=1; enable pin should be high

RS=1; Register select should be high

R/W=0; Read/Write pin should be low.

To send a command to the LCD just follows these steps:

E=1; enable pin should be high

RS=0; Register select should be low

R/W=0; Read/Write pin should be low.

Program:

#include<reg51.h>

sbit rs=P3^0;

sbit rw=P3^1;

sbit en=P3^2;

void lcdcmd(unsigned char);

void lcddat (unsigned char);

void delay();

void main()

{

P2=0x00;

while(1)

{

lcdcmd(0x38);

delay();

lcdcmd(0x01);

delay();

lcdcmd(0x10);

delay();

lcdcmd(0x0c);

delay();

lcdcmd(0x81);

delay();

lcddat('I');

delay();

lcddat('A');

delay();

lcddat('R');

delay();

lcddat('E');

delay();

}

}

void lcdcmd(unsigned char val)

{

P2=val;

rs=0;

rw=0;

en=1;

delay();

en=0;

}

void lcddat(unsigned char val)

{

P2=val;

rs=1;

rw=0;

en=1;

delay();

en=0;

}

void delay()

{unsigned int i;

for(i=0;i<6000;i++);

}

ADC (ADC0808) INTERFACING WITH 8051 MICROCONTROLLER:

ADC0808/ADC0809 is an 8 channel 8-bit analog to digital converter. Unlike ADC0804

which has one Analog channel, this ADC has 8 multiplexed analog input channels. This

tutorial will provide you basic information regarding this ADC, testing in free run mode and

interfacing example with 8051 with sample program in C and assembly.

 IN0-IN7: Analog Input channels

 D0-D7: Data Lines

 A, B, C: Analog Channel select lines; A is LSB and C is MSB

 OE: Output enable signal

 ALE: Address Latch Enable

 EOC: End of Conversion signal

 Vref+/Vref-: Differential Reference voltage input

 Clock: External ADC clock input

 Normally analogue-to-digital converter (ADC) needs interfacing through a microprocessor

to convert analogue data into digital format. This requires hardware and necessary

software, resulting in increased complexity and hence the total cost. The circuit of A-to-D

converter shown here is configured around ADC 0808, avoiding the use of a

microprocessor. The ADC 0808 is an 8-bit A-to-D converter, having data lines D0-D7. It

works on the principle of successive approximation. It has a total of eight analogue input

channels, out of which any one can be selected using address lines A, B and C. Here, in

this case, input channel IN0 is selected by grounding A, B and C address lines.

 Usually the control signals EOC (end of conversion), SC (start conversion), ALE (address

latch enable) and OE (output enable) are interfaced by means of a microprocessor.

However, the circuit shown here is built to operate in its continuous mode without using

any microprocessor. Therefore the input control signals ALE and OE, being active-high,

are tied to Vcc (+5 volts). The input control signal SC, being active-low, initiates start of

conversion at falling edge of the pulse, whereas the output signal EOC becomes high after

completion of digitization. This EOC output is coupled to SC input, where falling edge of

EOC output acts as SC input to direct the ADC to start the conversion.

 As the conversion starts, EOC signal goes high. At next clock pulse EOC output again

goes low, and hence SC is enabled to start the next conversion. Thus, it provides

continuous 8-bit digital output corresponding to instantaneous value of analogue input.

The maximum level of analogue input voltage should be appropriately scaled down below

positive reference (+5V) level.

 The ADC 0808 IC requires clock signal of typically 550 kHz, which can be easily derived

from an Astable multivibrator, constructed using 7404 inverter gates. In order to visualize

the digital output, the row of eight LEDs (LED1 through LED8) have been used, where in

each LED is connected to respective data lines D0 through D7. Since ADC works in the

continuous mode, it displays digital output as soon as analogue input is applied. The

decimal equivalent digital output value D for a given analogue input voltage Vin can be

calculated from the relationship.

Program:

#include <reg51.h>

#define ALE P3_4

#define OE P3_7

#define START P3_5

#define EOC P3_6

#define SEL_A P3_1

#define SEL_B P3_2

#define SEL_C P3_3

#define ADC_DATA P1

void main()

{

unsigned char adc_data;

 /* Data port to input */

ADC_DATA = 0xFF;

EOC = 1; /* EOC as input */

ALE = OE = START = 0;

 while (1)

{

/* Select channel 1 */

SEL_A = 1; /* LSB */

SEL_B = 0;

SEL_C = 0; /* MSB */

/* Latch channel select/address */

ALE = 1;

 /* Start conversion */

START = 1;

 ALE = 0;

START = 0;

/* Wait for end of conversion */

while (EOC == 1);

while (EOC == 0);

 /* Assert Read signal */

OE = 1;

/* Read Data */

adc_data = ADC_DATA;

OE = 0;

 /* Now adc data is stored */

/* start over for next conversion */

}

}

DAC INTERFACING WITH 8051 MICROCONTROLLER:

This section will show how to interface a DAC (digital-to-analog converter) to the 8051.

Then we demonstrate how to generate a sine wave on the scope using the DAC.

Digital-to-analog (DAC) converter

The digital-to-analog converter (DAC) is a device widely used to convert digital pulses to

analog signals. In this section we discuss the basics of interfacing a DAC to the 8051.

Recall from your digital electronics book the two methods of creating a DAC:

1. Binary weighted.

2. R/2R ladder.

The vast majority of integrated circuit DACs, including the MC1408 (DAC0808) used in this

section use the R/2R method since it can achieve a much higher degree of precision. The first

criterion for judging a DAC is its resolution, which is a function of the number of binary

inputs. The common ones are 8, 10, and 12 bits. The number of data bit inputs decides the

resolution of the DAC since the number of analog output levels is equal to 2″, where n is the

number of data bit inputs.

Therefore, an 8-input DAC such as the DAC0808 provides 256 discrete voltage (or current)

levels of output. Similarly, the 12-bit DAC provides 4096 discrete voltage levels. There are

also

16-bit DACs, but they are more expensive.

MC1408 DAC (or DAC0808)

In the MC1408 (or DAC0808), the digital inputs are converted to current (Iout), and by

connecting a resistor to the Iout pin, we convert the result to voltage.

The total current provided by the Iout pin is a function of the binary numbers at the DO – D7

inputs of the DAC0808 and the reference current (Iref), and is as follows:

𝐼𝑜𝑢𝑡 = 𝐼𝑟𝑒𝑓(
𝐷7

2
+

𝐷6

4
+

𝐷5

8
+

𝐷4

16
+

𝐷3

32
+

𝐷2

64
+

𝐷1

128
+

𝐷0

256
)

Where DO is the LSB, D7 is the MSB for the inputs, and Iref is the input current that must be

applied to pin 14. The Iref current is generally set to 2.0 mA. Figure shows the generation of

current reference (setting Iref = 2 mA) by using the standard 5-V power supply and IK and

1.5K-ohm standard resistors. Some DACs also use the zener diode (LM336), which

overcomes any fluctuation associated

Figure: 8051 Connection to DAC808

Converting lout to voltage in DAC0808

Ideally we connect the output pin Iout to a resistor, convert this current to voltage, and monitor

the output on the scope. In real life, however, this can cause inaccuracy since the input

resistance of the load where it is connected will also affect the output voltage. For this reason,

the Iref current output is isolated by connecting it to an op-amp such as the 741 with Rf = 5K

ohms for the feedback resistor. Assuming that R = 5K ohms, by changing the binary input,

the output voltage changes.

Generating a sine wave:

To generate a sine wave, we first need a table whose values represent the magnitude of the

sine of angles between 0 and 360 degrees. The values for the sine function vary from -1.0 to

+1.0 for 0- to 360-degree angles. Therefore, the table values are integer numbers representing

the voltage magnitude for the sine of theta. This method ensures that only integer numbers

are output to the DAC by the 8051 microcontroller. Table shows the angles, the sine values,

the voltage magnitudes, and the integer values representing the voltage magnitude for each

angle (with 30-degree increments). To generate Table 13-7, we assumed the full-scale voltage

of 10 V for DAC output. Full-scale output of the DAC is achieved when all the data inputs of

the DAC are high. Therefore, to achieve the full-scale 10 V output, we use the following

equation.

Vout of DAC for various angles is calculated and shown in Table 13-7. See Example 13-5 for

verification of the calculations.

Angle θ

(degrees)
Sin θ

Vout (Voltage Magnitude)

5 V + (5 V x sin θ)

Values Sent to DAC (decimal)

(Voltage Mag. X 25.6)

0 0 5 128

30 0.5 7.5 192

60 0.866 9.33 238

90 1.0 10 255

120 0.866 9.33 238

150 0.5 7.5 192

180 0 5 128

210 -0.5 2.5 64

240 -0.866 0.669 17

270 -1.0 0 0

300 -0.866 0.669 17

330 -0.5 2.5 64

360 0 5 128

Program:

#include <reg51.h>

sfr DACDATA = Pl;

void main ()

{

unsigned char WAVEVALUE [12]={128,192,238,255, 238,192,128,64, 17,0,17,64} ;

unsigned char x ,

while (1)

{

for(x=0;x<12;x++)

{

DACDATA = WAVEVALUE[x];

}

}

}

Figure: Angle vs. Voltage Magnitude for Sine Wave

MULTIPLE INTERRUPTS IN 8051 MICROCONTROLLER:

Interrupts vs. polling:

A single microcontroller can serve several devices. There are two ways to do that: interrupts

or polling. In the interrupt method, whenever any device needs its service the device notifies

the microcontroller by sending it an interrupt signal. Upon receiving an interrupt signal, the

microcontroller interrupts whatever it is doing and serves the device.

The program associated with the interrupt is called the interrupt service routine (ISR) or

interrupt handler.

In polling, the microcontroller continuously monitors the status of a given device; when the

status condition is met, it performs the service. After that, it moves on to monitor the next

device until each one is serviced. Although polling can monitor the status of several devices

and serve each of them as certain conditions are met, it is not an efficient use of the

microcontroller.

The advantage of interrupts is that the microcontroller can serve many devices (not all at the

same time, of course); each device can get the attention of the microcontroller based on the

priority assigned to it.

The polling method cannot assign priority since it checks all devices in a round robin fashion.

SIX INTERRUPTS IN THE 8051 MICROCONTROLLER:

In reality, only five interrupts are available to the user in the 8051, but many manufacturers

data sheets state that there are six interrupts since they include reset. The six interrupts in the

8051 are allocated as follows.

1. Reset. When the reset pin is activated, the 8051 jumps to address location 0000. This is the

power-up reset.

2. Two interrupts are set aside for the timers: one for Timer 0 and one for Timer1. Memory

locations 000BH and 001BH in the interrupt vector table belong to Timer 0 and Timer 1,

respectively.

3. Two interrupts are set aside for hardware external hardware interrupts, Pin numbers 12

(P3.2) and 13 (P3.3) in port 3 are for the external hardware interrupts INT 0 and INT 1,

respectively. These external interrupts are also referred to as EX 1 and EX 2. Memory

locations 0003H and 0013H In the interrupt vector table are assigned to INT0 and INT1,

respectively.

4. Serial communication has a single interrupt that belongs to both receive and transmit. The

interrupt vector table location 0023H belongs to this interrupt.

Table: Interrupt Vector Table for the 8051

Enabling and Disabling an interrupt:

Upon reset, all interrupts are disabled (masked), meaning that none will be responded to by

the microcontroller if they are activated. The interrupts must be enabled by software in order

for the microcontroller to respond to them. There is a register called IE (interrupt enable) that

is responsible for enabling (unmasking) and disabling (masking) the interrupts.

Figure shows the IE register. Note that IE is a bit-addressable register.

From figure notice that bit D7 in the IE register is called EA (enable all). This must be set to

1 in order for the rest of the register to take effect. D6 is unused. D5 is used by the 8052. The

D4 bit is for the serial interrupt, and so on.

Steps in enabling an interrupt:

To enable an interrupts, we take the following steps:

1. Bit D7 of the IE register (EA) must be set to high to allow the rest of register to take the

effect.

2. If EA =1, interrupts are enabled and will be responded to if their corresponding bits in IE

are high. If EA=0, no interrupt will be responded to, even if the associated bit in the IE

register is high.

IE (Interrupt Enable) Register:

• This register is responsible for enabling and disabling the interrupt.

• EA register is set to 1 for enabling interrupts and

• EA register is set to 0 for disabling the interrupts.

• Its bit sequence and their meanings are shown in the following figure.

EA IE.7

It disables all interrupts.

When EA = 0 no interrupt will be acknowledged and

When EA = 1 enables the interrupt individually.

- IE.6 Reserved for future use.

- IE.5 Reserved for future use.

ES IE.4 Enables/disables serial port interrupt.

ET1 IE.3 Enables/disables timer1 overflow interrupt.

EX1 IE.2 Enables/disables external interrupt1.

ET0 IE.1 Enables/disables timer0 overflow interrupt.

EX0 IE.0 Enables/disables external interrupt0.

SERIAL COMMUNICATION PROGRAMMING:

Serial Communication can be

 Asynchronous

 Synchronous

Synchronous Communication:

Synchronous methods transfer a block of data (characters) at a time

The events are referenced to a clock

Example: SPI bus, I2C bus

Asynchronous Communication:

Asynchronous methods transfer a single byte at a time

There is no clock. The bytes are separated by start and stop bits.

Example: UART

1. Serial port programming in assembly

Since IBM PC/compatible computers are so widely used to communicate with 8051-based

systems, serial communications of the 8051 with the COM port of the PC will be

emphasized. To allow data transfer between the PC and an 8051 system without any error,

we must make sure that the baud rate of the 8051 system matches the baud rate of the PC‟s

COM port.

 Baud rate in the 8051

The 8051 transfers and receives data serially at many different baud rates. Serial

communications of the 8051 is established with PC through the COM port. It must make sure

that the baud rate of the 8051 system matches the baud rate of the PC's COM port/ any

system to be interfaced. The baud rate in the 8051 is programmable. This is done with the

help of Timer. When used for serial port, the frequency of timer tick is determined by

(XTAL/12)/32 and 1 bit is transmitted for each timer period (the time duration from timer

start to timer expiry).

The Relationship between the crystal frequency and the baud rate in the 8051 is that the 8051

divides the crystal frequency by 12 to get the machine cycle frequency which is shown in

figure1. Here the oscillator is XTAL = 11.0592 MHz, the machine cycle frequency is 921.6

kHz. 8051's UART divides the machine cycle frequency of 921.6 kHz by 32 once more

before it is used by Timer 1 to set the baud rate. 921.6 kHz divided by 32 gives 28,800 Hz.

Timer 1 must be programmed in mode 2, that is 8-bit, auto-reload.

Baud rate supported by Pentium / IBM 486 PC are

 Calculation of baud rate:

In serial communication if data transferred with a baud rate of 9600 and XTAL used is

11.0592 then following is the steps followed to find the TH1 value to be loaded.

Clock frequency of timer clock: f = (11.0592 MHz / 12)/32 = 28,800Hz

Time period of each clock tick: T0 = 1/f = 1/28800

Duration of timer : n*T0 (n is the number of clock ticks)

9600 baud ->duration of 1 symbol: 1/9600

1/9600 = n*T0 = n*1/28800

n = f/9600 = 28800/9600 = 3 ->TH1 =-3

Similarly, for baud 2400

n = f/2400 = 12 ->TH1 = -12

Example: set baud rate at 9600

MOV TMOD, #20H ; timer 1,mode 2(auto reload) MOV

TH1, #-3 ; To set 9600 baud rate

SETB TR1; start timer 1

 Baud rate selection

Baud rate is selected by timer1 and when Timer 1 is used to set the baud rate it must be

programmed in mode 2 that is 8-bit, auto-reload. To get baud rates compatible with the PC,

we must load TH1 with the values shown in Table 1.

Table.1 Timer 1 THI register values for different baud rates

 Registers for serial communication

 SBUF (serial buffer) register:

It is an 8 bit register used solely for serial communication in the 8051.A byte of data to be

transferred via the TxD line must be placed in the SBUF register. SBUF holds the byte of

data when it is received by the RxD line. It can be accessed like any other register

MOV SBUF, #'D' ; load SBUF=44H, ASCII for 'D„

MOV SBUF, A ; copy accumulator into

SBUF MOV A, SBUF ; copy SBUF into accumulator

when a byte is written, it is framed with the start and stop bits and transferred serially via

the TxD pin. when the bits are received serially via RxD, it is deframed by eliminating the

stop and start bits, making a byte out of the data received, and then placing it in the SBUF.

 SCON (serial control) register:

It is an 8 bit register used to program start bit, stop bit, and data bits of data framing, among

other things.

Figure 2. SCON register

The first two bits are SM0, SM1 which is the serial port mode bits. It is used to specify

framing format, how to calculate baud. For example if (SM0, SM1) = (0,1), mode 1: 8-bit

data, 1 start bit, 1 stop bit, variable baud rate can be set by timer. The other three modes are

rarely used and they are (SM0,SM1) = (0,0), mode 0: fixed baud = XTAL/12,(SM0, SM1) =

(1,0), mode 2: 9-bit data, fixed baud,(SM0, SM1) = (1, 1), mode 3: 9-bit data, variable baud.

The third bit is used to select the type of processor used for communication. If SM2 is 0

means it is single processor communication. If SM2 is 1, then it is multiprocessor

communication. The fourth bit REN is Receive Enable which is used to enable/disable

reception. If REN=1,then 8051 will accept incoming data from serial port. If REN=0, then

the receiver is disabled. E.g. SETB REN,CLR REN, SETB SCON.4, CLR SCON.4.

The fifth bit is TB8 which is used by modes 2 and 3 for the 8-bit transmission. When mode 1

is used the pin TB8 should be cleared. The sixth bit RB8 is used by modes 2 and 3 for the

reception of bit 8. It is used by mode1 to store the stop bit. The seventh bit is TI which is the

Transmit Interrupt. When 8051 finishes the transfer of the 8-bit character, it sets TI to ''1'' to

indicate that it is ready to transfer the next character. The TI is raised at the beginning of the

stop bit. The last bit is the RI which is the receive interrupt. When 8051 receives a

character,the UART removes start bit and stop bit. The UART puts the 8-bit character in

SBUF. RI is set to „1‟ to indicate that a new byte is ready to be picked up in SBUF.RI is

raised halfway through the stop bit

 Steps to send data serially:

1. Set baud rate by loading TMOD register with the value 20H, this indicating timer 1 in

mode

 2 (8-bit auto-reload) to set baud rate

2. The TH1 is loaded with proper values to set baud rate for serial data transfer

3. The SCON register is loaded with the value 50H, indicating serial mode 1, where an 8-

bit data is

 framed with start and stop bits

4. TR1 is set to 1 to start timer 1

5. TI is cleared by CLR TI instruction

6. The character byte to be transferred serially is written into SBUF register

7. The TI flag bit is monitored with the use of instruction JNB TI,xx to see if the character

has been transferred completely

8. To transfer the next byte, go to step 5.

 Program to transfer letter “D” serially at 9800baud, continuously:

MOV TMOD,#20H ; timer 1,mode 2(auto reload)

MOV TH1, #-3 ; 9600 baud rate

MOV SCON, #50H ; 8-bit, 1 stop, REN enabled

SETB TR1 ; start timer 1

AGAIN: MOV SBUF, #”D” ; letter “D” to transfer

HERE: JNB TI, HERE ; wait for the last bit

CLR TI ;clear TI for next char

SJMP AGAIN ; keep sending A

 Importance of the TI flag:

Check the TI flag bit, we know whether or not 8051 is ready to transfer another byte. TI flag

bit is raised by the 8051 after transfer of data. TI flag is cleared by the programmer by

instruction like “CLR TI”. When writing a byte into SBUF, before the TI flag bit is raised, it

may lead to loss of a portion of the byte being transferred.

 Steps to receive data serially:

1. Set baud rate by loading TMOD register with the value 20H, this indicating timer 1 in

mode 2 (8-bit auto-reload) to set baud rate

2. The TH1 is loaded with proper values to set baud rate

3. The SCON register is loaded with the value 50H, indicating serial mode 1, where an 8-

bit data is framed with start and stop bits

4. TR1 is set to 1 to start timer 1

5. RI is cleared by CLR RI instruction

6. The RI flag bit is monitored with the use of instruction JNB RI,xx to see if an

entire character has been received yet

7. When RI is raised, SBUF has the byte; its contents are moved into a safe place

8. To receive next character, go to step 5

 Program to receive bytes of data serially, and put them in P2, set the baud rate at 9600,

8-bit data, and 1 stop bit:

MOV TMOD, #20H ; timer 1,mode 2(auto reload)

MOV TH1, #-3 ; 9600 baud rate

MOV SCON, #50H ; 8-bit, 1 stop, REN enabled

SETB TR1 ; start timer 1

HERE: JNB RI, HERE ; wait for char to come in

MOV A, SBUF ; saving incoming byte in A

MOV P2, A ; send to port 1

CLR RI ; get ready to receive next byte

SJMP HERE ; keep getting data

 Importance of the RI flag bit:

It receives the start bit, next bit is the first bit of the character about to be received. When

the last bit is received, a byte is formed and placed in SBUF. when stop bit is received, it

makes RI = 1 indicating entire character byte has been received and can be read before

overwritten by next data. When RI=1, received byte is in the SBUF register, copy SBUF

contents to a safe place. After the SBUF contents are copied the RI flag bit must be

cleared to 0.

 Increasing the baud rate:

Baud rate can be increase by two ways-

1. Increasing frequency of crystal

2. Change bit in PCON register

PCON

It is 8-bit register. When 8051 is powered up, SMOD is zero. By setting the SMOD, baud rate

can be doubled. If SMOD = 0 (which is its value on reset), the baud rate is 1/64 the oscillator

frequency. If SMOD = 1, the baud rate is 1/32 the oscillator frequency.

Table 2. Comparison of Baud rate

OS manages

resources and

available to

the system

makes them

the user

applications/tasks on a need basis

The primary functions of an Operating system is

 Make the system convenient to use

 Organize and manage the system resources efficiently andcorrectly

User Applications
 Application Programming

Interface (API)

Underlying Hardware

Device Driver

Interface

I/O System Management

File System Management

Time Management

Process Management

Memory Management

UNIT-III

RTOS BASED EMBEDDED SYSTEM DESIGN

Operating System Basics:

 The Operating System acts as a bridge between the user applications/tasks and the

underlying system resources through a set of system functionalities and services

Figure 1: The Architecture of Operating System

K
e

r
n

e
l

S
e

r
v

ic
e

s

The Kernel:

 The kernel is the core of the operating system

 It is responsible for managing the system resources and the communication among

the hardware and other system services

 Kernel acts as the abstraction layer between system resources and user

applications

 Kernel contains a set of system libraries and services.

 For a general purpose OS, the kernel contains different services like

 Process Management

 Primary Memory Management

 File System management

 I/O System (Device) Management

 Secondary Storage Management

 Protection

 Time management

 Interrupt Handling

Kernel Space and User Space:

 The program code corresponding to the kernel applications/services are kept in a

contiguous area (OS dependent) of primary (working) memory and is protected from

the un-authorized access by user programs/applications

 The memory space at which the kernel code is located is known as ‘Kernel Space’

 All user applications are loaded to a specific area of primary memory and this

memory area is referred as ‘User Space’

 The partitioning of memory into kernel and user space is purely Operating System

dependent

 An operating system with virtual memory support, loads the user applications into its

corresponding virtual memory space with demand paging technique. Most of the

operating systems keep the kernel application code in main memory and it is not

swapped out into the secondary memory

Monolithic Kernel:

 All kernel services run in the kernel space

 All kernel modules run within the same memory space under a single kernel thread

 The tight internal integration of kernel modules in monolithic kernel

architecture allows the effective utilization of the low-level features of the

underlying system

 The major drawback of monolithic kernel is that any error or failure in any one

 of the kernel modules leads to the crashing of the entire kernel application

 LINUX, SOLARIS, MS-DOS kernels are examples of monolithic kernel

Figure 2: The Monolithic Kernel Model

 Microkernel:

The microkernel design incorporates only the essential set of Operating System services into

the kernel.

 The rest of the Operating System services are implemented in programs known as

'Servers' which runs in user space.

 The kernel design is highly modular provides OS-neutral abstraction.

 Memory management, process management, timer systems and interrupt handlers are

examples of essential services, which forms the part of the microkernel.

Examples for microkernel: QNX, Minix 3 kernels.

Benefits of Microkernel:

 Robustness: If a problem is encountered in any services in server can reconfigured and

re-started without the need for re-starting the entire OS.

 Configurability: Any services , which run as ‘server’ application can be changed

without need to restart the whole system.

Types of Operating Systems:

Depending on the type of kernel and kernel services, purpose and type of computing

systems where the OS is deployed and the responsiveness to applications, Operating Systems

are classified into

1. General Purpose Operating System (GPOS).

2. Real Time Purpose Operating System (RTOS).

1. General Purpose Operating System (GPOS):

i. Operating Systems, which are deployed in general computing systems

ii. The kernel is more generalized and contains all the required services to execute

generic applications

iii. Need not be deterministic in execution behavior

iv. May inject random delays into application software and thus cause slow

responsiveness of an application at unexpected times

v. Usually deployed in computing systems where deterministic behavior is not an

important criterion

vi. Personal Computer/Desktop system is a typical example for a system where GPOSs

are deployed.

vii. Windows XP/MS-DOS etc are examples of General Purpose Operating System

2. Real Time Purpose Operating System (RTOS):

i. Operating Systems, which are deployed in embedded systems demanding real-

time response

ii. Deterministic in execution behavior. Consumes only known amount of time for

kernel applications

iii. Implements scheduling policies for executing the highest

 priority task/application always

iv. Implements policies and rules concerning time-critical allocation of a

system’s resources

v. Windows CE, QNX, VxWorks , MicroC/OS-II etc are examples of Real Time

Operating Systems (RTOS)

The Real Time Kernel: The kernel of a Real Time Operating System is referred as Real

Time kernel. In complement to the conventional OS kernel, the Real Time kernel is highly

specialized and it contains only the minimal set of services required for running the user

applications/tasks. The basic functions of a Real Time kernel are

a) Task/Process management

b) Task/Process scheduling

c) Task/Process synchronization

d) Error/Exception handling

e) Memory Management

f) Interrupt handling

g) Time management

 Real Time Kernel Task/Process Management: Deals with setting up the memory space

for the tasks, loading the task’s code into the memory space, allocating system resources,

setting up a Task Control Block (TCB) for the task and task/process termination/deletion.

A Task Control Block (TCB) is used for holding the information corresponding to a task.

TCB usually contains the following set of information

 Task ID: Task Identification Number

 Task State: The current state of the task. (E.g. State= ‘Ready’ for a task which

is ready to execute)

 Task Type: Task type. Indicates what is the type for this task. The task can be a

hard real time or soft real time or background task.

 Task Priority: Task priority (E.g. Task priority =1 for task with priority = 1)

 Task Context Pointer: Context pointer. Pointer for context saving

 Task Memory Pointers: Pointers to the code memory, data memory and stack

memory for the task

 Task System Resource Pointers: Pointers to system resources (semaphores, mutex

etc) used by the task

 Task Pointers: Pointers to other TCBs (TCBs for preceding, next and waiting

tasks)

 Other Parameters Other relevant task parameters

The parameters and implementation of the TCB is kernel dependent. The TCB parameters

vary across different kernels, based on the task management implementation

 Task/Process Scheduling: Deals with sharing the CPU among various tasks/processes. A

kernel application called ‘Scheduler’ handles the task scheduling. Scheduler is nothing

but an algorithm implementation, which performs the efficient and optimal scheduling of

tasks to provide a deterministic behavior.

Task/Process Synchronization: Deals with synchronizing the concurrent access of a

resource, which is shared across multiple tasks and the communication between various

tasks.

Error/Exception handling: Deals with registering and handling the errors

occurred/exceptions raised during the execution of tasks. Insufficient memory, timeouts,

deadlocks, deadline missing, bus error, divide by zero, unknown instruction execution etc,

are examples of errors/exceptions. Errors/Exceptions can happen at the kernel level

services or at task level. Deadlock is an example for kernel level exception, whereas

timeout is an example for a task level exception. The OS kernel gives the information

about the error in the form of a system call (API).

Memory Management:

 The memory management function of an RTOS kernel is slightly different

compared to the General Purpose Operating Systems. The memory allocation time

increases depending on the size of the block of memory needs to be allocated and

the state of the allocated memory block (initialized memory block consumes more

allocation time than un- initialized memory block)

 Since predictable timing and deterministic behavior are the primary focus for an

RTOS, RTOS achieves this by compromising the effectiveness of memory

allocation

 RTOS generally uses ‘block’ based memory allocation technique, instead of the

usual dynamic memory allocation techniques used by the GPOS.

 RTOS kernel uses blocks of fixed size of dynamic memory and the block is

allocated for a task on a need basis. The blocks are stored in a ‘Free buffer

Queue’.

 Most of the RTOS kernels allow tasks to access any of the memory blocks without

any memory protection to achieve predictable timing and avoid the timing

overheads

 RTOS kernels assume that the whole design is proven correct and protection is

unnecessary. Some commercial RTOS kernels allow memory protection as

optional and the kernel enters a fail-safe mode when an illegal memory access

occurs

 The memory management function of an RTOS kernel is slightly different

compared to the General Purpose Operating Systems

 A few RTOS kernels implement Virtual Memory concept for memory allocation if

the system supports secondary memory storage (like HDD and FLASH memory).

 In the ‘block’ based memory allocation, a block of fixed memory is always

allocated for tasks on need basis and it is taken as a unit. Hence, there will not be

any memory fragmentation issues.

 The memory allocation can be implemented as constant functions and thereby it

consumes fixed amount of time for memory allocation. This leaves the

deterministic behavior of the RTOS kernel untouched.

Interrupt Handling:

 Interrupts inform the processor that an external device or an associated task

requires immediate attention of the CPU.

 Interrupts can be either Synchronous or Asynchronous.

 Interrupts which occurs in sync with the currently executing task is known as

Synchronous interrupts. Usually the software interrupts fall under the Synchronous

Interrupt category. Divide by zero, memory segmentation error etc are examples of

Synchronous interrupts.

 For synchronous interrupts, the interrupt handler runs in the same context of the

interrupting task.

 Asynchronous interrupts are interrupts, which occurs at any point of execution of

any task, and are not in sync with the currently executing task.

 The interrupts generated by external devices (by asserting the Interrupt line of the

processor/controller to which the interrupt line of the device is connected)

connected to the processor/controller, timer overflow interrupts, and serial data

reception / transmission interrupts etc are examples for asynchronous interrupts.

 For asynchronous interrupts, the interrupt handler is usually written as

separate task (Depends on OS Kernel implementation) and it runs in a

different context. Hence, a context switch happens while handling the

asynchronous interrupts.

 Priority levels can be assigned to the interrupts and each interrupts can be enabled

or disabled individually.

 Most of the RTOS kernel implements ‘Nested Interrupts’ architecture. Interrupt

nesting allows the pre-emption (interruption) of an Interrupt Service Routine (ISR),

servicing an interrupt, by a higher priority interrupt.

Time Management:

 Interrupts inform the processor that an external device or an associated task

requires immediate attention of the CPU.

 Accurate time management is essential for providing precise time reference for all

applications

 The time reference to kernel is provided by a high-resolution Real Time Clock

(RTC) hardware chip (hardware timer)

 The hardware timer is programmed to interrupt the processor/controller at a fixed

rate. This timer interrupt is referred as ‘Timer tick’

 The ‘Timer tick’ is taken as the timing reference by the kernel. The ‘Timer tick’

interval may vary depending on the hardware timer. Usually the ‘Timer tick’ varies

in the microseconds range

 The time parameters for tasks are expressed as the multiples of the ‘Timer tick’

 The System time is updated based on the ‘Timer tick’

 If the System time register is 32 bits wide and the ‘Timer tick’ interval

is 1microsecond, the System time register will reset in

232 * 10-6/ (24 * 60 * 60) = 49700 Days =~ 0.0497 Days = 1.19 Hours

If the ‘Timer tick’ interval is 1 millisecond, the System time register will reset in

232 * 10-3 / (24 * 60 * 60) = 497 Days = 49.7 Days =~ 50 Days

The ‘Timer tick’ interrupt is handled by the ‘Timer Interrupt’ handler of kernel. The

‘Timer tick’ interrupt can be utilized for implementing the following actions.

 Save the current context (Context of the currently executing task)

 Increment the System time register by one. Generate timing error and reset the

System time register if the timer tick count is greater than the maximum range

available for System time register

 Update the timers implemented in kernel (Increment or decrement the timer registers

for each timer depending on the count direction setting for each register. Increment

registers with count direction setting = ‘count up’ and decrement registers with count

direction setting = ‘count down’)

 Activate the periodic tasks, which are in the idle state

 Invoke the scheduler and schedule the tasks again based on the scheduling algorithm

 Delete all the terminated tasks and their associated data structures (TCBs)

 Load the context for the first task in the ready queue. Due to the re- scheduling, the

ready task might be changed to a new one from the task, which was pre-empted by the

‘Timer Interrupt’ task

Hard Real-time System:

 A Real Time Operating Systems which strictly adheres to the timing constraints

for a task.

 A Hard Real Time system must meet the deadlines for a task without any slippage

 Missing any deadline may produce catastrophic results for Hard Real Time

Systems, including permanent data lose and irrecoverable damages to the

system/users

 Emphasize on the principle ‘A late answer is a wrong answer’

 Air bag control systems and Anti-lock Brake Systems (ABS) of vehicles are

typical examples of Hard Real Time Systems

 As a rule of thumb, Hard Real Time Systems does not implement the virtual

memory model for handling the memory. This eliminates the delay in swapping in

and out the code corresponding to the task to and from the primary memory

 The presence of Human in the loop (HITL) for tasks introduces un- expected

delays in the task execution. Most of the Hard Real Time Systems are automatic

and does not contain a ‘human in the loop’

 Soft Real-time System:

 Real Time Operating Systems that does not guarantee meeting deadlines, but,

offer the best effort to meet the deadline

 Missing deadlines for tasks are acceptable if the frequency of deadline missing

is within the compliance limit of the Quality of Service(QoS)

 A Soft Real Time system emphasizes on the principle ‘A late answer is an

acceptable answer, but it could have done bit faster’

 Soft Real Time systems most often have a ‘human in the loop (HITL)’

 Automatic Teller Machine (ATM) is a typical example of Soft Real Time System. If

the ATM takes a few seconds more than the ideal operation time, nothing fatal

happens.

 An audio video play back system is another example of Soft Real Time system. No

potential damage arises if a sample comes late by fraction of a second, for play

back.

Tasks, Processes & Threads:

 In the Operating System context, a task is defined as the program in execution and

the related information maintained by the Operating system for the program

 Task is also known as ‘Job’ in the operating system context

 A program or part of it in execution is also called a ‘Process’

 The terms ‘Task’, ‘job’ and ‘Process’ refer to the same entity in the Operating

System context and most often they are used interchangeably

Code Memory

corresponding to the

Process

 A process requires various system resources like CPU for executing the process,

memory for storing the code corresponding to the process and associated

variables, I/O devices for information exchange etc

The structure of a Processes

 The concept of ‘Process’ leads to concurrent execution (pseudo parallelism) of tasks

and thereby the efficient utilization of the CPU and other system resources

 Concurrent execution is achieved through the sharing of CPU among the processes.

 A process mimics a processor in properties and holds a set of registers, process status,

a Program Counter (PC) to point to the next executable instruction of the process, a

stack for holding the local variables associated with the process and the code

corresponding to the process

Process

 A process, which inherits all

the properties of the CPU,

can be considered as a virtual

processor, awaiting its turn to

have its properties switched

into the physical processor

Figure: 4 Structure of a Process

 When the process gets its turn, its registers and Program counter register

becomes mapped to the physical registers of the CPU

Stack

(Stack Pointer)

Working Registers

Status Registers

Program Counter (PC)

Memory organization of Processes:

The memory occupied by the process is segregated into three regions namely; Stack

memory, Data memory and Code memory.

The Stack memory holds all temporary data such as variables local to the process

Data memory holds all global data for the process

The Code memory contains the program code (instructions) corresponding to the

process

Fig: Memory organization of a Process

Process States & State Transition

 The creation of a process to its termination is not a single step operation

 The process traverses through a series of states during its transition from the newly

created state to the terminated state

 The cycle through which a process changes its state from ‘newly created’ to

‘execution completed’ is known as ‘Process Life Cycle’. The various states through

which a process traverses through during a Process Life Cycle indicates the current

status of the process with respect to time and also provides information on what it is

allowed to do next

Process States & State Transition:

 Created State: The state at which a process is being created is referred as ‘Created

State’. The Operating System recognizes a process in the ‘Created State’ but no

resources are allocated to the process

Ready State: The state, where a process is incepted into the memory and awaiting

the processor time for execution, is known as ‘Ready State’. At this stage, the process

is placed in the ‘Ready list’ queue maintained by the OS

 Running State: The state where in the source code instructions corresponding to the

process is being executed is called ‘Running State’. Running state is the state at

which the process execution happens

 . Blocked State/Wait State: Refers to a state where a running process is temporarily

suspended from execution and does not have immediate access to resources. The

blocked state might have invoked by various conditions like- the process enters a

wait state for an event to occur (E.g. Waiting for user inputs such as keyboard input)

or waiting for getting access to a shared resource like semaphore, mutex etc

Figure 6.Process states and State transition

 Completed State: A state where the process completes its execution

 The transition of a process from one state to another is known as ‘State transition’

 When a process changes its state from Ready to running or from running to

blocked or terminated or from blocked to running, the CPU allocation for the

process may also change

Threads

 A thread is the primitive that can execute code

 A thread is a single sequential flow of control within a process

 ‘Thread’ is also known as lightweight process

 A process can have many threads of execution

 Different threads, which are part of a

process, share the same address space;

meaning they share the data memory, code

memory and heap memory area

 Threads maintain their own thread status

(CPU register values), Program Counter (PC)

and stack

 Figure 7 Memory organization of process and its associated Threads

Thread V/s Process

Thread Process

Thread is a single unit of execution and is part of

process.

Process is a program in execution and

contains one or more threads.

A thread does not have its own data memory and

heap memory. It shares the data memory and heap

memory with other threads of the same process.

Process has its own code memory, data

memory and stack memory.

A thread cannot live independently; it lives within

the process.

A process contains at least one thread.

There can be multiple threads in a process. The first

thread (main thread) calls the main function and

occupies the start of the stack memory of the

process.

Threads within a process share the code, data

and heap memory. Each thread holds

separate memory area for stack (shares the

total stack memory of the process).

Threads are very inexpensive to create Processes are very expensive to create.

Involves many OS overhead.

Context switching is inexpensive and fast Context switching is complex and involves

lot of OS overhead and is comparatively

slower.

If a thread expires, its stack is reclaimed by the

process.

If a process dies, the resources allocated to it

are reclaimed by the OS and all the

associated threads of the process also dies.

Advantages of Threads:

1. Better memory utilization: Multiple threads of the same process share the address

space for data memory. This also reduces the complexity of inter thread

communication since variables can be shared across the threads.

2. Efficient CPU utilization: The CPU is engaged all time.

3. Speeds up the execution of the process: The process is split into different threads,

when one thread enters a wait state, the CPU can be utilized by other threads of the

process that do not require the event, which the other thread is waiting, for processing.

Multiprocessing & Multitasking

 The ability to execute multiple processes simultaneously is referred as

multiprocessing

 Systems which are capable of performing multiprocessing are known as

multiprocessor systems

 Multiprocessor systems possess multiple CPUs and can execute multiple processes

simultaneously

 The ability of the Operating System to have multiple programs in memory, which are

ready for execution, is referred as multiprogramming

 Multitasking refers to the ability of an operating system to hold multiple processes in

memory and switch the processor (CPU) from executing one process to another

process

 Multitasking involves ‘Context switching’, ‘Context saving’ and ‘Context retrieval’

 Context switching refers to the switching of execution context from task to other

 When a task/process switching happens, the current context of execution should be

saved to (Context saving) retrieve it at a later point of time when the CPU executes

the process, which is interrupted currently due to execution switching

 During context switching, the context of the task to be executed is retrieved from the

saved context list. This is known as Context retrieval.

Multitasking – Context Switching:

Process 2

Process 1

Types of Multitasking:

P
ro

c
e

s
s
e

s

E
x
e

c
u

ti
o

n
 s

w
it
c
h

e
s
 t
o

 P
ro

c
e

s
s
 2

(I
n

te
rr

u
p

t
o

r
S

y
s
te

m
 C

a
ll
)

1
.

S
a

v
e

 C
u

rr
e

n
t

c
o

n
te

x
t
in

to
 P

C
B

0

2
.

P
e

rf
o

rm
 o

th
e

r
O

S
 o

p
e

ra
ti
o

n
s
 r

e
la

te
d

 t
o

‘C
o
n
te
x
t
S
w
it
c
h
in
g
’

3
.

R
e

lo
a

d
 C

o
n

te
x
t
fo

r
P

ro
c
e

s
s
 2

 f
ro

m
 P

C
B

1

E
x
e

c
u

ti
o

n
 s

w
it
c
h

e
s
 t
o

 P
ro

c
e

s
s
 1

(I
n

te
rr

u
p

t
o

r
S

y
s
te

m
 C

a
ll
)

1
.

S
a

v
e

 C
u

rr
e

n
t

c
o

n
te

x
t
in

to
 P

C
B

1

2
.

P
e

rf
o

rm
 o

th
e

r
O

S
 o

p
e

ra
ti
o

n
s
 r

e
la

te
d

 t
o

‘C
o
n
te
x
t
S
w
it
c
h
in
g
’

3
.

R
e

lo
a

d
 C

o
n

te
x
t
fo

r
P

ro
c
e

s
s
 1

 f
ro

m
 P

C
B

0

Idle

Running

Time

Figure 9 Context Switching

Multiprogramming: The ability of the Operating System to have multiple

Programs in memory, which are ready for execution, is referred as multiprogramming.

Running Idle Waits in ‘Ready’ Queue Running

dy’ Queue Waits in ‘Re Running Idle

Delay inexecution of

Process 1 happened

due to ‘Context
Switching’

Delay inexecution of

Process 2 happened

due to ‘Context
Switching’

Depending on how the task/process execution switching act is implemented,

multitasking can is classified into

• Co-operative Multitasking: Co-operative multitasking is the most primitive form of

multitasking in which a task/process gets a chance to execute only when the currently

executing task/process voluntarily relinquishes the CPU. In this method, any

task/process can avail the CPU as much time as it wants. Since this type of

implementation involves the mercy of the tasks each other for getting the CPU time

for execution, it is known as co-operative multitasking. If the currently executing task

is non-cooperative, the other tasks may have to wait for a long time to get the CPU

• Preemptive Multitasking: Preemptive multitasking ensures that every task/process gets

a chance to execute. When and how much time a process gets is dependent on the

implementation of the preemptive scheduling. As the name indicates, in preemptive

multitasking, the currently running task/process is preempted to give a chance to other

tasks/process to execute. The preemption of task may be based on time slots or

task/process priority

• Non-preemptive Multitasking: The process/task, which is currently given the CPU time,

is allowed to execute until it terminates (enters the ‘Completed’ state) or enters the

‘Blocked/Wait’ state, waiting for an I/O. The co- operative and non-preemptive

multitasking differs in their behavior when they are in the ‘Blocked/Wait’ state. In co-

operative multitasking, the currently executing process/task need not relinquish the

CPU when it enters the ‘Blocked/Wait’ sate, waiting for an I/O, or a shared resource

access or an event to occur whereas in non-preemptive multitasking the currently

executing task relinquishes the CPU when it waits for an I/O.

Task Scheduling:

 In a multitasking system, there should be some mechanism in place to share the CPU

among the different tasks and to decide which process/task is to be executed at a

given point of time

 Determining which task/process is to be executed at a given point of time is known as

task/process scheduling

 Task scheduling forms the basis of multitasking

 Scheduling policies forms the guidelines for determining which task is to be executed

when

To summarize, a good scheduling algorithm has high CPU utilization, minimum

Turn around Time (TAT), maximum throughput and least response time.

 The scheduling policies are implemented in an algorithm and it is run by the kernel as

a service

 The kernel service/application, which implements the scheduling algorithm, is known

as ‘Scheduler’

 The task scheduling policy can be pre-emptive, non-preemptive or co- operative

 Depending on the scheduling policy the process scheduling decision may take place

when a process switches its state to

 ‘Ready’ state from ‘Running’ state

 ‘Blocked/Wait’ state from ‘Running’ state

 ‘Ready’ state from ‘Blocked/Wait’ state

 ‘Completed’ state

Task Scheduling - Scheduler Selection:

The selection of a scheduling criteria/algorithm should consider the following factors:

• CPU Utilization: The scheduling algorithm should always make the CPU utilization

high. CPU utilization is a direct measure of how much percentage of the CPU is being

utilized.

• Throughput: This gives an indication of the number of processes executed per unit

of time. The throughput for a good scheduler should always be higher.

• Turnaround Time: It is the amount of time taken by a process for completing its

execution. It includes the time spent by the process for waiting for the main memory,

time spent in the ready queue, time spent on completing the I/O operations, and the

time spent in execution. The turnaround time should be a minimum for a good

scheduling algorithm.

• Waiting Time: It is the amount of time spent by a process in the ‘Ready’ queue

waiting to get the CPU time for execution. The waiting time should be minimal for a

good scheduling algorithm.

• Response Time: It is the time elapsed between the submission of a process and the

first response. For a good scheduling algorithm, the response time should be as least

as possible.

Task Scheduling - Queues

The various queues maintained by OS in association with CPU scheduling are:

• Job Queue: Job queue contains all the processes in the system

• Ready Queue: Contains all the processes, which are ready for execution and waiting

for CPU to get their turn for execution. The Ready queue is empty when there is no

process ready for running.

• Device Queue: Contains the set of processes, which are waiting for an I/O device

Task Scheduling – Task transition through various Queues

Non-preemptive scheduling – First Come First Served (FCFS)/First In First Out

(FIFO) Scheduling:

 Allocates CPU time to the processes based on the order in which they enters the

‘Ready’ queue

 The first entered process is serviced first

 It is same as any real world application where queue systems are used; E.g.

Ticketing

Drawbacks:

 Favors monopoly of process. A process, which does not contain any I/O

operation, continues its execution until it finishes its task

P1

P2 P3

 In general, FCFS favors CPU bound processes and I/O bound processes may have to

wait until the completion of CPU bound process, if the currently executing process is

a CPU bound process. This leads to poor device utilization.

 The average waiting time is not minimal for FCFS scheduling algorithm

EXAMPLE: Three processes with process IDs P1, P2, P3 with estimated completion time

10, 5, 7 milliseconds respectively enters the ready queue together in the order P1, P2, P3.

Calculate the waiting time and Turn around Time (TAT) for each process and the Average

waiting time and Turn Around Time (Assuming there is no I/O waiting for the processes).

Solution: The sequence of execution of the processes by the CPU is represented as

0 10 15 22

10 5 7

Assuming the CPU is readily available at the time of arrival of P1, P1 starts executing

without any waiting in the ‘Ready’ queue. Hence the waiting time for P1 is zero.

Waiting Time for P1 = 0 ms (P1 starts executing first)

Waiting Time for P2 = 10 ms (P2 starts executing after completing P1)

Waiting Time for P3 = 15 ms (P3 starts executing after completing P1 and P2)

Average waiting time = (Waiting time for all processes) / No. of Processes

= (Waiting time for (P1+P2+P3)) / 3

= (0+10+15)/3 = 25/3 = 8.33 milliseconds

Turn Around Time (TAT) for P1 = 10 ms (Time spent in Ready Queue +

Execution Time)

Turn Around Time (TAT) for P2 = 15 ms (-

Do-) Turn Around Time (TAT) for P3 = 22 ms (-

Do-)

Average Turn around Time= (Turn around Time for all processes) / No. of Processes

P1

P3

= (Turn Around Time for (P1+P2+P3)) / 3

= (10+15+22)/3 = 47/3

= 15.66 milliseconds

Non-preemptive scheduling – Last Come First Served (LCFS)/Last In First Out

(LIFO) Scheduling:

 Allocates CPU time to the processes based on the order in which they are entered

in the ‘Ready’ queue

 The last entered process is serviced first

 LCFS scheduling is also known as Last In First Out (LIFO) where the process, which

is put last into the ‘Ready’ queue, is serviced first

Drawbacks:

 Favors monopoly of process. A process, which does not contain any I/O operation,

continues its execution until it finishes its task

 In general, LCFS favors CPU bound processes and I/O bound processes may have to

wait until the completion of CPU bound process, if the currently executing process is

a CPU bound process. This leads to poor device utilization.

 The average waiting time is not minimal for LCFS scheduling algorithm

EXAMPLE: Three processes with process IDs P1, P2, P3 with estimated completion time

10, 5, 7 milliseconds respectively enters the ready queue together in the order P1, P2, P3

(Assume only P1 is present in the ‘Ready’ queue when the scheduler picks up it and P2, P3

entered ‘Ready’ queue after that). Now a new process P4 with estimated completion time 6ms

enters the ‘Ready’ queue after 5ms of scheduling P1. Calculate the waiting time and Turn

around Time (TAT) for each process and the Average waiting time and Turn around Time

(Assuming there is no I/O waiting for the processes).Assume all the processes contain only

CPU operation and no I/O operations are involved.

Solution: Initially there is only P1 available in the Ready queue and the scheduling sequence

will be P1, P3, P2. P4 enters the queue during the execution of P1 and becomes the last

process entered the ‘Ready’ queue. Now the order of execution changes to P1, P4, P3, and P2

as given below.

 P1

 P4

 P3

 P2

0 10 16 23 28

10 6 7 5

The waiting time for all the processes are given as Waiting

Time for P1 = 0 ms (P1 starts executing first)

Waiting Time for P4 = 5 ms (P4 starts executing after completing P1. But P4 arrived after

5ms of execution of P1. Hence its waiting time = Execution start time

– Arrival Time = 10-5 = 5)

Waiting Time for P3 = 16 ms (P3 starts executing after completing P1 and P4)

Waiting Time for P2 = 23 ms (P2 starts executing after completing P1, P4 and P3)

Average waiting time = (Waiting time for all processes) / No. of Processes

= (Waiting time for (P1+P4+P3+P2)) / 4

= (0 + 5 + 16 + 23)/4 = 44/4

= 11 milliseconds

Turn around Time (TAT) for P1 = 10 ms (Time spent in Ready Queue + Execution Time)

Turn around Time (TAT) for P4 = 11 ms (Time spent in Ready Queue +

Execution Time = (Execution Start Time – Arrival Time)

+ Estimated Execution Time = (10-5) + 6 = 5 + 6)

Turn around Time (TAT) for P3 = 23 ms (Time spent in Ready Queue + Execution Time)

Turn Around Time (TAT) for P2 = 28 ms (Time spent in Ready Queue + Execution Time)

Average Turn Around Time = (Turn Around Time for all processes) / No. of Processes

= (Turn Around Time for (P1+P4+P3+P2)) / 4

= (10+11+23+28)/4 = 72/4

= 18 milliseconds

Non-preemptive scheduling – Shortest Job First (SJF) Scheduling.

 Allocates CPU time to the processes based on the execution completion time for tasks

 The average waiting time for a given set of processes is minimal in SJF scheduling

 Optimal compared to other non-preemptive scheduling like FCFS

Drawbacks:

 A process whose estimated execution completion time is high may not get a chance to

execute if more and more processes with least estimated execution time enters the

‘Ready’ queue before the process with longest estimated execution time starts its

execution

 May lead to the ‘Starvation’ of processes with high estimated completion time

 Difficult to know in advance the next shortest process in the ‘Ready’ queue for

scheduling since new processes with different estimated execution time keep entering

the ‘Ready’ queue at any point of time.

Non-preemptive scheduling – Priority based Scheduling

 A priority, which is unique or same is associated with each task

 The priority of a task is expressed in different ways, like a priority number, the time

required to complete the execution etc.

 In number based priority assignment the priority is a number ranging from 0 to the

maximum priority supported by the OS. The maximum level of priority is OS

dependent.

 Windows CE supports 256 levels of priority (0 to 255 priority numbers, with 0 being

the highest priority)

 The priority is assigned to the task on creating it. It can also be changed dynamically

(If the Operating System supports this feature)

 The non-preemptive priority based scheduler sorts the ‘Ready’ queue based on the

priority and picks the process with the highest level of priority for execution.

EXAMPLE: Three processes with process IDs P1, P2, P3 with estimated completion time

10, 5, 7 milliseconds and priorities 0, 3, 2 (0- highest priority, 3 lowest priority) respectively

enters the ready queue together. Calculate the waiting time and Turn Around Time (TAT) for

each process and the Average waiting time and Turn Around Time (Assuming there is no I/O

waiting for the processes) in priority based scheduling algorithm.

Solution: The scheduler sorts the ‘Ready’ queue based on the priority and schedules the

process with the highest priority (P1 with priority number 0) first and the next high priority

process (P3 with priority number 2) as second and so on. The order in which the processes

are scheduled for execution is represented as

P1

P3

P2

0 10 17 22

10 7 5

The waiting time for all the processes are given as Waiting

Time for P1 = 0 ms (P1 starts executing first)

Waiting Time for P3 = 10 ms (P3 starts executing after completing P1)

Waiting Time for P2 = 17 ms (P2 starts executing after completing P1 and P3)

Average waiting time = (Waiting time for all processes) / No. of Processes

= (Waiting time for (P1+P3+P2)) / 3

= (0+10+17)/3 = 27/3

= 9 milliseconds

Turn Around Time (TAT) for P1 = 10 ms (Time spent in Ready Queue + Execution Time)

Turn Around Time (TAT) for P3 = 17 ms (-

Do-) Turn Around Time (TAT) for P2 = 22 ms (-

Do-)

Average Turn Around Time= (Turn Around Time for all processes) / No. of Processes

= (Turn Around Time for (P1+P3+P2)) / 3

= (10+17+22)/3 = 49/3

= 16.33 milliseconds

Drawbacks:

 Similar to SJF scheduling algorithm, non-preemptive priority based algorithm also

possess the drawback of ‘Starvation’ where a process whose priority is low may not

get a chance to execute if more and more processes with higher priorities enter the

‘Ready’ queue before the process with lower priority starts its execution.

 ‘Starvation’ can be effectively tackled in priority based non-preemptive scheduling by

dynamically raising the priority of the low priority task/process which is under

starvation (waiting in the ready queue for a longer time for getting the CPU time)

 The technique of gradually raising the priority of processes which are waiting in the

‘Ready’ queue as time progresses, for preventing ‘Starvation’, is known as ‘Aging’.

Preemptive scheduling:

 Employed in systems, which implements preemptive multitasking model

 Every task in the ‘Ready’ queue gets a chance to execute. When and how often each

process gets a chance to execute (gets the CPU time) is dependent on the type of

preemptive scheduling algorithm used for scheduling the processes

 The scheduler can preempt (stop temporarily) the currently executing task/process

and select another task from the ‘Ready’ queue for execution

 When to pre-empt a task and which task is to be picked up from the ‘Ready’ queue for

execution after preempting the current task is purely dependent on the scheduling

algorithm

 A task which is preempted by the scheduler is moved to the ‘Ready’ queue. The act of

moving a ‘Running’ process/task into the ‘Ready’ queue by the scheduler, without the

processes requesting for it is known as‘Preemption’

 Time-based preemption and priority-based preemption are the two important

approaches adopted in preemptive scheduling

Preemptive scheduling – Preemptive SJF Scheduling/ Shortest Remaining Time (SRT):

 The non preemptive SJF scheduling algorithm sorts the ‘Ready’ queue only after the

current process completes execution or enters wait state, whereas the preemptive SJF

scheduling algorithm sorts the ‘Ready’ queue when a new process enters the ‘Ready’

queue and checks whether the execution time of the new process is shorter than the

remaining of the total estimated execution time of the currently executing process

 If the execution time of the new process is less, the currently executing process is

preempted and the new process is scheduled for execution

 Always compares the execution completion time (ie the remaining execution time for

the new process) of a new process entered the ‘Ready’ queue with the remaining time

for completion of the currently executing process and schedules the process with

shortest remaining time for execution.

EXAMPLE: Three processes with process IDs P1, P2, P3 with estimated completion time

10, 5, 7 milliseconds respectively enters the ready queue together. A new process P4 with

estimated completion time 2ms enters the ‘Ready’ queue after 2ms. Assume all the processes

contain only CPU operation and no I/O operations are involved.

Solution: At the beginning, there are only three processes (P1, P2 and P3) available in the

‘Ready’ queue and the SRT scheduler picks up the process with the Shortest remaining time

for execution completion (In this example P2 with remaining time 5ms) for scheduling. Now

process P4 with estimated execution completion time 2ms enters the ‘Ready’ queue after 2ms

of start of execution of P2. The processes are re-scheduled for execution in the following

order

P2

P4

P2

P3

P1

0 2 4 7 14 24

2 2 3 7 10

The waiting time for all the processes are given as

Waiting Time for P2 = 0 ms + (4 -2) ms = 2ms (P2 starts executing first and is

interrupted by P4 and has to wait till the completion of P4 to

get the next CPU slot)

Waiting Time for P4 = 0 ms (P4 starts executing by preempting P2 since the

execution time for completion of P4 (2ms) is less than that

of the Remaining time for execution completion of P2

(Here it is 3ms))

Waiting Time for P3 = 7 ms (P3 starts executing after completing P4 and P2)

Waiting Time for P1 = 14 ms (P1 starts executing after completing P4, P2 and P3)

Average waiting time = (Waiting time for all the processes) / No. of Processes

= (Waiting time for (P4+P2+P3+P1)) / 4

= (0 + 2 + 7 + 14)/4 = 23/4

= 5.75 milliseconds

Turn around Time (TAT) for P2 = 7 ms (Time spent in Ready Queue + Execution Time)

Turn Around Time (TAT) for P4 = 2 ms (Time spent in Ready Queue + Execution Time

= (Execution Start Time – Arrival Time) + Estimated Execution Time = (2-2) + 2)

Turn around Time (TAT) for P3 = 14 ms (Time spent in Ready Queue + Execution Time)

Turn around Time (TAT) for P1 = 24 ms (Time spent in Ready Queue +Execution Time)

Average Turn around Time = (Turn around Time for all the processes) / No. of Processes

= (Turn Around Time for (P2+P4+P3+P1)) / 4

= (7+2+14+24)/4 = 47/4

= 11.75 milliseconds

Preemptive scheduling – Round Robin (RR) Scheduling:

The term Round Robin is very popular among the sports and games activities. You might

have heard about 'Round Robin' league or 'Knock out' league associated with any football or

cricket tournament. In the 'Round Robin' league each team in a group gets an equal chance

to play against the rest of the teams in the same group whereas in the 'Knock out' league the

losing team in a match moves out of the tournament .

In Round Robin scheduling, each process in the 'Ready' queue is executed for a pre-defined

time slot.

The execution starts with picking up the first process in the 'Ready' queue. It is executed for

a pre-defined time and when the pre-defined time elapses or the process completes (before

the pre-defined time slice), the next process in the 'Ready' queue is selected for execution.

This is repeated for all the processes in the 'Ready' queue. Once each process in the 'Ready'

queue is executed for the pre-defined time period, the scheduler comes back and picks the

first process in the 'Ready' queue again for execution.

The sequence is repeated. This reveals that the Round Robin scheduling is similar to the

FCFS scheduling and the only difference is that a time slice based preemption is added to

switch the execution between the processes in the `Ready' queue.

Figure: Round Robin Scheduling

 This is repeated for all the processes in the ‘Ready’ queue

 Once each process in the ‘Ready’ queue is executed for the pre-defined time period,

the scheduler comes back and picks the first process in the ‘Ready’ queue again for

execution.

 Round Robin scheduling is similar to the FCFS scheduling and the only difference is

that a time slice based preemption is added to switch the execution between the

processes in the ‘Ready’ queue

EXAMPLE: Three processes with process IDs P1, P2, P3 with estimated completion time 6,

4, 2 milliseconds respectively, enters the ready queue together in the order P1, P2, P3.

Calculate the waiting time and Turn Around Time (TAT) for each process and the Average

waiting time and Turn Around Time (Assuming there is no I/O waiting for the processes) in

RR algorithm with Time slice= 2ms.

Solution: The scheduler sorts the ‘Ready’ queue based on the FCFS policy and picks up the

first process P1 from the ‘Ready’ queue and executes it for the time slice 2ms. When the time

slice is expired, P1 is preempted and P2 is scheduled for execution. The Time slice expires

after 2ms of execution of P2. Now P2 is preempted and P3 is picked up for execution. P3

completes its execution within the time slice and the scheduler picks P1 again for execution

for the next time slice. This procedure is repeated till all the processes are serviced. The order

in which the processes are scheduled for execution is represented as

P1

P2

P3

P1

P2

P1

0 2 4 6 8 10 12

2 2 2 2 2 2

The waiting time for all the processes are given as

Waiting Time for P1 = 0 + (6-2) + (10-8) = 0+4+2= 6ms (P1 starts executing first

and waits for two time slices to get execution back and

again 1 time slice for getting CPU time)

Waiting Time for P2 = (2-0) + (8-4) = 2+4 = 6ms (P2 starts executing after P1

executes for 1 time slice and waits for two time

slices to get the CPU time)

Waiting Time for P3 = (4 -0) = 4ms (P3 starts executing after completing the first time

slices for P1 and P2 and completes its execution in a single time slice.)

Average waiting time = (Waiting time for all the processes) / No. of Processes

= (Waiting time for (P1+P2+P3)) / 3

= (6+6+4)/3 = 16/3

= 5.33 milliseconds

Turn around Time (TAT) for P1 = 12 ms (Time spent in Ready Queue + Execution Time)

Turn Around Time (TAT) for P2 = 10 ms (-Do-)

Turn Around Time (TAT) for P3 = 6 ms (-Do-)

Average Turn around Time = (Turn around Time for all the processes) / No. of Processes

= (Turn Around Time for (P1+P2+P3)) / 3

= (12+10+6)/3 = 28/3

= 9.33 milliseconds.

Preemptive scheduling – Priority based Scheduling

 Same as that of the non-preemptive priority based scheduling except for the switching

of execution between tasks

 In preemptive priority based scheduling, any high priority process entering the

‘Ready’ queue is immediately scheduled for execution whereas in the non-preemptive

scheduling any high priority process entering the ‘Ready’ queue is scheduled only

after the currently executing process completes its execution or only when it

voluntarily releases the CPU

 The priority of a task/process in preemptive priority based scheduling is indicated in

the same way as that of the mechanisms adopted for non- preemptive multitasking.

EXAMPLE: Three processes with process IDs P1, P2, P3 with estimated completion time

10, 5, 7 milliseconds and priorities 1, 3, 2 (0- highest priority, 3 lowest priority) respectively

enters the ready queue together. A new process P4 with estimated completion time 6ms and

priority 0 enters the ‘Ready’ queue after 5ms of start of execution of P1. Assume all the

processes contain only CPU operation and no I/O operations are involved.

Solution: At the beginning, there are only three processes (P1, P2 and P3) available in the

‘Ready’ queue and the scheduler picks up the process with the highest priority (In this

example P1 with priority 1) for scheduling. Now process P4 with estimated execution

completion time 6ms and priority 0 enters the ‘Ready’ queue after 5ms of start of execution of

P1. The processes are re-scheduled for execution in the following order

P1

P4

P1

P3

P2

0 5 11 16

5 6 5 7

23 28

5

The waiting time for all the processes are given as

Waiting Time for P1 = 0 + (11-5) = 0+6 =6 ms (P1 starts executing first and gets

Preempted by P4 after 5ms and again gets the CPU time after

completion of P4)

Waiting Time for P4 = 0 ms (P4 starts executing immediately on entering the

‘Ready’ queue, by preempting P1)

Waiting Time for P3 = 16 ms (P3 starts executing after completing P1 and P4)

Waiting Time for P2 = 23 ms (P2 starts executing after completing P1, P4 and P3)

Average waiting time = (Waiting time for all the processes) / No. of Processes

= (Waiting time for (P1+P4+P3+P2)) / 4

= (6 + 0 + 16 + 23)/4 = 45/4

= 11.25 milliseconds

Turn Around Time (TAT) for P1 = 16 ms (Time spent in Ready Queue + Execution Time)

Turn Around Time (TAT) for P4 = 6ms (Time spent in Ready Queue + Execution Time

= (Execution Start Time – Arrival Time) + Estimated Execution Time = (5-5) + 6 = 0 + 6)

Turn Around Time (TAT) for P3 = 23 ms (Time spent in Ready Queue + Execution

Time) Turn Around Time (TAT) for P2 = 28 ms (Time spent in Ready Queue +

Execution Time) Average Turn Around Time= (Turn Around Time for all the processes) /

No. of Processes

= (Turn Around Time for (P2+P4+P3+P1)) / 4

= (16+6+23+28)/4 = 73/4

= 18.25 milliseconds

How to choose RTOS:

The decision of an RTOS for an embedded design is very critical.

A lot of factors need to be analyzed carefully before making a decision on the

selection of an RTOS.

These factors can be either

1. Functional

2. Non-functional requirements.

1. Functional Requirements:

1. Processor support:

 It is not necessary that all RTOS’s support all kinds of processor

architectures.

 It is essential to ensure the processor support by the RTOS

2. Memory Requirements:

 The RTOS requires ROM memory for holding the OS files and it is

normally stored in a non-volatile memory like FLASH.

 OS also requires working memory RAM for loading the OS service.

 Since embedded systems are memory constrained, it is essential to evaluate the

minimal RAM and ROM requirements for the OS under consideration.

3. Real-Time Capabilities:

 It is not mandatory that the OS for all embedded systems need to be Real-

Time and all embedded OS’s are ‘Real-Time’ in behavior.

 The Task/process scheduling policies plays an important role in the Real-

Time behavior of an OS.

4. Kernel and Interrupt Latency:

 The kernel of the OS may disable interrupts while executing certain services and it

may lead to interrupt latency.

 For an embedded system whose response requirements are high, this latency should

be minimal.

5. Inter process Communication (IPC) and Task Synchronization:

 The implementation of IPC and Synchronization is OS kernel dependent.

6. Modularization Support:

 Most of the OS’s provide a bunch of features.

 It is very useful if the OS supports modularization where in which the developer can

choose the essential modules and re-compile the OS image for functioning.

7. Support for Networking and Communication:

 The OS kernel may provide stack implementation and driver support for a bunch of

communication interfaces and networking.

 Ensure that the OS under consideration provides support for all the interfaces required

by the embedded product.

8. Development Language Support:

 Certain OS’s include the run time libraries required for running applications written in

languages like JAVA and C++.

 The OS may include these components as built-in component, if not; check the

availability of the same from a third party.

2. Non-Functional Requirements:

1. Custom Developed or Off the Shelf:

 It is possible to go for the complete development of an OS suiting the embedded system

needs or use an off the shelf, readily available OS.

 It may be possible to build the required features by customizing an open source OS.

 The decision on which to select is purely dependent on the development cost, licensing

fees for the OS, development time and availability of skilled resources.

2. Cost:

 The total cost for developing or buying the OS and maintaining it in terms of

commercial product and custom build needs to be evaluated before taking a decision on

the selection of OS.

3. Development and Debugging tools Availability:

 The availability of development and debugging tools is a critical decision making factor

in the selection of an OS for embedded design.

 Certain OS’s may be superior in performance, but the availability of tools for

supporting the development may be limited.

4. Ease of Use:

 How easy it is to use a commercial RTOS is another important feature that needs to be

considered in the RTOS selection.

5. After Sales:

 For a commercial embedded RTOS, after sales in the form of e-mail, on-call services

etc. for bug fixes, critical patch updates and support for production issues etc. should be

analyzed thoroughly.

3.2 TASK COMMUNICATION:

In a multitasking system, multiple tasks/processes run concurrently (in pseudo parallelism)

and each process may or may not interact between. Based on the degree of interaction, the

processes running on an OS are classified as,

1. Co-operating Processes: In the co-operating interaction model one process requires the

inputs from other processes to complete its execution.

2. Competing Processes: The competing processes do not share anything among themselves

but they share the system resources. The competing processes compete for the system

resources such as file, display device, etc.

Co-operating processes exchanges information and communicate through the following

methods.

Co-operation through Sharing: The co-operating process exchange data through some

shared resources.

Co-operation through Communication: No data is shared between the processes. But they

communicate for synchronization.

The mechanism through which processes/tasks communicate each other is known as “Inter

Process/Task Communication (IPC)”. Inter Process Communication is essential for process

co-ordination. The various types of Inter Process Communication (IPC) mechanisms adopted

by process are kernel (Operating System) dependent. Some of the important IPC mechanisms

adopted by various kernels are explained below.

3.2.1 Shared Memory:

Processes share some area of the memory to communicate among them. Information to be

communicated by the process is written to the shared memory area. Other processes which

require this information can read the same from the shared memory area. It is same as the real

world example where 'Notice Board' is used by corporate to publish the public information

among the employees (The only exception is; only corporate have the right to modify the-

information published on the Notice board and employees are given 'Read' only access,

meaning it is only a one way channel).

Figure: Concept of shared memory

The implementation of shared memory concept is kernel dependent. Different

mechanisms are adopted by different kernels for implementing this. A few among them are:

3.2.1.1 Pipes:

'Pipe' is a section of the shared memory used by processes for communicating. Pipes follow

the client-server architecture. A process which creates a pipe is known as a pipe server and a

process which connects to a pipe is known as pipe client. A pipe can be considered as a

conduit for information flow and has two conceptual ends. It can be unidirectional, allowing

information flow in one direction or bidirectional allowing bi-directional information flow. A

unidirectional pipe allows the process connecting at one end of the pipe to write to the pipe

and the process connected at the other end of the pipe to read the data, whereas a bi-

directional pipe allows both reading and writing at one end. The unidirectional pipe can be

visualized as

The implementation of ‘pipes’ is also OS dependent. Microsoft® Windows Desktop

Operating Systems support two types of 'Pipes' for Inter Process Communication. They are:

Anonymous Pipes: The anonymous pipes-are unnamed, unidirectional pipes used for data

transfer between two processes.

Named Pipes: Named pipe is a named, unidirectional or bi-directional pipe for data

exchange between processes. Like anonymous pipes, the process which creates the named

pipe is known as pipe server. A process which connects to the named pipe is known as pipe

client.

With named pipes, any process can act as both client and server allowing point-to-point

communication. Named pipes can be used for communicating between processes running on

the same machine or between processes running on different machines connected to a

network.

Please refer to the Online Learning Centre for details on the Pipe implementation

under Windows Operating Systems.

Under VxWorks kernel, pipe is a special implementation of message queues. We will

discuss the same in a latter chapter.

3.2.1.2 Memory Mapped Objects:

Memory mapped object is a shared memory technique adopted by certain Real-Time

Operating Systems for allocating a shared block of memory which can be accessed by

multiple process simultaneously (of course certain synchronization techniques should be

applied to prevent inconsistent results). In this approach a mapping object is created and

physical storage for it is reserved and committed. A process can map the entire committed

physical area or a block of it to its virtual address space. All read and write operation to this

virtual address space by a process is directed to its committed physical area. Any process

which wants to share data with other processes can map the physical memory area of the

mapped object to its virtual memory space and use it for sharing the data.

3.2.2 Message Passing:

Message passing-is an (a) synchronous information exchange mechanism used for Inter

Process/Thread Communication. The major difference between shared memory and message

passing technique is that, through shared memory lots of data can be shared whereas only

limited amount of info/data is passed through message passing. Also message passing is

relatively fast and free from the synchronization overheads compared to shared memory.

Based on the message passing operation between the processes, message passing is classified

into:

 Message Queue.

 Mailbox.

 Signaling.

3.2.2.1 Message Queue: Usually the process which wants to talk to another process posts the

message to a First-In-First-Out (FIFO) queue called 'Message queue', which stores the

messages temporarily in a system defined memory object, to pass it to the desired process

(Fig. 10.20). Messages are sent and received through send (Name of the process to which the

message is to be sent,-message) and receive (Name of the process from which the message is

to be received, message) methods. The messages are exchanged through a message queue.

The implementation of the message queue, send and receive methods are OS kernel

dependent. The Windows XP OS kernel maintains a single system message queue and one

process/thread (Process and threads are used interchangeably here, since thread is the basic

unit of process in windows) specific message queue. A thread which wants to communicate

with another thread posts the message to the system message queue. The kernel picks up the

message from the system message queue one at a time and examines the message for finding

the destination thread and then posts the message to the message queue of the corresponding

thread. For posting a message to a thread's message queue, the kernel fills a message structure

MSG and copies it to the message queue of the thread. The message structure MSG contains

the handle of the process/thread for which the message is intended, the message parameters,

the time at which the message is posted, etc. A thread can simply post a message to another

thread and can continue its operation or it may wait for a response from the thread to which

the message is posted. The messaging mechanism is classified into synchronous and

asynchronous based on the behaviour of the message posting thread. In asynchronous

messaging, the message posting thread just posts the message to the queue and it will not wait

for an acceptance (return) from the thread to which the message is posted, whereas in

synchronous messaging, the thread which posts a message enters waiting state and waits for

the message result from the thread to which the message is posted. The thread which invoked

the send message becomes blocked and the scheduler will not pick it up for scheduling. The

PostMessage (HWND hWnd, UINT Msg, WPARAM wParam, LPARAM /Param) or

PostThreadMessage (DWORD idThread, UNT Msg, WPARAM wParam, LPARAM IParam)

API is used by a thread in Windows for posting a message to its own message queue or to the

message queue of another thread.

Figure: Concept of message queue based indirect messaging for IPC.

The PostMessage API does not always guarantee the posting of messages to message queue.

The PostMessage API will not post a message to the message queue when the message queue

is full. Hence it is recommended to check the return value of PostMessage API to confirm the

posting of message. The SendMessage (HWND hWnd, U1NT Msg, WPARAM wParam,

LPARAM 1Param) API call sends a message to the thread specified by the handle hWnd and

waits for the callee thread to process the message. The thread which calls the SendMessage

API enters waiting state and waits for the message result from the thread to which the

message is posted. The thread which invoked the SendMessage API call becomes blocked

and the scheduler will not pick it up for scheduling.

The Windows CE operating system supports a special Point-to-Point Message queue

implementation. The OS maintains a First In First Out (FIFO) buffer for storing the messages

and each process can access this buffer for reading and writing messages. The OS also

maintains a special queue, with single message storing capacity, for storing high priority

messages Werlmessages).

3.2.2.2 Mailbox:

Mailbox is an alternate form of 'Message queues' and it is used in certain Real-Time

Operating Systems for IPC. Mailbox technique for IPC in RTOS is usually used for one way

messaging. The task/thread which wants to send a message to other tasks/threads creates a

mailbox for posting the messages. The threads which are interested in receiving the messages

posted to the mailbox by the mailbox creator thread can subscribe to the mailbox.

The thread which creates the mailbox is known. as 'mailbox server' and the threads which

subscribe to the mailbox are known as 'mailbox clients'. The mailbox server posts messages

to the mailbox and notifies it to the clients which are subscribed to the mailbox. The clients

read the message from the mailbox on receiving the notification.

Figure: Concept of mailbox based indirect messaging for IPC.

The mailbox creation, subscription, message reading and writing are achieved through OS

kernel provided API calls. Mailbox and message queues are same in functionality. The only

difference is in the number of messages supported by them. Both of them are used for passing

data in the form of message(s) from a task to another task(s).

Mailbox is used for exchanging a single, message between two tasks or between an Interrupt

Service Routine (ISR) and a task. Mailbox associates a pointer pointing to the mailbox and a

wait list to hold the tasks waiting for a message to appear in the mailbox. The implementation

of mailbox is OS kernel dependent. The MicroC/OS-II implements mailbox as a mechanism

for inter-task communication.

3.2.2.3 Signaling:

Signaling is a primitive way of communication between process-es/threads. Signals are used

for asynchronous notifications where one process/thread fires a signal, indicating the

occurrence of a scenario which the other process(es)/thread(s) is waiting. Signals are not

queued and they do not carry any data. The communication mechanisms used in RTX51 Tiny

OS is an example for Signaling. The amend signal kernel call under RTX 51 sends a signal

from one task to a specified task. Similarly the os_wait kernel call waits for a specified

signal. The VxWorks RTOS kernel also implements 'signals' for inter process

communication. Whenever a signal occurs it is handled in a signal handler associated with

the signal.

3.2.3 Remote Procedure Call (RPC) and Sockets:

Remote Procedure Call or RPC is the Inter Process Communication (IPC) mechanism used

by a process to call a procedure of another process running on the same CPU or on a different

CPU which is interconnected in a network. In the object oriented language terminology RPC

is also known as Remote Invocation or Remote Method Invocation (RMI). RPC is mainly

used for distributed applications like client-server applications. With RPC it is possible to

communicate over a heterogeneous network (i.e. Network where Client and server

applications are running on different Operating systems). The CPU/process containing the

procedure which needs to be invoked remotely is known as server. The CPU/process which

initiates an RPC request is known as client.

Figure: Concept of Remote Procedure Call (RPC) for IPC

It is possible to implement RPC communication with different invocation interfaces. In order

to make the RPC communication compatible across all platforms, it should stick on to certain

standard formats. Interface Definition Language (IDL) defines the interfaces for RPC.

Microsoft Interface Definition Language (MIDL) is the IDL implementation from Microsoft

for all Microsoft platforms. The RPC communication can be either Synchronous (Blocking)

or Asynchronous (Non-blocking). In the Synchronous communication, the process which

calls the remote procedure is blocked until it receives a response back from the other process.

In asynchronous RPC calls, the calling process continues its execution while the remote

process performs the execution of the procedure. The result from the remote procedure is

returned back to the caller through mechanisms like callback functions.

On security front, RPC employs authentication mechanisms to protect the systems against

vulnerabilities. The client applications (processes)-should authenticate themselves with the

server for getting access. Authentication mechanisms like IDs, public-key cryptography, etc.

are used by the client for authentication. Without authentication, any client can access the

remote procedure. This may lead to potential security risks.

Sockets are used for RPC communication. The socket is a logical endpoint in a two-way

communication link between two applications running on a network. A port number is

associated with a socket so that the network layer of the communication channel can deliver

the data to the designated application. Sockets are of different types, namely, Internet sockets

(INET), UNIX sockets, etc. The INET socket works on internet communication protocol

TCP/IP, UDP (User Datagram Protocol), etc. are the communication protocols used by INET

sockets. INET sockets are classified into:

1. Stream sockets

2. Datagram sockets

Stream sockets are connection-oriented and they use TCP to establish liable connection. On

the other hand, Datagram sockets rely on UDP for establishing a connection. The UDP

connection is unreliable when compared to TCP. The client-server communication model

uses a socket at the client-side and a socket at the server-side. A port number is assigned to

both of these sockets. The client and server should be aware of the port number associated

with the socket. In order to start the communication, the client needs to send a connection

request to the server at the specified port number.

The client should be aware of the name of the server along with its port number. The server

always listens to the specified port number on the network. Upon receiving a connection

request from the client, based on the success of authentication, the server grants the

connection request and a communication channel is established between the client and server.

The client uses the hostname and port number of the server for sending requests and the

server uses the client's name and port number for sending responses.

3.3 TASK SYNCHRONISATION:

In a multitasking environment, multiple processes run concurrently (in pseudo parallelism)

and share the system resources. Apart from this, each process has its own boundary wall and

they communicate with each other with different IPC mechanisms including shared memory

and variables. Imagine a situation where two processes try to access display hardware

connected to the system or two processes try to access a shared memory area where one

process tries to write to a memory location when the other process is trying to read from this.

What could be the result in these scenarios? Obviously unexpected results. How these issues

can be addressed? The solution is, make each process aware of the access of a shared

resource either directly or indirectly. The act of making processes aware of the access of

shared resources by each process to avoid conflicts is known as `Task/Process

Synchronization'. Various synchronization issues may arise in a multitasking environment if

processes are not synchronized properly.

The following sections describe the major task communication/ synchronization issues

observed in multitasking and the commonly adopted synchronization techniques to overcome

these issues.

3.3.1 Task Communication/Synchronization Issues:

3.3.1.1 Racing: Let us have a look at the following piece of code.

From a programmer perspective, the value of the counter will be 10 at the end of the

execution of processes A & B. But 'it need not be always' in a real-world execution of this

piece of code under a multitasking kernel. The results depend on the process scheduling

policies adopted by the OS kernel. The program statement counter++; looks like a single

statement from a high-level programming language (`C' language) perspective. The low-level

implementation of this statement is dependent on the underlying processor instruction set and

the (cross) compiler in use. The low-level implementation of the high-level program

statement counter++; under Windows XP operating system running on an Intel Centrino Duo

processor is given below.

mov eax, dword ptr [ebp-4] ; Load counter in Accumulator

add eax,1 ; Increment Accumulator by 1

mov dword ptr [ebp-4], eax ; Store counter with Accumulator

At the processor instruction level, the value of the variable counter is loaded to the

Accumulator register (EAX register). The memory variable counter is represented using a

pointer. The base pointer register (EBP register) is used for pointing to the memory variable

counter. After loading the contents of the variable-counter to the Accumulator, the

Accumulator content is incremented by one using the add instruction. Finally the content of

Accumulator is loaded to the memory location which represents the variable counter. Both

the processes Process A and Process B contain the program statement counter++; Translating

this into the machine instruction.

Imagine a situation where a process switching (context switching) happens from Process A to

Process B when Process A is executing the counter++; statement. Process A accomplishes the

counter++; statement through three different low-level instructions. Now imagine that the

process switching happened at the point where Process A executed the low-level instruction,

`mov eax,dword ptr [ebp-4]' and is about to execute the next instruction 'add eax,1'.

Figure: Race condition

Though the variable counter is incremented by Process B, Process A is unaware of it and it

increments the variable with the old value. This leads to the loss of one increment for the

Variable counter. This problem occurs due to non-atomic Operation on variables. This issue

wouldn't have been occurred if the underlying actions corresponding to the program

statement counter++; is finished in a single CPU execution cycle. The best way to avoid this

situation is make the access and modification of shared variables mutually exclusive;

meaning when one process accesses a shared variable, prevent the other processes from

accessing it.

To summarize, Racing or Race condition is the situation in which multiple processes compete

(race) each other to access and manipulate shared data concurrently. In a Race condition, the

final value of the shared data depends on the process which acted on the data finally.

3.3.1.2 Deadlock:

A race condition produces incorrect results whereas a deadlock condition creates a situation

where none of the processes are able to make any progress in their execution, resulting in a

get of deadlocked processes. A situation very similar to our traffic jam issues in a junction.

Figure: Deadlock Visualization

In its simplest form 'deadlock' is the condition in which a process is waiting for a resource

held by another process which is waiting for a resource held by the first process.

To elaborate: Process A holds a resource x and it wants a resource y held by Process B.

Process B is currently holding resource y and it wants the resource x which is currently held

by Process A. Both hold the respective resources and they compete each other to get the

resource held by the respective processes. The result of the competition is 'deadlock'. None of

the competing processes will be able to access the resources held by other processes since

they are locked by the respective processes.

The different conditions favoring a deadlock situation are listed below.

Mutual Exclusion: The criteria that only one process can hold resource at a time. Meaning

processes should access shared resources with mutual exclusion. Typical example is the

accessing of display hardware in an embedded device.

Hold and Walt: The condition in which a process holds a shared resource by acquiring the

lock controlling the shared access and waiting for additional resources held by other

processes.

No Resource Preemption: The criteria that operating system cannot take back a resource

from a process which is currently holding it and the resource can only be released voluntarily

by the process holding it.

Circular Wait: A process is waiting for a resource which is currently held by another

process which in turn is waiting for a resource held by the first process. In general, there

exists a set of waiting process P0, P1, Pn with P0 is waiting for a resource held by P1 and P1

is waiting for a resource held P0, Pn is waiting for a resource held by P0 and P0 is waiting for

a resource held by Pn and so on... This forms a circular wait queue.

Deadlock Handling: A smart OS may foresee the deadlock condition and will act

proactively to avoid such a situation. Now if a deadlock occurred, how the OS responds to it?

The reaction to deadlock condition by OS is nonuniform. The OS may adopt any of the

following techniques to detect and prevent deadlock conditions.

(i).Ignore Deadlocks: Always assume that the system design is deadlock free. This is

acceptable for the reason the cost of removing a deadlock is large compared to the chance of

happening a deadlock. UNIX is an example for an OS following this principle. A life critical

system cannot pretend that it is deadlock free for any reason.

(ii). Detect and Recover: This approach suggests the detection of a deadlock situation and

recovery from it. This is similar to the deadlock condition that may arise at a traffic junction.

When the vehicles from different directions compete to cross the junction, deadlock (traffic

jam) condition is resulted. Once a deadlock (traffic jam) is happened at the junction, the only

solution is to back up the vehicles from one direction and allow the vehicles from opposite

direction to cross the junction. If the traffic is too high, lots of vehicles may have to be

backed up to resolve the traffic jam. This technique is also known as `back up cars' technique.

Operating systems keep a resource graph in their memory. The resource graph is updated on

each resource request and release.

Avoid Deadlocks: Deadlock is avoided by the careful resource allocation techniques by the

Operating System. It is similar to the traffic light mechanism at junctions to avoid the traffic

jams.

Prevent Deadlocks: Prevent the deadlock condition by negating one of the four conditions

favoring the deadlock situation.

• Ensure that a process does not hold any other resources when it requests a resource. This

can be achieved by implementing the following set of rules/guidelines in allocating resources

to processes.

1. A process must request all its required resource and the resources should be allocated

before the process begins its execution.

2. Grant resource allocation requests from processes only if the process does not hold a

resource currently.

• Ensure that resource preemption (resource releasing) is possible at operating system level.

This can be achieved by implementing the following set of rules/guidelines in resources

allocation and releasing.

1. Release all the resources currently held by a process if a request made by the

process for a new resource is not able to fulfil immediately.

2. Add the resources which are preempted (released) to a resource list describing the

resources which the process requires to complete its execution.

3. Reschedule the process for execution only when the process gets its old resources

and the new resource which is requested by the process.

Imposing these criterions may introduce negative impacts like low resource utilization and

starvation of processes.

Livelock: The Livelock condition is similar to the deadlock condition except that a process in

livelock condition changes its state with time. While in deadlock a process enters in wait state

for a resource and continues in that state forever without making any progress in the

execution, in a livelock condition a process always does something but is unable to make any

progress in the execution completion. The livelock condition is better explained with the real

world example, two people attempting to cross each other in a narrow corridor. Both the

persons move towards each side of the corridor to allow the opposite person to cross. Since

the corridor is narrow, none of them are able to cross each other. Here both of the persons

perform some action but still they are unable to achieve their target, cross each other. We will

make the livelock, the scenario more clear in a later section—The Dining Philosophers '

Problem, of this chapter.

Starvation: In the multitasking cont on is the condition in which a process does not get the

resources required to continue its execution for a long time. As time progresses the process

starves on resource. Starvation may arise due to various conditions like byproduct of

preventive measures of deadlock, scheduling policies favoring high priority tasks and tasks

with shortest execution time, etc.

3.3.1.3 The Dining Philosophers' Problem: The 'Dining philosophers 'problem' is an

interesting example for synchronization issues in resource utilization. The terms 'dining',

'philosophers', etc. may sound awkward in the operating system context, but it is the best way

to explain technical things abstractly using non-technical terms. Now coming to the problem

definition:

Five philosophers (It can be 'n'. The number 5 is taken for illustration) are sitting

around a round table, involved in eating and brainstorming. At any point of time each

philosopher will be in any one of the three states: eating, hungry or brainstorming. (While

eating the philosopher is not involved in brainstorming and while brainstorming the

philosopher is not involved in eating). For eating, each philosopher requires 2 forks. There

are only 5 forks available on the dining table ('n' for 'n' number of philosophers) and they are

arranged in a fashion one fork in between two philosophers. The philosopher can only use the

forks on his/her immediate left and right that too in the order pickup the left fork first and

then the right fork. Analyze the situation and explain the possible outcomes of this scenario.

Let's analyze the various scenarios that may occur in this situation.

Scenario 1: All the philosophers involve in brainstorming together and try to eat together.

Each philosopher picks up the left fork and is unable to proceed since two forks are required

for eating the spaghetti present in the plate. Philosopher 1 thinks that Philosopher 2 sitting to

the right of him/her will put the fork down and waits for it. Philosopher 2 thinks that

Philosopher 3' sitting to the right of him/her will

Figure: Visualization of the ‘Dining Philosophers' Problem’

put the fork down and waits for it, and so on. This forms a circular chain of un-granted

requests. If the philosophers continue in this state waiting for the fork from the philosopher

sitting to the right of each, they will not make any progress in eating and this will result in

starvation of the philosophers and deadlock.

Scenario 2: All the philosophers start brainstorming together. One of the philosophers is

hungry and he/ she picks up the left fork. When the philosopher is about to pick up the right

fork, the philosopher sitting. to his right also become hungry and tries to grab the left fork

which is the right fork of his neighboring philosopher who is trying to lift it, resulting in a

'Race condition'..

Scenario 3: All the philosophers involve in brainstorming together and by to eat together.

Each philosopher picks up the left fork and is unable to proceed, since two forks are required

for eating the spaghetti present in the plate. Each of them anticipates that the adjacently

sitting philosopher will put his/her fork down and waits for a fixed duration grid after this

puts the fork down. Each of them again tries to lift the fork after a fixed duration of time.

Since all philosophers are trying to lift the fork at the same time, none of them will be able to

grab two forks. This condition leads to livelock and starvation of philosophers, where each

philosopher tries to do something, but they are unable to make any progress in achieving the

target.

Figure illustrates these scenarios.

Solution: We need to find out alternative solutions to avoid the.deadlock, livelock, racing

and starvation condition that may arise due to the concurrent access of forks by philosophers.

This situation can be handled in many ways by allocating the forks in different allocation

techniques including round Robin allocation, FIFO allocation: etc.

But the requirement is that the solution should be optimal, avoiding deadlock and starvation

of the philosophers and allowing maximum number of philosophers to eat at a time. One

solution that we could think of is:

• Imposing rules in accessing the forks by philosophers, like: The philosophers should put

down the fork he/she already have in hand (left fork) after waiting for a fixed duration for the

second fork (right fork) and should wait for a fixed time before making the next attempt.

This solution works fine to some extent, but, if all the philosophers try to lift the forks

at the same time, a livelock situation is resulted.

Another solution which gives maximum concurrency that can be thought of is each

philosopher ac-quires a semaphore (mutex) before picking up any fork. When a philosopher

feels hungry he/she checks whether the philosopher sitting to the left and right of him is

already using the fork, by checking the state of the associated semaphore. If the forks are in

use by the neighboring philosophers, the philosopher waits till the forks are available. A

philosopher when finished eating puts the forks down and informs the philosophers sitting to

his/her left and right, who are hungry (waiting for the forks), by signaling the semaphores

associated with the forks.

Figure: The 'Real Problems' in the 'Dining Philosophers problem' (a) Starvation

and Deadlock (b) Racing (c) Livelock and Starvation

We will discuss about semaphores and mutexes at a latter section of this chapter. In the

operating system context, the dining philosophers represent the processes and forks represent

the resources. The dining philosophers' problem is an analogy of processes competing for

shared resources and the different problems like racing, deadlock, starvation and livelock

arising from the competition.

3.3.1.4 Producer-Consumer/Bounded Buffer Problem: Producer-Consumer problem is a

common data sharing problem where two processes concurrently access a shared buffer with

fixed size. A thread/process which produces data is called 'Producer thread/process' and a

thread/process which consumes the data produced by a producer thread/process is known as

'Consumer thread/process'. Imagine a situation where the producer thread keeps on producing

data and puts it into the buffer and the consumer thread keeps on consuming the data from the

buffer and there is no synchronization between the two. There may be chances where in

which the producer produces data at a faster rate than the rate at which it is consumed by the

consumer. This will lead to 'buffer overrun' where the producer tries to put data to a full

buffer. If the consumer consumes data at a faster rate than the rate at which it is produced by

the producer, it will lead to the situation `buffer under-run' in which the consumer tries to

read from an empty buffer. Both of these conditions will lead to inaccurate data and data loss.

The following code snippet illustrates the producer-consumer problem

Here the 'producer thread' produces random numbers and puts it in a buffer of size 20. If the

'producer thread' fills the buffer fully it re-starts the filling of the buffer from the bottom. The

'consumer thread' consumes the data produced by, the 'producer thread'. For consuming the

data, the 'consumer thread' reads the buffer which is shared with the 'producer thread'. Once

the 'consumer thread' consumes all the data, it starts consuming the data from the bottom of

the buffer. These two threads run independently and are scheduled for execution based on the

scheduling policies adopted by the OS. The different situations that may arise based on the

scheduling of the 'producer thread' and 'consumer thread' is listed below.

1. 'Producer thread' is scheduled more frequently than the 'consumer thread': There are

chances for overwriting the data in the buffer by the 'producer thread'. This leads to

inaccurate data.

2. Consumer thread' is scheduled more frequently than the 'producer thread': There are

chances for reading the old data in the buffer again by the 'consumer thread'. This will also

lead to inaccurate data.

The output of the above program when executed on a Windows XP machine is shown in Fig.

10.29. The output shows that the consumer thread runs faster than the producer thread and

most often leads to buffer under-run and thereby inaccurate data.

The producer-consumer problem can be rectified in various methods. One simple solution is

the `sleep and wake-up'. The 'sleep and wake-up' can be implemented in various process

synchronization techniques like semaphores, mutex, monitors, etc. We will discuss it in a

latter section of this chapter.

Note

It should be noted that the scheduling of the threads 'producer_thread' ,and ‘consumer_thread’

is OS kernel scheduling policy dependent and you may not get the same output all the time

when you run this piece of code in Windows XP.

Figure: Output of win32 program illustrating producer-consumer problem

3.3.1.5 Readers-Writers Problem: Tire Readers-Writers problem is a common issue

observed in processes competing for limited shared resources. The Readers-Writers problem

is characterized by multiple processes trying to read and write shared data concurrently. A

typical real-world example for the Readers-Writers problem is the banking system where one

process tries to read the account information like available balance and the other process tries

to update the available balance for that account. This may result in inconsistent results. If

multiple processes try to read a shared data concurrently it may not create any impacts,

whereas when multiple processes try to write and read concurrently it will definitely create

inconsistent results. Proper synchronization techniques should be applied to avoid the

readers-writers problem. We will discuss about the various synchronization techniques in a

later section of this chapter.

3.3.1.6 Priority Inversion: Priority inversion is the byproduct of the combination of

blocking based (lock based) process synchronization and pre-emptive priority scheduling.

'Priority inversion' is the condition in which a high priority task needs to wait for a low

priority task to release a resource which is shared between the high priority task and the low

priority task, and a medium priority task which doesn't require the shared resource continue

its execution by preempting the low priority task. Priority based preemptive scheduling

technique ensures that a high priority task is always executed first, whereas the lock based

process synchronization mechanism (like mutex, semaphore, etc.) ensures that a process will

not access a shared resource, which is currently in use by another process. The

synchronization technique is only interested in avoiding conflicts that may arise due to the

concur-rent access of the shared resources and not at all bothered about the priority of the

process which tries to access the shared resource. In fact, the priority based preemption and

lock based synchronization are the two contradicting OS primitives. Priority inversion is

better explained with the following scenario: Let Process A, Process B and Process C be three

processes with priorities High, Medium and Low respectively. Process A and Process C share

a variable 'X' and the access to this variable is synchronized through a mutual exclusion

mechanism like Binary Semaphore S.

Imagine a situation where Process C is ready and is picked up for execution by the scheduler

and 'Process C' tries to access the shared variable 'X'. 'Process C' acquires the 'Semaphore S'

to indicate the other processes that it is accessing the shared variable 'X'. Immediately after

'Process C' acquires the 'Semaphore S', 'Process B' enters the 'Ready' state. Since 'Process B'

is of higher priority compared to 'Process C', 'Process C' is preempted, and 'Process B' starts

executing. Now imagine 'Process A' enters the 'Ready' state at this stage. Since 'Process A' is

of higher priority than 'Process B', 'Process B' is preempted, and 'Process A' is scheduled for

execution. 'Process A' involves accessing of shared variable 'X' which is currently being

accessed by 'Process C'. Since 'Process C' acquired the semaphore for signaling the access of

the shared variable 'X', 'Process A' will not be able to access it. Thus 'Process A' is put into

blocked state (This condition is called Pending on resource). Now 'Process B' gets the CPU

and it continues its execution until it relinquishes the CPU voluntarily or enters a wait state or

preempted by another high priority task. The highest priority process 'Process A' has to wait

till 'Process C' gets a chance to execute and release the semaphore. This produces unwanted

delay in the execution of the high priority task which is supposed to be executed immediately

when it was 'Ready'. Priority inversion may be sporadic in nature but can lead to potential

damages as a result f missing critical deadlines. Literally speaking, priority inversion 'inverts'

the priority of a high priority task with that of a low priority task. Proper workaround

mechanism should be adopted for handling the priority inversion problem. The commonly

adopted priority inversion workarounds are:

through a mutual exclusion mechanism like Binary Semaphore S. Imagine a situation where

Process C is ready and is picked up for execution by the scheduler and 'Process C' tries to

access the shared variable 'X'. 'Process C' acquires the 'Semaphore S' to indicate the other

processes that it is accessing the shared variable 'X'. Immediately after 'Process C' acquires

the 'Semaphore S', 'Process B' enters the 'Ready' state. Since 'Process B' is of higher priority

compared to 'Process C', 'Process C' is preempted, and 'Process B' starts executing. Now

imagine 'Process A' enters the 'Ready' state at this stage. Since 'Process A' is of higher priority

than 'Process B', 'Process B' is preempted, and 'Process A' is scheduled for execution. 'Process

A' involves accessing of shared variable 'X' which is currently being accessed by 'Process C'.

Since 'Process C' acquired the semaphore for signaling the access of the shared variable 'X',

'Process A' will not be able to access it. Thus 'Process A' is put into blocked state (This

condition is called Pending on resource). Now 'Process B' gets the CPU and it continues its

execution until it relinquishes the CPU voluntarily or enters a wait state or preempted by

another high priority task. The highest priority process 'Process A' has to wait till 'Process C'

gets a chance to execute and release the semaphore. This produces unwanted delay in the

execution of the high priority task which is supposed to be executed immediately when it was

'Ready'. Priority inversion may be sporadic in nature but can lead to potential damages as a

result f missing critical deadlines. Literally speaking, priority inversion 'inverts' the priority of

a high priority task with that of a low priority task. Proper workaround mechanism should be

adopted for handling the priority inversion problem. The commonly adopted priority

inversion workarounds are:

Priority Inheritance: A low-priority task that is currently accessing (by holding the lock) a

shared resource requested by a high-priority task temporarily 'inherits' the priority of that

high-priority task, from the moment the high-priority task raises the request. Boosting the

priority of the low priority task to that of the priority of the task which requested the shared

resource holding by the low priority task eliminates the preemption of the low priority task by

other tasks whose priority are below that of the task requested the shared resource 'and

thereby reduces the delay in waiting to get the resource requested by the high priority task.

The priority of the low priority task which is temporarily boosted to high is brought to the

original value when it releases the shared resource. Implementation of Priority inheritance

workaround in the priority inversion problem discussed for Process A, Process B and Process

C example will change the execution sequence as shown in Figure.

Figure: Handling Priority Inversion problem with priority Inheritance.

Priority inheritance is only a work around and it will not eliminate the delay in

waiting the high priority task to get the resource from the low priority task. The only thing is

that it helps the low priority task to continue its execution and release the shared resource as

soon as possible. The moment, at which the low priority task releases the shared resource, the

high priority task kicks the low priority task out and grabs the CPU - A true form of

selfishness. Priority inheritance handles priority inversion at the cost of run-time overhead at

scheduler. It imposes the overhead of checking the priorities of all tasks which tries to access

shared resources and adjust the priorities dynamically.

Priority Ceiling: In 'Priority Ceiling', a priority is associated with each shared resource. The

priority associated to each resource is the priority of the highest priority task which uses this

shared resource. This priority level is called 'ceiling priority'. Whenever a task accesses a

shared resource, the scheduler elevates the priority of the task to that of the ceiling priority of

the resource. If the task which accesses the shared resource is a low priority task, its priority

is temporarily boosted to the priority of the highest priority task to which the resource is also

shared. This eliminates the pre-emption of the task by other medium priority tasks leading to

priority inversion. The priority of the task is brought back to the original level once the task

completes the accessing of the shared resource. 'Priority Ceiling' brings the added advantage

of sharing resources without the need for synchronization techniques like locks. Since the

priority of the task accessing a shared resource is boosted to the highest priority of the task

among which the resource is shared, the concurrent access of shared resource is automatically

handled. Another advantage of 'Priority Ceiling' technique is that all the overheads are at

compile time instead of run-time. Implementation of 'priority ceiling' workaround in the

priority inversion problem discussed for Process A, Process B and Process C example will

change the execution sequence as shown in Figure.

Figure: Handling Priority Inversion problem with priority Ceiling.

The biggest drawback of 'Priority Ceiling' is that it may produce hidden priority inversion.

With 'Priority Ceiling' technique, the priority of a task is always elevated no matter another

task wants the shared resources. This unnecessary priority elevation always boosts the

priority of a low priority task to that of the highest priority tasks among which the resource is

shared and other tasks with priorities higher than that of the low priority task is not allowed to

preempt the low priority task when it is accessing a shared resource. This always gives the

low priority task the luxury of running at high priority when accessing shared resources.

3.3.2 Task Synchronization Techniques

So far we discussed about the various task/process synchronization issues encountered in

multitasking systems due to concurrent resource access. Now let's have a discussion on the

various techniques used for synchronization in concurrent access in multitasking.

Process/Task synchronization is essential for

1. Avoiding conflicts in resource access (racing, deadlock, starvation, livelock, etc.) in a

multitasking environment.

2. Ensuring proper sequence of operation across processes. The producer consumer

problem is a typical example for processes requiring proper sequence of operation. In

producer consumer problem, accessing the shared buffer by different processes is not the

issue; the issue is the writing process should write to the shared buffer only if the buffer is

not full and the consumer thread should not read from the buffer if it is empty. Hence

proper synchronization should be provided to implement this sequence of operations.

3. Communicating between processes.

The code memory area which holds the program instructions (piece of code) for accessing a

shared resource (like shared memory, shared variables, etc.) is known as 'critical section'. In

order to synchronize the access to shared resources, the access to the critical section should

be exclusive. The exclusive access to critical section of code is provided through mutual

exclusion mechanism. Let us have a look at how mutual exclusion is important in concurrent

access. Consider two processes Process A and Process B running on a multitasking system.

Process A is currently running and it enters its critical section. Before Process A completes its

operation in the critical section, the scheduler preempts Process A and schedules Process B

for execution (Process B is of higher priority compared to Process A). Process B also

contains the access to the critical section which is already in use by Process A. If Process B

continues its execution and enters the critical section which is already in use by Process A, a

racing condition will be resulted. A mutual exclusion policy enforces mutually exclusive

access of critical sections. Mutual exclusions can be enforced in different ways. Mutual

exclusion blocks a process. Based on the behaviour of the blocked process, mutual exclusion

methods can be classified into two categories. In the following section we will discuss them

in detail.

3.3.2.1 Mutual Exclusion through Busy Waiting/Spin Lock: 'Busy waiting' is the simplest

method for enforcing mutual exclusion. The following code snippet illustrates how 'Busy

waiting' enforces mutual exclusion.

The 'Busy waiting' technique uses a lock variable for implementing mutual exclusion. Each

process/ thread checks this lock variable before entering the critical section. The lock is set to

'1' by a process/ thread if the process/thread is already in its critical section; otherwise the

lock is set to '0'. The major challenge in implementing the lock variable based

synchronization is the non-availability of a single atomic instruction which combines the

reading, comparing and setting of the lock variable. Most often the three different operations

related to the locks, viz. the operation of Reading the lock variable, checking its present

value, and setting it are achieved with multiple low-level instructions. The low-level

implementation of these operations are dependent on the underlying processor instruction set

and the (cross) compiler in use. The low-level implementation of the 'Busy waiting' code

snippet, which we discussed earlier, under Windows XP operating system running on an Intel

Centrino Duo processor is given below. The code snippet is compiled with Microsoft Visual

Studio 6.0 compiler.

The assembly language instructions reveals that the two high level instructions

(while(bFlag==false); and bFlag=true;), corresponding to the operation of reading the lock

variable, checking its present value and setting it is implemented in the processor level using

six low level instructions. Imagine a situation where ‘Process 1' read the lock variable and

tested it and found that the lock is available and it is about to set the lock for acquiring the

critical section. But just before 'Process 1' sets the lock variable, 'Process 2' preempts 'Process

1' and starts executing. 'Process 2' contains a critical section code and it tests the lock variable

for its availability. Since 'Process 1' was unable to set the lock variable, its state is still '0' and

'Process 2' sets it and acquires the critical section. Now the scheduler preempts 'Process 2' and

schedules 'Process 1' before 'Process 2' leaves the critical section. Remember, `Process l' was

preempted at a point just before setting the lock variable (‘Process 1' has already tested the

lock variable just before it is preempted and found that the lock is available). Now 'Process 1'

sets the lock variable and enters the critical section. It violates the mutual exclusion policy

and may pro-duce unpredicted results.

Device Driver

Device driver is a piece of software that acts as a bridge between the operating system and

the hardware. In an operating system based product architecture, the user applications talk to

the Operating System kernel for all necessary information exchange including

communication with the hardware peripherals. The architecture of the OS kernel will not

allow direct device access from the user application. All the device related access should flow

through the OS kernel and the OS kernel mutes it to the concerned hardware peripheral. OS

provides interfaces in the form of Application Programming Interfaces (APIs) for accessing

the hardware. The device driver abstracts the hardware from user applications. The topology

of user applications and hardware interaction in an RTOS based system is depicted in Fig.

Device drivers are responsible for initiating and managing the communication with

the hardware peripherals. They are responsible for establishing the connectivity, initializing

the hardware (setting up various registers of the hardware device) and transferring data. An

embedded product may contain different types of hardware components like Wi-Fi module,

File systems, Storage device interface, etc. The initialization of these devices and the

protocols required for communicating with these devices may be different. All these

requirements are implemented in drivers and a single driver will not be able to satisfy all

these. Hence each hardware (more specifically each class of hardware) requires a unique

driver component.

Figure: Role of device driver in Embedded OS based products

Certain drivers come as part of the OS kernel and certain drivers need to be installed

on the fly. For example, the program storage memory for an embedded product, say NAND

Flash memory requires a NAND Flash driver to read and write data from/to it. This driver

should come as part of the OS kernel image. Certainly the OS will not contain the drivers for

all devices and peripherals under the Sun. It contains only the necessary drivers to

communicate with the onboard devices (Hardware devices which are part of the platform)

and for certain set of devices supporting standard protocols and device class (Say USB Mass

storage device or HID devices like Mouse/keyboard). If an external device, whose driver

software is not available with OS kernel image, is connected to the embedded device (Say a

medical device with custom USB class implementation is connected to the USB port of the

embedded product), the OS prompts the user to install its driver manually. Device drivers

which are part of the OS image are known as 'Built-in drivers' or 'On-board drivers'. These

drivers are loaded by the OS at the time of booting the device and are always kept in the

RAM. Drivers which need to be installed for accessing a device are known. as 'Installable

User Level Applications/Tasks

Operating System Services

Device Drivers

Hardware

Apps Apps

Apps

drivers'. These drivers are loaded by the OS on a need basis. Whenever the device is

connected, the OS loads the corresponding driver to memory. When the device is removed,

the driver is unloaded from memory. The Operating system maintains a record of the drivers

corresponding to each hardware.

The implementation of driver is OS dependent. There is no universal implementation for a

driver. How the driver communicates with the kernel is dependent on the OS structure and

implementation. Different Operating Systems follow different implementations.

It is very essential to know the hardware interfacing details like the memory address assigned

to the device, the Interrupt used, etc. of on-board peripherals for writing a driver for that

peripheral. It varies on the hardware design of the product. Some Real-Time operating

systems like 'Windows CE' support a layered architecture for the driver which separates out

the low level implementation from the OS specific interface. The low level implementation

part is generally known as Platform Dependent Device (PDD) layer. The OS specific

interface part is known as Model Device Driver (MDD) or Logical Device Driver (LDD). For

a standard driver, for a specific operating system, the MDD/LDD always remains the same

and only the PDD part needs to be modified according to the target hardware for a particular

class of devices.

Most of the time, the hardware developer provides the implementation for all on board

devices for a specific OS along with the platform. The drivers are normally shipped in the

form of Board Support Package. The Board Support Package contains low level driver

implementations for the onboard peripherals and OEM Adaptation Layer (OAL) for

accessing the various chip level functionalities and a bootloader for loading the operating

system. The OAL facilitates communication between the Operating System (OS) and the

target device and includes code to handle interrupts, timers, power management, bus

abstraction; generic I/O control codes (IOCTLs), etc. The driver files are usually in the form

of a dll file. Drivers can run on either user space or kernel space. Drivers which run in user

space are known as user mode drivers and the drivers which run in kernel space are known as

kernel mode drivers. User mode drivers are safer than kernel mode drivers. If an error or

exception occurs in a user mode driver, it won't affect the services of the kernel. On the other

hand, if an exception occurs in the kernel mode driver, it may lead to the kernel crash. The

way how a device driver is written and how the interrupts are handled in it are operating

system and target hardware specific. However regardless of the OS types, a device driver

implements the following:

1. Device (Hardware) Initialization and Interrupt configuration

2. Interrupt handling and processing

3. Client interfacing (Interfacing with user applications)

The Device (Hardware) initialisation part of the driver deals with configuring the different

registers of the device (target hardware). For example configuring the I/O port line of the

processor as Input or output line and setting its associated registers for building a General

Purpose IO (GPIO) driver. The interrupt configuration part deals with configuring the

interrupts that needs to be associated with the hardware. In the case of the GPIO driver, if the

intention is to generate an interrupt when the Input line is asserted, we need to configure the

interrupt associated with the I/O port by modifying its associated registers. The basic

Interrupt configuration involves the following.

1. Set the interrupt type (Edge Triggered (Rising/Flailing) or Level Triggered (Low or

High)), enable the interrupts and set the interrupt priorities.

2. Bind the Interrupt with an Interrupt Request (IRQ). The processor identifies an interrupt

through IRQ. These IRQs are generated by the Interrupt Controller. In order to identify an

interrupt the interrupt needs to be bonded to an IRQ.

3. Register an Interrupt Service Routine (ISR) with an Interrupt Request (IRQ). ISR is the

handler for an Interrupt. In order to service an interrupt, an ISR should be associated with an

IRQ. Registering an ISR with an IRQ takes care of it.

With these the interrupt configuration is complete. If an interrupt occurs, depending

on its priority, it is serviced and the corresponding ISR is invoked. The processing part of an

interrupt is handled in an ISR. The whole interrupt processing can be done by the ISR itself

or by invoking an Interrupt Service Thread (IST). The IST performs interrupt processing on

behalf of the ISR. To make the ISR compact and short, it is always advised to use an IST for

interrupt processing. The intention of an interrupt is to send or receive command or data to

and from the hardware device and make the received data available to user programs for

application specific processing. Since interrupt processing happens at kernel level, user

applications may not have direct access to the drivers to pass and receive data. Hence it is the

responsibility of the Interrupt processing routine or thread to inform the user applications that

au interrupt is occurred and data is available for further processing. The client interfacing part

of the device driver takes care of this. The client interfacing implementation makes use of the

Inter Process communication mechanisms supported by the embedded OS for communicating

and synchronising with user applications and drivers. For example, to inform a user

application that an interrupt is occurred and the data received from the device is placed in I

shared buffer, the client interfacing code can signal (or set) an event. The user application

creates the event, registers it and waits for the driver to signal it. The driver can share the

received data through shared memory techniques. IOCTLs, shared buffers, etc. can be used

for data sharing. The story line is incomplete without performing an interrupt done (Interrupt

processing completed) functionality in the driver. Whenever an interrupt is asserted, while

vectoring to its corresponding ISR, all interrupts of equal and low'5riorities are disabled.

They are re-enable only on executing the interrupt done function (Same as the Return from

Interrupt RETI instruction execution for 8051) by the driver. The interrupt done function can

be invoked at the end of corresponding ISR or IST.

UNIT-IV

EMBEDDED SOFTWARE DEVELOPMENT TOOLS

 --

SYLLABUS:

Host and target machines, linker/locators for embedded software, getting embedded software

into the target system; Debugging techniques: Testing on host machine, using laboratory

tools, an example system.

 --

I. HOST AND TARGET MACHINES:

• Host:

– A computer system on which all the programming tools run

– Where the embedded software is developed, compiled, tested, debugged,

optimized, and prior to its translation into target device.

• Target:

– After writing the program, compiled, assembled and linked, it is moved to target

– After development, the code is cross-compiled, translated – cross-assembled,

linked into target processor instruction set and located into the target.

Host System Target Computer System

Writing, editing a program,

compiling it, linking it, debugging it

are done on host system

After the completion of programming

work, it is moved from host system to

target system.

It is also referred as Work Station No other name

Software development is done in

host system for embedded system

Developed software is shifted to

customer from host

Compiler, linker, assembler, debugger

are used

Cross compiler is also used

Unit testing on host system ensures

software is working properly

By using cross compiler, unit testing

allows to recompile code ,execute, test

on target system

Stubs are used Real libraries

Programming centric Customer centric

Cross Compilers:

• A cross compiler that runs on host system and produces the binary

instructions that will be understood by your target microprocessor.

• A cross compiler is a compiler capable of creating executable code for a

platform other than the one on which the compiler is running. For example,

a compiler that runs on aWindows 7 PC but generates code that runs on

Android smartphone is a cross compiler.

• Most desktop systems are used as hosts come with compilers, assemblers, linkers

that will run on the host. These tools are called native tools.

• Suppose the native compiler on a Windows NT system is based on Intel Pentium.

This compiler may possible if target microprocessor is also Intel Pentium. This is

not possible if the target microprocessor is other than Intel i.e. like MOTOROLA,

Zilog etc.

• A cross compiler that runs on host system and produces the binary instructions that

will be understood by your target microprocessor. This cross compiler is a program

which will do the above task. If we write C/C++ source code that could compile on

native compiler and run on host, we could compile the same source code through

cross compiler and make run it run on target also.

• That may not possible in all the cases since there is no problem with if, switch and

loops statements for both compilers but there may be an error with respect to the

following:

 In Function declarations

 The size may be different in host and target

 Data structures may be different in two machines.

 Ability to access 16 and 32 bit entries reside at two machines.

Sometimes cross compiler may warn an error which may not be warned by native

complier.

Cross Assemblers and Tool Chains:

• Cross assembling is necessary if target system cannot run an assembler itself.

• A cross assembler is a program that runs on host produces binary

instructions appropriate for the target. The input to the cross assembler is

assembly language file (.asm file) and output is binary file.

• A cross-assembler is just like any other assembler except that it runs on

some CPU other than the one for which it assembles code.

Tool chain for building embedded software shown below:

The figure shows the process of building software for an embedded system.

As you can see in figure the output files from each tool become the input files for

the next. Because of this the tools must be compatible with each other.

A set of tools that is compatible in this way is called tool chain. Tool chains that run

on various hosts and builds programs for various targets.

II. LINKER/LOCATORS FOR EMBEDDED SOFTWARE:

• Linker:

– a linker or link editor is a computer program that takes one or

more object files generated by a compiler and

combines them into a single executable file, library

file, or another object file.

• Locator:

• locate embedded binary code into target processors

• produces target machine code (which the locator glues into the

RTOS) and the combined code (called map) gets copied into the

target ROM

Linking Process shown below:

• The native linker creates a file on the disk drive of the host system that is

read by a part of operating system called the loader whenever the user

requests to run the programs.

• The loader finds memory into which to load the program, copies the

program from the disk into the memory

• Address Resolution:

Native Tool Chain:

Explanation for above native tool chain figure:

• Above Figure shows the process of building application software with native tools.

One problem in the tool chain must solve is that many microprocessor instructions

contain the addresses of their operands.

• the above figure MOVE instruction in ABBOTT.C will load the value of variable

idunno into register R1 must contain the address of the variable. Similarly CALL

instruction must contain the address of the whosonfirst. This process of solving

problem is called address resolution.

• When abbott.c file compiling,the compiler does not have any idea what the address

of idunno and whosonfirst() just it compiles both separately and leave them as

object files for linker.

• Now linker will decide that the address of idunno must be patched to whosonfirst()

call instructoin. When linker puts the two object files together, it figures out idunno

and whosonfirst() are in relation for execution and places in executable files.

• After loader copies the program into memory and exactly knows where idunno and

whosonfirst() are in memory. This whole process called as address resolution.

Output File Formats:

In most embedded systems there is no loader, when the locator is done then output will be

copied to target.

Therefore the locator must know where the program resides and fix up all memories.

Locators have mechanism that allows you to tell them where the program will be in the

target system. Locators use any number of different output file formats.

The tools you are using to load your program into target must understand whatever file

format your locator produces.

1. intel Hex file format

2. Motorola S-Record format

1. Intel Hex file format:

below figure shows Intel Hex file format

2. Motorola S-Record format

Loading program components properly:

Another issue that locators must resolve in the embedded environment is that some parts of

the program need to end up in the ROM and some parts need to end up in RAM.

For example whosonfirst() end up in ROM and must be remembered even power is off. The

variable idunno would have to be in RAM, since it data may be changed.

This issue does not arise with application programming, because the loader copies the entire

program into RAM.

Most tools chains deal with this problem by dividing the programs into segments.

Each segment is a piece of program that the locator can place it in memory

independently of other segments.

Segments solve other problems like when processor power on, embedded system

programmer must ensure where the first instruction is at particular place with the help of

segments.

Figure: How the tool chain uses segments

Figure shows how a tool chain might work in a system in hypothetical system that contains

three modules X.c, Y.c and Z.asm.The code X.c contains some instructions, some

uninitialized data and some constant strings. The Y. c contains some instructions, some

uninitialized and some initialized data. The Z.asm contains some assembly language

function, start up code and uninitialized code

.The cross compiler will divide X.c into 3 segments in the object file

First segment: code

Second segment: udata

Third segment: constant strings

 The cross compiler will divide Y.c into 3 segments in the object file First segment:

code Second segment: udata Third segment: idata

 The cross compiler Z.asm divides the

segments into First Segment:

assembly language functions

Second Segment: start up code

Third Segment t: udata

The linker/ Locator reshuffle these segments and places Z.asm start up code at

where processor begins its execution, it places code segment in ROM and data

segment in RAM. Most compilers automatically divide the module into two or

more segments: The instructions (code), uninitialized code, Initialized, Constant

strings. Cross assemblers also allow you to specify the segment or segments into

which the output from the assembler should be placed. Locator places the segments

in memory. The following two lines of instructions tells one commercial locator

how to build the program.

 The –Z at the beginning of each line indicates that this line is a list of segments.

Fig 6: Locator places segments in memory

 At the end of each line is the address where the segment should be placed.

 The locator places the segments one after other in memory, starting with the given

address.

 The segments CSTART, IVECS, CODE one after other must be placed at address

0.

 The segments IDATA, UDATA AND CTACK at address at 8000.

Some other features of locators are:

 We can specify the address ranges of RAM and ROM, the locator will warn you

if program does not fit within those functions.

 We can specify the address at which the segment is to end, then it will place the

segment below that address which is useful for stack memory.

 We can assign each segment into group, and then tell the locator where the group

go and deal with individual segments.

Where the variable ifreq must be stored. In the above code, in the first case ifreq the initial

value must reside in the ROM (this is the only memory that stores the data while the

power is off).In the second case the ifreq must be in RAM, because setfreq () changes it

frequently.

The only solution to the problem is to store the variable in RAM and store the initial value

in ROM and copy the initial value into the variable at startup. Loader sees that each

initialized variable has the correct initial value when it loads the program. But there is no

loader in embedded system, so that the application must itself arrange for initial values to

be copied into variables.

The locator deals with this is to create a shadow segment in ROM that contains all of the

initial values, a segment that is copied to the real initialized - data segment at start up.

When an embedded system is powdered on the contents of the RAM are garbage. They

only become all zeros if some start up code in the embedded system sets them as zeros.

Locator Maps:

• Most locators will create an output file, called map, that lists where the

locator placed each of the segments in memory.

• A map consists of address of all public functions and global variables.

• These are useful for debugging an ‘advanced’ locator is capable of running a

startup code in ROM, which load the embedded code from ROM into RAM

to execute quickly since RAM is faster

Locator MAP IS SHOWN BELOW:

Executing out of RAM:

RAM is faster than ROM and other kinds of memory like flash. The fast microprocessors

(RISC) execute programs rapidly if the program is in RAM than ROM. But they store the

programs in ROM, copy them in RAM when system starts up.

The start-up code runs directly from ROM slowly. It copies rest of the code in RAM for

fast processing. The code is compressed before storing into the ROM and start up code

decompresses when it copies to RAM.

The system will do all this things by locator, locator must build program can be stored at

one collection of address ROM and execute at other collection of addresses at RAM.

Getting embedded software into the target system:

• The locator will build a file as an image for the target software. There

are few ways to getting the embedded software file into target

system.

– PROM programmers

– ROM emulators

– In circuit emulators

– Flash

– Monitors

PROM Programmers:

 The classic way to get the software from the locator output file into target system by

creating file in ROM or PROM.

 Creating ROM is appropriate when software development has been completed, since

cost to build ROMs is quite high. Putting the program into PROM requires a device

called PROM programmer device.

 PROM is appropriate if software is small enough, if you plan to make changes to the

software and debug. To do this, place PROM in socket on the Target than being soldered

directly in the circuit (the following figure shows). When we find bug, you can remove

the PROM containing the software with the bug from target and put it into the eraser (if

it is an erasable PROM) or into the waste basket. Otherwise program a new PROM with

software which is bug fixed and free, and put that PROM in the socket. We need small

tool called chip puller (inexpensive) to remove PROM from the socket. We can insert

the PROM into socket without any tool than thumb (see figure8). If PROM programmer

and the locator are from different vendors, its upto us to make them compatible.

Fig : Semantic edge view of socket

ROM Emulators:

Other mechanism is ROM emulator which is used to get software into target. ROM emulator

is a device that replaces the ROM into target system. It just looks like ROM, as shown

figure9; ROM emulator consists of large box of electronics and a serial port or a network

connection through which it can be connected to your host. Software running on your host

can send files created by the locator to the ROM emulator. Ensure the ROM emulator

understands the file format which the locator creates.

Fig: ROM emulator

In circuit emulators:

If we want to debug the software, then we can use overlay memory which is a common

feature of in-circuit emulators. In-circuit emulator is a mechanism to get software into target

for debugging purposes.

Flash:

If your target stores its program in flash memory, then one option you always have is to

place flash memory in socket and treat it like an EPROM .However, If target has a serial

port, a network connection, or some other mechanism for communicating with the outside

world, link then target can communicate with outside world, flash memories open up

another possibility: you can write a piece of software to receive new programs from your

host across the communication link and write them into the flash memory. Although this

may seem like difficult

The reasons for new programs from host:

 You can load new software into your system for debugging, without pulling chip out of

socket and replacing.

 Downloading new software is fast process than taking out of socket, programming and

returning into the socket.

 If customers want to load new versions of the software onto your product.

The following are some issues with this approach:

 Here microprocessor cannot fetch the instructions from flash.

 The flash programming software must copy itself into the RAM, locator has to take care all

these activities how those flash memory instructions are executing.

 We must arrange a foolproof way for the system to get flash programming software into the

target i.e target system must be able to download properly even if earlier download crashes

in the middle.

 To modify the flash programming software, we need to do this in RAM and then copy to

flash.

Monitors:

It is a program that resides in target ROM and knows how to load new programs onto the

system. A typical monitor allows you to send the data across a serial port, stores the

software in the target RAM, and then runs it. Sometimes monitors will act as locator also,

offers few debugging services like setting break points, display memory and register values.

You can write your own monitor program.

DEBUGGING TECHNIQUES

I. Testing on host machine

II. using laboratory tools

III. an example system

Introduction:

While developing the embedded system software, the developer will develop the code with

the lots of bugs in it. The testing and quality assurance process may reduce the number of

bugs by some factor. But only the way to ship the product with fewer bugs is to write

software with few fewer bugs. The world extremely intolerant of buggy embedded systems.

The testing and debugging will play a very important role in embedded system software

development process.

Testing on host machine :

• Goals of Testing process are

– Find bugs early in the development process
– Exercise all of the code

– Develop repeatable , reusable tests

– Leave an audit trail of test results

Find the bugs early in the development process:

This saves time and money. Early testing gives an idea of how many bugs you have and

then how much trouble you are in.

BUT: the target system is available early in the process, or the hardware may be buggy and

unstable, because hardware engineers are still working on it.

Exercise all of the code:

Exercise all exceptional cases, even though, we hope that they will never happen, exercise

them and get experience how it works.

BUT: It is impossible to exercise all the code in the target. For example, a laser printer may

have code to deal with the situation that arise when the user presses the one of the buttons

just as a paper jams, but in the real time to test this case. We have to make paper to jam and

then press the button within a millisecond, this is not very easy to do.

Develop reusable, repeatable tests:

It is frustrating to see the bug once but not able to find it. To make refuse to happen again,

we need to repeatable tests.

BUT: It is difficult to create repeatable tests at target environment.

Example: In bar code scanner, while scanning it will show the pervious scan results every

time, the bug will be difficult to find and fix.

Leave an “Audit trail” of test result:

Like telegraph “seems to work” in the network environment as it what it sends and receives

is not easy as knowing, but valuable of storing what it is sending and receiving.

BUT: It is difficult to keep track of what results we got always, because embedded systems

do not have a disk drive.

Conclusion: Don’t test on the target, because it is difficult to achieve the goals by testing

software on target system. The alternative is to test your code on the host system.

Basic Technique to Test:

The following figure shows the basic method for testing the embedded software on the

development host. The left hand side of the figure shows the target system and the right

hand side shows how the test will be conducted on the host. The hardware independent code

on the two sides of the figure is compiled from the same source.

Figure: Test System

The hardware and hardware dependent code has been replaced with test scaffold software on

the right side. The scaffold software provides the same entry points as does the hardware

dependent code on the target system, and it calls the same functions in the hardware

independent code. The scaffold software takes its instructions from the keyboard or from a

file; it produces output onto the display or into the log file.

Conclusion: Using this technique you can design clean interface between hardware

independent software and rest of the code.

Calling Interrupt Routines by scaffold code:

Based on the occurrence of interrupts tasks will be executed. Therefore, to make the system

do anything in the test environment, the test scaffold must execute the interrupt routines.

Interrupts have two parts one which deals with hardware (by hardware dependent interrupt

calls) and other deals rest of the system (hardware independent interrupt calls).

Calling the timer interrupt routine:

One interrupt routine your test scaffold should call is the timer interrupt routine. In most

embedded systems initiated the passage of time and timer interrupt at least for some of the

activity. You could have the passage of time in your host system call the timer interrupt

routine automatically. So time goes by your test system without the test scaffold software

participation. It causes your test scaffold to lose control of the timer interrupt routine. So

your test scaffold must call Timer interrupt routine directly.

Script files and Output files:

A test scaffold that calls the various interrupt routines in a certain sequence and with certain

data. A test scaffold that reads a script from the keyboard or from a file and then makes calls

as directed by the script. Script file may not be a project, but must be simple one.

Example: script file to test the bar code scanner

#frame arrives

Dst Src Ctrl mr/56 ab

#Backoff timeout expires Kt0

#timeout expires again Kt0

#sometime pass Kn2

Kn2

#Another beacon frame arrives

Each command in this script file causes the test scaffold to call one of the interrupts in the

hardware independent part.

In response to the kt0 command the test scaffold calls one of the timer interrupt routines. In

response to the command kn followed by number, the test scaffold calls a different timer

interrupt routine the

indicated number of times. In response to the command mr causes the test scaffold to write

the data into memory.

Features of script files:

 The commands are simple two or three letter commands and we could write the parser more

quickly.

 Comments are allowed, comments script file indicate what is being tested, indicate what

results you expect, and gives version control information etc.

 Data can be entered in ASCII or in Hexadecimal.

Most advanced Techniques:

These are few additional techniques for testing on the host. It is useful to have the test

scaffold software do something automatically. For example, when the hardware

independent code for the underground tank monitoring system sends a line of data to the

printer, the test scaffold software must capture the line, and it must call the printer interrupt

routine to tell the hardware independent code that the printer is ready for the next line.

There may be a need that test scaffold a switch control because there may be button

interrupt routine, so that the test scaffold must be able to delay printer interrupt routine.

There may be low, medium, high priority hardware independent requests, then

scaffold switches as they appear. Some Numerical examples of test scaffold software: In

Cordless bar code scanner, when H/W independent code sends a frame the scaffold S/W

calls the interrupt routine to indicate that the frame has been sent. When H/W independent

code sets the timer, then test scaffold code call the timer interrupt after some period. The

scaffold software acts as communication medium, which contains multiple instances of H/W

independent code with respect to multiple systems in the project.

Bar code scanner Example:

Here the scaffold software generate an interrupts when ever frame send and receive. Bar

code Scanner A send data frame, captures by test scaffold and calls frame sent interrupt. The

test scaffold software calls receive frame interrupt when it receives frame. When any one of

the H/W independent code calls the function to control radio, the scaffold knows which

instances have turned their radios, and at what frequencies.

Fig2: Test scaffold for the bar- code scanner software

Targets that have their radios turned off and tuned to different frequencies do not receive

the frame.

The scaffold simulates the interference that prevents one or more stations from receiving

the data. In this way the scaffold tests various pieces of software communication properly

with each other or not.(see the above figure).

OBJECTIONS, LIMITATIONS AND SHORT COMINGS:

Engineers raise many objections to testing embedded system code on their host system,

Because many embedded systems are hardware dependent. Most of the code which is

tested at host side is hardware dependent code.

To test at host side embedded systems interacts only with the microprocessor, has no

direct contact with the hardware. As an example the Telegraph software huge percentage

of software is hardware independent i.e. this can be tested on the host with an appropriate

scaffold. There are few objections to scaffold: Building a scaffold is more trouble, making

compatible to RTOS is other tedious job.

Using laboratory Tools:

 Volt meters and Ohm Meters

 Oscilloscopes

 Logic Analyzers

 Logic Analyzers in Timing mode

 Logic Analyzers in State Mode

 In-circuit Emulators

 Getting “ Visibility” into the Hardware

 Software only Monitors

 Other Monitors

Volt meters:

Volt meter is for measuring the voltage difference between two points. The common use of

voltmeter is to determine whether or not chip in the circuit have power. A system can suffer

power failure for any number of reasons- broken leads, incorrect wiring, etc. the usual way

to use a volt meter It is used to turn on the power, put one of the meter probes on a pin that

should be attached to the VCC and the other pin that should be attached to ground. If volt

meter does not indicate the correct voltage then we have hardware problem to fix.

Ohm Meters:

Ohm meter is used for measuring the resistance between two points, the most common use

of Ohm meter is to check whether the two things are connected or not. If one of the address

signals from microprocessors is not connected to the RAM, turn the circuit off, and then put

the two probes on the two points to be tested, if ohm meter reads out 0 ohms, it means that

there is no resistance between two probes and that the two points on the circuit are therefore

connected. The product commonly known as Multimeter functions as both volt and Ohm

meters.

Oscilloscopes:

It is a device that graphs voltage versus time, time and voltage are graphed horizontal and

vertical axis respectively. It is analog device which signals exact voltage but not low or high.

Features of Oscilloscope:

 You can monitor one or two signals simultaneously.

 You can adjust time and voltage scales fairly wide range.

 You can adjust the vertical level on the oscilloscope screen corresponds to

ground. With the use of trigger, oscilloscope starts graphing. For example we can tell the

oscilloscope to start graphing when signal reaches 4.25 volts and is rising.

Oscilloscopes extremely useful for Hardware engineers, but software engineers use them

for the following purposes:

1. Oscilloscope used as volt meter, if the voltage on a signal never changes, it will

display horizontal line whose location on the screen tells the voltage of the signal.

2. If the line on the Oscilloscope display is flat, then no clocking signal is in

Microprocessor and it is not executing any instructions.

3. Use Oscilloscope to see as if the signal is changing as expected.

4. We can observe a digital signal which transition from VCC to ground and vice versa

shows there is hardware bug.

Fig3: Typical Oscilloscope

Figure3 is a sketch of a typical oscilloscope, consists of probes used to connect the

oscilloscope to the circuit. The probes usually have sharp metal ends holds against the signal

on the circuit. Witch’s caps fit over the metal points and contain little clip that hold the

probe in the circuit. Each probe has ground lead a short wire that extends from the head of

the probe, it can easily attach to the circuit. It is having numerous adjustment knobs and

buttons allow you to control. Some may have on screen menus and set of function buttons

along the side of the screen.

4(a): A Reasonable clock signal

4(b): A Questionable clock signal

4 (c): A dead clock signal

4(d): A ROM chip selection signal

Figure4 (a) to 4(d) shows some typical oscilloscope displays.fig (a) shows a microprocessor

input clock signal. Fig (b) shows a questionable clock signal, it differs from 4(a) in that it

does not go from lo to high cleanly and stay high for a period of time. Instead it draft from

low to high .fig(c) shows a clock circuit that is not working at all.fig(d) shows chip enable

signal.

Logic Analyzers:

This tool is similar to oscilloscope, which captures signals and graphs them on its screen.

But it differs with oscilloscope in several fundamental ways

 A logic analyzer track many signals simultaneously.

 The logic analyzer only knows 2 voltages, VCC and Ground. If the voltage is in

between VCC and ground, then logical analyzer will report it as VCC or Ground but

not like exact voltage.

 All logic analyzers are storage devices. They capture signals first and display them

later.

 Logic analyzers have much more complex triggering techniques than oscilloscopes.

 Logical analyzers will operate in state mode as well as timing mode.

Logical analyzers in Timing Mode:

Some situations where logical analyzers are working in Timing mode

 If certain events ever occur.

 Example: In bar code scanner software ever turns the radio on, we can attach logic

analyzer to the signals that controls the power to the radio.

 We can measure how long it takes for software to respond.

 We can see software puts out appropriate signal patterns to control the hardware. The

underground tank monitoring system to find out how long it will takes the software to

turn off the bell when you push a button shown in fig5.

Example: After finishing the data transmitting, we can attach the logical analyzer to RTS

and its signal to find out if software lowers RTS at right time or early or late. We can also

attach the logical analyzer, to ENABLE/ CLK and DATA signals to EEPROM to find if it

works correctly or not.(see fig6).

Fig5 : Logic analyzer timing display: Button and Alarm signal

Fig6 : Logic Analyzer timing Display: Data and RTS signal

Fig7 : Logic analyzer

Figure7 shows a typical logic analyzer. They have display screens similar to those of

oscilloscopes. Most logic analyzers present menus on the screen and give you a keyboard to

enter choices, some may have mouse as well as network connections to control from work

stations. Logical analyzers include hard disks and diskettes. It can be attached to many

signals through ribbons. Since logic analyzer can attach to many signals simultaneously, one

or more ribbon cables typically attach to the analyzer.

Logical Analyzer in State Mode:

In the timing mode, logical analyzer is self clocked. That is, it captures data without

reference to any events on the circuit. In state mode, they capture data when some particular

event occur, called a clock occurs in the system. In this mode the logical analyzer see what

instructions the microprocessor fetched and what data it read from and write to its memory

and I/O devices. To see what instructions the microprocessor fetched, you connect logical

analyzer probes to address and data signals of the system and RE signal on the ROM.

Whenever RE signal raise then logical analyzer capture the address and data signals. The

captured data is called as trace. The data is valid when RE signal raise. State mode analyzers

present a text display as state of signals in row as shown in the below figure.

Fig8 : Typical logic analyzer state mode display

The logical analyzer in state mode extremely useful for the software engineer,

1. Trigger the logical analyzer, if processor never fetch if there is no memory.

2. Trigger the logical analyzer, if processor writes an invalid value to a particular

address in RAM.

3. Trigger the logical analyzer, if processor fetches the first instruction of ISR and

executed.

4. If we have bug that rarely happens, leave processor and analyzer running overnight

and check results in the morning.

5. There is filter to limit what is captured.

Logical analyzers have short comings:

Even though analyzers tell what processor did, we cannot stop, break the processor, even if it

did wrong. By the analyzer the processors registers are invisible only we know the contents

of memory in which the processors can read or write. If program crashes, we cannot examine

anything in the system. We cannot find if the processor executes out of cache. Even if the

program crashes, still emulator let make us see the contents of memory and registers. Most

emulators capture the trace like analyzers in the state mode. Many emulators have a feature

called overlay memory, one or more blocks of memory inside the emulator, emulated

microprocessor can use instead of target machine.

In circuit emulators:

In-circuit emulators also called as emulator or ICE replaces the processor in target system.

Ice appears as processor and connects all the signals and drives. It can perform debugging,

set break points after break point is hit we can examine the contents of memory, registers,

see the source code, resume the execution. Emulators are extremely useful, it is having the

power of debugging, acts as logical analyzer. Advantages of logical analyzers over

emulators:

 Logical analyzers will have better trace filters, more sophisticated triggering

mechanisms.

 Logic analyzers will also run in timing mode.

 Logic analyzers will work with any microprocessor.

 With the logic analyzers you can hook up as many as or few connections as you like.

With the emulator you must connect all of the signal.

 Emulators are more invasive than logic analyzers.

Software only Monitors:

One widely available debugging tool often called as Monitor .monitors allow you to run

software on the actual target, giving the debugging interface to that of In circuit emulator.

Monitors typically work as follows:

 One part of the monitor is a small program resides in ROM on the target, this knows how to

receive software on serial port, across network, copy into the RAM and run on it. Other

names for monitor are target agent, monitor, debugging kernel and so on.

 Another part the monitor run on host side, communicates with debugging kernel, provides

debugging interface through serial port communication network.

 You write your modules and compile or assemble them.

 The program on the host cooperates with debugging kernel to download compiled module

into the target system RAM. Instruct the monitor to set break points, run the system and so

on.

 You can then instruct the monitor to set breakpoints.

Fig 9: software only the monitor

See the above figure, Monitors are extraordinarily valuable, gives debugging interface

without any modifications.

Disadvantages of Monitors:

 The target hardware must have communication port to communicate the debugging

kernel with host program. We need to write the communication hardware driver to

get the monitor working.

 At some point we have to remove the debugging kernel from your target system and

try to run the software without it.

 Most of the monitors are incapable of capturing the traces like of those logic

analyzers and emulators.

 Once a breakpoint is hit, stop the execution can disrupt the real time operations so

badly.

Other Monitors:

The other two mechanisms are used to construct the monitors, but they differ with normal

monitor in how they interact with the target. The first target interface is with through a ROM

emulator. This will do the downing programs at target side, allows the host program to set

break points and other various debugging techniques.

179

UNIT V

INTRODUCTION TO ADVANCED PROCESSORS

--

SYLLABUS:

Introduction to advanced architectures: ARM and SHARC, processor and memory

organization and instruction level parallelism; Networked embedded systems: Bus protocols,

I2C bus and CAN bus; Internet-Enabled systems, design example-Elevator controller.

--

Unit V contents at a glance:

I. Introduction to advanced architectures

II. ARM ,

III. SHARC,

IV. processor and memory organization and instruction level parallelism;

Networked embedded systems:

I. bus protocols,

II. I2C bus and CAN bus;

III. internet-enabled systems,

IV. design example-elevator controller.

I. INTRODUCTION TO ADVANCED ARCHITECTURES:

Two Computing architectures are available:

1. von Neumann architecture computer

2. Harvard architecture

von Neumann architecture computer:

 The memory holds both data and instructions, and can be read or written when given

an address. A computer whose memory holds both data and instructions is known as a

von Neumann machine

 The CPU has several internal registers that store values used internally. One of those

registers is the program counter (PC) ,which holds the address in memory of an

instruction.

 The CPU fetches the instruction from memory, decodes the instruction, and executes

it.

 The program counter does not directly determine what the machine does next, but

only indirectly by pointing to an instruction in memory.

180

2. Harvard architecture:

 Harvard machine has separate memories for data and program.

 The program counter points to program memory, not data memory.

 As a result, it is harder to write self-modifying programs (programs that write data

values, then use

Those values as instructions) on Harvard machines.

 Advantage:

 The separation of program and data memories provides higher performance for digital

signal processing.

 Differences between Von neumann and harvard architecture:

VON NEUMANN HARVARD ARCHITECTURE

Same memory holds data, instructions Separate memories for data and instructions

A single set of address/data buses between

CPU and memory

Two sets of address/data buses between

CPU and memory

Single memory fetch operation

Harvard allows two simultaneous memory

fetches

The code is executed serially and takes more

clock cycles

The code is executed in parallel

Not exactly suitable for DSP Most DSPs use Harvard architecture for

181

streaming data:

• greater memory bandwidth;

• more predictable bandwidth

There is no exclusive Multiplier It has MAC (Multiply Accumulate)

No Barrel Shifter is there Barrel Shifter help in shifting and rotating

operations of the data

The programs can be optimized in lesser size The program tend to grow big in size

Used in conventional processors found in

PCs and Servers, and embedded systems

with only control functions.

Used in DSPs and other processors found in

latest embedded systems and Mobile

communication systems, audio, speech, image

processing systems

RISC and CISC Processors:

RISC CISC

RISC stands for Reduced Instruction Set

Computer

CISC stands for Complex Instruction Set

Computer

Hardware plays major role in CISC

processors

Software plays major role in CISC

processors

RISC processors use single clock to execute

an instruction

CISC processors use multiple clocks for

execution.

Memory-to-memory access is used for data

manipulations is RISC processors

intermediate registers are used for data

manipulation

In RISC processors, single word instructions

are given as inputs

In CISC processors, instructions of variable

lengths are given as input, based upon the

task to be performed

More lines of code and large memory

footprint

High code density

Compact, uniform instructions and hence

facilitate pipelining

Many addressing modes and long

instructions

Allow effective compiler optimization Often require manual optimization of

assembly code

for embedded systems

These machines provided a variety of

instructions that may perform very complex

tasks, such as string searching

These computers tended to provide

somewhat fewer and simpler instructions.

182

II. ARM(Advanced RISC Machine) Processor:

 ARM uses RISC architecture

 ARM uses assembly language for writing programs

 ARM instructions are written one per line, starting after the first column.

 Comments begin with a semicolon and continue to the end of the line.

 A label, which gives a name to a memory location, comes at the beginning of the line,

starting in the first column.

Here is an example:

 LDR r0,[r8]; a comment

label ADD r4,r0,r1

Memory Organization in ARM Processor:

The ARM architecture supports two basic types of data:

 The standard ARM word is 32 bits long.

 The word may be divided into four 8-bit byte

 ARM allows addresses up to 32 bits long

 The ARM processor can be configured at power-up to address the bytes

in a word in either little-endian mode (with the lowest-order byte

residing in the low-order bits of the word) or big-endian mode

183

Data Operations in ARM:

 In the ARM processor, arithmetic and logical operations cannot be performed

directly on memory locations.

 ARM is a load-store architecture—data operands must first be loaded into the CPU

and then stored back to main memory to save the results

ARM Programming Model:

1. Programming model gives information about various registers supported by ARM

2. ARM has 16 general-purpose registers, r0 to r15

3. Except for r15, they are identical—any operation that can be done on one of them can

be done on the other one also

4. r15 register is also used as program counter(PC)

5. current program status register (CPSR):

 This register is set automatically during every arithmetic, logical, or

shifting operation.

 The top four bits of the CPSR hold the following useful information

about the results of that arithmetic/logical operation:

 The negative (N) bit is set when the result is negative in two’s-

complement arithmetic.

 The zero (Z) bit is set when every bit of the result is zero.

 The carry (C) bit is set when there is a carry out of the

operation.

 The overflow (V) bit is set when an arithmetic operation

results in an overflow.

Types of Instructions supported by ARM Processor:

1. Arithmetic Instructions

2. Logical Instructions

3. shift / rotate Instructions

184

4. Comparison Instructions

5. move instructions

6. Load store instructions

Instructions examples:

ADD r0,r1,r2

 This instruction sets register r0 to the sum of the values stored in r1 and r2.

ADD r0,r1,#2 (immediate operand are allowed during addition)

RSB r0, r1, r2 sets r0 to be r2-r1.

bit clear: BIC r0, r1, r2 sets r0 to r1 and not r2.

Multiplication:

185

 no immediate operand is allowed in multiplication

 two source operands must be different registers

 MLA: The MLA instruction performs a multiply-accumulate operation, particularly useful

in matrix operations and signal processing

 MLA r0,r1,r2,r3 sets r0 to the value r1x r2+r3.

Shift operations:

 Logical shift(LSL, LSR)

 Arithmetic shifts (ASL, ASR)

 A left shift moves bits up toward the most-significant bits,

 right shift moves bits down to the least-significant bit in the word.

 The LSL and LSR modifiers perform left and right logical shifts, filling the

least-significant bits of the operand with zeroes.

 The arithmetic shift left is equivalent to an LSL, but the ASR copies the sign

bit—if the sign is 0, a 0 is copied, while if the sign is 1, a 1 is copied.

Rotate operations: (ROR, RRX)

 The rotate modifiers always rotate right, moving the bits that fall off the least-

significant bit up to the most-significant bit in the word.

 The RRX modifier performs a 33-bit rotate, with the CPSR’s C bit being inserted

above the sign bit of the word; this allows the carry bit to be included in the rotation

Compare instructions: (CMP, CMN)

 compare instruction modifies flags values (Negative flag, zero flag, carry flag,

Overflow flag)

 CMP r0, r1 computes r0 – r1, sets the status bits, and throws away the result of the

subtraction.

 CMN uses an addition to set the status bits.

 TST performs a bit-wise AND on the operands,

 while TEQ performs an exclusive-or

Load store instructions:

 ARM uses register-indirect addressing

 The value stored in the register is used as the address to be fetched from memory; the

result of that fetch is the desired operand value.

 LDR r0,[r1] sets r0 to the value of memory location 0x100.

 Similarly, STR r0,[r1] would store the contents of r0 in the memory location whose

address is given in r1

LDR r0,[r1, – r2]

186

ARM Register indirect addressing:

LDR r0,[r1, #4] loads r0 from the address r1+ 4.

Sample programs using ARM instruction set:

Expression: x = (a+b)-c

program:

187

Expression:

y=a*(b+c)

program 3:

ARM Base plus offset addressing mode:

the register value is added to another value to form the address.

 For instance, LDR r0,[r1,#16] loads r0 with the value stored at location r1+16.(r1-base

address, 16 is offset)

Base plus offset addressing mode

auto indexing

post indexing

188

Auto-indexing updates the base register, such that LDR r0,[r1,#16]! ----first adds 16 to the

value of r1, and then uses that new value as the address. The ! operator causes the base

register to be updated with the computed address so that it can be used again later.

Post-indexing does not perform the offset calculation until after the fetch has been

performed. Consequently,

 LDR r0,[r1],#16 will load r0 with the value stored at the memory location whose address is

given by r1, and then add 16 to r1 and set r1 to the new value.

FLOW OF CONTROL INSTRUCTIONS (Branch Instructions):

Branch Instructions

 1. conditional instructions(BGE-- B is branch, GE is condition)

 2. unconditional instructions(B)

the following branch instruction B #100 will add 400 to the current PC value

189

example for flow of control programs:

Branch and Link instruction (BL) for implementing functions or sub routines or

procedures:

190

**Note : for more programs, refer class notes.

III . SHARC Processor:

Features of SHARC processor:

1.SHARC stands for Super Harvard Architecture Computer

2.The ADSP-21060 SHARC chip is made by Analog Devices, Inc.

3.It is a 32-bit signal processor made mainly for sound, speech, graphics, and

imaging applications.

4.It is a high-end digital signal processor designed with RISC techniques.

5. Number formats:

 i. 32-bit Fixed Format

 Fractional/Integer

 Unsigned/Signed

 ii. Floating Point

 32-bit single-precision IEEE floating-point data format

 40-bit version of the IEEE floating-point data format.

 16-bit shortened version of the IEEE floating-point data format.

6. 32 Bit floating point, with 40 bit extended floating point capabilities.

7. Large on-chip memory.

8. Ideal for scalable multi-processing applications.

9. Program memory can store data.

10. Able to simultaneously read or write data at one location and get instructions

from another place in memory.

11. 2 buses

Data memory bus.

Program bus.

12. Either two separate memories or a single dual-port memory

13. The SHARC incorporates features aimed at optimizing such loops.

191

14. High-Speed Floating Point Capability

15. Extended Floating Point

16. The SHARC supports floating, extended-floating and non-floating point.

17. No additional clock cycles for floating point computations.

18. Data automatically truncated and zero padded when moved between 32-bit

memory and internal registers.

SHARC PROCESSOR PROGRAMMING MODEL:

Programming model gives the registers details. The following registers are used in

SHARC processors for various purposes:

 Register files: R0-R15 (aliased as F0-F15 for floating point)

 Status registers.

 Loop registers.

 Data address generator registers(DAG1 and DAG2)

 Interrupt registers.

 16 primary registers (R0-R15)

 16 alternate registers (F0-F15)

 each register can hold 40 bits

 R0 – R15 are for Fixed-Point Numbers

 F0 – F15 are for Floating-Point Numbers

SHARC Programming modelR0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13

R14

R15

ASTAT

STKY

MODE1

031

0

0

31

31

Status registers:

ASTAT: arithmetic status.

STKY: sticky.

MODE 1: mode 1.

 The STKY register is a sticky version of ASTAT register, the STKY bits are set

along with ASTAT register bits but not cleared until cleared by an instruction.

 The SHARC perform saturation arithmetic on fixed point values, saturation mode is

controlled by ALUSAT bit in MODE1 register.

 All ALU operations set AZ (zero), AN (negative), AV (overflow), AC (fixed-point

carry), AI (floating-point invalid) bits in ASTAT.

192

Data Address Generators(DAG)

Data Address Generators
There are two data address generators (DAG1 & DAG2) for

addressing memory indirectly (with pre-modify or post-modify).

Data address generator 1 (DAG1) generates 32-bit addresses on the

Data Memory Address Bus.

Data address generator 2 (DAG2) generates 24-bit addresses on the

Program Memory Address Bus.

Each DAG has four types of registers:

The Index (I) register acts as a pointer to memory.

The Modify (M) register contains the increment value for

advancing the pointer.

Base and Limit Registers (More on the next page).

 Two data address generators (DAGs):

program memory and data memory.

DAG1 registers

I0

I1

I2

I3

I4

I5

I6

I7

M0

M1

M2

M3

M4

M5

M6

M7

L0

L1

L2

L3

L4

L5

L6

L7

B0

B1

B2

B3

B4

B5

B6

B7

193

DAG2 registers

I8

I9

I10

I11

I12

I13

I14

I15

M8

M9

M10

M11

M12

M13

M14

M15

L8

L9

L10

L11

L12

L13

L14

L15

B8

B9

B10

B11

B12

B13

B14

B15

Multifunction computations or instruction level parallel processing:

Can issue some computations in parallel:

 dual add-subtract;

 fixed-point multiply/accumulate and add, subtract, average

 floating-point multiply and ALU operation

 multiplication and dual add/subtract

Pipelining in SHARC processor:

Instructions are processed in three cycles:

 Fetch instruction from memory

 Decode the opcode and operand

 Execute the instruction

 SHARC supports delayed and non-delayed branches

 Specified by bit in branch instruction

 2 instruction branch delay slot

 Six Nested Levels of Looping in Hardware

194

Bus Architecture:

Twin Bus Architecture:

 1 bus for Fetching Instructions

 1 bus for Fetching Data

Improves multiprocessing by allowing more steps to occur during each clock

Addressing modes provided by DAG in SHARC Processor:

1. The Simplest addressing mode

2. Absolute address

3. post modify with update mode

4. base-plus-offset mode

5. Circular Buffers

6. Bit reversal addressing mode

1. The Simplest addressing mode provides an immediate value that can represent the

address.

Example : R0=DM(0X200000)

R0=DM(_a) i.e load R0 with the contents of the variable a

2. An Absolute address has entire address in the instruction, space inefficient, address

occupies the more space.

3. A post modify with update mode allows the program to sweep through a range of

address. This uses I register and modifier, I registers shows the address value and modifier

(M register value or Immediate value) is update the value.

For load

R0=DM(I3,M1)

For store : DM(I3,M1)=R0

4. The base-plus-offset mode here the address computed as I+M where I is the base and

M modifier or offset.

 Example: R0=DM(M1, I0)

 I0=0x2000000 and M0= 4 then the value for R0 is loaded from 0x2000004

5. Circular Buffers is an array of n elements is n+1th element is referenced then the

location is 0. It is wrapping around from end to beginning of the buffer.

195

This mode uses L and B registers, L registers is set with +ve and nonzero value at staring

point, B register is stored with same value as the I register is store with base address.

If I register is used in post modify mode, the incremental value is compared to the sum of

L and B registers, if end of the buffer is reached then I register is wrapped around.

6. Bit reversal addressing mode : this is used in Fast Fourier Transform (FFT). Bit

reversal can be performed only in I0 and I8 and controlled by BR0 and BR8 bits in the

MODE1 register.

SHARC allows two fetches per cycle.

F0=DM(M0,I0); FROM DATA MEMORY

F1=PM(M8,I8); FROM PROGRAM MEMORY

BASIC addressing:

Immediate value:

 R0 = DM(0x20000000);

Direct load:

 R0 = DM(_a); ! Loads contents of _a

Direct store:

 DM(_a)= R0; ! Stores R0 at _a

SHARC programs examples:

expression:

x = (a + b) - c;

program:

R0 = DM(_a) ! Load a

R1 = DM(_b); ! Load b

R3 = R0 + R1;

R2 = DM(_c); ! Load c

R3 = R3-R2;

DM(_x) = R3; ! Store result in x

expression :

196

y = a*(b+c);

program:

R1 = DM(_b) ! Load b

R2 = DM(_c); ! Load c

R2 = R1 + R2;

R0 = DM(_a); ! Load a

R2 = R2*R0;

DM(_y) = R23; ! Store result in y

note: for programs , refer class notes

SHARC jump:

Unconditional flow of control change:

JUMP foo

Three addressing modes:

direct;

indirect;

PC-relative.

ARM vs. SHARC

• ARM7 is von Neumann architecture

• ARM9 is Harvard architecture

• SHARC is modified Harvard architecture. – On chip memory (> 1Gbit) evenly split

between program memory (PM) and data memory (DM) – Program memory can be used to

store some data. – Allows data to be fetched from both memory in parallel

197

The SHARC ALU operations:

1. Fixed point ALU operations

2. Floating point ALU operations

 3. Shifter operations in SHARC

Floating point ALU operations:

198

199

UNIT V - part II

Network Embedded System

Contents:

I. bus protocols,

II. I2 C bus ,

III. CAN bus;

IV. internet enabled systems,

V. design example elevator controller.

I. BUS PROTOCOLS:

For serial data communication between different peripherals components , the following

standards are used :

 VME

 PCI

 ISA etc

For distributing embedded applications, the following interconnection network protocols are

there:

 I
2
C

 CAN etc

 I
2
C :

 The I 2 C bus is a well-known bus commonly used to link microcontrollers into

systems

 I 2C is designed to be low cost, easy to implement, and of moderate speed up to 100

KB/s for the standard bus and up to 400 KB/s for the extended bus

 it uses only two lines: the serial data line (SDL) for data and the serial clock line

(SCL), which indicates when valid data are on the data line

200

The basic electrical interface of I2C to the bus is shown in Figure

 A pull-up resistor keeps the default state of the signal high, and transistors are used

in each bus device to pull down the signal when a 0 is to be transmitted.

 Open collector/open drain signaling allows several devices to simultaneously write

the bus without causing electrical damage.

 The open collector/open drain circuitry allows a slave device to stretch a clock signal

during a read from a slave.

 The master is responsible for generating the SCL clock, but the slave can stretch the

low period of the clock

 The I2C bus is designed as a multimaster bus—any one of several different devices

may act as the master at various times.

 As a result, there is no global master to generate the clock signal on SCL. Instead, a

master drives both SCL and SDL when it is sending data. When the bus is idle, both

SCL and SDL remain high.

201

 When two devices try to drive either SCL or SDL to different values, the open

collector/ open drain circuitry prevents errors

Address of devices:

 A device address is 7 bits in the standard I2C definition (the extended I2C allows 10-

bit addresses).

 The address 0000000 is used to signal a general call or bus broadcast, which can be

used to signal all devices simultaneously. A bus transaction comprised a series of 1-

byte transmissions and an address followed by one or more data bytes.

data-push programming :

 I2C encourages a data-push programming style. When a master wants to write a slave,

it transmits the slave’s address followed by the data.

 Since a slave cannot initiate a transfer, the master must send a read request with the

slave’s address and let the slave transmit the data.

 Therefore, an address transmission includes the 7-bit address and 1 bit for data

direction: 0 for writing from the master to the slave and 1 for reading from the slave

to the master

Bus transaction or transmission process:

1) start signal (SCL high and sending 1 to 0 in SDL)

2) followed by device address of 7 bits

3) RW(read / write bit) set to either 0 or 1

4) after address, now the data will be sent

5) after transmitting the complete data, the transmission stops.

202

The below figure is showing write and read bus transaction:

State transition graph:

Transmitting byte in I2C Bus (Timing Diagram):

1. initially, SCL will be high, SDL will be low.

2. data byte will be transmitted.

3. after transmitting every 8 bits, an Acknowledgement will come

4. then stop signal is issued by setting both SCL and SDL high.

203

I2C interface on a microcontroller:

Controlled Area Network:

The CAN bus was designed for automotive electronics and was first used in production cars

in 1991.

The CAN bus uses bit-serial transmission. CAN runs at rates of 1 MB/s over a twisted pair

connection of 40 m.

An optical link can also be used. The bus protocol supports multiple masters on the bus.

The above figure shows CAN electrical interface:

 each node in the CAN bus has its own electrical drivers and receivers that connect the

node to the bus in wired-AND fashion.

204

 In CAN terminology, a logical 1 on the bus is called recessive and a logical 0 is

dominant.

 The driving circuits on the bus cause the bus to be pulled down to 0 if any node on the

bus pulls the bus down (making 0 dominant over 1).

 When all nodes are transmitting 1s, the bus is said to be in the recessive state; when a

node transmits a 0, the bus is in the dominant state. Data are sent on the network in

packets known as data frames.

CAN DATA FRAME:

Explanation for data frame :

 A data frame starts with a 1 and ends with a string of seven zeroes. (There are at least

three bit fields between data frames.)

 The first field in the packet contains the packet’s destination address and is known as

the arbitration field. The destination identifier is 11 bits long.

 The trailing remote transmission request (RTR) bit is set to 0 if the data frame is used

to request data from the device specified by the identifier.

 When RTR 1, the packet is used to write data to the destination identifier.

 The control field provides an identifier extension and a 4-bit length for the data field

with a 1 in between. The data field is from 0 to 64 bytes, depending on the value

given in the control field.

 A cyclic redundancy check (CRC) is sent after the data field for error detection.

 The acknowledge field is used to let the identifier signal whether the frame was

correctly received: The sender puts a recessive bit (1) in the ACK slot of the

acknowledge field; if the receiver detected an error, it forces the value to a dominant

(0) value.

205

 If the sender sees a 0 on the bus in the ACK slot, it knows that it must retransmit. The

ACK slot is followed by a single bit delimiter followed by the end-of-frame field.

Architecture of CAN controller:

 The controller implements the physical and data link layers;

 since CAN is a bus, it does not need network layer services to establish end-to-end

connections.

 The protocol control block is responsible for determining when to send messages,

when a message must be resent due to arbitration losses, and when a message should

be received.

INTERNET ENABLED SYSTEMS:

IP Protocol:

 The Internet Protocol (IP) is the fundamental protocol on the Internet.

 It provides connectionless, packet-based communication.

 it is an internetworking standard.

 an Internet packet will travel over several different networks from source to

destination.

 The IP allows data to flow seamlessly through these networks from one end user to

another

 Figure 8.19 explanation:

 IP works at the network layer.

206

 When node A wants to send data to node B, the application’s data pass through

several layers of the protocol stack to send to the IP.

 IP creates packets for routing to the destination, which are then sent to the data link

and physical layers.

 A node that transmits data among different types of networks is known as a router.

IP Packet Format:

 The header and data payload are both of variable length.

 The maximum total length of the header and data payload is 65,535 bytes.

 An Internet address is a number (32 bits in early versions of IP, 128 bits in IPv6). The

IP address is typically written in the form xxx.xx.xx.xx.

 packets that do arrive may come out of order. This is referred to as best-effort

routing. Since routes for data may change quickly with subsequent packets being

routed along very different paths with different delays, real-time performance of IP

can be hard to predict.

207

relationships between IP and higher-level Internet services:

Using IP as the foundation, TCP is used to provide File Transport Protocol for batch file

transfers, Hypertext Transport Protocol (HTTP) for World Wide Web service, Simple Mail

Transfer Protocol for email, and Telnet for virtual terminals. A separate transport protocol,

User Datagram Protocol, is used as the basis for the network management services provided

by the Simple Network Management Protocol

