

EMBEDDED SYSTEMS

Mr. S Lakshmanachari
Assistant Professor

ECE Department

 by

2

Bloom’s Taxonomy, PO, PSO, CO, Syllabus

3

III Semester: ECE

Course Code Category Hours / Week Credits Maximum Marks

AEC016 Core

L T P C CIA SEE Total

3 0 0 3 30 70 100

Contact

Classes:45

Tutorial

Classes:15
Practical Classes: Nil Total Classes:60

EMBEDDED SYSTEMS

4

OUTCOME BASED EDUCATION

OBE incorporates the three elements in different way:

1. Theory of education

2. A systematic structure for education

3. A specific approach to instructional practice.

It focuses on the following skills when developing curricula and

outcomes:

 Life skills

 Basic skills

 Professional and vocational skills

 Intellectual skills

 Interpersonal and personal skills

5

 Program Educational Objectives (PEOs)

 Program Outcomes (POs)

 Program Specific Outcomes (PSOs)

 Course Outcomes (COs)

Four levels of outcomes from OBE are:

6

BLOOM’S TAXONOMY

7

Remembering:

recall or remember the information

Define, Duplicate, List, Memorize, Recall,

Repeat, Reproduce, State.

Understanding:

explain ideas or concepts

Classify, Describe, Discuss, Explain,

Identify, Locate, Recognize, Report,

Select, Translate, Paraphrase.

Applying:

use the information in a new way

Choose, Demonstrate, Dramatize, Employ,

Illustrate, Interpret, Operate, Schedule,

Sketch, Solve, Use, Write.

Analyzing:

distinguish between the different

parts

Appraise, Compare, Contrast, Criticize,

Differentiate, Discriminate, Distinguish,

Examine, Experiment, Question, Test.

Evaluating:

justify a stand or decision

Appraise, Argue, Defend, Judge, Select,

Support, Value, Evaluate.

Creating:

create new product or point of view

Assemble, Construct, Create Develop,

Formulate.

BLOOM’S TAXONOMY

8

PO

No.
Program Outcomes

PO 1 Apply the knowledge of mathematics, science, engineering fundamentals, and an

engineering specialization to the solution of complex engineering problems

(Engineering knowledge).

PO 2 Identify, formulate, review research literature, and analyze complex engineering

problems reaching substantiated conclusions using first principles of mathematics,

natural sciences, and engineering sciences (Problem analysis).

PO 3 Design solutions for complex engineering problems and design system components

or processes that meet the specified needs with appropriate consideration for the

public health and safety, and the cultural, societal, and environmental considerations

(Design/development of solutions).

PO 4 Use research-based knowledge and research methods including design of

experiments, analysis and interpretation of data, and synthesis of the information to

provide valid conclusions (Conduct investigations of complex problems).

9

PO 5 Create, select, and apply appropriate techniques, resources, and modern engineering

and IT tools including prediction and modeling to complex engineering activities

with an understanding of the limitations (Modern tool usage).

PO 6 Apply reasoning informed by the contextual knowledge to assess societal, health,

safety, legal and cultural issues and the consequent responsibilities relevant to the

professional engineering practice (The engineer and society).

PO 7 Understand the impact of the professional engineering solutions in societal and

environmental contexts, and demonstrate the knowledge of, and need for sustainable

development (Environment and sustainability).

PO 8 Apply ethical principles and commit to professional ethics and responsibilities and

norms of the engineering practice (Ethics).

PO 9 Function effectively as an individual, and as a member or leader in diverse teams,

and in multidisciplinary settings (Individual and team work.

10

PO 10 Communicate effectively on complex engineering activities with the engineering

community and with society at large, such as, being able to comprehend and write

effective reports and design documentation, make effective presentations, and give

and receive clear instructions (Communication).

PO 11 Demonstrate knowledge and understanding of the engineering and management

principles and apply these to one’s own work, as a member and leader in a team, to

manage projects and in multidisciplinary environments (Project management

and finance).

PO 12 Recognize the need for, and have the preparation and ability to engage in

independent and life-long learning in the broadest context of technological change

(Life-long learning).

11

Program Specific Outcomes

Graduates will have ability to:

1. Formulate and Evaluate the applications in the field of Intelligent

Embedded and Semiconductor technologies.

2. Focus on the practical experience of ASIC prototype designs, Virtual

Instrumentation and SOC designs.

3. Build the Embedded hardware design and software programming skills

for entry level job positions to meet the requirements of employers.

12

Course Objectives

Students will try to learn:

I. The fundamental concepts of embedded computing, embedded C, RTOS

and embedded software development tools for implementing of real time

embedded systems.

II. The embedded C is required to develop the software for different

applications of the embedded systems.

III. The basics of various development tools are necessary to develop an

embedded software.

IV. The architecture and memory organization of advanced general purpose

microprocessors and digital signal processors like ARM and SHARC.

13

Course Outcomes

After successful completion of the course, students will be able to:

 CO No. Course Outcomes

Bloom’s

Knowledge /

Cognitive

Level

CO 1 Summarize the applications of embedded systems in various

domains.

Understand

CO 2 Analyze the embedded system design process, characteristics and

quality attributes of an embedded system.

Analyze

CO 3 Apply the looping structure concept to the programming of

embedded C.

Apply

CO 4 Analyze the concepts of interfacing modules using embedded C

programming.

Analyze

CO 5 Evaluate the basic techniques used in interfacing in terms of

reading and writing data from I/O port pins.

Evaluate

CO 6 Develop the embedded software using the basics and

fundamentals of RTOS.

Apply

14

CO 7 Demonstrate the multiprocessing and multitasking in real time

operating system to estimate the performance of embedded

system.

Understand

CO 8 Describe the process of task communication using shared

memory and message passing.

Understand

CO 9 Illustrate the implementation of real-time operating system

using task communication and task synchronization.

Understand

CO 10 List the embedded software development tools for getting

embedded software into the target system.

Remember

CO 11 Describe the concepts of advanced processors in terms of

ARM and SHARC processors.

Understand

CO 12 Explain the memory organization and instruction level

parallelism in advanced processors.

Understand

15

Distribution of Cognitive Levels

0

1

2

3

4

5

6

Remember Understand Apply Analyze Evaluate Create

C
o

u
n

t

Blooms Taxonomy Level

COURSE KNOWLEDGE COMPETENCY LEVELS

16

Syllabus

MODULE-I EMBEDDED COMPUTING Classes: 08

Definition of embedded system, embedded systems vs. general computing systems, history of embedded systems,

complex systems and microprocessor, classification, major application areas, the embedded system design process,

characteristics and quality attributes of embedded systems, formalisms for system design, design examples

MODULE-II INTRODUCTION TO EMBEDDED C AND APPLICATIONS Classes: 10

C looping structures, register allocation, function calls, pointer aliasing, structure arrangement, bit fields, unaligned data

and endianness, inline functions and inline assembly, portability issues; Embedded systems programming in C, binding

and running embedded C program in Keil IDE, dissecting the program, building the hardware; Basic techniques for

reading and writing from I/O port pins, switch bounce; Applications: Switch bounce, LED interfacing, interfacing with

keyboards, displays, D/A and A/D conversions, multiple interrupts, serial data communication using embedded C

interfacing.

MODULE-III RTOS FUNDAMENTALS AND PROGRAMMING Classes: 10

PART:1

Operating system basics, types of operating systems, tasks and task states, process and threads, multiprocessing and

multitasking, how to choose an RTOS ,task scheduling, semaphores and queues, hard real-time scheduling

considerations, saving memory and power.

PART:2

Task communication: Shared memory, message passing, remote procedure call and sockets; Task synchronization: Task

communication synchronization issues, task synchronization techniques, device drivers.

17

Syllabus

MODULA-IV EMBEDDED SOFTWARE DEVELOPMENT TOOLS Classes: 09

Host and target machines, linker/locators for embedded software, getting embedded software into the target system;

Debugging techniques: Testing on host machine, using laboratory tools, an example system.

MODULE-V INTRODUCTION TO ADVANCED PROCESSORS Classes: 08

Introduction to advanced architectures: ARM and SHARC, processor and memory organization and instruction level

parallelism; Networked embedded systems: Bus protocols, I2C bus and CAN bus; Internet-Enabled systems,
design example-Elevator controller.

Text Books:

1. Shibu K.V, “Introduction to Embedded Systems”, Tata McGraw Hill Education Private Limited, 2nd Edition, 2009.

2. Raj Kamal, “Embedded Systems: Architecture, Programming and Design”, Tata McGraw-Hill Education, 2nd

Edition, 2011.
3. Andrew Sloss, Dominic Symes, Wright, “ARM System Developer's Guide Designing and Optimizing System

 Software”, 1st Edition, 2004.

Reference Books:

1. Wayne Wolf, “Computers as Components, Principles of Embedded Computing Systems Design”, Elsevier, 2nd

Edition, 2009.
2. Frank Vahid, Tony Givargis, “Embedded System Design”, John Wiley & Sons, 3 rd Edition, 2006.

3. Michael J. Pont, “Embedded C”, Pearson Education, 2nd Edition, 2008.

18

Unit-I
EMBEDDED COMPUTING

 SYLLABUS:

 Definition of embedded system,
 Embedded systems vs. general computing systems,
 History of embedded systems,
 Complex systems and microprocessor,
 Classification of embedded system,
 Major application areas,
 The embedded system design process,
 Characteristics and quality attributes of embedded systems,
 Formalisms for system design,
 Design examples.

19

 What is a system?
◦ A system is a way of working, organizing or doing one or

many tasks according to a fixed plan, program or set of

rules.

◦ A system is also an arrangement in which all its units

assemble and work together according to the plan or

program.

Introduction

SYSTEM EXAMPLES:

WATCH

 It is a time display SYSTEM

 Parts: Hardware, Needles, Battery, Dial, Chassis and
Strap

 Rules

1.All needles move clockwise only

2.A thin needle rotates every second

3.A long needle rotates every minute

4.A short needle rotates every hour

5.All needles return to the original position after 12 hours

Embedded Systems

SYSTEM EXAMPLES:

WASHING MACHINE

 It is an automatic clothes washing SYSTEM

 Parts: Status display panel, Switches & Dials, Motor,
Power supply & control unit, Inner water level sensor and
solenoid valve.

 Rules

1.Wash by spinning

2.Rinse

3.Drying

4. Wash over by blinking

5.Each step display the process stage

6. In case interruption, execute only the remaining

Embedded Systems

What is an Embedded System?
 An Embedded System is an electronic /
electro-mechanical system designed to perform
a specific function.

 And a combination of both hardware and
firmware (software).

 Every E.S is Unique and hardware as well as
the firmware is highly specialized to the
application domain.

 ES are becoming an inevitable part of any
product or equipment in all fields including
household appliances, telecommunications,
medical equipment, industrial control,
consumer products, etc.

23

Embedded Systems

EMBEDDED SYSTEM:

 Its software embeds in ROM (Read Only Memory). It

does not need secondary memories as in a computer

Embedded Systems

1. It has Hardware

◦ Processor,Timers, Interrupt controller, I/O Devices,
Memories, Ports, etc.

2. It has main Application Software

◦ Which may perform concurrently the series of tasks or
multiple tasks.

3. It has Real Time Operating System (RTOS)
◦ RTOS defines the way the system work, which supervise the

application software. It sets the rules during the execution of
the application program. A small scale embedded system may
not need an RTOS.

COMPONENTS OF EMBEDDED SYSTEM:

Embedded Systems

EMBEDDED SYSTEM HARDWARE:

Embedded Systems

27

The embedded computing requirements demand 'something special'
in terms of
•Response to stimuli,
•Meeting the computational deadlines,
•Power efficiency,
•Limited memory availability, etc.

Embedded Systems & General Purpose Computers

28

Let's take the case of your personal computer, which may be either a
desktop PC or a laptop PC. It is built around a general purpose
processor like an Intel® Centrino or a Duo/Quad* core or an AMD
Turionm processor and is designed to support a set of multiple
peripherals like multiple USB 2.0 ports, Wi-Fi, ethernet, video port,
IEEE1394, SD/CF/MMC external interfaces, Bluetooth, etc and with
additional interfaces like a CD read/writer, on-board Hard Disk Drive
(HDD), gigabytes of RAM, etc.

You can load any supported operating system (like Windows®
XP/Vista/7, or Red Hat Linux/Ubuntu Linux, UNIX etc) into the hard
disk of your PC. You can write or purchase a multitude of applications
for your PC and can use your PC for running a large number of
applications.

Embedded Systems & General Purpose Computers

29

Now let us think about the DVD player you use for playing DVD movies.

Is it possible for you to change the operating system of your DVD?

Is it possible for you to write an application and download it to your DVD
player for executing?

Is it possible for you to add a printer soft-ware to your DVD player and
connect a printer to your DVD player to take a printout?

Is it possible for you to change the functioning of your DVD player to a
television by changing the embedded software?

Embedded Systems & General Purpose Computers

30

Contents A system which is a

combination of a generic

hardware and a General

Purpose Operating System for

executing a variety of

applications.

A system which is a combination of

special purpose hardware and

embedded OS/firmware for executing

a specific set of applications.

OS It contains a general

purpose operating system

(GPOS).

It may or not contain an

operating system for functioning.

Alterations Applications are alterable by

the user.

Applications are not-alterable by

the user.

Key factor Performance is a key factor. Application specific requirements

are key factors.

Power

Consumption

More. Less.

Response Time Not critical. Critical for some applications.

Execution Need not be deterministic. Deterministic for certain types of ES

like ‘Hard Real Time’ systems.

Embedded Systems & General Purpose Computers

31

History of Embedded Systems

The first recognized modem embedded system is the Apollo
Guidance Computer (AGC) developed by the MIT Instrumentation
Laboratory for the lunar expedition.

They ran the inertial guidance systems of both the Command Module
(CM) and the Lunar Excursion Module (LEM).

The Command Module was designed to encircle the moon while the
Lunar Module and its crew were designed to go down to the moon
surface and land there safely.

The Lunar Module featured in total 18 engines. There were 16
reaction control thrusters, a descent engine and an ascent engine.

The descent engine was *designed to' provide thrust to the lunar
module out of the lunar orbit and land it safely on the moon.

32

MIT's original design was based on 4K words of fixed memory
(Read Only Memory) and 256 words of erasable memory (Random
Access Memory).

By June 1963, the figures reached 10K of fixed and 1K of erasable
memory.

The final configuration was 36K words of fixed memory and 2K
words of erasable memory.

The clock frequency of the first microchip proto model used in
AGC was 1.024 MHz and it was derived from a 2.048 MHz crystal
clock.

History of Embedded Systems

33

The first mass-produced embedded system was the guidance
computer for the Minuteman-I missile in 1961.

It was the 'Autonetics D-17' guidance computer, built using discrete
transistor logic and a hard-disk for main memory.

The first integrated circuit was produced in September 1958 but
computers using them didn't begin to appear until 1963.

History of Embedded Systems

34

Embedded computer system is a physical system that employs computer
control for a specific purpose rather than for general purpose
computation. OR
Embedded system is a special-purpose computer system designed to
perform one or few dedicated functions.

Since, the embedded system is dedicated to perform specific tasks,
design engineers can optimize it, reducing the size and cost of the product
or increasing the reliability and performance.

1 Automotive electronics 6 Military applications

2 Aircraft electronics 7 Authentication

3 Trains 8 Consumer electronics

4 Telecommunication 9 Fabrication equipment

5 Medical systems 10 Robotics

Application areas

Complex Systems and Microprocessors

35

Examples of Embedded Systems :
Embedded systems have very diversified applications. A few examples of
embedded system applications are as follows :

Example1-Digital camera:
 A digital camera is a popular consumer electronic device that can
capture images or take pictures and store them in a digital format.

 A digital camera is the best example of Embedded system being very
widely used all over the world. It includes a powerful processor capable
of handling complex signal processing operations because image
capturing, storing and displaying is involved. Below figure shows a
general block diagram of a digital camera.

Complex Systems and Microprocessors

36

Figure: General block diagram of Digital camera

Complex Systems and Microprocessors

37

1. In a digital camera, an array of optical sensor is used to capture images.
These sensors are the photodiodes which convert light intensity into
electrical voltage.

2. An image is made up of picture elements (pixels) of different luminance and
chrominance. Each sensing element generates a charge that corresponds to
one pixel. Since, the charge is analog quantity, it is converted into digital
form using ADC.

3. After ADC, a digital representation of an image is obtained. The colour and
intensity of each pixel is represented by number of bits. The digitized image
is now considered as a two dimensional matrix having p x q pixels and each
pixel is given a equivalent decimal or hexadecimal number.

4. The important functional block of a digital camera is the system Controller.
System controller consists of a processor, memory and different interface
circuitry to connect to other parts of the system.

Complex Systems and Microprocessors

38

For compressed images, the format is called JPEG (joint Photographic Experts
Group) while for uncompressed images, the format used in BIM (Bit Mapped) or
TIFF (Tagged Image File Format).

5. The processed images are stored in Image storage device. Flash memory cards,
floppy disks or miniature hard drives can be used for this purpose. The number of
images that can be taken and saved depends on the capacity of image storage
device.

6. The image is displayed on a LCD screen in the camera. The LCD display normally
consumes more power than the processor.

7. A standard computer interface provides a mechanism for transferring images to
a computer or a printer.

 8. There are some other electromechanical parts such as switches to be operated
by the user, motor to rotate the camera for focusing purposes etc. The system
controller must be capable generating signals to co-ordinate and control all such
activities.

Complex Systems and Microprocessors

39

Example2-Microwave oven:
Microwave oven is based on a magnetron unit, which generates
microwaves used to heat food in a confined space. When turned ON,
magnetron generates its maximum power output.

Lower power levels can be obtained by turning the magnetron ON and
OFF for controlled time intervals. User can have many options for
cooking different dishes using power levels and heating time.

Microwave oven should produce an audio alert signal when cooking
operation is completed. It should have an exhaust fan and a light bulb
inside. A switch should be provided, which turns the magnetron OFF
when the door of the oven is open. All these functions can be controlled
by the controller or processor.

Complex Systems and Microprocessors

40

Microwave oven needs some input/output capability to communicate
with the user.

These are :
1. Input keys : Consisting of a number pad having digits 0 to 9 for

selecting time etc. and function keys such as reset, start, stop,
auto defrost, dock set, auto cooking, fan control etc. Some of the
functions can be multiplexed to reduce the total number of keys
to be provided.

2. Visual output in the form of LCD display.

3. A small speaker that produces the beep tone. Figure shows a
simple block diagram of microwave oven.

Complex Systems and Microprocessors

41

Figure: Block diagram of Microwave oven

Complex Systems and Microprocessors

42

In microwave oven, a simple microprocessor with small RAM and
ROM units are sufficient.

The various operations performed by processor include :

•Maintaining the time-of-day clock,

•Determining the actions required in various cooking options,

• Decrementing timer/counter,

•Generating display information and

•Activating control signals to turn ON or OFF devices such as

magnetron and fan.

Complex Systems and Microprocessors

43

Example3-Refrigerator:

Complex Systems and Microprocessors

44

Example4-Washing Machine:
A washing machine from an embedded
systems point of view has:
•Hardware: Buttons, Display & buzzer,
electronic circuitry.
•Software: It has a chip on the circuit
that holds the software which drives
controls & monitors the various
operations possible.
•Mechanical Components: the internals
of a washing machine which actually
wash the clothes control the input and
output of water, the chassis itself.

Complex Systems and Microprocessors

45

Example5-Car Door:

Complex Systems and Microprocessors

46

 Example6-Air Conditioner:
 An Air Conditioner from an embedded systems point of view has:

•Hardware: Remote, Display & buzzer, Infrared Sensors, electronic
circuitry.

•Software: It has a chip on the circuit that holds the software which
drives controls & monitors the various operations possible. The
software monitors the external temperature through the sensors and
then releases the coolant or suppresses it.

•Mechanical Components: the internals of an air conditioner the
motor, the chassis, the outlet, etc

Complex Systems and Microprocessors

47

Design issues : The constraints in an embedded systems design are
imposed by external as well as internal specifications. Design metrics
are introduced to measure the cost function taking into account the
economic as well as technical considerations.

Design metrics : A design metric is a measurable feature of the
system's performance, cost, time for implementation and safety etc.

Design metrics typically compete with one another : Improving one
often leads to worsening of another.

e.g. If the implementation's size is reduced, the implementation's
performance may suffer.

Design metrics

48

Figure: Design metric competition-improving one may worsen others

Design metrics

49

i) NRE (Non-recurring Engineering) cost: It is the one-time monetary
cost of designing the system. Once the system is designed, any
number of units can be manufactured without incurring any
additional design cost; hence the name non-recurring.

ii) Unit cost: It is the monetary cost of manufacturing each copy of the

system, excluding NRE cost.

iii) Size: It is the physical space required by the system, often measured

in bytes for software and gates or transistors for hardware.

iv) Performance: It is the execution time of the system.

Design metrics

50

v) Power consumption: It is the amount of power consumed by the
system, which may determine the lifetime of a battery or the cooling
requirements of IC, since more power means more heat.

vi) Flexibility: It is the ability to change the functionality of the system
without incurring heavy NRE cost Typically software is considered very
flexible.

vii) Time-to-prototype: It is the time needed to build a working version
of the system, which may be bigger or more expensive than the final
system implementation, but it can be used to verify the system's
usefulness and correctness and to refine the system's functionality.

Design metrics

51

viii) Time-to-market: It Is the time required to develop a system to the point
that It can be released and sold to customers. This design metric has
become especially demanding in recent years Introducing an embedded
system to the marketplace early can make a big difference In the systems
profitability. The main contributors are design time, manufacturing time and
testing time.

ix) Maintainability: It is the ability to modify the system after its initial
release, especially by designers who did not originally design the system.

x) Correctness: It is the measure of the confidence that we have
implemented the system's functionality correctly. The functionality can be
checked throughout the process of designing the system and test circuitry
can be Inserted to check that manufacturing was correct.

xi) Safety: It is the probability that the system will not cause harm.

Design metrics

52

Were the embedded systems existing earlier ?
We have been enjoying the grace of embedded system quite a long
time. But they were not so popular because in those days most of the
systems were designed around a microprocessor unlike today’s
systems which were built around a microcontroller.

As we know a microprocessor by itself do not possess any memory,
ports etc… So, everything must be connected externally by using
peripherals like 8255, 8257, 8259 etc.

So the embedded system designed using microprocessor was not only
complicated in design but also large in size. At the same time the
speed of a microprocessor is also a Limitation for high end
applications.

53

The application areas and the products in the embedded domain are

countless.

1. Consumer electronics: Camcorders, cameras, etc.

2. Household appliances: Television, DVD players, washing machine,

refrigerator, microwave oven, etc.

3. Home automation and security systems: Air conditioners, sprinklers, intruder

detection alarms, closed circuit television cameras, fire alarms, etc.

4. Automotive industry: Anti-lock breaking systems (ABS), engine control,

ignition systems, automatic navigation systems, etc.

5. Telecom: Cellular telephones, telephone switches, handset multimedia

applications, etc.

Major Application Areas of ES

Major application areas

54

6. Computer peripherals: Printers, scanners, fax machines, etc.

7. Computer Networking systems: Network routers, switches, hubs,

firewalls, etc.

8. Healthcare: Different kinds of scanners, ECG , EEG machines etc.

9. Measurement & Instrumentation: Digital multi meters, digital CROs,

logic analyzers, PLC systems , etc.

10. Banking & Retail: Automatic teller machines (ATM) and currency counters,

point of sales (POS).

11. Card Readers: Barcode, smart card readers, hand held devices, etc.

Major application areas

55

Logic analyzers PLC systems

Point of Sales (POS)

Hand Held Devices

Major application areas

56

Classification of Embedded Systems:

I. Based on Generation

II. Based on Complexity & Performance Requirements

III. Based on deterministic behavior

IV. Based on Triggering

Classification of Embedded Systems

57

I. Classification based on Generation:

First Generation:
The early embedded systems built around 8-bit microprocessors like
8085 and Z80 and 4-bit microcontrollers

EX. Stepper motor control units, Digital Telephone Keypads etc.

Second Generation:
Embedded Systems built around 16-bit microprocessors and 8 or 16-bit
microcontrollers, following the first generation embedded systems

EX. SCADA, Data Acquisition Systems etc.

Classification of Embedded Systems

58

Third Generation:
Embedded Systems built around high performance 16/32 bit
Microprocessors/controllers, Application Specific Instruction set
processors like Digital Signal Processors (DSPs), and Application Specific
Integrated Circuits (ASICs).The instruction set is complex and powerful.

EX. Robotics, industrial process control, networking etc.

Fourth Generation:
Embedded Systems built around System on Chips (SoC’s), Reconfigurable
processors and multicore processors. It brings high performance, tight
integration and miniaturization into the embedded device market

EX. Smart phone devices, Mobile Internet Device (MID)s etc.

Classification of Embedded Systems

59

II. Classification based on Complexity & Performance:

Small Scale: The embedded systems built around low performance and low cost 8 or
16 bit microprocessors/ microcontrollers. It is suitable for simple applications and
where performance is not time critical. It may or may not contain OS. Example: an
electronic toy

Medium Scale: Embedded Systems built around medium performance, low cost 16
or 32 bit microprocessors / microcontrollers or DSPs. These are slightly complex in
hardware and firmware. It may contain GPOS/RTOS.
Example: Industrial machines.

Large Scale/Complex: Embedded Systems built around high performance 32 or 64
bit RISC processors/controllers, SoC or multi-core processors and PLD. It requires
complex hardware and software. These system may contain multiple
processors/controllers and co-units/hardware accelerators for offloading the
processing requirements from the main processor. It contains RTOS for scheduling,
prioritization and management. Example: Mission critical applications

Classification of Embedded Systems

60

III. Classification Based on deterministic behavior:

It is applicable for Real Time systems. The application/task execution
behavior for an embedded system can be either deterministic or non-
deterministic

These are classified into two types

1. Hard Real time Systems

2. Soft Real time systems

Classification of Embedded Systems

61

A Real time system is defined as a data processing system in which
the time interval required to process and response to input is so small
that it controls the environment.

The time taken from input to output task is called response time.

RTOS responses to input immediately (real time)

Here the task is completed with in a specified time delay.

In real life situations like controlling traffic signals or a nuclear reactor
or an aircraft.

The OS has to respond quickly.

Classification of Embedded Systems

62

A system is said to be Real Time if it is required to complete its work
and deliver its service on time.

Example: Flight Control System.

Types of Real Time Systems:

1. Hard Real time Systems.

2. Soft Real time systems.

Classification of Embedded Systems

63

1. Hard Real time Systems:

 Hard real time system is purely deterministic and time constraint
system.

 Ex: Missile Launching system.

 Satellite system.

 Air Bag controlling and Anti Lock Braking (A.B.S) system in car.

 2. Soft Real time systems:

 In Soft real time system, the meeting of deadline is not compulsory for
every time for every task but process should get completed and give
the result.

 Ex: Personal Computer, Cameras, Smart Phones, online transaction, online

 bid in stock exchange, Audio and Video System, etc.

Classification of Embedded Systems

 Characteristics of RTOS:

• Compactness

• Reliability

• Predictability

• Performance

• Scalability

 Functions of RTOS:

• Task management

• Scheduling

• Resource allocation

• Interrupt Handling

64

Classification of Embedded Systems

65

IV. Classification Based on Triggering:

These are classified into two types

1. Event Triggered :
•In an event triggered system a processing activity is initiated as a
consequence of the occurrence of a significant event.
•Activities within the system (e.g., task run-times) are dynamic and
depend upon occurrence of different events .

2. Time triggered:
•In a time-triggered system, the activities are initiated periodically at
predetermined points in real-time.
•Activities within the system follow a statically computed schedule (i.e.,
they are allocated time slots during which they can take place) and thus
by nature are predictable.

Classification of Embedded Systems

66

Embedded System Design Process:
Design process is a sequence of steps necessary to build a
product.

An embedded system is designed keeping in view three constraints :
1. Available system memory.
2. Available processor speed.
3. Need to limit power dissipation when running the system

continuously in cycles of wait, run, stop, wake-up and sleep.

There are two approaches of embedded system design process :
bottom-up design and top-down design.

In bottom-up design, we start with components to build a system. In
top-down design, we start with abstraction of the system and then the
details are created.

Embedded System Design Process

67

There are basically five steps which describe every design problem,
be it mathematical, physical, engineering or any other.

These steps are :

1. Requirement definition.

2. System specification.

3. System architecture development.

4. Components.

5. System integration.

Embedded System Design Process

68

Figure: Embedded System Design Process

Embedded System Design Process

69

Requirements:
“Requirements” are the informal descriptions of what the customer
wants. At this stage, the product can be viewed as a black box. What
happens inside is unimportant ?

Types of Requirements:

1. Functional:
 A functional requirement states what the system must do.

2. Non- Functional:
 A non-functional requirement can be other attributes, including
performance, cost, size and power consumption, etc.

Embedded System Design Process

70

Non-functional requirements include :

1. Performance: The instruction execution time or throughput of

the system.
2. Cost: Cost has typically two major components :
 i) Manufacturing cost : The cost of components and assembly.
 ii) Non-recurring engineering cost The monetary cost of

designing the system.
3. Size: The physical space required by the system, often measured

in bytes for software and gates or transistors for hardware.
4. Power consumption: The amount of power consumed by the

system, which determines the lifetime of a battery.

Embedded System Design Process

71

Requirements should meet the following :

1 Correctness : Requirement should describe what the customer wants

2 Unambiguousness : Requirements must be clear

3 Completeness : All requirements should be included

4 Verifiability : Each requirement should be satisfied

5 Consistency : One requirement should not contradict another
requirement .

6 Modifiability : Requirement document should be modifiable in case
of changing requirements.

Embedded System Design Process

72

Embedded System Design Process

73

Specifications:
Specifications need to be more precise. Specifications guide customer
expectations from the product.

They also guide system architecture. Designer needs specifications for
hardware specifications, data types and processing specifications, system
behavior specifications, design constraints, life cycle specifications.

Process specifications are analyzed by making lists of inputs, outputs
and how the processes activate on each input.

If global characteristics of the specification are wrong or incomplete,
the overall system architecture derived from the specification may be
inadequate to meet the needs of implementation.

Embedded System Design Process

74

A specification of the GPS system would include several
components:
 ■ Data received from the GPS satellite constellation.

■ Map data.

■ User interface.

■ Operations that must be performed to satisfy customer requests.

■ Background actions required to keep the system running, such as

operating the GPS receiver.

Embedded System Design Process

75

Architecture:

Specification only describes what the system does while architecture
describes how the system implements those functions. Architecture is a
plan for overall system structure that will be used to design the
components that make the architecture.

Embedded System Design Process

76

Components:

The architectural description gives us the idea about the required
components. Basically, there are two types of components namely
hardware and software.

Common hardware components are processor, memory, peripherals
and devices, ports and buses and battery in the system. During
software development process, components can be modeled as object
oriented software.

Embedded System Design Process

77

System Integration:

After the components are built, they are integrated in the system.
But after integration, these components may not fulfill the design
metrics.

The system is made to function and validated by choosing
appropriate tests.

Debugging tools are used to correct the erroneous functioning.

Embedded System Design Process

78

CHARACTERISTICS & QUALITY
ATTRIBUTES OF EMBEDDED SYSTEMS

79

CHARACTERISTICS OF EMBEDDED SYSTEMS:

1. Application & Domain specific.

2. Reactive & Real time.

3. Operates in harsh environments.

4. Distributed.

5. Small size & weight.

6. Power concerns.

CHARACTERISTICS OF EMBEDDED SYSTEMS

80

Application and Domain specific

An embedded system is designed for a specific purpose only. It will
not do any other task.

Ex. A washing machine can only wash, it cannot cook.

Certain embedded systems are specific to a domain.

Ex. A hearing aid is an application that belongs to the domain of
signal processing.

CHARACTERISTICS OF EMBEDDED SYSTEMS

81

Reactive and Real time

Certain Embedded systems are designed to react to the events that
occur in the nearby environment. These events also occur real-time.

Ex. An air conditioner adjusts its mechanical parts as soon as it gets a
signal from its sensors to increase or decrease the temperature when
the user operates it using a remote control.

An embedded system uses Sensors to take inputs and has actuators to
bring out the required functionality.

CHARACTERISTICS OF EMBEDDED SYSTEMS

82

Operation in harsh environment

Certain embedded systems are designed to operate in harsh
environments like very high temperature of the deserts or very low
temperature of the mountains or extreme rains.

These embedded systems have to be capable of sustaining the
environmental conditions it is designed to operate in.

CHARACTERISTICS OF EMBEDDED SYSTEMS

83

Distributed

Certain embedded systems are part of a larger system and thus form
components of a distributed system.

These components are independent of each other but have to work
together for the larger system to function properly.

Ex. A car has many embedded systems controlled to its dash board.
Each one is an independent embedded system yet the entire car can be
said to function properly only if all the systems work together.

CHARACTERISTICS OF EMBEDDED SYSTEMS

84

Small size and weight

An embedded system that is compact in size and has light weight will
be desirable or more popular than one that is bulky and heavy.

Ex. Currently available cell phones. The cell phones that have the
maximum features are popular but also their size and weight is an
important characteristic.

For convenience users prefer mobile phones than phablets. (phone +
tablet pc)

CHARACTERISTICS OF EMBEDDED SYSTEMS

85

Power concerns

It is desirable that the power utilization and heat dissipation of any
embedded system be low.

If more heat is dissipated then additional units like heat sinks or
cooling fans need to be added to the circuit.

If more power is required then a battery of higher power or more
batteries need to be accommodated in the embedded system.

CHARACTERISTICS OF EMBEDDED SYSTEMS

86

Quality Attributes of Embedded Systems

These are the attributes that together form the deciding factor about the
quality of an embedded system.
There are two types of quality attributes are:-

1. Operational Quality Attributes.
These are attributes related to operation or functioning of an embedded
system. The way an embedded system operates affects its overall quality.

i. Response

ii. Throughput

iii. Reliability

iv. Maintainability

v. Security

vi. Safety

87

(i).Response
•Response is a measure of quickness of the system.
•It gives you an idea about how fast your system is tracking the
input variables.
•Most of the embedded system demand fast response which
should be real-time.

(ii). Throughput

•Throughput deals with the efficiency of system.
•It can be defined as rate of production or process of a defined
process over a stated period of time.
•In case of card reader like the ones used in buses, throughput
means how much transaction the reader can perform in a minute
or hour or day.

Operational Quality Attributes

88

(iii). Reliability

•Reliability is a measure of how much percentage you rely upon the
proper functioning of the system.

•Mean Time between failures and Mean Time To Repair are terms
used in defining system reliability.

•Mean Time between failures can be defined as the average time the
system is functioning before a failure occurs.

•Mean time to repair can be defined as the average time the system
has spent in repairs.

Operational Quality Attributes

89

Operational Quality Attributes

(iv). Maintainability
•Maintainability deals with support and maintenance to the end
user or a client in case of technical issues and product failures or on
the basis of a routine system checkup

•It can be classified into two types :-
•Scheduled or Periodic Maintenance

•This is the maintenance that is required regularly after a
periodic time interval.
•Example : Periodic Cleaning of Air Conditioners

 Refilling of printer cartridges.
•Maintenance to unexpected failure

•This involves the maintenance due to a sudden breakdown in
the functioning of the system.
•Example: Air conditioner not powering on

 Printer not taking paper in spite of a full paper stack

90

(v). Security
•Confidentiality, Integrity and Availability are three corner stones of
information security.

•Confidentiality deals with protection data from unauthorized
disclosure.

•Integrity gives protection from unauthorized modification.

•Availability gives protection from unauthorized user.

•Certain Embedded systems have to make sure they conform to the
security measures.
•Ex. An Electronic Safety Deposit Locker can be used only with a pin
number like a password.

Operational Quality Attributes

91

Operational Quality Attributes

(vi). Safety

•Safety deals with the possible damage that can happen to the
operating person and environment due to the breakdown of an
embedded system or due to the emission of hazardous materials
from the embedded products.

•A safety analysis is a must in product engineering to evaluate
the anticipated damage and determine the best course of
action to bring down the consequence of damages to an
acceptable level.

92

2. Non-operational Quality attributes
These are attributes not related to operation or functioning of an
embedded system. The way an embedded system operates affects its
overall quality.

These are the attributes that are associated with the embedded system
before it can be put in operation.

i. Testability & Debugability

ii. Evolvability

iii. Portability

iv. Time to prototype & market

v. Per unit & per cost

Quality Attributes of Embedded Systems

93

(i). Testability and Debugability
•It deals with how easily one can test his/her design, application and
by which mean he/she can test it.
•In hardware testing the peripherals and total hardware function in
designed manner.
•Firmware testing is functioning in expected way.
•Debugability is means of debugging the product as such for figuring
out the probable sources that create unexpected behavior in the
total system.

(ii). Evolvability
•For embedded system, the qualitative attribute “Evolvability” refer
to ease with which the embedded product can be modified to take
advantage of new firmware or hardware technology.

Non-Operational Quality Attributes

94

(iii). Portability
•Portability is measured of “system Independence”.
•An embedded product can be called portable if it is capable of
performing its operation as it is intended to do in various
environments irrespective of different processor and or controller
and embedded operating systems.

(iv). Time to prototype and market
•Time to Market is the time elapsed between the conceptualization
of a product and time at which the product is ready for selling or use
•Product prototyping help in reducing time to market.
•Prototyping is an informal kind of rapid product development in
which important feature of the under consider are develop.
•In order to shorten the time to prototype, make use of all possible
option like use of reuse, off the self component etc.

Non-Operational Quality Attributes

95

(v). Per unit and total cost
•Cost is an important factor which needs to be carefully
monitored. Proper market study and cost benefit analysis
should be carried out before taking decision on the per unit cost
of the embedded product.
•When the product is introduced in the market, for the initial
period the sales and revenue will be low
•There won’t be much competition when the product sales
and revenue increase.
•During the maturing phase, the growth will be steady and
revenue reaches highest point and at retirement time there will
be a drop in sales volume.

Non-Operational Quality Attributes

96

Formalisms for System Design:
There are different design tasks at different levels of abstraction 'which
can be conceptualized in diagrams.

Unified Modelling Language (UML) is a textual and graphical notation
i.e. language, used to quantify and formalize our understanding of
systems.

UML has its roots in a branch of computer software development
industry known as Object Oriented Analysis and Design (OOA&D) but has
applications beyond this field-especially in the field of understanding and
documenting business processes.

Formalisms for System Design

97

Goals of UML :
The primary goals in the design of UML were :
1. Provide users with a ready-to-use, expressive visual modelling
language so that they can develop and exchange meaningful models.
2. Provide extensibility and specialization mechanisms to extend the
core concepts.
3. Be independent of particular programming languages and
development processes.
4. Provide a formal basis for understanding the modelling language.
5. Support higher level development concepts such as collaborations,
frameworks, patterns and components.
6. Integrate best practices.

Formalisms for System Design

98

Formalisms for System Design

Structural Description:
Structural description mean basic components of the system.

(i) Class Diagram:
•A class diagram is a diagram showing a collection of classes and interfaces, along with
the collaborations and relationships among classes and interfaces. A class diagram is a
pictorial representation of detailed system design. Design experts who understand the
rules of modelling and designing systems design the system's class diagrams.

•A class diagram is composed primarily of following elements that represent the system's
entities :

a. Class :
•A class represents an entity of a given
system that provides an encapsulated
implementation of certain functionality of a
given entity. These are exposed by the class
to other classes as methods. The properties
of a class are called attributes.
•A class is represented by a rectangle.

99

b. Interface : An interface is a variation of class. An interface provides
only a definition of business functionality of a system. A separate class
implements the actual business functionality.

c. Package : A package provides the ability to group together classes
and/or interfaces that are either similar in nature or related. Grouping
these design elements in a package element provides for better
readability of class diagrams, especially complex class diagrams.

Formalisms for System Design

100

(ii) Object Diagram:

An object diagram is a pictorial representation of the relationships
between instantiated classes at any point of time (called objects). A
class diagram for multiplicity relation between college and students is
as shown below :

Figure: An example college-student class diagram

This class diagram shows that many students can study in a college. If
we were to add attributes to the classes "college" and "student", then
it would be as shown below.

Formalisms for System Design

101

Figure: Class diagram with attribute

Now, when an application with class diagram as shown above is
run, instances of college and student class will be created with
values of attributes initialized.

Formalisms for System Design

102

The object diagram for such scenario will be as represented below :

Figure: Object diagram for college-student class diagram

Formalisms for System Design

103

Formalisms for System Design

104

Formalisms for System Design

105

Formalisms for System Design

106

Formalisms for System Design

107

Formalisms for System Design

108

Formalisms for System Design

109

Formalisms for System Design

110

Design example-Model Train Controller

Model Train Controller:

Figure: A model train control system

111

The user sends message to the train with a control box attached to
the tracks. The control box can send signals to the train over the
tracks by modulating power supply voltage [since train receives its
electrical power from two rails of the track].

The control panel sends packets over the tracks to the receiver. The
train includes analog electronics to sense the bits being transmitted
and control system to set motor's speed and direction.

Each packet includes an address to control several trains on the
same track and Error Correction Code (ECC) to correct transmission
errors.

Design example-Model Train Controller

112

Requirements :
The requirements of the system are as follows :

Name Model train controller

Purpose Control speed of trains

Inputs Throttle, inertia setting, emergency stop, train no.

Outputs Train control signals

Functions Set engine speed based on inertia settings; respond to
emergency stop

Performance can update train speed at least 10 times/sec.

Manufacturing cost Rs. 2500

Power dissipation 10 W (plugs into wall)

Design example-Model Train Controller

113

Specifications:
Consider how the console controls the train by sending messages
over the tracks. The transmissions are packetized.

Each packet includes an address and a message. Figure shows a
typical sequence of train control commands.

Both the console and receiver run continuously. Packets can be sent
at any time. A set_inertia message will be sent rarely since train's mass
would change only when cars are added or removed.

Set_speed messages will be sent frequently to speed up or slow
down the train smoothly. An emergency stop (Estop) command may be
received occasionally to shut down the train motor immediately.

Design example-Model Train Controller

114

Figure: A typical sequence of train control commands using UML.

Design example-Model Train Controller

115

The console needs to perform three functions :
i) Read the state of front panel.
ii) Format the messages.
iii) Transmit the messages.

The train receiver must perform three functions :

i) Receive the messages.
ii) Interpret the messages.
iii) Control the motor.

Fig. 1.15 shows a UML collaboration diagram for major subsystems of
train controller.

Figure: The console and receiver are both represented by objects.

Design example-Model Train Controller

116

* = Physical object
Figure: UML class diagram for train controller

Design example-Model Train Controller

117

The console class uses three classes that defines its components.

1) Panel class describes the console's front panel, which contains

analog knobs and hardware to interface to digital parts of system.

2) Formatter class includes behaviors that know how to read the
knobs and creates a bit stream for the required message.

3) Transmitter class interfaces to analog electronics to send
message.

Design example-Model Train Controller

118

Similarly, the train uses three other classes that defines its
components :

1) Receiver class knows how to turn analog signals into digital.

2) Controller class includes behaviors that interpret the commands

and find out how to control the motor.

3) Motor interface class defines how to generate analog signals
required to control the motor.

Design example-Model Train Controller

119

There are two classes to represent analog components :

i) Detector*detects analog signals on the track and converts them

into digital form.
ii) Pulser* converts digital commands into analog signals required to

control motor speed.

Train set is a special class to indicate that system can handle multiple
trains.

Design example-Model Train Controller

120

* = Physical object
Figure: UML class diagram for train controller

Design example-Model Train Controller

121

Detailed specification :
Here, we need to define the analog components in more detail as their
characteristics will strongly influence the formatter and controller. Figure
shows a class diagrams for analog components.

Figure: Classes describing analog components

Design example-Model Train Controller

122

Panel has three knobs :
rain no., speed and inertia. It also has emergency stop button.

When the train no. setting is changed, the other controls must also be
set to proper values for that train.

For this purpose, knobs must provide set-knobs behavior that allows
the rest of the system to modify the knob settings. The motor system
takes its motor commands in two parts : Sender class simply put out a
bit and detector class pick up a bit.

Design example-Model Train Controller

123

Pulser class can be understood by considering the actual process of motor's
speed control. Below figure shows how the speed of motors is controlled using
pulse width modulation.

Power is applied for a fraction of time, the fraction of time that power is applied
determines the speed. The digital interface to the motor system specifies pulse
width as an integer (maximum value indicating maximum engine speed). Binary
value controls the direction.

Figure: Motor speed control using pulse width modulation

Design example-Model Train Controller

124

Figure: Class diagram for Panel and Motor interface.

Classes for panel and motor interface form the software interfaces to
there respective physical devices.

Design example-Model Train Controller

125

Figure: Class diagram for transmitter and receiver.

These classes provide the software interface to their respective physical
devices. The transmitter provides a distinct behavior for each type of
message that can be sent. It also takes care of formatting the message.
The receiver provides read-and behavior to read the message. This
behavior run continuously to monitor the tracks and intercept the next
command.

Design example-Model Train Controller

126

The formatter class which holds the current control settings for all
the trains. The send-command function serves as a interface to the
transmitter. The operate function performs basic actions for the
object. The panel-active behaviour returns true whenever panel's
values does not correspond to current values.

Design example-Model Train Controller

127

Figure shows the role of formatter during panel’s operation by
sequence diagram. There are two changes to knob settings:
first to throttle, inertia or emergency stop; then to train
number.

Design example-Model Train Controller

128

Figure: Sequence diagram for transmitting a control input.

Design example-Model Train Controller

129

Unit-II
INTRODUCTION TO EMBEDDED C

AND APPLICATIONS

 SYLLABUS:

 C looping structures, register allocation, function calls, pointer
aliasing, structure arrangement, bit fields, unaligned data and
endianness, inline functions and inline assembly, portability
issues; Embedded systems programming in C, binding and
running embedded C program in Keil IDE, dissecting the
program, building the hardware; Basic techniques for reading
and writing from I/O port pins, switch bounce;

 Applications: Switch bounce, LED interfacing, interfacing with
keyboards, displays, D/A and A/D conversions, multiple
interrupts, serial data communication using embedded C
interfacing.

130

C LOOPING STRUCTURES

This section looks at the most efficient ways to code for and while loops on
the ARM. We start by looking at loops with a fixed number of iterations and
then move on to loops with a variable number of iterations. Finally we look
at loop unrolling.

 LOOPS WITH A FIXED NUMBER OF ITERATIONS

131

This shows how the compiler treats a loop with incrementing count i++.
int checksum_v5(int *data)
{
unsigned int i;
int sum=0;

for (i=0; i<64; i++)
{
sum += *(data++);
}
return sum;
}

132

It takes three instructions to implement the for loop structure:
•An ADD to increment i
•A compare to check if i is less than 64
•A conditional branch to continue the loop if i < 64

133

134

 LOOPS USING A VARIABLE NUMBER OF ITERATIONS

135

=

Now suppose we want our checksum routine to handle packets of
arbitrary size. We pass in a variable N giving the number of words in the
data packet. Using the lessons from the last section we count down until
N 0 and don’t require an extra loop counter i.
The checksum_v7 example shows how the compiler handles a for loop
with a variable number of iterations N.

int checksum_v7(int *data, unsigned int N)
{
int sum=0;
for (; N!=0; N--)
{
sum += *(data++);
}
return sum;
}

136

 EXAMPLE3:

This example shows how to use a do-while loop to remove the test for N
being zero that occurs in a for loop.

int checksum_v8(int *data, unsigned int N)

{

int sum=0;

do

{

sum += *(data++);

} while (--N!=0);

return sum;
}

137

138

 Loop Unrolling:

We saw in Section 5.3.1 that each loop iteration costs two

instructions in addition to the body of the loop: a subtract to

decrement the loop count and a conditional branch.

We call these instructions the loop overhead. On ARM7 or ARM9

processors the subtract takes one cycle and the branch three cycles,

giving an overhead of four cycles per loop.

You can save some of these cycles by unrolling a loop—repeating the

loop body several times, and reducing the number of loop iterations

by the same proportion. For example, let’s unroll our packet

checksum example four times.

139

140

Register Allocation:

The compiler attempts to allocate a processor register to each local
variable you use in a C function. It will try to use the same register for
different local variables if the use of the variables do not overlap.

When there are more local variables than available registers, the
compiler stores the excess variables on the processor stack. These
variables are called spilled or swapped out variables since they are
written out to.

Spilled variables are slow to access compared to variables allocated
to registers.

Register Allocation

To implement a function efficiently, you need to

■ minimize the number of spilled variables

■ ensure that the most important and frequently accessed variables
are stored in registers

First let’s look at the number of processor registers the ARM C compilers
have available for allocating variables.

Table shows the standard register names and usage when following the
ARM-Thumb procedure call standard (ATPCS), which is used in code
generated by C compilers.

141

Register Allocation

142

Register Allocation

 The embedded firmware is responsible for controlling the various
peripherals of the embedded hard-ware and generating response in
accordance with the functional requirements mentioned in the
requirements for the particular embedded product.

 Firmware is considered as the master brain of the embedded system.

 Imparting intelligence to an Embedded system is a one time process
and it can happen at any stage, it can be immediately after the
fabrication of the embedded hardware or at a later stage.

143

Introduction

PROGRAMMING IN EMBEDDED C:

 Whenever the conventional 'C' Language and its extensions are used
for programming embedded systems, it is referred as 'Embedded C’
programming.

 Programming in 'Embedded C' is quite different from conventional
Desktop application development using 'C' language for a particular
OS platform.

 Desktop computers contain working memory in the range of
Megabytes (Nowadays Giga bytes) and storage memory in the range
of Giga bytes. For a desktop application developer, the resources
available are surplus in quantity and they can be very lavish in the
usage of RAM and ROM and no restrictions are imposed at all.

144

Embedded systems programming in C

 This is not the case for embedded application developers.

 Almost all embedded systems are limited in both storage and
working memory resources.

 Embedded application developers should be aware of this fact
and should develop applications in the best possible way which
optimizes the code memory and working memory usage as well
as performance.

 In other words, the hands of an embedded application
developer are always tied up in the memory usage context.

145

Embedded systems programming in C

'C' v/s. 'Embedded C':

 'C' is a well structured, well defined and standardized general purpose
programming language with extensive bit manipulation support.

 'C' offers a combination of the features of high level language and
assembly and helps in hardware access programming (system level
programming) as well as business package developments (Application
developments like pay roll systems, banking applications, etc).

 The conventional 'C' language follows ANSI(American National Standards

Institute) standard and it incorporates various library files for different
operating systems.

 A platform (operating system) specific application, known as, compiler
is used for the conversion of programs written in 'C' to the target
processor (on which the OS is running) specific binary files. Hence it is
a platform specific development.

146

Embedded systems programming in C

 Embedded 'C' can be considered as a subset of conventional 'C'
language. Embedded 'C' supports all 'C' instructions and incorporates a
few target processor specific functions/instructions.

 It should be noted that the standard ANSI 'C' library implementation is
always tailored to the target processor/controller library files in
Embedded 'C'.

 A software program called 'Cross-compiler' is used for the conversion
of programs written in Embedded 'C' to target processor/controller
specific instructions (machine language).

147

Embedded systems programming in C

Compiler vs. Cross-Compiler:

 Compiler is a software tool that converts a source code written
in a high level language on top of a particular operating system
running on a specific target processor architecture (e.g. Intel
x86/Pentium).

 Here the operating system, the compiler program and the
application making use of the source code run on the same
target processor. The source code is converted to the target
processor specific machine instructions.

 The development is platform specific (OS as well as target
processor on which the OS is running). Compilers are generally
termed as 'Native Compilers'. A native compiler generates
machine code for the same machine (processor) on which it is
running.

148

Embedded systems programming in C

 Cross-compilers are the software tools used in cross-platform
development applications. In cross-platform development, the
compiler running on a particular target processor/OS converts the
source code to machine code for a target.

 Embedded system development is a typical example for cross-platform
development where embedded firmware is developed on a machine
with Intel/AMD or any other target processors and the same is
converted into machine code for any other target processor
architecture (e.g. 8051, PIC, ARM, etc).

 Keil C51 is an example for cross-compiler. The term 'Compiler' is used
interchangeably with 'Cross-compiler' in embedded firmware
applications. Whenever you see the term 'Compiler' related to any
embedded firmware application, please understand that it is referring
to the cross-compiler.

149

Embedded systems programming in C

150

Embedded systems programming in C

For example: A compiler that runs on windows platform also
generates a code that runs on Linux platform is a cross compiler.

Using ‘C’ in ‘Embedded C’:

 Let us brush up whatever we learned in conventional 'C' programming.
Remember we will only go through the peripheral aspects and will not
go in deep.

Keywords and Identifiers:

Keywords are the reserved names used by the 'C' language. All keywords
have a fixed meaning in the 'C' language context and they are not allowed
for programmers for naming their own variables or functions. ANSI 'C'
supports 32 keywords and they are listed below.

All 'C' supported keywords should be written in 'lowercase' letters.

C Keywords are predefined, reserved words used in programming that
have special meanings to the compiler.

151

Embedded systems programming in C

152

Identifiers are user defined names and labels. Identifiers can contain
letters of English alphabet (both upper and lower case) and numbers.
The starting character of an identifier should be a letter. The only special
character allowed in identifier is underscore (_).
Ex: Root, _getchar, _sin, x_1, x1, If

Embedded systems programming in C

Data Types:

 Data type represents the type of data held by a variable. The various
data types supported, their storage space (bits) and storage capacity
for 'C' language are tabulated below.

153

Embedded systems programming in C

154

Embedded systems programming in C

Arithmetic and Relational Operations:

 The list of arithmetic operations supported by ‘C’ are listed
below.

155

Embedded systems programming in C

Logical Operations:

 Logical operations are usually performed for decision making and
program control transfer.

156

Embedded systems programming in C

Looping Instructions:

 Looping instructions are used for executing a particular block of code
repeatedly till a condition is met or wait till an event is fired.

 Embedded programming often uses the looping instructions for
checking the status of certain I/O ports, registers, etc. and also for
producing delays. Certain devices allow write/read operations to and
from some registers of the device only when the device is ready and
the device ready is normally indicated by a status register or by
setting/clearing certain bits of status registers.

 Hence the program should keep on reading the status register till the
device ready indication comes. The reading operation forms a loop.
The looping instructions supported by are listed below.

157

Embedded systems programming in C

Looping Instructions:

//while statement
While (expression)
{
Body of while loop
}

//do while statement
do
{
Body of do loop
}
While (expression)

//for loop
for (initialization; test for condition; update variable)
{
Body of for loop
}

158

Embedded systems programming in C

Arrays and Pointers:

 Array is a collection of related elements (data types).

 Arrays are usually declared with data type of array, name of the array
and the number of related elements to be placed in the array.

 For example the following array declaration declares a character array
with name ‘arr’ and reserves space for 5 character elements in the
memory as below figure.

 char arr [5]

 0x10 0x10 0x23 0x03 0x45 (contents)

 0x8000 0x8001 0x8002 0x8003 0x8004 (Addresses)

159

arr[0] arr[1] arr[2] arr[3] arr[4]

Embedded systems programming in C

 The elements of an array are accessed by using the array index or
subscript.

 The index of the first element is '0'. For the above example the first
element is accessed by arr[0], second element by arr[1], and so on. In
the above example, the array starts at memory location 0x8000
(arbitrary value taken for illustration) and the address of the first
element is 0x8000.

 The `address of operator (&) returns the address of the memory
location where the variable is stored. Hence &arr[0] will return 0x8000
and &arr[1] will return 0x8001, etc.. The name of the array itself with
no index (subscript) always returns the address of the first element. If
we examine the first element arr[0] of the above array, we can see
that the variable arr[0] is allocated a memory location 0x8000 and the
contents of that memory location holds the value for arr[0].

160

Embedded systems programming in C

Pointers:

 Pointer is a flexible at the same time most dangerous feature, capable
of creating potential damages leading to firmware crash, if not used
properly.

 Pointer is a memory pointing based technique for variable access and
modification. Pointers are very helpful in

 1. Accessing and modifying variables

 2. Increasing speed of execution

 3. Accessing contents within a block of memory

 4. Passing variables to functions by eliminating the use of a local copy
of variables

 5. Dynamic memory.

161

Embedded systems programming in C

Code Compilation process

 Code Compilation process

162

 Preprocessing:

It is the first stage of compilation. It processes preprocessor
directives like include-files, conditional compilation instructions
and macros.

 Examples on preprocessor directives:

• Including files:

 #include <stdio.h>

 Tells the preprocessor to copy the content of file stdio.h and paste it
here.

163

File1.c

#include “File1.h”

int x = 10;

File1.h

void myFunc1();
void myFunc1();

File1.c

void myFunc1();
void myFunc1();

int x = 10;

Code Compilation process

164

 Examples on preprocessor directives:

• Object-like Macro:

#define LED_PIN 10

Tells the preprocessor that whenever the symbol LED_PIN is found
inside the code, replace it with 10.

So we can type inside the code:

int x = LED_PIN;

ledInit(LED_PIN);

/* x will have the value 10 */

/*Initialize LED with value 10*/

#define MY_SECOND_NUMBER LED_PIN

Now MY_SECOND_NUMBER also has the value 10.

Code Compilation process

 Examples on preprocessor directives:

 Macro definition is really helpful in code maintainability and change,
for example when a specific configuration value is used in all over the
code in a lot of lines, so to change this value only one line will be
changed which is the definition line itself instead of changing the
value in all lines of code.

• Conditional compilation:

 #if(LED_PIN==10)

printf(“LED_PIN=10”);

 #endif

The printf line will be compiled only if the macro LED_PIN is
defined with value 10.

165

Code Compilation process

166

 Compilation:

It is the second stage. It takes the output of the preprocessor
with the source code, and generates assembly source code.

Code Compilation process

167

 Assembler stage

It is the third stage of compilation. It takes the assembly
source code and produces the corresponding object code.

Code Compilation process

168

Linking:
It is the final stage of compilation. It takes one or more object files or
libraries and linker script as input and combines them to produce a
single executable file.

In doing so, it resolves references to external symbols, assigns final
addresses to procedures/functions and variables, and revises code and
data to reflect new addresses (a process called relocation).

Code Compilation process

169

Code Compilation process

 Preprocessing

 It is the first stage of compilation. It processes preprocessor directives like
include-files, conditional compilation instructions and macros.

 Compilation

 It is the second stage. It takes the output of the preprocessor with the source
code, and generates assembly source code.

 Assembler stage

 It is the third stage of compilation. It takes the assembly source code and
produces the corresponding object code.

 Linking

 It is the final stage of compilation. It takes one or more object files or
libraries and linker script as input and combines them to produce a single
executable file. In doing so, it resolves references to external symbols, assigns
final addresses to procedures/functions and variables, and revises code and
data to reflect new addresses (a process called relocation).

170

Code Compilation process

171

Basic techniques for reading and writing from I/O Port pins

;Toggle all bits of continuously.

 MOV A,#55

BACK: MOV P2,A

 ACALL DELAY

 CPL A ;complement(inv) reg.A

 SJMP BACK

The control of the 8051 ports is carried out using 8-bit latches

(SFRs).

We can send some data to Port 1 as follows:

sfr P1 = 0x90; // Usually in header file

P1 = 0x0F; // Write 00001111 to Port 1

172

In exactly the same way, we can read from Port 1 as follows:

unsigned char Port_data;

P1 = 0xFF; // Set the port to 'read mode'

Port_data = P1; // Read from the port

Basic techniques for reading and writing from I/O Port pins

After the 8051 microcontroller is reset, the port latches all have the
value 0xFF (11111111 in binary): that is, all the port-pin latches are set
to values of ‘1’. It is tempting to assume that writing data to the port is
therefore unnecessary, and that we can get away with the following
version:

 unsigned char Port_data;

 // Assume nothing written to port since reset

 Port_data = P1;

173

Basic techniques for reading and writing from I/O Port pins

The problem with this code is that, in simple test programs it works: this
can lull the developer into a false sense of security. If, at a later date,
someone modifies the program to include a routine for writing to all or
part of the same port, this code will not generally work as required:

 unsigned char Port_data;

 P1 = 0x00;

 // Assumes nothing written to port since reset

 // – WON’T WORK

 Port_data = P1;

In most cases, initialization functions are used to set the port pins to a
known state at the start of the program. Where this is not possible, it is
safer to always write ‘1’ to any port pin before reading from it.

174

Basic techniques for reading and writing from I/O Port pins

 Reading and writing bits:

 Demonstrated how to read from or write to an entire port. However,
suppose we have a switch connected to Pin 1.1 and an LED connected
to Pin 2.1.

 We might also have input and output devices connected to the other
pins on Port 1.

 These pins may be used by totally different parts of the same system,
and the code to access them may be produced by other team
members, or other companies.

 It is therefore essential that we are able to read-from or write-to
individual port pins without altering the values of other pins on the
same port.

 We provided a simple example to illustrates how we can read from Pin
1.1, and write to Pin 2.1, without disrupting any other pins on this (or
any other) port.

175

Basic techniques for reading and writing from I/O Port pins

176

Basic techniques for reading and writing from I/O Port pins

177

#include <REG51.H>
 sbit SW1 = P1^1;
 sbit LED = P2^1;
void main (void)
{
 LED = 0;
 while(1)
 {
 if(SW1 == 0)
 {
 BUZZER = 1;
 }
 else
 {
 BUZZER = 0;
 }
 }
}

LED BLINKING:

Basic techniques for reading and writing from I/O Port pins

#include<reg51.h>

sbit Led = P2^1; //pin connected to toggle Led

sbit Switch =P1^1; //Pin connected to toggle led

void main(void)

{

Led = 0; //configuring as output pin

Switch = 1; //Configuring as input pin

while(1) //Continuous monitor the status of
the switch.

{

if(Switch == 0)

{

Led =1; //Led On

}

else

{

Led =0; //Led Off

}

}

return 0;

}

178

Basic techniques for reading and writing from I/O Port pins

179

Switch bounce:

In an ideal world, this change in voltage obtained by connecting a switch
to the In an ideal world, this change in voltage obtained by connecting a
switch to the port pin of an 8051 microcontroller would take the form
illustrated in below figure.

FIGURE: The voltage signal resulting from the switch shown in left side figure.
Idealized waveform resulting from a switch depressed at time t1 and released at
time t2. Actual waveform showing leading edge bounce following switch depression
and trailing edge bounce following switch release

Switch bounce

180

In practice, all mechanical switch contacts bounce (that is, turn on and
off, repeatedly, for a short period of time) after the switch is closed or
opened. As a result, the actual input waveform looks more like that
shown in below figure(bottom).

Usually, switches bounce for less than 20 ms: however large
mechanical switches exhibit bounce behaviour for 50 ms or more.

Switch bounce

181

When you turn on the lights in your home or office with a mechanical
switch, the switches will bounce. As far as humans are concerned, this
bounce is imperceptible.

However, as far as the microcontroller is concerned, each ‘bounce’ is
equivalent to one press and release of an ‘ideal’ switch.

Without appropriate software design, this can give rise to a number of
problems, not least:

a. Rather than reading ‘A’ from a keypad, we may read ‘AAAAA’.
b. Counting the number of times that a switch is pressed becomes extremely

difficult.
c. If a switch is depressed once, and then released some time later, the

‘bounce’ may make it appear as if the switch has been pressed again (at the
time of release).

Switch bounce

182

Binding and running embedded
C program in Keil IDE

183

Installing the Keil software and loading the project:

Rather than using the projects on the CD (where changes cannot be
saved), please copy the files from the CD onto an appropriate
directory on your hard disk.

Note: you will need to change the file properties after copying: files
transferred from the CD will be ‘read only’.

When you have copied the files onto your hard disk, please run the
Keil μVision application, and use the ‘Open Project’ option (from the
‘Project’ menu) to and work with your project.

Binding and Running embedded C program in Keil IDE

184

Configuring the simulator:
Simulator-µVision allows developers to execute and debug
their programs on 8051 controller/Arm
processor simulations without using a physical target and debug
hardware.

Having loaded the ‘Hello’ project in the Keil μVision environment, we
will begin by exploring the project settings.

First, using the Project menu, we will look at the 8051 device which we
are intending to use for this application.

Binding and Running embedded C program in Keil IDE

Keil MicroVision is a free software which solves many of the pain points
for an embedded program developer. This software is an integrated
development environment (IDE), which integrated a text editor to write
programs, a compiler and it will convert your source code to hex files too.

Here is simple guide to start working with Keil uVision which can be
used for

 Writing programs in C/C++ or Assembly language

 Compiling and Assembling Programs

 Debugging program

 Creating Hex file

 Testing your program without Available real Hardware (Simulator
Mode)

185

Binding and Running embedded C program in Keil IDE

Step 1: After opening Keil uV4, Go to Project tab and Create new
uVision project.

Now Select new folder and give name to Project.

186

Binding and Running embedded C program in Keil IDE

Step 2: After Creating project now Select your device model.
Example.NXP-LPC2148 (or P89V51RD2 microcontroller).

187

Binding and Running embedded C program in Keil IDE

188

Binding and Running embedded C program in Keil IDE

 Step 3: so now your project is created and Message window will
appear to add startup file of your Device click on Yes so it will be
added to your project folder

189

Binding and Running embedded C program in Keil IDE

Step 4: Now go to File and create new file and save it
with .C extension if you will write program in C language or save
with .asm for assembly language.

i.e., Led.c

190

Binding and Running embedded C program in Keil IDE

Step 5: Now write your program and save it again. You can try
example given at end of this tutorial.

Step 6: After that on left you see project window [if it’s not
there….go to View tab and click on project window]

Now come on Project window.

191

Binding and Running embedded C program in Keil IDE

192

Right click on target and click on options for target

Binding and Running embedded C program in Keil IDE

 Here you can change your device also.

193

Binding and Running embedded C program in Keil IDE

 Click output tab here & check create Hex file if you want to
generate hex file

 Now click on ok so it will save changes.

194

Binding and Running embedded C program in Keil IDE

Step 7: Now Expand target and you will see source group

Right click on group and click on Add files to source group

195

•Now add your program file
which you have written in
C/assembly.

•You can see program file
added under source group.

Binding and Running embedded C program in Keil IDE

 Step 8: Now Click on Build target. You can find it under Project
tab or in tool bar. It can also be done by pressing F7 key.

196

Binding and Running embedded C program in Keil IDE

Step 9: you can see Status of your program in Build output window

 [If it’s not there go to view and click on Build output window]

197

Now you are done with your program and you can now
debug and Simulate your Program.

Binding and Running embedded C program in Keil IDE

Dissecting the program:

So far we have simply demonstrated the operation of the Keil 8051
simulator.

We now begin to consider how the code in actually works.

The complete program:

The complete ‘Hello, Embedded World’ program is shown in below.

#include <reg51.h>

sbit LED_pin = P1^5; // LED is to be connected to this pin

bit LED_state_G; // Stores the LED state

void LED_FLASH_Init(void);

void LED_FLASH_Change_State(void);

void DELAY_LOOP_Wait(const unsigned int);

198

// Function prototypes

Dissecting the program

void main(void)

{

LED_FLASH_Init();

while(1)

{

LED_FLASH_Change_State(); // Change the LED state (OFF to ON, or vice versa)

DELAY_LOOP_Wait(1000); // Delay for *approx* 1000 ms

}

}

/*--*-

LED_FLASH_Init()

Prepare for LED_Change_State() function – see below.

-*--*/

void LED_FLASH_Init(void)

{

LED_state_G = 0;

}
199

Dissecting the program

/*--*-

LED_FLASH_Change_State()

Changes the state of an LED (or pulses a buzzer, etc) on a specified port pin. Must call at twice the
required flash rate: thus, for 1 Hz flash (on for 0.5 seconds, off for 0.5 seconds), this function must be
called twice a second.

-*--*/

void LED_FLASH_Change_State(void)

{

if (LED_state_G == 1) // Change the LED from OFF to ON (or vice versa)

{

LED_state_G = 0;

LED_pin = 0;

}

else

{

LED_state_G = 1;

LED_pin = 1;

}

}

200

Dissecting the program

/*--*-

DELAY_LOOP_Wait()

Delay duration varies with parameter. Parameter is, *ROUGHLY*, the delay, in
milliseconds, on 12MHz 8051 (12 osc cycles). You need to adjust the timing for
your application!

-*--*/

void DELAY_LOOP_Wait(const unsigned int DELAY)

{

unsigned int x, y;

for (x = 0; x <= DELAY; x++)

{

for (y = 0; y <= 120; y++);

}

}

201

Dissecting the program

Function Calls:

The ARM Procedure Call Standard (APCS) defines how to pass function
arguments and return values in ARM registers. The more recent ARM-
Thumb Procedure Call Standard (ATPCS) covers ARM and Thumb
interworking as well.

The first four integer arguments are passed in the first four ARM
registers: r0, r1, r2, and r3. Subsequent integer arguments are placed on
the full descending stack, ascending in memory as in figure. Function
return integer values are passed in r0.

202

Function Calls

203

Figure: ATPCS argument passing

This description covers only integer or pointer
arguments. Two-word arguments such as
long long or double are passed in a pair of
consecutive argument registers and returned
in r0, r1. The compiler may pass structures in
registers or by reference according to
command line compiler options.

Function Calls

 The first point to note about the procedure call standard is the four-
register rule. Functions with four or fewer arguments are far more
efficient to call than functions with five or more arguments.

 For functions with four or fewer arguments, the compiler can pass all
the arguments in registers.

 For functions with more arguments, both the caller and callee must
access the stack for some arguments. Note that for C++ the first
argument to an object method is the this pointer. This argument is
implicit and additional to the explicit arguments.

 If your C function needs more than four arguments, or your C++ method
more than three explicit arguments, then it is almost always more efficient to
use structures.

 Group related arguments into structures, and pass a structure pointer rather
than multiple arguments. Which arguments are related will depend on the
structure of your software.

204

Function Calls

Interfacing with Keyboard:

205

Interfacing Keyboard with 8051

R1

R2

R3

R4

C1 C2 C3 C4

4X4 Matrix Keyboard

 Matrix keypad/Keyboard consists of set of Push buttons, which are
interconnected. Like in our case we are using 4X4 matrix keyboard, in
which there are 4 push buttons in each of four rows. And the
terminals of the push buttons are connected according to diagram.

 In first row, one terminal of all the 4 push buttons are connected
together and another terminal of 4 push buttons are representing
each of 4 columns, same goes for each row. So we are getting 8
terminals to connect with a microcontroller.

206

Interfacing Keyboard with 8051

Whenever any button is pressed we need to get the location of the
button, means the corresponding ROW and COLUMN no. Once we get the
location of the button, we can print the character accordingly.

Now the question is how to get the location of the pressed button?
I am going to explain this in below steps.

1. First we have made all the Rows to Logic level 0 and all the columns to
Logic level 1.

2. Whenever we press a button, column and row corresponding to that
button gets shorted and makes the corresponding column to logic level 0.
Because that column becomes connected (shorted) to the row, which is at
Logic level 0. So we get the column no. See main() function.

207

Interfacing Keyboard with 8051

208

Interfacing Keyboard with 8051

3. Now we need to find the Row no., so we have created four functions
corresponding to each column. Like if any button of column one is
pressed, we call function row_finder1(), to find the row no.

4. In row_finder1() function, we reversed the logic levels, means now all
the Rows are 1 and columns are 0. Now Row of the pressed button should
be 0 because it has become connected (shorted) to the column whose
button is pressed, and all the columns are at 0 logic. So we have scanned
all rows for 0.

209

Interfacing Keyboard with 8051

210

5. So whenever we find the Row at logic 0, means that is the row of pressed
button. So now we have column no (got in step 2) and row no., and we can
print no. of that button using lcd_data function.

Same procedure follows for every button press, and we are using while(1),
to continuously check, whether button is pressed or not.

Interfacing Keyboard with 8051

#include<reg51.h>

#define display_port P2 //Data pins connected to port 2 on microcontroller

sbit rs = P3^0; //RS pin connected to pin 2 of port 3

sbit rw = P3^1; // RW pin connected to pin 3 of port 3

sbit e = P3^2; //E pin connected to pin 4 of port 3

sbit C4 = P1^0; // Connecting keypad to Port 1

sbit C3 = P1^1;

sbit C2 = P1^2;

sbit C1 = P1^3;

sbit R4 = P1^4;

sbit R3 = P1^5;

sbit R2 = P1^6;

sbit R1 = P1^7;

211

Interfacing Keyboard with 8051

void msdelay(unsigned int time) // Function for creating delay in milliseconds.

{

 unsigned i,j ;

 for(i=0;i<time;i++)

 for(j=0;j<1275;j++);

}

void lcd_cmd(unsigned char command) //Function to send command instruction
to LCD

{

 display_port = command;

 rs= 0;

 rw=0;

 e=1;

 msdelay(1);

 e=0;

} 212

Interfacing Keyboard with 8051

void lcd_data(unsigned char disp_data) //Function to send display data to LCD

{

 display_port = disp_data;

 rs= 1;

 rw=0;

 e=1;

 msdelay(1);

 e=0;

}

213

Interfacing Keyboard with 8051

 void lcd_init() //Function to prepare the LCD and get it ready

{

 lcd_cmd(0x38); // for using 2 lines and 5X7 matrix of LCD

 msdelay(10);

 lcd_cmd(0x0F); // turn display ON, cursor blinking

 msdelay(10);

 lcd_cmd(0x01); //clear screen

 msdelay(10);

 lcd_cmd(0x81); // bring cursor to position 1 of line 1

 msdelay(10);

}

214

Interfacing Keyboard with 8051

void row_finder1() //Function for finding the row for column 1

{

R1=R2=R3=R4=1;

C1=C2=C3=C4=0;

if(R1==0)

lcd_data('7');

if(R2==0)

lcd_data('4');

if(R3==0)

lcd_data('1');

if(R4==0)

lcd_data('N');

}

215

Interfacing Keyboard with 8051

void row_finder2() //Function for finding the row for column 2

{

R1=R2=R3=R4=1;

C1=C2=C3=C4=0;

if(R1==0)

lcd_data('8');

if(R2==0)

lcd_data('5');

if(R3==0)

lcd_data('2');

if(R4==0)

lcd_data('0');

}

216

Interfacing Keyboard with 8051

void row_finder3() //Function for finding the row for column 3

{

R1=R2=R3=R4=1;

C1=C2=C3=C4=0;

if(R1==0)

lcd_data('9');

if(R2==0)

lcd_data('6');

if(R3==0)

lcd_data('3');

if(R4==0)

lcd_data('=');

}

217

Interfacing Keyboard with 8051

void row_finder4() //Function for finding the row for column 4

{

R1=R2=R3=R4=1;

C1=C2=C3=C4=0;

if(R1==0)

lcd_data('%');

if(R2==0)

lcd_data('*');

if(R3==0)

lcd_data('-');

if(R4==0)

lcd_data('+');

}

218

Interfacing Keyboard with 8051

void main()

{

 lcd_init();

 while(1)

 {

 msdelay(30);

 C1=C2=C3=C4=1;

R1=R2=R3=R4=0;

 if(C1==0)

 row_finder1();

 else if(C2==0)

 row_finder2();

219

else if(C3==0)
row_finder3();
 else if(C4==0)
 row_finder4();
 }

}

Interfacing Keyboard with 8051

220

8051 Microcontroller

 LED interfacing with 8051 to a single Pin:

221

LED Interfacing with 8051

#include<reg51.h> // special function register declarations

sbit LED = P2^0; // Defining LED pin

void Delay(void); // Function prototype declaration

void main (void)

{

while(1) // infinite loop

{

LED = 0; // LED ON

Delay();

LED = 1; // LED OFF

Delay();

}

}

222

LED Interfacing with 8051

void Delay(void)

{

int j;

int i;

for(i=0;i<10;i++)

{

for(j=0;j<10000;j++)

{

}

 }

 }

223

LED Interfacing with 8051

224

LED’s interfacing with Port, P1 of 8051:

LED Interfacing with 8051

#include<REG51.H>

#define LEDPORT P1

void delay(unsigned int);

void main(void)

{

LEDPORT =0x00;

while(1)

{

LEDPORT = 0X00;

delay(250);

LEDPORT = 0xff;

delay(250);

}

}
225

void delay(unsigned int itime)
{

unsigned int i,j;
for(i=0;i<itime;i++)
{

for(j=0;j<250;j++);
}

}

LED Interfacing with 8051

7 Segment Display Interfacing:

226

7 Segment Display Interfacing

 This is how to interface a seven segment LED display to an 8051
microcontroller. 7 segment LED display is very popular and it can
display digits from 0 to 9 and quite a few characters. Knowledge about
how to interface a seven segment display to a micro controller is very
essential in designing embedded systems.

 Seven segment displays are of two types, common cathode and
common anode.

 In common cathode type , the cathode of all LEDs are tied together to
a single terminal which is usually labeled as ‘com‘ and the anode of
all LEDs are left alone as individual pins labeled as a, b, c, d, e, f, g & h
(or dot) .

 In common anode type, the anode of all LEDs are tied together as a
single terminal and cathodes are left alone as individual pins.

227

7 Segment Display Interfacing

228

7 Segment Display Interfacing

229

7 Segment Display Interfacing

/*Program to interface seven segment display unit.*/

#include <REG51.H>

#define LEDPORT P0

#define ZERO 0x3f

#define ONE 0x06

#define TWO 0x5b

#define THREE 0x4f

#define FOUR 0x66

#define FIVE 0x6d

#define SIX 0x7d

#define SEVEN 0x07

#define EIGHT 0x7f

#define NINE 0x6f

#define TEN 0x77
230

7 Segment Display Interfacing

#define ELEVEN 0x7c

#define TWELVE 0x39

#define THIRTEEN 0x5e

#define FOURTEEN 0x79

#define FIFTEEN 0x71

void Delay(void);

void main (void)

{

while(1)

{

LEDPORT = ZERO;

Delay();

231

7 Segment Display Interfacing

LEDPORT = ONE;

Delay();

LEDPORT = TWO;

Delay();

LEDPORT = THREE;

Delay();

LEDPORT = FOUR;

Delay();

LEDPORT = FIVE;

Delay();

LEDPORT = SIX;

Delay();

LEDPORT = SEVEN;

Delay();
232

7 Segment Display Interfacing

LEDPORT = EIGHT;

Delay();

LEDPORT = NINE;

Delay();

LEDPORT = TEN;

Delay();

LEDPORT = ELEVEN;

Delay();

LEDPORT = TWELVE;

Delay();

LEDPORT = THIRTEEN;

Delay();

233

7 Segment Display Interfacing

LEDPORT = FOURTEEN;

Delay();

LEDPORT = FIFTEEN;

Delay();

}

}

void Delay(void)

{

int j; int i;

for(i=0;i<30;i++)

{

for(j=0;j<10000;j++)

{

}

}

}

234

7 Segment Display Interfacing

 We use LCD display for the displaying messages in a more
interactive way to operate the system or displaying error
messages etc.

 Interfacing 16×2 LCD with 8051 microcontroller is very easy if
you understanding the working of LCD.

 16×2 Liquid Crystal Display which will display the 32 characters
at a time in two rows (16 characters in one row). Each character
in the display is of size 5×7 pixel matrix.

235

LCD Display Interfacing

LCD Display Interfacing:

 In this, we will have brief discussion on
how to interface 16×2 LCD module to
P89V51RD2, which is an 8051 family
microcontroller.

236

PIN NO NAME FUNCTION

1 VSS Ground pin

2 VCC Power supply pin of 5V

3 VEE Used for adjusting the contrast commonly attached to the
potentiometer.

4 RS RS is the register select pin used to write display data to the LCD
(characters), this pin has to be high when writing the data to the LCD.
During the initializing sequence and other commands this pin should
low.

5 R/W Reading and writing data to the LCD for reading the data R/W pin
should be high (R/W=1) to write the data to LCD R/W pin should be low
(R/W=0)

6 E Enable pin is for starting or enabling the module. A high to low pulse of
about 450ns pulse is given to this pin.

There are 16 pins in the LCD module, the pin configuration us given below

LCD Display Interfacing

237

7 DB0 DB0-DB7 Data pins for giving data(normal data like numbers
characters or command data) which is meant to be displayed

8 DB1 DB0-DB7 Data pins for giving data

9 DB2 DB0-DB7 Data pins for giving data

10 DB3 DB0-DB7 Data pins for giving data

11 DB4 DB0-DB7 Data pins for giving data

12 DB5 DB0-DB7 Data pins for giving data

13 DB6 DB0-DB7 Data pins for giving data

14 DB7 DB0-DB7 Data pins for giving data

15 LED+ Back light of the LCD which should be connected to Vcc

16 LED- Back light of LCD which should be connected to ground.

LCD Display Interfacing

238

Figure: LCD Display Interfacing

LCD Display Interfacing

Follow these simple steps for displaying a character or data

E=1; enable pin should be high

RS=1; Register select should be high

R/W=0; Read/Write pin should be low.

To send a command to the LCD just follows these steps:

E=1; enable pin should be high

RS=0; Register select should be low

R/W=0; Read/Write pin should be low.

239

LCD Display Interfacing

240

LCD Display Interfacing

No. Instruction Hex Decimal

1 Entry Mode 0x06 6

2 Display off Cursor off
(clearing display without clearing
DDRAM content)

0x08 8

3 Display on Cursor on 0x0E 14

4 Display on Cursor off 0x0C 12

5 Display on Cursor blinking 0x0F 15

6 Shift entire display left 0x18 24

7 Shift entire display right 0x1C 30

8 Move cursor left by one character 0x10 16

9 Move cursor right by one character 0x14 20

10 Clear Display (also clear DDRAM
content)

0x01 1

LCD Commands

#include<reg51.h>

sbit rs=P3^0;

sbit rw=P3^1;

sbit en=P3^2;

void lcdcmd(unsigned char);

void lcddat (unsigned char);

void delay();

void main()

{

P2=0x00;

while(1)

{

lcdcmd(0x38); // Use two lines and 5x7 matrix

delay();

241

LCD Display Interfacing

lcdcmd(0x01); //Clearing the screen

delay();

lcdcmd(0x10);

delay();

lcdcmd(0x0c);

delay();

lcdcmd(0x81);

delay();

242

lcddat('I');

delay();

lcddat('A');

delay();

lcddat('R');

delay();

lcddat('E');

delay();

}

}

LCD Display Interfacing

void lcdcmd(unsigned char val)

{

P2=val;

rs=0;

rw=0;

en=1;

delay();

en=0;

}

243

void lcddat(unsigned char val)
{
P2=val;
rs=1;
rw=0;
en=1;
delay();
en=0;
}
void delay()
{
unsigned int i;
for(i=0;i<1000;i++);
}

LCD Display Interfacing

ADC Interfacing with 8051 microcontroller:

 ADC0808/ADC0809 is an 8 channel 8-bit analog to digital converter.
Unlike ADC0804 which has one Analog channel, this ADC has 8
multiplexed analog input channels.

244

ADC Interfacing with 8051 microcontroller

 The ADC 0808 is an 8-bit A-to-D converter, having data lines D0-D7. It
works on the principle of successive approximation. It has a total of
eight analogue input channels, out of which any one can be selected
using address lines A, B and C. Here, in this case, input channel IN1 is
selected by A=1, B & C=0 address lines.

 The ADC 0808 IC requires clock signal of typically 550 kHz and
conversion delay 100 μs.

245

ADC Interfacing with 8051 microcontroller

246

ADC Interfacing with 8051 microcontroller

Program:

#include <reg51.h>

#define ALE P3_4

#define OE P3_7

#define START P3_5

#define EOC P3_6

#define SEL_A P3_1

#define SEL_B P3_2

#define SEL_C P3_3

#define ADC_DATA P1

247

ADC Interfacing with 8051 microcontroller

void main()

{

unsigned char adc_data;

 /* Data port to input */

ADC_DATA = 0xFF;

EOC = 1; /* EOC as input */

ALE = OE = START = 0;

while (1)

{

/* Select channel 1 */

SEL_A = 1; /* LSB */

SEL_B = 0;

SEL_C = 0; /* MSB */

248

ADC Interfacing with 8051 microcontroller

SEL_C SEL_B SEL_A Channel
Number

0 0 0 CH0

0 0 1 CH1

0 1 0 CH2

0 1 1 CH3

1 0 0 CH4

1 0 1 CH5

1 1 0 CH6

1 1 1 CH7

/* Latch channel select/address */

ALE = 1;

/* Start conversion */

START = 1;

ALE = 0;

START = 0;

/* Wait for end of conversion */

while (EOC == 1);

while (EOC == 0);

249

/* Assert Read signal */
OE = 1;
/* Read Data */
adc_data = ADC_DATA;
OE = 0;

/* Now adc data is stored
*/
/* start over for next
conversion */
}
}

ADC Interfacing with 8051 microcontroller

DAC INTERFACING with 8051

The digital-to-analog converter (DAC) is a device widely used to convert
digital pulses to analog signals.

In this section we discuss the basics of interfacing a DAC to the 8051.

Recall from your digital electronics book the two methods of creating a
DAC:

1. Binary weighted.

2. R/2R ladder.

250

DAC Interfacing with 8051 microcontroller

The vast majority of integrated circuit DACs, including the MC1408
(DAC0808) used in this section use the R/2R method since it can achieve a
much higher degree of precision.

The first criterion for judging a DAC is its resolution, which is a function
of the number of binary inputs. The common ones are 8, 10, and 12 bits.

The number of data bit inputs decides the resolution of the DAC since
the number of analog output levels is equal to 2n, where n is the number
of data bit inputs.

 Therefore, an 8-input DAC such as the DAC0808 provides 256 discrete
voltage (or current) levels of output. Similarly, the 12-bit DAC provides
4096 discrete voltage levels. There are also 16-bit DACs, but they are more
expensive.

 251

DAC Interfacing with 8051 microcontroller

MC1408 DAC (or DAC0808):

In the MC1408 (or DAC0808), the digital inputs are converted to current (Iout), and
by connecting a resistor to the Iout pin, we convert the result to voltage.

The total current provided by the Iout pin is a function of the binary numbers at
the D0 – D7 inputs of the DAC0808 and the reference current (Iref), and is as
follows:

Where D0 is the LSB, D7 is the MSB for the inputs, and Iref is the input current that
must be applied to pin 14. The Iref current is generally set to 2.0 mA. Figure shows
the generation of current reference (setting Iref = 2 mA) by using the standard 5-V
power supply and IK and 1.5K-ohm standard resistors. Some DACs also use the
zener diode (LM336), which overcomes any fluctuation associated.

252

DAC Interfacing with 8051 microcontroller

253

Figure: 8051 Connection to DAC0808

DAC Interfacing with 8051 microcontroller

Generating a sine wave:

To generate a sine wave, we first need a table whose values represent the
magnitude of the sine of angles between 0 and 360 degrees. The values for
the sine function vary from -1.0 to +1.0 for 0- to 360-degree angles.

Therefore, the table values are integer numbers representing the voltage
magnitude for the sine of theta. This method ensures that only integer
numbers are output to the DAC by the 8051 microcontroller.

Table shows the angles, the sine values, the voltage magnitudes, and the
integer values representing the voltage magnitude for each angle (with 30-
degree increments).

To generate Table, we assumed the full-scale voltage of 10 V for DAC output.
Full-scale output of the DAC is achieved when all the data inputs of the DAC
are high. Therefore, to achieve the full-scale 10 V output, we use the
following equation.

254

DAC Interfacing with 8051 microcontroller

Vout of DAC for various angles is calculated and shown in Table.

255

Angle θ

(degrees)
Sin θ

Vout (Voltage Magnitude)

5 V + (5 V x sin θ)

Values Sent to DAC (decimal)

(Voltage Mag. X 25.6)

0 0 5 128

30 0.5 7.5 192

60 0.866 9.33 238

90 1.0 10 255

120 0.866 9.33 238

150 0.5 7.5 192

180 0 5 128

210 -0.5 2.5 64

240 -0.866 0.669 17

270 -1.0 0 0

300 -0.866 0.669 17

330 -0.5 2.5 64

360 0 5 128

DAC Interfacing with 8051 microcontroller

Program:

#include <reg51.h>

sfr DACDATA = Pl;

void main ()

{

unsigned char WAVEVALUE [12]={128,192,238,255, 238,192,128,64, 17,0,17,64} ;

unsigned char x ,

while (1)

{

for(x=0;x<12;x++)

{

DACDATA = WAVEVALUE[x];

}

}

 }

 256

DAC Interfacing with 8051 microcontroller

257

Figure: Angle vs. Voltage Magnitude for Sine Wave

DAC Interfacing with 8051 microcontroller

Multiple Interrupts

Interrupts vs. polling:

A single microcontroller can serve several devices. There are two ways to

do that: interrupts or polling.

In the interrupt method, whenever any device needs its service the
device notifies the microcontroller by sending It an interrupt signal.

Upon receiving an interrupt signal, the microcontroller interrupts
whatever it is doing and serves the device.

The program associated with the interrupt is called the interrupt service
routine (ISR) or interrupt handler.

258

Multiple Interrupts in 8051 microcontroller

In polling, the microcontroller continuously monitors the status of a
given device; when the status condition is met, it performs the service.
After that, it moves on to monitor the next device until each one is
serviced.

Although polling can monitor the status of several devices and serve
each of them as certain conditions are met, it is not an efficient use of the
microcontroller.

The advantage of interrupts is that the microcontroller can serve many
devices (not all at the same time, of course); each device can get the
attention of the microcontroller based on the priority assigned to it.

The polling method cannot assign priority since it checks all devices in a
round robin fashion.

259

Multiple Interrupts in 8051 microcontroller

Six interrupts in the 8051:

In reality, only five interrupts are available to the user in the 8051, but
many manufacturers data sheets state that there are six interrupts since
they include reset. The six interrupts in the 8051 are allocated as follows.

1. Reset. When the reset pin is activated, the 8051 jumps to address
location 0000. This is the power-up reset.

2. Two interrupts are set aside for the timers: one for Timer 0 and one for
Timer1. Memory locations 000BH and 001BH in the interrupt vector table
belong to Timer 0 and Timer 1, respectively.

260

Multiple Interrupts in 8051 microcontroller

Six interrupts in the 8051:

3. Two interrupts are set aside for hardware external hardware
interrupts, Pin numbers 12 (P3.2) and 13 (P3.3) in port 3 are for the
external hardware interrupts INT 0 and INT 1, respectively. These external
interrupts are also referred to as EX 1 and EX 2. Memory locations 0003H
and 0013H In the interrupt vector table are assigned to INT0 and INT1,
respectively.

4. Serial communication has a single interrupt that belongs to both
receive and transmit. The interrupt vector table location 0023H belongs to
this interrupt.

261

Multiple Interrupts in 8051 microcontroller

262

Table: Interrupt Vector Table for the 8051

Multiple Interrupts in 8051 microcontroller

Enabling and Disabling an interrupt:

Upon reset, all interrupts are disabled (masked), meaning that none will
be responded to by the microcontroller if they are activated.

The interrupts must be enabled by software in order for the
microcontroller to respond to them. There is a register called IE (interrupt
enable) that is responsible for enabling (unmasking) and disabling
(masking) the interrupts.

Figure shows the IE register. Note that IE is a bit-addressable register.

From figure notice that bit D7 in the IE register is called EA (enable

all). This must be set to 1 in order for the rest of the register to take
effect. D6 is unused. D5 is used by the 8052. The D4 bit is for the serial
interrupt, and so on.

263

Multiple Interrupts in 8051 microcontroller

Steps in enabling an interrupt:

To enable an interrupts, we take the following steps:

1. Bit D7 of the IE register (EA) must be set to high to allow the rest of
register to take the effect.

2. If EA =1, interrupts are enabled and will be responded to if their
corresponding bits in IE are high. If EA=0, no interrupt will be responded
to, even if the associated bit in the IE register is high.

264

Multiple Interrupts in 8051 microcontroller

265

IE (Interrupt Enable) Register:

•This register is responsible for enabling and disabling the interrupt.

•EA register is set to 1 for enabling interrupts and

•EA register is set to 0 for disabling the interrupts.

•Its bit sequence and their meanings are shown in the following figure.

Multiple Interrupts in 8051 microcontroller

266

EA IE.7
It disables all interrupts.
When EA = 0 no interrupt will be acknowledged and
When EA = 1 enables the interrupt individually.

- IE.6 Reserved for future use.

- IE.5 Reserved for future use.

ES IE.4 Enables/disables serial port interrupt.

ET1 IE.3 Enables/disables timer1 overflow interrupt.

EX1 IE.2 Enables/disables external interrupt1.

ET0 IE.1 Enables/disables timer0 overflow interrupt.

EX0 IE.0 Enables/disables external interrupt0.

Multiple Interrupts in 8051 microcontroller

Pointer Aliasing:

Two pointers are said to alias when they point to the same address. If you
write to one pointer, it will affect the value you read from the other
pointer.

In a function, the compiler often doesn’t know which pointers can alias
and which pointers can’t. The compiler must be very pessimistic and
assume that any write to a pointer may affect the value read from any
other pointer, which can significantly reduce code efficiency.

267

Pointer Aliasing

Unaligned Data And Endianness :

 Unaligned data and endianness are two issues that can complicate
memory accesses and portability.

 In computing, endianness is the ordering or sequencing of bytes of a
word of digital data in computer memory storage or during
transmission.

 A big-endian system stores the most significant byte of a word at the
smallest memory address and the least significant byte at the largest
memory address .

 A memory access is said to be aligned when the data
being accessed is n bytes long and the datum address is n-
byte aligned. ... A memory pointer that refers to primitive data that is
n bytes long is said to be aligned if it is only allowed to contain
addresses that are n-byte aligned, otherwise it is said to be unaligned.

268

Unaligned Data And Endianness

Inline Functions and Inline Assembly:

Generally the inline term is used to instruct the compiler to insert the
code of a function into the code of its caller at the point where the actual
call is made. Such functions are called "inline functions". ... It is just a set
of assembly instructions written as inline functions.

269

Inline Functions and Inline Assembly

Serial Data Communication Using
Embedded C Interfacing

270

Serial Data Communication in 8051

Computers transfer data in two ways: parallel and serial,

In parallel data transfers, often 8 or more lines (wire conductors) are
used to transfer data to a device that is only a few feet away.

 Examples: Printers and Hard disks

To transfer to a device located many meters away, the serial method is
used.

In serial communication, the data is sent one bit at a time, in contrast to
parallel communication, in which the data is sent a byte or more at a time.

The 8051 has serial communication capability built into it, thereby
making possible fast data transfer using only a few wires.

271

Serial Data Communication in 8051

Serial v/s Parallel Communication:

272

Serial Data Communication in 8051

273

Parallel Communication Serial Communication

Often 8 or more lines (wire conductors)
are used to transfer data. Multiple bits
are transferred at a time.

The data is sent one bit at a time on a
single line (wire)

Preferred for short-distance
communication

Preferred over long-distance
communication

Costly as more resources are required Comparatively cheaper

Speed of data transfer is high Slow

Example: SPI, I2C, UART Example: PCI

Serial Data Communication in 8051

Basics of Serial Communication:

•Serial communication uses single data line making it much cheaper.

•Enables two computers in different cities to communicate over the

 telephone.

•Byte of data must be converted to serial bits using a parallel-in-serial- out

 shift register and transmitted over a single data line

•At the receiving end there must be a serial-in-parallel-out shift register.

•If transferred on the telephone line, it must be converted to audio tones

by modem for short distance.

274

Serial Data Communication in 8051

Modes of Serial Communication:

• In simplex transmissions, the computer can only send data. There
is only one wire.

• If the data can be transmitted and received, then it is a
 duplex transmission

• Duplex transmissions can be half or full duplex depending
 on whether or not the data transfer can be simultaneous.

• If the communication is only one way at a time, it is half duplex

• If both sides can communicate at the same time, it is full duplex

 Full duplex requires two wire conductors for the data lines
(in addition to the signal ground)

Serial Data Communication in 8051

Modes of Serial Communication

Ex: Radio and Television transmission

Ex: Walkie-talkie

Ex: Telephone

Serial Data Communication in 8051

Basics of Serial Communication

• Serial Communication can be

 Asynchronous

 Synchronous

Synchronous Communication:

• Synchronous methods transfer a block of data (characters) at a time

• The events are referenced to a clock

• Example: SPI bus, I2C bus

Asynchronous Communication:

• Asynchronous methods transfer a single byte at a time

• There is no clock. The bytes are separated by start and stop bits.

• Example: UART

Serial Data Communication in 8051

Basics of Serial Communication

• To support serial communication, special interfaces are built in the
microcontroller.

• The microcontrollers use special IC chips called UART (universal
asynchronous receiver-transmitter) and USART (universal
synchronous asynchronous receiver-transmitter)

• 8051 chip has a built-in UART

Serial Data Communication in 8051

Data Framing in Asynchronous Serial Communication

• Data is transmitted in 0s and 1s.

• To have a sense of synchronization between transmitter and
receiver and to make sense of the data, transmitter and receiver
agree on a set of rules i.e protocol, which describes

 how the data is packed

 how many bits constitute a character

 when the data begins and ends

Serial Data Communication in 8051

Data Framing in Asynchronous Serial Communication

Start and stop bits

• Each character is placed between start and stop bits. This is called
framing.

• Start bit is always one bit, stop bit can be one, two or one and half
bits.

• In 8051 serial port, when there is no transmission, the TxD line is
held high. This is called mark.

• Start bit is always a 0 (low), stop bit(s) is 1 (high).

• LSB is sent out first.

Serial Data Communication in 8051

Data Framing in Asynchronous Serial Communication

Framing ASCII A

• The transmission begins with a start bit, followed by the LSB(D0),
then the rest of the bits until MSB (D7), and finally, the one stop bit
indicating the end of the character

• When there is no transfer, the signal is 1 (high), which is referred
to as mark

Serial Data Communication in 8051

Data Transfer Rate in Asynchronous Serial Communication

• The rate of data transfer in serial data communication is stated in
bps (bits per second)

• Another widely used terminology for bps is baud rate

 It is modem terminology and is defined as the number of signal
changes per second

 In modems, there are occasions when a single change of signal
transfers several bits of data

• As far as the conductor wire is concerned, the baud rate and bps
are the same, and we use the terms interchangeably

• The data transfer rate of given computer system depends on
communication ports incorporated into that system

 IBM PC/XT could transfer data at the rate of 100 to 9600 bps

Serial Data Communication in 8051

RS232 Standards

• An interfacing standard RS232 was set by the Electronics Industries
Association (EIA) in 1960.

• In RS232, a 1 is represented by -3 to -25 V, while a 0 bit is +3 to
+25 V, making -3 to +3 undefined.

• The standard was set long before the advent of the TTL logic family,
its input and output voltage levels are not TTL compatible.

• A microcontroller system must use voltage converters such as
MAX232 to convert the TTL logic levels to the RS232 voltage levels,
and vice versa.

• MAX232 IC chips are commonly referred to as line drivers.

Serial Data Communication in 8051

DB9 pin connections:

• RS232 supports both DB25 and DB 9 pin connector

• DB-9 Pin Connector

Serial Data Communication in 8051

Handshaking in RS232:

• Current terminology classifies data communication equipment as

DTE (data terminal equipment) refers to terminal and
computers that send and receive data

DCE (data communication equipment) refers
 to communication equipment, such as modems

• The simplest connection between a PC and microcontroller
requires a minimum of three pins, TxD, RxD, and ground

Serial Data Communication in 8051

Handshaking signals in Rs232:

DTR (data terminal ready)

When terminal is turned on, it sends out signal DTR to indicate that it
is ready for communication

DSR (data set ready)

When DCE is turned on and has gone through the self-test, it assert DSR
to indicate that it is ready to communicate

RTS (request to send)

When the DTE device has byte to transmit, it assert RTS to signal
the modem that it has a byte of data to transmit

CTS (clear to send)

When the modem has room for storing the data it is to receive, it sends
out signal CTS to DTE to indicate that it can receive the data now

Serial Data Communication in 8051

Handshaking signals in Rs232

DCD (data carrier detect)

The modem asserts signal DCD to inform the DTE that a valid carrier has
been detected and that contact between it and the other modem is
established

RI (Ring Indicator)

• This is an input for DTE devices and an output for DCE devices. This
signals the DTE device that there is an incoming call. This signal is
maintained "Off" at all times except when the DCE receives a ringing
signal.

• An output from the modem and an input to a PC indicates that there is
an incoming call.

Serial Data Communication in 8051

TxD and RxD in 8051
• 8051 has two pins that are used specifically for transferring and

receiving data serially.

 These two pins are called TxD and RxD and are part of the port 3
group (P3.0 and P3.1)

 These pins are TTL compatible; therefore, they require a line driver
to make them RS232 compatible.

• We need a line driver (voltage converter) to convert the R232’s signals
to TTL voltage levels that will be acceptable to 8051’s TxD and RxD pins

Serial Data Communication in 8051

PC Baud rate

• PC/compatible COM ports PC/compatible computers (Pentium)
microprocessors normally have two COM ports

• Both ports have RS232-type connectors

• COM ports are designated as COM 1 and COM 2 (replaced by USB
ports)

• To allow data transfer between the PC and an 8051 system
without any error, we must make sure that the baud rate of 8051
system matches the baud rate of the PC’s COM port

• Baud rate supported by IBM PC: 19200, 9600, 4800, 2400, 1200,

600, 300, 150 and 110

Serial Data Communication in 8051

Setting Baud rate in 8051

• Baud rate in the 8051 is programmable.

 Relationship between the crystal frequency and the baud rate in the
8051

 8051 divides the crystal frequency by 12 to get the machine cycle
frequency

 XTAL = 11.0592 MHz, the machine cycle frequency is 921.6 kHz 8051's
UART divides the machine cycle frequency of 921.6 kHz by 32 once
more before it is used by Timer 1 to set the baud rate 921.6 kHz divided
by 32 gives 28,800 Hz

Serial Data Communication in 8051

Setting Baud rate in 8051

• Timer 1 must be programmed in mode 2, that is 8-bit, auto-reload

111

Serial Data Communication in 8051

Setting Baud rate in 8051

• Timer 1 must be programmed in mode 2, that is 8-bit, auto-reload

Serial Data Communication in 8051

SBUF Register

• A byte of data to be transferred via the TxD line must be placed in the
SBUF register

• SBUF holds the byte of data when it is received by the RxD line

• SBUF can be accessed like any other register

 MOV SBUF, #'D' ; load SBUF=44H, ASCII for 'D‘

 MOV SBUF, A ; copy accumulator into SBUF

 MOV A, SBUF ; copy SBUF into accumulator

 When a byte is written in SBUF, it is framed by 8051 with the start and
stop bits and transferred serially via the TxD pin

 When the bits are received serially via RxD, it is deframed by 8051 by
eliminating the stop and start bits, making a byte out of the data
received, and then placing it in the SBUF

 Framing need not be done by programmer explicitly

Serial Data Communication in 8051

SBUF Register:

• The special function register SBUF is physically two registers.

 One is, write-only and is used to hold data to be transmitted out
of the 8051 via TXD.

 The other is, read-only and holds the received data from external
sources via RXD.

• Both mutually exclusive registers have the same address 099H.

• SBUF is not bit addressable.

Serial Data Communication in 8051

SCON Register

SCON is an 8-bit register used to program the start bit, stop bit, and data bits
of data framing, among other Things

• SM0 : Serial Mode Specifier

• SM1 : Serial Mode Speceifier

• SM2 : Used for multiprocessor Communication

• REN : Set/Cleared by Software to enable/disable reception

• TB8 : not used in Mode 1

• RB8 : Not used in Mode 1
• TI : Transmit interrupt flag. Set by HW at the begin of the stop bit mode 1.

And cleared by SW
• RI : Receive interrupt flag. Set by HW at the begin of the stop bit mode 1.

And cleared by SW

SM0 SM1 SM2 REN TB8 RB8 TI RI

Serial Data Communication in 8051

SCON Register:

SM0, SM1 determine the framing of data by specifying the
number of bits per character, and the start and stop bits

SM0 SM1 Serial Mode Description Baud Rate

0 0 Mode 0 Shift register (fosc/12)

0 1 Mode 1 9 bit UART variable

1 0 Mode 2 9 bit UART (fosc/64) or (fosc/32)

1 1 Mode 3 9 bit UART variable

Serial Data Communication in 8051

Serial Data Transmission Modes:

Mode 0

• In this mode, the serial port works like a shift register and the data
transmission works synchronously with a clock frequency of fosc /12.

• Serial data is received and transmitted through RXD.

• 8 bits are transmitted/ received at a time.

• Pin TXD outputs the shift clock pulses of frequency fosc /12, which is
connected to the external circuitry for synchronization.

• The shift frequency or baud rate is always 1/12 of the oscillator
frequency.

Serial Data Communication in 8051

Mode 1

• In mode-1, the serial port functions as a standard Universal
Asynchronous Receiver Transmitter (UART) mode.

• 10 bits are transmitted through TXD or received through RXD.

• The 10 bits consist of one start bit (which is usually '0'), 8 data bits
(LSB is sent first/received first), and a stop bit (which is usually '1').

• Once received, the stop bit goes into RB8 in the special function
register SCON. The baud rate is variable.

Serial Data Communication in 8051

Mode 2

• In this mode 11 bits are transmitted through TXD or received through
RXD.

• The various bits are as follows: a start bit (usually '0'), 8 data bits
(LSB first), a programmable 9 th (TB8 or RB8)bit and a stop bit
(usually '1').

• While transmitting, the 9 th data bit (TB8 in SCON) can be assigned
the value '0' or '1'.

 For example, if the information of parity is to be transmitted,
the parity bit (P) in PSW could be moved into TB8. On
reception of the data, the bit goes into RB8 in 'SCON', while the
stop bit is ignored.

9 th

•
• The baud rate is programmable to either 1/32 or 1/64 of the

oscillator frequency.

f baud = (2 SMOD /64) fosc.

Serial Data Communication in 8051

Mode 3

• In this mode 11 bits are transmitted through TXD or received
through RXD.

• The various bits are: a start bit (usually '0'), 8 data bits (LSB first), a
programmable 9 th bit and a stop bit (usually '1').

• Mode-3 is same as mode-2, except the fact that the baud rate in
mode-3 is variable (i.e., just as in mode-1).

• f baud = (2 SMOD /32) * (fosc / 12 (256-TH1)) .

• This baud rate holds when Timer-1 is programmed in Mode-2.

Serial Data Communication in 8051

TI and RI Flags

TI (transmit interrupt)

• When 8051 finishes the transfer of the 8-bit character, it raises the
TI flag to indicate that it is ready to transfer another byte

• TI bit is raised at the beginning of the stop bit

RI (receive interrupt)

• When the 8051 receives data serially via RxD, it places the byte in
the SBUF register then raises the RI flag bit to indicate that a byte
has been received and should be picked up before it is lost

• RI is raised halfway through the stop bit

Serial Data Communication in 8051

302

Programming the 8051 to transfer character bytes serially

1. TMOD register is loaded with the value 20H, indicating the use of

 timer 1 in mode 2 (8-bit auto-reload) to set baud rate.
2. The TH1 is loaded with one of the value to set baud rate for serial data

transfer.
3. The SCON register is loaded with the value 50H, indicating serial mode

1, where an 8- bit data is framed with start and stop bits.

4. TR1 is set to 1 to start timer 1.

5. TI is cleared by CLR TI instruction.
6. The character byte to be transferred serially is written into SBUF

register.
7. The TI flag bit is monitored with the use of instruction JNB TI,xx to see

if the character has been transferred completely.
8. To transfer the next byte, go to step 5.

Serial Data Communication in 8051

Steps that 8051 goes through in transmitting a character via
TxD

1. The byte character to be transmitted is written into the SBUF
register

2. The start bit is transferred
3. The 8-bit character is transferred on bit at a time
4. The stop bit is transferred

 It is during the transfer of the stop bit that 8051 raises the TI
flag, indicating that the last character was transmitted

5. By monitoring the TI flag, we make sure that we are not
overloading the SBUF
 If we write another byte into the SBUF before TI is raised, the

untransmitted portion of the previous byte will be lost
6. After SBUF is loaded with a new byte, the TI flag bit must be

forced to 0 by CLR TI in order for this new byte to be transferred

Serial Data Communication in 8051

Importance of TI Flag

• By checking the TI flag bit, we know whether or not the 8051 is
ready to transfer another byte

• If we write a byte into SBUF before the TI flag bit is raised, we
risk the loss of a portion of the byte being transferred

Serial Data Communication in 8051

Programming the 8051 to receive character bytes serially

1. TMOD register is loaded with the value 20H, indicating the use of

 timer 1 in mode 2 (8-bit auto-reload) to set baud rate
2. The TH1 is loaded with one of the value to set baud rate for serial data

transfer
3. The SCON register is loaded with the value 50H, indicating serial mode

1, where an 8- bit data is framed with start and stop bits

4. TR1 is set to 1 to start timer 1

5. RI is cleared by CLR RI instruction
6. The RI flag bit is monitored with the use of instruction JNB RI,xx to see

if the entire character has been received yet
7. When RI is raised, SBUF has the byte, its contents are moved into a

safe place to transfer the next byte, go to step 5

Serial Data Communication in 8051

Steps that 8051 goes through in receiving a character via RxD
1. It receives the start bit

 Indicating that the next bit is the first bit of the character byte
it is about
to receive

2. The 8-bit character is received one bit at time
3. The stop bit is received

 When receiving the stop bit 8051 makes RI = 1, indicating that
an entire character byte has been received and must be
picked up before it gets overwritten by an incoming character

4. By checking the RI flag bit when it is raised, we know that a
character has been received and is sitting in the SBUF register
 We copy the SBUF contents to a safe place in some other

register or memory before it is lost
5. After the SBUF contents are copied into a safe place, the RI flag bit

must be forced to 0 by CLR RI in order to allow the next received
character byte to be placed in SBUF
 Failure to do this causes loss of the received character

. Serial Data Communication in 8051

Importance of RI Flag

• By checking the RI flag bit, we know whether or not the 8051
received a character byte

• If we copy SBUF into a safe place before the RI flag bit is raised, we
risk copying garbage

Serial Data Communication in 8051

Serial Data Communication in 8051

Serial Data Communication in 8051

Doubling the Baud Rate in 8051

• There are two ways to increase the baud rate of data transfer

 To use a higher frequency crystal

 To set the SMOD bit in the PCON register

• PCON register is an 8-bit register, whose MSB is SMOD

• When 8051 is powered up, SMOD is zero

• We can set it to high by software and thereby double the baud rate

• PCON is not bit-addressable register. Hence, we cannot set SMOD
bit directly. This may be done as:

MOV A, PCON

SETB ACC.7

MOV PCON,A

;place a copy of PCON in ACC

;make D7=1

 ;changing any other bits

Serial Data Communication in 8051

Doubling the Baud Rate in 8051

Serial Data Communication in 8051

PCON register and Power Saving Modes in 8051

Serial Data Communication in 8051

PCON register and Power Saving Modes in 8051

• Generally speaking, the microcontroller is inactive for the most part
and just waits for some external signal in order to takes its role in a
show.

• This can cause some problems in case batteries are used for power
supply.

• In extreme cases, the only solution is to set the whole electronics in
sleep mode in order to minimize consumption.

Serial Data Communication in 8051

PCON register and Power Saving Modes in 8051

Idle Mode

• Upon the IDL bit of the PCON register is set, the microcontroller
turns off the CPU unit while peripheral units such as serial port,
timers and interrupt system continue operating normally

• In Idle mode, the state of all registers and I/O ports remains
unchanged.

• In order to exit the Idle mode and make the microcontroller
operate normally, it is necessary to reset.

• It will cause the IDL bit to be automatically cleared and the
program resumes operation from instruction having set the IDL
bit.

Serial Data Communication in 8051

PCON register and Power Saving Modes in 8051

Power Down Mode

• By setting the PD bit of the PCON register from within the
program, the microcontroller is set to Power down mode,

• In power down mode, internal oscillator is off and reduces power
consumption enormously.

• The only way to get the microcontroller back to normal mode is
by reset.

• While the microcontroller is in Power Down mode, the state of all
SFR registers and I/O ports remains unchanged.

• By setting it back into the normal mode, the contents of the SFR
register is lost, but the content of internal RAM is saved.

Serial Data Communication in 8051

Write a C program for the 8051 to transfer the letter "A" serially at 4800
baud continuously. Use 8-bit data and I stop bit.

Solution:

317

#include <reg51.h>
void main(void)
{

TMOD=0x20; //use Timer 1,8-BIT auto-reload
TH1=0xFA; //4800 baud rate
SCON=0x50;
TR1=1;
while(1)

{
SBUF=‘A’; //place value in buffer
while(TI==0);
TI=0;
}

}

Serial Data Communication in 8051

318

Unit-III
RTOS FUNDAMENTALS AND

PROGRAMMING

SYLLABUS:

 Operating system basics, types of operating systems, tasks and
task states, process and threads, multiprocessing and
multitasking, how to choose an RTOS ,task scheduling,
semaphores and queues, hard real-time scheduling
considerations, saving memory and power.

 Task communication: Shared memory, message passing, remote
procedure call and sockets; Task synchronization: Task
communication synchronization issues, task synchronization
techniques, device drivers.

319

Operating System Basics:

 The operating system acts as a bridge between the user applications /
tasks and the underlying system resources through a set of system
functionalities and services.

 The OS manages the system resources and makes them available to
the user applications/tasks on a need basis.

 A normal computing system is a collection of different I/O subsystems,
working, and storage memory.

 The primary functions of an operating system are

• Make the system convenient to use.

• Organize and manage the system resources efficiently and correctly.

Figure 1 gives an insight into the basic components of an operating system
and their interfaces with rest of the world.

320

Operating System Basics

321

Operating System Basics

(i)The Kernel:

 The kernel is the core of the operating system and is responsible for
managing the system resources and the communication among the
hardware and other system services.

 Kernel acts as the abstraction layer between system resources and
user applications.

 Kernel contains a set of system libraries and services.

322

Operating System Basics

For a general purpose OS, the kernel contains different services for
handling the following.

Process Management:

Process management deals with managing the processes/tasks. Process
management includes

Setting up the memory space for the process,

Loading the process's code into the memory space,

Allocating system resources,

Scheduling and managing the execution of the process,

Setting up and managing the Process Control Block (PCB),

Inter Process Communication and synchronization,

Process termination/deletion, etc.

323

Operating System Basics

Primary Memory Management:

The term primary memory refers to the volatile memory (RAM) where
processes are loaded and variables and shared data associated with each
process are stored.

The Memory Management Unit (MMU) of the kernel is responsible for

• Keeping track of which part of the memory area is currently used by which
process

• Allocating and De-allocating memory space on a need basis (Dynamic
memory allocation).

324

Operating System Basics

File System Management:

File is a collection of related information.

The file operation is a useful service provided by the OS.

The file system management service of Kernel is responsible for

• The creation, deletion and alteration of files.

• Creation, deletion and alteration of directories.

• Saving of files in the secondary storage memory (e.g. Hard disk storage)
• Providing automatic allocation of file space based on the amount of free
space available.

• Providing a flexible naming convention for the files.

The various file system management operations are OS dependent. For
example, the kernel of Micro-soft® DOS OS supports a specific set of file
system management operations and they are not the same as the file
system operations supported by UNIX Kernel.

325

Operating System Basics

I/O System (Device) Management:

Kernel is responsible for routing the I/O requests coming from
different user applications to the appropriate I/O devices of the
system.

In a well-structured OS, the direct accessing of I/O devices are not
allowed and the access to them are provided through a set of
Application Programming Interfaces (APIs) exposed by the kernel.

The kernel maintains a list of all the I/O devices of the system. This
list may be available in advance, at the time of building the kernel.

 Some kernels, dynamically updates the list of available devices as
and when a new device is installed (e.g. Windows XP kernel keeps
the list updated when a new plug 'n' play USB device is attached to
the system).

326

Operating System Basics

The service 'Device Manager' (Name may vary across different OS kernels)
of the kernel is responsible for handling all I/O device related operations.

The kernel talks to the I/O device through a set of low-level systems calls,
which are implemented in a service, called device drivers.

The device drivers are specific to a device or a class of devices.

The Device Manager is responsible for

• Loading and unloading of device drivers.

• Exchanging information and the system specific control signals to and
from the device.

327

Operating System Basics

Secondary Storage Management:

The secondary storage management deals with managing the secondary
storage memory devices, if any, connected to the system.

Secondary memory is used as backup medium for programs and data
since the main memory is volatile. In most of the systems, the secondary
storage is kept in disks (Hard Disk).

The secondary storage management service of kernel deals with :

• Disk storage allocation.

• Disk scheduling (Time interval at which the disk is activated to backup
data).

• Free Disk space management.

328

Operating System Basics

Protection Systems:

Most of the modern operating systems are designed in such a way to
support multiple users with different levels of access permissions (e.g.
Windows XP with user permissions like `Administrator', 'Standard',
'Restricted', etc.).

Protection deals with implementing the security policies to restrict the
access to both user and system resources by different applications or
processes or users.

In multiuser supported operating systems, one user may not be allowed
to view or modify the whole/ portions of another user's data or profile
details.

In addition, some application may not be granted with permission to
make use of some of the system resources. This kind of protection is
provided by the protection services running within the kernel.

329

Operating System Basics

Interrupt Handler:

Kernel provides handler mechanism for all external/internal interrupts
generated by the system. These are some of the important services
offered by the kernel of an operating system.

It does not mean that a kernel contains no more than components /
services explained above. Depending on the type of the operating system,
a kernel may contain lesser number of components/services or more
number of components/servicer.

Many operating systems offer a number of add-on system components /
services to the kernel. Network communication, network management,
user-interface graphics, timer services (delays, timeouts, etc.), error
handler, database management, etc. are examples for such
components/services.

330

Operating System Basics

Kernel Space and User Space:

The applications/services are classified into two categories, namely:

 User applications and kernel applications.

The program code corresponding to the kernel applications/services are
kept in a contiguous area (OS de-pendent) of primary (working) memory
and is protected from the unauthorized access by user programs/
applications.

The memory space at which the kernel code is located is known as
'Kernel Space'.

Similarly, all user applications are loaded to a specific area of primary
memory and this memory area is referred as 'User Space'.

User space is the memory area where user applications are loaded and
executed. The partitioning of memory into kernel and user space is purely
Operating System dependent.

331

Operating System Basics

 Some OS implements this kind of partitioning and protection whereas
some OS do not segregate the kernel and user application code
storage into two separate areas.

 In an operating system with virtual memory support, the user
applications are loaded into its corresponding virtual memory space
with demand paging technique; Meaning, the entire code for the user
application need not be loaded to the main (primary) memory at
once; instead the user application code is split into different pages and
these pages are loaded into and out of the main memory area on a
need basis.

 The act of loading the code into and out of the main memory is
termed as `Swapping'. Swapping happens between the main (primary)
memory and secondary storage memory.

 Each process run in its own virtual memory space and are not allowed
accessing the memory space corresponding to another processes,
unless explicitly requested by the process.

332

Operating System Basics

Monolithic Kernel and Microkernel

As we know, the kernel forms the heart of an operating system. Different
approaches are adopted for building an Operating System kernel. Based
on the kernel design, kernels can be classified into 'Monolithic' and
'Micro'.

(i) 'Monolithic’ Kernel: In monolithic kernel architecture all kernel services
run in the kernel space. Here all kernel modules run within the same
memory space under a single kernel thread.

The tight internal integration of kernel modules in monolithic kernel
architecture allows the effective utilization of the low-level features of the
underlying system.

The major drawback of monolithic kernel is that any error or failure in
any one of the kernel modules leads to the crashing of the entire kernel
application.

Examples of monolithic kernel: LINUX, SOLARIS, MS-DOS. The
architecture representation of a monolithic kernel is given in figure. 333

Operating System Basics

334

Applications

Monolithic kernel with all
operating system services
running in kernel space

Figure: Monolithic kernel model

Operating System Basics

(ii) Microkernel: The microkernel design incorporates only the essential
set of Operating System services into the kernel.

The rest of the Operating System services are implemented in programs
known as 'Servers' which runs in user space.

The kernel design is highly modular provides OS-neutral abstraction.

Memory management, process management, timer systems and
interrupt handlers are examples of essential services, which forms the
part of the microkernel.

Examples for microkernel: QNX, Minix 3 kernels.

Benefits of Microkernel:

Robustness: If a problem is encountered in any services in server can
reconfigured and re-started without the need for re-starting the entire OS.

Configurability: Any services , which run as ‘server’ application can be
changed without need to restart the whole system.

335

Operating System Basics

336

Applications

Servers (kernel
services running in
user space

Micro kernel with essential services
like memory management, process
management, timer system, etc.,

Figure: The Microkernel model

Operating System Basics

337

Types of Operating Systems:

Depending on the type of kernel and kernel services, purpose and type of
computing systems where the OS is deployed and the responsiveness to
applications, Operating Systems are classified into..

1) General Purpose Operating System (GPOS).

2) Real Time Purpose Operating System (RTOS).

338

Types of Operating Systems

1) General Purpose Operating System (GPOS):

Operating Systems, which are deployed in general computing systems,
are referred as General Purpose Operating System (GPOS).

The kernel is more generalized and contains all the required services to
execute generic applications

Need not be deterministic in execution behavior

May inject random delays into application software and thus cause slow
responsiveness of an application at unexpected times

Usually deployed in computing systems where deterministic behavior is
not an important criterion

Personal Computer/Desktop system is a typical example for a system
where GPOSs are deployed.

Windows XP/MS-DOS etc are examples of General Purpose Operating
System

339

Types of Operating Systems

2) Real Time Purpose Operating System (RTOS):

Operating Systems, which are deployed in embedded systems
demanding real-time response.

Deterministic in execution behavior. Consumes only known amount of
time for kernel applications.

Implements scheduling policies for executing the highest priority
task/application always.

Implements policies and rules concerning time-critical allocation of a
system’s resources

Windows CE, QNX, VxWorks , MicroC/OS-II etc are examples of Real
Time Operating Systems (RTOS)

340

Types of Operating Systems

The Real Time Kernel:

The kernel of a Real Time Operating System is referred as Real Time kernel.
In complement to the conventional OS kernel, the Real Time kernel is
highly specialized and it contains only the minimal set of services required
for running the user applications/tasks. The basic functions of a Real Time
kernel are

I. Task/Process management

II. Task/Process scheduling

III. Task/Process synchronization

IV. Error/Exception handling

V. Memory Management

VI. Interrupt handling

VII. Time management

341

Types of Operating Systems

I. Task/Process Management: Deals with setting up the memory space for
the tasks, loading the task’s code into the memory space, allocating
system resources, setting up a Task Control Block (TCB) for the task and
task/process termination/deletion. A Task Control Block (TCB) is used for
holding the information corresponding to a task. TCB usually contains the
following set of information.

Task ID: Task Identification Number

Task State: The current state of the task. (E.g. State= ‘Ready’ for a task
which is ready to execute)

Task Type: Task type indicates what is the type for this task. The task can
be a hard real time or soft real time or background task.

342

Types of Operating Systems

Task Priority: Task priority (E.g. Task priority =1 for task with priority).

Task Context Pointer: Context pointer. Pointer for context saving.

Task Memory Pointers: Pointers to the code memory, data memory and stack
memory for the task.

Task System Resource Pointers: Pointers to system resources (semaphores,
mutex etc) used by the task.

Task Pointers: Pointers to other TCBs (TCBs for preceding, next and waiting
tasks).

343

Types of Operating Systems

II. Task/Process Scheduling:

Deals with sharing the CPU among various tasks/processes. A kernel
application called ‘Scheduler’ handles the task scheduling.

Scheduler is nothing but an algorithm implementation, which performs
the efficient and optimal scheduling of tasks to provide a deterministic
behavior.

III. Task/Process Synchronization: Deals with synchronizing the
concurrent access of a resource, which is shared across multiple tasks and
the communication between various tasks.

344

Types of Operating Systems

IV. Error/Exception handling:

Deals with registering and handling the errors occurred/exceptions
raised during the execution of tasks.

Insufficient memory, timeouts, deadlocks, deadline missing, bus error,
divide by zero, unknown instruction execution etc, are examples of
errors/exceptions.

Errors/Exceptions can happen at the kernel level services or at task level.
Deadlock is an example for kernel level exception,

Deadlock is a situation where a set of processes are blocked because
each process is holding a resource and waiting for another resource
acquired by some other process. …

whereas timeout is an example for a task level exception. The OS kernel
gives the information about the error in the form of a system call (API).

345

Types of Operating Systems

V. Memory Management:

The memory management function of an RTOS kernel is slightly different
compared to the General Purpose Operating Systems.

The memory allocation time increases depending on the size of the
block of memory needs to be allocated and the state of the allocated
memory block (initialized memory block consumes more allocation time
than un- initialized memory block)

Since predictable timing and deterministic behavior are the primary
focus for an RTOS, RTOS achieves this by compromising the effectiveness
of memory allocation.

RTOS generally uses ‘block’ based memory allocation technique, instead
of the usual dynamic memory allocation techniques used by the GPOS.

346

Types of Operating Systems

RTOS kernel uses blocks of fixed size of dynamic memory and the block
is allocated for a task on a need basis. The blocks are stored in a ‘Free
buffer Queue’.

Most of the RTOS kernels allow tasks to access any of the memory
blocks without any memory protection to achieve predictable timing and
avoid the timing overheads.

The memory management function of an RTOS kernel is slightly different
compared to the General Purpose Operating Systems.

A few RTOS kernels implement Virtual Memory concept for memory
allocation if the system supports secondary memory storage (like HDD and
FLASH memory).

347

Types of Operating Systems

VI. Interrupt Handling:

Interrupts inform the processor that an external device or an associated
task requires immediate attention of the CPU.

Interrupts can be either Synchronous or Asynchronous.

Interrupts which occurs in sync with the currently executing task is
known as “Synchronous interrupts”. Usually the software interrupts fall
under the Synchronous Interrupt category. Divide by zero, memory
segmentation error etc are examples of Synchronous interrupts.

For synchronous interrupts, the interrupt handler runs in the same
context of the interrupting task.

Asynchronous interrupts are interrupts, which occurs at any point of
execution of any task, and are not in sync with the currently executing
task.

348

Types of Operating Systems

The interrupts generated by external connected to the processor/
controller, timer overflow interrupts, serial data reception/ transmission
interrupts etc are examples for asynchronous interrupts.

For asynchronous interrupts, the interrupt handler is usually written as
separate task (Depends on OS Kernel implementation) and it runs in a
different context. Hence, a context switch happens while handling the
asynchronous interrupts.

Priority levels can be assigned to the interrupts and each interrupts can
be enabled or disabled individually.

Most of the RTOS kernel implements ‘Nested Interrupts’ architecture.
Interrupt nesting allows the pre-emption (interruption) of an Interrupt
Service Routine (ISR), servicing an interrupt, by a higher priority interrupt.

349

Types of Operating Systems

VII. Time Management:

Interrupts inform the processor that an external device or an associated
task requires immediate attention of the CPU. Accurate time management
is essential for providing precise time reference for all applications.

The time reference to kernel is provided by a high-resolution Real Time
Clock (RTC) hardware chip (hardware timer).

The hardware timer is programmed to interrupt the processor/controller
at a fixed rate. This timer interrupt is referred as ‘Timer tick’.

The ‘Timer tick’ is taken as the timing reference by the kernel. The
‘Timer tick’ interval may vary depending on the hardware timer. Usually
the ‘Timer tick’ varies in the microseconds range.

The time parameters for tasks are expressed as the multiples of the
‘Timer tick’. The System time is updated based on the ‘Timer tick’.

 350

Types of Operating Systems

Hard Real-time System:

A Real Time Operating Systems which strictly adheres to the timing
constraints for a task.

A Hard Real Time system must meet the deadlines for a task without any
slippage.

Missing any deadline may produce catastrophic results for Hard Real
Time Systems, including permanent data lose and irrecoverable damages
to the system/users.

Emphasize on the principle ‘A late answer is a wrong answer’.

Air bag control systems and Anti-lock Brake Systems (ABS) of vehicles
are typical examples of Hard Real Time Systems.

351

Types of Operating Systems

Soft Real-time System:

 Real Time Operating Systems that does not guarantee meeting
deadlines, but, offer the best effort to meet the deadline.

 Missing deadlines for tasks are acceptable if the frequency of deadline
missing is within the compliance limit of the Quality of Service(QoS).

 A Soft Real Time system emphasizes on the principle ‘A late answer is
an acceptable answer, but it could have done bit faster’.

 Automatic Teller Machine (ATM) is a typical example of Soft Real Time
System. If the ATM takes a few seconds more than the ideal operation
time, nothing fatal happens.

 An audio video play back system is another example of Soft Real Time
system. No potential damage arises if a sample comes late by fraction
of a second, for play back.

352

Types of Operating Systems

Tasks and Task States:

The term 'task' refers to something that needs to be done.

In our day-to-day life, we are bound to the execution of a number of
tasks. The task can be the one assigned by our managers or the one
assigned by our professors/teachers or the one related to our personal or
family needs.

In addition, we will have an order of priority and schedule/timeline for
executing these tasks.

In the operating system context, a task is defined as the program in
execution and the related information maintained by the operating
system for the program.

353

Tasks and Task States

 A task is like a process or thread in an OS

 Task term used for the process in the RTOSs for the embedded

systems

 A task consists of executable program (codes), state of which is

controlled by OS

 A Task Control Block (TCB)- a data structure having the information

using which the OS controls the task state

 A task can be any one of these state running, blocked or finished.

354

Tasks and Task States

Task is also known as 'Job' in the operating system context. A
program or part of it in execution is also called a 'Process' .

The terms 'Task', `Job' and 'Process' refer to the same entity in the
operating system context and most often they are used
interchangeably.

355

Tasks and Task States

Process:

A 'Process' is a program and it is a single execution of a program.

Each process has its own state that includes registers and memory.

A process requires various system resources like CPU for executing the
process; memory for storing the code corresponding to the process and
associated variables, I/O devices for information exchange, etc.

A process is sequential in execution.

Threads-are Processes that share the same address space.

Task- composed of several processes or threads.

356

Process and Threads

(i). The Structure of a Process:

The concept of 'Process' leads to concurrent execution (pseudo
parallelism) of tasks and thereby the efficient utilization of the CPU and
other system resources.

Concurrent execution is achieved through the sharing of CPU among the
processes. A process mimics a processor in properties and holds a set of
registers, process status, a Program Counter (PC) to point to the next
executable instruction of the process, a stack for holding the local
variables associated with the process and the code corresponding to the
process. This can be visualized as shown in Figure.

357

Process and Threads

358

Stack

(Stack Pointer)

Working Registers

Status Registers

Program Counter (PC)

Process

Code Memory
corresponding
to the Process

Figure: Structure of a Process

Process and Threads

359

Memory organization of Processes:

The memory occupied by the process is
segregated into three regions namely;
Stack memory, Data memory and Code
memory.

•The Stack memory holds all temporary
data such as variables local to the process

•Data memory holds all global data for
the process

•The Code memory contains the program
code (instructions) corresponding to the
process

Fig: Memory organization of a Process

Process and Threads

(ii). Process States & State Transition:

The creation of a process to its termination is not a single step
operation.

The process traverses through a series of states during its transition from
the newly created state to the terminated state.

The cycle through which a process changes its state from ‘newly
created’ to ‘execution completed’ is known as ‘Process Life Cycle’.

The various states through which a process traverses through during a
Process Life Cycle indicates the current status of the process with respect
to time and also provides information on what it is allowed to do next.

360

Process and Threads

361

Fig: Process states and State transition

Process and Threads

Created State: The state at which a process is being created is referred as
‘Created State’. The Operating System recognizes a process in the ‘Created
State’ but no resources are allocated to the process.

Ready State: The state, where a process is incepted into the memory and
awaiting the processor time for execution, is known as ‘Ready State’. At
this stage, the process is placed in the ‘Ready list’ queue maintained by
the OS.

Running State: The state where in the source code instructions
corresponding to the process is being executed is called ‘Running State’.
Running state is the state at which the process execution happens.

362

Process and Threads

Blocked State/Wait State: Refers to a state where a running process is
temporarily suspended from execution and does not have immediate
access to resources.

The blocked state might have invoked by various conditions like- the process
enters a wait state for an event to occur

(E.g. Waiting for user inputs such as keyboard input) or waiting for getting
access to a shared resource like semaphore, mutex etc.

Completed State: A state where the process completes its execution.

The transition of a process from one state to another is known as ‘State
transition’

When a process changes its state from Ready to running or from running to
blocked or terminated or from blocked to running, the CPU allocation for
the process may also change.

363

Process and Threads

(iii). Process Management :

Process management deals with the

Creation of a process,

Setting up the memory space for the process,

Loading the process's code into the memory space,

Allocating system resources,

Setting up a Process Control Block (PCB) for the process and
Process Control Block - a data structure having the information using which the OS
controls the process state.

Stores in the protected memory area of the kernel.

Consists of the information about the process state.

Process termination/deletion.

364

Process and Threads

Threads:

A thread is the primitive that can execute code.

A thread is a single sequential flow of control
within a process.

‘Thread’ is also known as lightweight process.

A process can have many threads of execution.

365

Different threads, which are part of a process, share the same address
space; meaning they share the data memory, code memory and heap
memory area.

Threads maintain their own thread status (CPU register values),
Program Counter (PC) and stack.

Figure : Memory organization of
process and its associated Threads

Process and Threads

Advantages of Threads:

 Better memory utilization: Multiple threads of the same process share
the address space for data memory. This also reduces the complexity of
inter thread communication since variables can be shared across the
threads.

 Efficient CPU utilization: The CPU is engaged all time.

 Speeds up the execution of the process: The process is split into
different threads, when one thread enters a wait state, the CPU can be
utilized by other threads of the process that do not require the event,
which the other thread is waiting, for processing.

366

Process and Threads

Multiprocessing and Multitasking

Multiprocessing and Multitasking:

 The terms multiprocessing and multitasking are a little confusing and
sounds alike.

 In the operating system context, “Multiprocessing” defines as the
ability to execute multiple processes simultaneously. Systems which
are capable of performing multiprocessing are known as
multiprocessor systems.

 Multiprocessor systems possess multiple CPUs and can execute
multiple processes simultaneously.

 The ability of the operating system to have multiple programs in
memory, which are ready for execution, is referred as
“Multiprogramming” .

367

 In a uniprocessor system, it is not possible to execute multiple
processes simultaneously. However, it is possible for a uniprocessor
system to achieve some degree of pseudo parallelism in the execution
of multiple processes by switching the execution among different
processes.

 “Multitasking” refers to the ability of an operating system to hold
multiple processes in memory and switch the processor (CPU) from
executing one process to another process.

 Multitasking creates the illusion of multiple tasks executing in parallel.
Multitasking involves the switching of CPU from executing one task to
another.

368

Multiprocessing and Multitasking

 The switching of the virtual processor to physical processor is
controlled by the scheduler of the OS kernel.

 Whenever a CPU switching happens, the current context of execution
should be saved to retrieve it at a later point of time when the CPU
executes the process, which is interrupted currently due to execution
switching.

 The context saving and retrieval is essential for resuming a process
exactly from the point where it was interrupted due to CPU switching.

 The act of switching CPU among the processes or changing the current
execution context is known as 'Context switching'.

369

Multiprocessing and Multitasking

 The act of saving the current context which contains the context
details (Register details, memory details, system resource usage
details, execution details, etc.) for the currently running process at the
time of CPU switching is known as 'Context saving'.

 The process of retrieving the saved context details for a process, which
is going to be executed due to CPU switching, is known as 'Context
retrieval'.

 Multitasking involves 'Context switching', 'Context saving' and
'Context retrieval'.

370

Multiprocessing and Multitasking

Example:

 Toss juggling—The skilful object manipulation game is a classic real
world example for the multitasking illusion. The juggler uses a number
of objects (balls, rings, etc.) and throws them up and catches them.

 At any point of time, he throws only one ball and catches only one per
hand. However, the speed at which he is switching the balls for
throwing and catching creates the illusion, he is throwing and catching
multiple balls or using more than two hands simultaneously, to the
spectators.

371

Multiprocessing and Multitasking

372

Figure: Context Switching

Multiprocessing and Multitasking

Types of Multitasking :

Depending on how the task/process execution switching act is
implemented, multitasking can is classified into

373

(i).Co-operative Multitasking:
In co-operative multitasking, the programs or applications that are
running on an operating system uses the processor and the resources
associated with that operating system for the execution of the
program or application.

When the application is complete the processor becomes free and is
then allocated to the next application in queue. But the behavior of
time assignment of multitasking operating system causes a problem,
this means if a task goes into a loop or it gets blocked, then all the
other applications are stopped. This can also stop the whole operating
system .

Multiprocessing and Multitasking

374

Co-operative multitasking is the most primitive form of multitasking in
which a task/process gets a chance to execute only when the currently
executing task/process voluntarily relinquishes the CPU.

•In this method, any task/process can avail the CPU as much time as it
wants. Since this type of implementation involves the mercy of the
tasks each other for getting the CPU time for execution, it is known as
co-operative multitasking.

•If the currently executing task is non-cooperative, the other tasks may
have to wait for a long time to get the CPU

Multiprocessing and Multitasking

(ii). Preemptive Multitasking:

Preemptive multitasking ensures that every task/process gets a chance to
execute. When and how much time a process gets is dependent on the
implementation of the preemptive scheduling.

As the name indicates, in preemptive multitasking, the currently running
task/process is preempted to give a chance to other tasks/process to
execute.

The preemption of task may be based on time slots or task/process
priority

375

Multiprocessing and Multitasking

(iii). Non-preemptive Multitasking:

The process/task, which is currently given the CPU time, is allowed to
execute until it terminates (enters the ‘Completed’ state) or enters the
‘Blocked/Wait’ state, waiting for an I/O.

The co-operative and non-preemptive multitasking differs in their
behavior when they are in the ‘Blocked/Wait’ state. In co-operative
multitasking, the currently executing process/task need not relinquish the
CPU when it enters the ‘Blocked/Wait’ state, waiting for an I/O, or a
shared resource access or an event to occur whereas in non-preemptive
multitasking the currently executing task relinquishes the CPU when it
waits for an I/O.

376

Multiprocessing and Multitasking

How to choose RTOS:

The decision of an RTOS for an embedded design is very critical.

A lot of factors need to be analyzed carefully before making a decision on
the selection of an RTOS.

These factors can be either

1. Functional requirements.

2. Non-functional requirements.

377

How to choose RTOS

378

1. Functional Requirements:

i. Processor support:
•It is not necessary that all RTOS’s support all kinds of processor
architectures.
•It is essential to ensure the processor support by the RTOS.

ii. Memory Requirements:
•The RTOS requires ROM memory for holding the OS files and it is
normally stored in a non-volatile memory like FLASH.

•OS also requires working memory RAM for loading the OS service.
•Since embedded systems are memory constrained, it is essential to
evaluate the minimal RAM and ROM requirements for the OS under
consideration.

How to choose RTOS: Functional Requirements

iii. Real-Time Capabilities:

•It is not mandatory that the OS for all embedded systems need to be
Real- Time and all embedded OS’s are ‘Real-Time’ in behavior.

•The Task/process scheduling policies plays an important role in the Real-
Time behavior of an OS.

iv. Kernel and Interrupt Latency:

•The kernel of the OS may disable interrupts while executing certain
services and it may lead to interrupt latency.

•For an embedded system whose response requirements are high, this
latency should be minimal.

v. Inter process Communication (IPC) and Task Synchronization:

•The implementation of IPC and Synchronization is OS kernel dependent.

379

How to choose RTOS: Functional Requirements

vi. Modularization Support:

•Most of the OS’s provide a bunch of features.

•It is very useful if the OS supports modularization where in which the
developer can choose the essential modules and re-compile the OS image
for functioning.

vii. Support for Networking and Communication:

•The OS kernel may provide stack implementation and driver support for a
bunch of communication interfaces and networking.

•Ensure that the OS under consideration provides support for all the
interfaces required by the embedded product.

viii. Development Language Support:

•Certain OS’s include the run time libraries required for running
applications written in languages like JAVA and C++.

•The OS may include these components as built-in component, if not;
check the availability of the same from a third party.

380

How to choose RTOS: Functional Requirements

2. Non-Functional Requirements:

i. Custom Developed or Off the Shelf:

•It is possible to go for the complete development of an OS suiting the
embedded system needs or use an off the shelf, readily available OS.

•It may be possible to build the required features by customizing an open
source OS.

•The decision on which to select is purely dependent on the development
cost, licensing fees for the OS, development time and availability of skilled
resources.

ii. Cost:

•The total cost for developing or buying the OS and maintaining it in terms
of commercial product and custom build needs to be evaluated before
taking a decision on the selection of OS.

381

 How to choose RTOS: Non-Functional Requirements

iii. Development and Debugging tools Availability:

•The availability of development and debugging tools is a critical decision
making factor in the selection of an OS for embedded design.

•Certain OS’s may be superior in performance, but the availability of tools
for supporting the development may be limited.

iv. Ease of Use:

•How easy it is to use a commercial RTOS is another important feature
that needs to be considered in the RTOS selection.

v. After Sales:

•For a commercial embedded RTOS, after sales in the form of e-mail, on-
call services etc. for bug fixes, critical patch updates and support for
production issues etc. should be analyzed thoroughly.

382

 How to choose RTOS: Non-Functional Requirements

383

Task Scheduling:
In a multitasking system, there should be some mechanism in place
to share the CPU among the different tasks and to decide which
process/task is to be executed at a given point of time.

Determining which task/process is to be executed at a given point of
time is known as “task/process scheduling”.
Task scheduling forms the basis of multitasking.

Scheduling policies forms the guidelines for determining which task
is to be executed when.

The scheduling policies are implemented in an algorithm and it is run
by the kernel as a service.

Task Scheduling

The kernel service/application, which implements the scheduling
algorithm, is known as ‘Scheduler’

The task scheduling policy can be pre-emptive, non-preemptive or co-
operative

Depending on the scheduling policy the process scheduling decision may
take place when a process switches its state to

‘Ready’ state from ‘Running’ state

‘Blocked/Wait’ state from ‘Running’ state

‘Ready’ state from ‘Blocked/Wait’ state

‘Completed’ state

384

Task Scheduling

The selection of a scheduling criteria/algorithm should consider the
following factors:

CPU Utilization: The scheduling algorithm should always make the CPU
utilization high. CPU utilization is a direct measure of how much
percentage of the CPU is being utilized.

Throughput: This gives an indication of the number of processes executed
per unit of time. The throughput for a good scheduler should always be
higher.

Turnaround Time: It is the amount of time taken by a process for
completing its execution. It includes the time spent by the process for
waiting for the main memory, time spent in the ready queue, time spent
on completing the I/O operations, and the time spent in execution. The
turnaround time should be a minimum for a good scheduling algorithm.

385

Task Scheduling

Waiting Time: It is the amount of time spent by a process in the ‘Ready’
queue waiting to get the CPU time for execution. The waiting time should
be minimal for a good scheduling algorithm.

Response Time: It is the time elapsed between the submission of a
process and the first response. For a good scheduling algorithm, the
response time should be as least as possible.

Note: To summarize, a good scheduling algorithm has high CPU utilization,
minimum Turn around Time (TAT), maximum throughput and least response
time.

386

Task Scheduling

Task Scheduling – Queues:

The various queues maintained by OS in association with CPU scheduling
are:

Job Queue: Job queue contains all the processes in the system.

Ready Queue: Contains all the processes, which are ready for execution
and waiting for CPU to get their turn for execution. The Ready queue is
empty when there is no process ready for running.

Device Queue: Contains the set of processes, which are waiting for an I/O
device.

387

Task Scheduling

388

Figure: Illustration of Process Transition through various queues

Classification of Scheduling

Based on the scheduling algorithm used, the scheduling can be
classified into the following categories.

1.Non-preemptive Scheduling:

 Non-preemptive scheduling is employed in systems, which implement
non-preemptive multitasking model.

In this scheduling type, the currently executing task/process is allowed to
run until it terminates or enters the `Wait' state waiting for an I/O or
system resource.

389

Classification of Scheduling

The various types of non-preemptive scheduling adopted in task/process
scheduling are listed below.

(i). First-Come-First-Served (FCFS)/FIFO Scheduling:

As the name indicates, the First-Come-First-Served (FCFS) scheduling
algorithm allocates CPU time to the processes based on the order in
which they enter the 'Ready' queue.

The first entered process is serviced first. It is same as any real world
application where queue systems are used; e.g. Ticketing reservation
system where people need to stand in a queue and the first person
standing in the queue is serviced first.

FCFS scheduling is also known as First In First Out (FIFO) where the
process which is put first into the 'Ready' queue is serviced first.

390

Classification of Scheduling

(ii). Last-Come-First Served (LCFS)/LIFO Scheduling:

The Last-Come-First Served (LCFS) scheduling algorithm also
allocates CPU time to the processes based on the order in which they
are entered in the 'Ready' queue.

The last entered process is serviced first. LCFS scheduling is also
known as Last In First Out (LIFO) where the process, which is put last
into the 'Ready' queue, is serviced first.

391

Classification of Scheduling

(iii). Shortest Job First (SJF) Scheduling:

Shortest Job First (SJF) scheduling algorithm 'sorts the 'Ready' queue'
each time a process relinquishes the CPU (either the process
terminates or enters the `Wait' state waiting for I/O or system resource)
to pick the process with shortest (least) estimated completion/run
time.

In SJF, the process with the shortest estimated run time is scheduled
first, followed by the next shortest process, and so on.

392

Classification of Scheduling

(iv). Priority Based Scheduling:

The Turn Around Time (TAT) and waiting time for processes in non-
preemptive scheduling varies with the type of scheduling algorithm.

The priority of a task/process can be indicated through various
mechanisms. The Shortest Job First (SJF) algorithm can be viewed as a
priority based scheduling where each task is prioritized in the order the
time required to complete the task.

The lower the time required for completing a process the higher is
the priority in SJF algorithm.

Another way of priority assigning is associating a priority to the
task/process at the time of creation of the task/process. The priority is
a number ranging from 0 to the maximum priority supported by the OS.

393

Classification of Scheduling

For Example, Windows CE supports 256 levels of priority (0 to 255
priority numbers). While creating the process/task, the priority can be
assigned to it. The priority number associated with a task/process is the
direct indication of its priority.

The priority variation from high to low is represented by numbers
from 0 to the maximum priority or by numbers from maximum priority
to 0. For Windows CE operating system a priority number' 0 indicates
the highest priority and 255 indicates the lowest priority.

394

Classification of Scheduling

2.Preemptive Scheduling:

In preemptive scheduling, every task in the ' Ready' queue gets a
chance to execute. When and how often each process gets a chance to
execute (gets the CPU time) is dependent on the type of preemptive
scheduling algorithm used for scheduling the processes.

In this kind of scheduling, the scheduler can preempt (stop
temporarily) the currently executing task/process and select another
task from the 'Ready' queue for execution.

When to pre-empt a task and which task is to be picked up from the
'Ready' queue for execution after preempting the current task is
purely dependent on the scheduling algorithm. A task which is
preempted by the scheduler is moved to the `Ready' queue. The act of
moving a `Running' process/task into the `Ready' queue by the
scheduler, without the processes requesting for it is known as
‘Preemption’.

 395

Classification of Scheduling

Preemptive scheduling can be implemented in different approaches.

The two important approaches adopted in preemptive scheduling are
time-based preemption and priority-based preemption.

The various types of preemptive scheduling adopted in task/process
scheduling are explained below.

396

Classification of Scheduling

(i).Preemptive SJF Scheduling/Shortest Remaining Time (SRT):

The non-preemptive SJF scheduling algorithm sorts the 'Ready' queue
only after completing the execution of the current process or when the
process enters 'Wait' state, whereas the preemptive SF scheduling
algorithm sorts the 'Ready' queue when a new process enters the
'Ready' queue and checks whether the execution time of the new
process is shorter than the remaining of the total estimated time for
the currently executing process.

397

Classification of Scheduling

If the execution time of the new process is less, the currently
executing process is preempted and the new process is scheduled for
execution.

Thus preemptive SJF scheduling always compares the execution
completion time (It is same as the remaining time for the new process)
of a new process entered the 'Ready' queue with the remaining time
for completion of the currently executing process and schedules the
process with shortest remaining time for execution.

Preemptive SJF scheduling is also known as Shortest Remaining Time
(SRT) scheduling.

398

Classification of Scheduling

EXAMPLE:

Three processes with process IDs P1, P2, P3 with estimated completion
time 10, 5, 7 milliseconds respectively enters the ready queue together.
A new process P4 with estimated completion time 2ms enters the
‘Ready’ queue after 2ms. Assume all the processes contain only CPU
operation and no I/O operations are involved.

399

Classification of Scheduling

Solution:

At the beginning, there are only three processes (P1, P2 and P3) available
in the ‘Ready’ queue and the SRT scheduler picks up the process with the
Shortest remaining time for execution completion (In this example P2 with
remaining time 5ms) for scheduling.

Now process P4 with estimated execution completion time 2ms enters the
‘Ready’ queue after 2ms of start of execution of P2. The processes are re-
scheduled for execution in the following order

400

Classification of Scheduling

The waiting time for all the processes are given as

Waiting Time for P2 = (4 -2) ms = 2ms (P2 starts executing first and is
interrupted by P4 and has to wait till the completion of P4 to get the next
CPU slot)

Waiting Time for P4 = 0 ms (P4 starts executing by preempting P2 since
the execution time for completion of P4 (2ms) is less than that of the
Remaining time for execution completion of P2 (Here it is 3ms))

Waiting Time for P3 = 7 ms (P3 starts executing after completing P4 and
P2)

Waiting Time for P1 = 14 ms (P1 starts executing after completing P4, P2
and P3).

401

Classification of Scheduling

 = (Waiting time for (P4+P2+P3+P1)) / 4

 = (0 + 2 + 7 + 14)/4 = 23/4

 = 5.75 milliseconds

402

Processes of No.

processes) theallfor time(Waiting
 time waitingAverage

Classification of Scheduling

Turn around Time (TAT) for P2 = 7 ms (Time spent in Ready Queue +
Execution Time).

Turn Around Time (TAT) for P4 = 2 ms

= (Execution Start Time – Arrival Time) + Estimated Execution Time = (2-2) + 2)

Turn around Time (TAT) for P3 = 14 ms

Turn around Time (TAT) for P1 = 24

 = (Turn Around Time for (P2+P4+P3+P1)) / 4

 = (7+2+14+24)/4 = 47/4

 = 11.75 milliseconds.

 403

s)ofProcesse (No.

processes) theallfor Time around(Turn
 Time aroundTurn Average

Classification of Scheduling

(ii). Round Robin (RI) Scheduling:

The term Round Robin is very popular among the sports and games
activities. You might have heard about 'Round Robin' league or 'Knock
out' league associated with any football or cricket tournament.

In the 'Round Robin' league each team in a group gets an equal
chance to play against the rest of the teams in the same group whereas
in the 'Knock out' league the losing team in a match moves out of the
tournament .

In Round Robin scheduling, each process in the 'Ready' queue is
executed for a pre-defined time slot.

404

Classification of Scheduling

The execution starts with picking up the first process in the 'Ready'
queue. It is executed for a pre-defined time and when the pre-defined
time elapses or the process completes (before the pre-defined time
slice), the next process in the 'Ready' queue is selected for execution.

This is repeated for all the processes in the 'Ready' queue. Once each
process in the 'Ready' queue is executed for the pre-defined time
period, the scheduler comes back and picks the first process in the
'Ready' queue again for execution.

The sequence is repeated. This reveals that the Round Robin
scheduling is similar to the FCFS scheduling and the only difference is
that a time slice based preemption is added to switch the execution
between the processes in the `Ready' queue.

The 'Ready' queue can be considered as a circular.

405

Classification of Scheduling

406

Figure: Round Robin Scheduling

Classification of Scheduling

Example:

Three processes with process IDs P1, P2, P3 with estimated completion
time 6, 4, 2 milliseconds respectively, enters the ready queue together
in the order P1, P2, P3. Calculate the waiting time and Turn Around
Time (TAT) for each process and the Average waiting time and Turn
Around Time (Assuming there is no I/O waiting for the processes) in RR
algorithm with Time slice= 2ms.

407

Classification of Scheduling

Solution:

The scheduler sorts the ‘Ready’ queue based on the FCFS policy and picks
up the first process P1 from the ‘Ready’ queue and executes it for the
time slice 2ms.

When the time slice is expired, P1 is preempted and P2 is scheduled for
execution. The Time slice expires after 2ms of execution of P2. Now P2 is
preempted and P3 is picked up for execution. P3 completes its execution
within the time slice and the scheduler picks P1 again for execution for the
next time slice.

This procedure is repeated till all the processes are serviced. The order in
which the processes are scheduled for execution is represented as

408

Classification of Scheduling

The waiting time for all the processes are given as

Waiting Time for P1 = (6-2) + (10-8) = 4+2= 6ms (P1 starts executing first
and waits for two time slices to get execution back and again 1 time slice
for getting CPU time).

Waiting Time for P2 = (2-0) + (8-4) = 2+4 = 6ms (P2 starts executing after
P1 executes for 1 time slice and waits for two time slices to get the CPU
time)

Waiting Time for P3 = (4 -0) = 4ms (P3 starts executing after completing
the first time slices for P1 and P2 and completes its execution in a single
time slice.)

Average waiting time = (Waiting time for all the processes) / No. of Processes

 = (Waiting time for (P1+P2+P3)) / 3

 = (6+6+4)/3 = 16/3

 = 5.33 milliseconds

409

Classification of Scheduling

Turn around Time (TAT) for P1 = 12 ms (Time spent in Ready Queue + Execution Time)

Turn Around Time (TAT) for P2 = 10 ms (-Do-)

Turn Around Time (TAT) for P3 = 6 ms (-Do-)

 = (Turn Around Time for (P1+P2+P3)) / 3

 = (12+10+6)/3 = 28/3

 = 9.33 milliseconds.

410

s)ofProcesse (No.

processes) theallfor Time around(Turn
 Time aroundTurn Average

Classification of Scheduling

(iii). Priority Based Scheduling:

Priority based preemptive scheduling algorithm is same as that of the
non-preemptive priority based scheduling except for the switching of
execution between tasks.

In preemptive scheduling, any high priority process entering the 'Ready'
queue is immediately scheduled for execution whereas in the non-
preemptive scheduling any high priority process entering the 'Ready'
queue is scheduled only after the currently executing process completes
its execution or only when it voluntarily relinquishes the CPU.

The priority of task/process in preemptive scheduling is indicated in the
same way as that of the mechanism, adopted for non-preemptive
multitasking.

411

Classification of Scheduling

EXAMPLE:

Three processes with process IDs P1, P2, P3 with estimated completion
time 10, 5, 7 milliseconds and priorities 1, 3, 2 (0- highest priority, 3
lowest priority) respectively enters the ready queue together. A new
process P4 with estimated completion time 6ms and priority 0 enters
the ‘Ready’ queue after 5ms of start of execution of P1. Assume all the
processes contain only CPU operation and no I/O operations are
involved.

412

Classification of Scheduling

Solution:

At the beginning, there are only three processes (P1, P2 and P3)
available in the ‘Ready’ queue and the scheduler picks up the process with
the highest priority (In this example P1 with priority 1) for scheduling.

Now process P4 with estimated execution completion time 6ms and
priority 0 enters the ‘Ready’ queue after 5ms of start of execution of P1.
The processes are re-scheduled for execution in the following order

413

Classification of Scheduling

The waiting time for all the processes are given as

Waiting Time for P1 = 0 + (11-5) = 0+6 =6 ms (P1 starts executing first and
gets Preempted by P4 after 5ms and again gets the CPU time after
completion of P4).

Waiting Time for P4 = 0 ms (P4 starts executing immediately on entering
the ‘Ready’ queue, by preempting P1)

Waiting Time for P3 = 16 ms (P3 starts executing after completing P1 and
P4)

Waiting Time for P2 = 23 ms (P2 starts executing after completing P1, P4
and P3)

414

Classification of Scheduling

 = (Waiting time for (P1+P4+P3+P2)) / 4

 = (6 + 0 + 16 + 23)/4 = 45/4

 = 11.25 milliseconds

Turn Around Time (TAT) for P1 = 16 ms (Time spent in Ready Queue +
Execution Time).

Turn Around Time (TAT) for P4 = 6ms (Time spent in Ready Queue +
Execution Time).

 = (5-5) + 6 = 6.

415

Average waiting time = (Waiting time for all the processes) / No. of Processes

Classification of Scheduling

Turn Around Time (TAT) for P3 = 23 ms (Time spent in Ready Queue +
Execution Time).

Turn Around Time (TAT) for P2 = 28 ms (Time spent in Ready Queue +
Execution Time).

 = (Turn Around Time for (P2+P4+P3+P1)) / 4

 = (16+6+23+28)/4 = 73/4

 = 18.25 milliseconds.

416

s)ofProcesse (No.

processes) theallfor Time around(Turn
 Time aroundTurn Average

Classification of Scheduling

Semaphores:

A semaphore is nothing but a value or variable or data which can control
the allocation of a resource among different tasks in a parallel
programming environment. The concept of semaphore was first proposed
by the Dutch computer scientist Edsger Dijkstra in the year 1965.

So, Semaphores are a useful tool in the prevention of race conditions
and deadlocks; however, their use is by no means a guarantee that a
program is free from these problems.

Semaphores which allow an arbitrary resource count are called counting
semaphores, while semaphores which are restricted to the values 0 and 1
(or locked/unlocked, unavailable/available) are called binary semaphores.

417

Semaphores

418

The operation of a semaphore can be understood from the following
diagram.

Semaphores

Types of Semaphores: There are three types of semaphores

(i).Binary Semaphores,

(ii).Counting Semaphores and

(iii).Mutexes.

A binary semaphore is a synchronization object that can have only two
states 0 or 1 i.e not taken and taken.

Take: Taking a binary semaphore brings it in the “taken” state, trying to
take a semaphore that is already taken enters the invoking thread into a
waiting queue.

Release: Releasing a binary semaphore brings it in the “not taken” state if
there are not queued threads. If there are queued threads then a thread
is removed from the queue and resumed, the binary semaphore remains
in the “taken” state. Releasing a semaphore that is already in its “not
taken” state has no effect.

419

Semaphores

 Binary semaphores have no ownership attribute and can be released
by any thread or interrupt handler regardless of who performed the
last take operation.

 Because of this binary semaphores are often used to synchronize
threads with external events implemented as ISRs, for example
waiting for a packet from a network or waiting that a button is
pressed. Because there is no ownership concept a binary semaphore
object can be created to be either in the “taken” or “not taken” state
initially.

420

Semaphores

Counting Semaphores:

A counting semaphore is a synchronization object that can have an
arbitrarily large number of states. The internal state is defined by a signed
integer variable, the counter.

The counter value (N) has a precise meaning:

The Negative value indicates that, there are exactly -N threads queued
on the semaphore.

The Zero value indicates that no waiting threads, a wait operation
would put in queue the invoking thread.

The Positive value indicates that no waiting threads, a wait operation
would not put in queue the invoking thread.

Two operations are defined for counting the semaphores.

421

Semaphores

Two operations are defined for counting the semaphores.

Wait: This operation decreases the semaphore counter .If the result is
negative then the invoking thread is queued.

Signal: This operation increases the semaphore counter .If the result is
nonnegative then a waiting thread is removed from the queue and resumed.

Counting semaphores have no ownership attribute and can be signaled by
any thread or interrupt handler regardless of who performed the last wait
operation .Because there is no ownership concept a counting semaphore
object can be created with any initial counter value as long it is non-negative.

The counting semaphores are usually used as guards of resources available in
a discrete quantity. For example the counter may represent the number of
used slots into a circular queue, producer threads would “signal” the
semaphores when inserting items in the queue, consumer threads would
“wait” for an item to appear in queue, this would ensure that no consumer
would be able to fetch an item from the queue if there are no items available.

422

Semaphores

The OS function calls provided for Semaphore management are

 Create a semaphore

 Delete a semaphore

 Acquire a semaphore

 Release a semaphore

 Query a semaphore

423

Semaphores

Mutexes :

 Mutex means mutual exclusion. A mutex is a synchronization object
that can have only two states. They are not-owned and owned. Two
operations are defined for mutexes.

 Lock: This operation attempts to take ownership of a mutex, if the
mutex is already owned by another thread then the invoking thread is
queued.

 Unlock: This operation relinquishes ownership of a mutex. If there are
queued threads then a thread is removed from the queue and
resumed, ownership is implicitly assigned to the thread.

 Mutex is basically a locking mechanism where a process locks a
resource using mutex. As long as the process has mutex, no other
process can use the same resource. Once process is done with
resource, it releases the mutex. Here comes the concept of ownership.
Mutex is locked and released by the same process/thread. It cannot
happen that mutex is acquired by one process and released by other.

424

Mutexes

So, unlike semaphores, mutexes have owners. A mutex can be unlocked
only by the thread that owns it. Most RTOSs implement this protocol in
order to address the Priority Inversion problem.

Semaphores can also handle mutual exclusion problems but are best
used as a communication mechanism between threads or between ISRs
and threads.

The OS functions calls provided for mutex management are

Create a mutex

Delete a mutex

Acquire a mutex

Release a mutex

Query a mutex

Wait on a mutex

425

Mutexes

Hard Real-Time Scheduling Considerations

■ Meet the hard deadline.

■ To some extent, the ability to meet hard deadlines comes from writing
fast code.

■ For hard real-time systems, it is important to write subroutines that
always execute in the same amount of time or that have a clearly
identifiable worst case.

■ Fixed sized buffer is preferred to a general purpose malloc().

■ Tasks that avoid semaphores are preferable, since the worst case
performance does not depend upon other tasks who use the same
semaphore .

426

Hard Real-Time Scheduling Considerations

Saving memory:

Embedded systems often have limited memory.

RTOS: each task needs memory space for its stack.

The first method for determining how much stack space a task needs is

to examine your code.

The second method is experimental. Fill each stack with some

recognizable data pattern at startup, run the system for a period of time.

427

Saving Memory

Program Memory:

Limit the number of functions used

Check the automatic inclusions by your linker: may consider writing own
functions

Include only needed functions in RTOS

Consider using assembly language for large routines

Data Memory:

Consider using more static variables instead of stack variables

On 8-bit processors, use char instead of int when possible

428

Saving Memory

Few ways to save code space:

 Make sure that you are not using two functions to do the same thing.

 Check that your development tools are not sabotaging you.

 Configure your RTOS to contain only those functions that you need.

 Look at the assembly language listings created by your cross-compiler

to see if certain of your C statements translate into huge numbers of

instructions.

429

Saving Memory

Saving Power:

 The primary method for preserving battery power is to turn off parts
or all of the system whenever possible.

 Most embedded-system microprocessors have at least one power-
saving mode; many have several.

 The modes have names such as sleep mode, low-power mode, idle
mode, standby mode, and so on.

 A very common power-saving mode is one in which the
microprocessor stops executing instructions, stops any built-in
peripherals, and stops its clock circuit. This saves a lot of power, but
the drawback typically is that the only way to start the microprocessor
up again is to reset it.

430

Saving Power

 Static RAM uses very little power when the microprocessor isn't
executing instructions.

 Another typical power-saving mode is one in which the
microprocessor stops executing instructions but the on-board
peripherals continue to operate.

 Another common method for saving power is to turn off the entire
system and have the user turn it back on when it is needed.

431

Saving Power

TASK COMMUNICATION

432

TASK COMMUNICATION:

In a multitasking system, multiple tasks/processes run concurrently (in
pseudo parallelism) and each process may or may not interact between.

Based on the degree of interaction, the processes running on an OS are
classified as,

1.Co-operating Processes: In the co-operating interaction model one
process requires the inputs from other processes to complete its
execution.

2.Competing Processes: The competing processes do not share anything
among themselves but they share the system resources. The competing
processes compete for the system resources such as file, display device,
etc.

433

Task Communication

Co-operating processes exchanges information and communicate
through the following methods.

Co-operation through Sharing: The co-operating process exchange data
through some shared resources.

Co-operation through Communication: No data is shared between the
processes. But they communicate for synchronization.

The mechanism through which processes/tasks communicate each other
is known as “Inter Process/Task Communication (IPC)”.

Inter Process Communication is essential for process co-ordination. The
various types of Inter Process Communication (IPC) mechanisms adopted
by process are kernel (Operating System) dependent.

Some of the important IPC mechanisms adopted by various kernels are
explained below.

 434

Task Communication

1.Shared Memory:

Processes share some area of the memory to communicate among
them. Information to be communicated by the process is written to the
shared memory area.

Other processes which require this information can read the same from
the shared memory area.

Figure: Concept of shared memory

It is same as the real world example where 'Notice Board' is used by
corporate to publish the public information among the employees.

The implementation of shared memory concept is kernel dependent.
Different mechanisms are adopted by different kernels for implementing
this. A few among them are:

435

Process 1
Shared

Memory Area
Process 2

Task Communication

(i)Pipes:

'Pipe' is a section of the shared memory used by processes for
communicating.

Pipes follow the client-server architecture. A process which creates a
pipe is known as a pipe server and a process which connects to a pipe is
known as pipe client.

A pipe can be considered as a conduit for information flow and has two
conceptual ends. It can be unidirectional, allowing information flow in one
direction or bidirectional allowing bi-directional information flow.

A unidirectional pipe allows the process connecting at one end of the
pipe to write to the pipe and the process connected at the other end of
the pipe to read the data, whereas a bi-directional pipe allows both
reading and writing at one end.

436

Task Communication

The unidirectional pipe can be visualized as

437

Pipe
(Named/un-named)

Process 1
Write

Process 2
Read

Figure: Concept of pipe for IPC

Microsoft® Windows Desktop Operating Systems support two types of 'Pipes' for
Inter Process Communication. They are:
Anonymous Pipes: The anonymous pipes-are unnamed, unidirectional pipes
used for data transfer between two processes.
Named Pipes: Named pipe is a named, unidirectional or bi-directional pipe for
data exchange between processes. Like anonymous pipes, the process which
creates the named pipe is known as pipe server. A process which connects to the
named pipe is known as pipe client.
With named pipes, any process can act as both client and server allowing point-
to-point communication. Named pipes can be used for communicating between
processes running on the same machine or between processes running on
different machines connected to a network.

Task Communication

(ii)Memory Mapped Objects:

Memory mapped object is a shared memory technique adopted by
certain Real-Time Operating Systems for allocating a shared block of
memory which can be accessed by multiple process simultaneously (of
course certain synchronization techniques should be applied to prevent
inconsistent results).

In this approach a mapping object is created and physical storage for it is
reserved and committed.

A process can map the entire committed physical area or a block of it to
its virtual address space. All read and write operation to this virtual
address space by a process is directed to its committed physical area.

Any process which wants to share data with other processes can map
the physical memory area of the mapped object to its virtual memory
space and use it for sharing the data.

438

Task Communication

2.Message Passing:

Message passing-is an (a)synchronous information exchange mechanism
used for Inter Process/Thread Communication.

The major difference between shared memory and message passing
technique is that, through shared memory lots of data can be shared
whereas only limited amount of info/data is passed through message
passing.

Also message passing is relatively fast and free from the synchronization
overheads compared to shared memory.

Based on the message passing operation between the processes,
message passing is classified into:

i. Message Queue.

ii. Mailbox.

iii. Signaling.
439

Task Communication

(i).Message Queue:

Usually the process which wants to talk to another process posts the
message to a First-In-First-Out (FIFO) queue called 'Message queue',
which stores the messages temporarily in a system-defined memory
object, to pass it to the desired process.

Messages are sent and received through send (Name of the process to
which the message is to be sent-message) and receive (Name of the
process from which the message is to be received, message) methods.
The messages are exchanged through' a message queue.

440

Message Queue

Process 1 Process 2

Task Communication

A thread which wants to communicate with another thread posts the
message to the system message queue. The kernel picks up the message
from the system message queue one at a time and examines the message
for finding the destination thread and then posts the message to the
message queue of the corresponding thread.

For posting a message to a thread's message queue, the kernel fills a
message structure MSG and copies it to the message queue of the thread.

 The message structure MSG contains the handle of the process/thread
for which the message is intended, the message parameters, the time at
which the message is posted, etc.

441

Task Communication

A thread can simply post a message to another thread and can continue
its operation or it may wait for a response from the thread to which the
message is posted.

The messaging mechanism is classified into synchronous and
asynchronous based on the behaviour of the message posting thread.

In Asynchronous messaging, the message posting thread just posts the
message to the queue and it will not wait for an acceptance (return) from
the thread to which the message is posted,

whereas in Synchronous messaging, the thread which posts a message
enters waiting state and waits for the message result from the thread to
which the message is posted.

442

Task Communication

(ii).Mailbox:

Mailbox is an alternate form of 'Message queues' and it is used in certain
Real-Time Operating Systems for IPC. Mailbox technique for IPC in RTOS is
usually used for one way messaging.

The task/thread which wants to send a message to other tasks/threads
creates a mailbox for posting the messages. The threads which are
interested in receiving the messages posted to the mailbox by the mailbox
creator thread can subscribe to the mailbox.

The thread which creates the mailbox is known. as 'mailbox server' and
the threads which subscribe to the mailbox are known as 'mailbox clients'.
The mailbox server posts messages to the mailbox and notifies it to the
clients which are subscribed to the mailbox. The clients read the message
from the mailbox on receiving the notification.

 443

Task Communication

444

Task 1

Task 2 Task 4 Task 3

Mailbox

P
o

st

m
e

ss
ag

e

B
ro

ad
cast

 m
e

ssage

Task Communication

The mailbox creation, subscription, message reading and writing are
achieved through OS kernel provided API calls. Mailbox and message
queues are same in functionality. The only difference is in the number of
messages supported by them. Both of them are used for passing data in
the form of message(s) from a task to another task(s).

Mailbox is used for exchanging a single, message between two tasks or
between an Interrupt Service Routine (ISR) and a task.

Mailbox associates a pointer pointing to the mailbox and a wait list to
hold the tasks waiting for a message to appear in the mailbox. The
implementation of mailbox is OS kernel dependent. The MicroC/OS-II
implements mailbox as a mechanism for inter-task communication.

445

Task Communication

(iii).Signaling:

Signaling is a primitive way of communication between process-
es/threads. Signals are used for asynchronous notifications where one
process/thread fires a signal, indicating the occurrence of a scenario
which the other process(es)/thread(s) is waiting. Signals are not queued
and they do not carry any data.

The communication mechanisms used in RTX51 Tiny OS is an example
for Signaling. The amend signal kernel call under RTX 51 sends a signal
from one task to a specified task. Similarly the os_wait kernel call waits for
a specified signal. The VxWorks RTOS kernel also implements 'signals' for
inter process communication. Whenever a signal occurs it is handled in a
signal handler associated with the signal.

446

Task Communication

Remote Procedure Call (RPC) and Sockets:

Remote Procedure Call or RPC is the Inter Process Communication (IPC)
mechanism used by a process to call a procedure of another process
running on the same CPU or on a different CPU which is interconnected in
a network.

In the object oriented language terminology RPC is also known as
Remote Invocation or Remote Method Invocation (RMI).

RPC is mainly used for distributed applications like client-server
applications. With RPC it is possible to communicate over a heterogeneous
network (i.e. Network where Client and server applications are running on
different Operating systems).

The CPU/process containing the procedure which needs to be invoked
remotely is known as server. The CPU/process which initiates an RPC
request is known as client.

447

Remote Procedure Call (RPC) and Sockets

448

Remote Procedure Call (RPC) and Sockets

It is possible to implement RPC communication with different invocation
interfaces. In order to make the RPC communication compatible across all
platforms, it should stick on to certain standard formats. Interface
Definition Language (IDL) defines the interfaces for RPC.

Microsoft Interface Definition Language (MIDL) is the IDL
implementation from Microsoft for all Microsoft platforms. The RPC
communication can be either Synchronous (Blocking) or Asynchronous
(Non-blocking).

In the Synchronous communication, the process which calls the remote
procedure is blocked until it receives a response back from the other
process.

In asynchronous RPC calls, the calling process continues its execution
while the remote process performs the execution of the procedure. The
result from the remote procedure is returned back to the caller through
mechanisms like callback functions. 449

Remote Procedure Call (RPC) and Sockets

 On security front, RPC employs authentication mechanisms to protect
the systems against vulnerabilities. The client applications (processes)-
should authenticate themselves with the server for getting access.

 Authentication mechanisms like IDs, public-key cryptography, etc. are
used by the client for authentication. Without authentication, any
client can access the remote procedure. This may lead to potential
security risks.

 Sockets are used for RPC communication. The socket is a logical
endpoint in a two-way communication link between two applications
running on a network. A port number is associated with a socket so
that the network layer of the communication channel can deliver the
data to the designated application.

450

Remote Procedure Call (RPC) and Sockets

Sockets are of different types, namely, Internet sockets (INET), UNIX
sockets, etc. The INET socket works on internet communication protocol
TCP/IP, UDP (User Datagram Protocol) , etc. are the communication
protocols used by INET sockets.

INET sockets are classified into:

1. Stream sockets

2. Datagram sockets

451

Remote Procedure Call (RPC) and Sockets

Stream sockets are connection-oriented and they use TCP to establish
liable connection. On the other hand, Datagram sockets rely on UDP for
establishing a connection.

The UDP connection is unreliable when compared to TCP. The client-
server communication model uses a socket at the client-side and a socket
at the server-side.

A port number is assigned to both of these sockets. The client and server
should be aware of the port number associated with the socket. In order
to start the communication, the client needs to send a connection request
to the server at the specified port number.

The client should be aware of the name of the server along with its port
number. The server always listens to the specified port number on the
network.

452

Remote Procedure Call (RPC) and Sockets

Upon receiving a connection request from the client, based on the success
of authentication, the server grants the connection request and a
communication channel is established between the client and server.

The client uses the hostname and port number of the server for sending
requests and the server uses the client's name and port number for
sending responses.

453

Remote Procedure Call (RPC) and Sockets

TASK SYNCHRONIZATION

454

TASK SYNCHRONISATION:

In a multitasking environment, multiple processes run concurrently (in
pseudo parallelism) and share the system resources. Apart from this, each
process has its own boundary wall and they communicate with each other
with different IPC mechanisms including shared memory and variables.

Imagine a situation where two processes try to access display hardware
connected to the system or two processes try to access a shared memory
area where one process tries to write to a memory location when the
other process is trying to read from this.

What could be the result in these scenarios? Obviously unexpected
results. How these issues can be addressed? The solution is, make each
process aware of the access of a shared resource either directly or
indirectly.

455

Task Synchronization

The act of making processes aware of the access of shared resources by
each process to avoid conflicts is known as `Task/Process
Synchronization'.

Various synchronization issues may arise in a multitasking environment if
processes are not synchronized properly.

The following sections describe the major task communication/
synchronization issues observed in multitasking and the commonly
adopted synchronization techniques to overcome these issues.

456

Task Synchronization

Task Communication/Synchronization Issues observed in multitasking :

i. Racing.

ii. Deadlock.

iii. The Dining Philosophers Problem.

iv. Producer-Consumer/Bounded Buffer Problem.

v. Readers-Writers Problem.

vi. Priority Inversion.

457

Task Synchronization Issues

Task Communication/Synchronization Issues:

(i). Racing:

Let us have a look at the following piece of code.

458

Task Synchronization Issues-Racing

459

Task Synchronization Issues-Racing

From a programmer perspective, the value of the counter will be 10 at
the end of the execution of processes A & B. But 'it need not be always' in
a real-world execution of this piece of code under a multitasking kernel.

The results depend on the process scheduling policies adopted by the
OS kernel. The program statement counter++; looks like a single
statement from a high-level programming language (`C' language)
perspective.

The low-level implementation of this statement is dependent on the
underlying processor instruction set and the (cross) compiler in use. The
low-level implementation of the high-level program statement counter++;
under Windows XP operating system running on an Intel Centrino Duo
processor is given below.

460

Task Synchronization Issues-Racing

mov eax, dword ptr [ebp-4] ; Load counter in Accumulator

add eax,1 ; Increment Accumulator by 1

mov dword ptr [ebp-4], eax ; Store counter with Accumulator

At the processor instruction level, the value of the variable counter is
loaded to the Accumulator register (EAX register). The memory variable
counter is represented using a pointer.

The base pointer register (EBP register) is used for pointing to the
memory variable counter. After loading the contents of the variable-
counter to the Accumulator, the Accumulator content is incremented by
one using the add instruction.

Finally the content of Accumulator is loaded to the memory location
which represents the variable counter. Both the processes Process A and
Process B contain the program statement counter++; Translating this into
the machine instruction.

461

Task Synchronization Issues-Racing

Process A Process A

mov eax, dword ptr [ebp-4] mov eax, dword ptr [ebp-4]

add eax,1 add eax,1

mov dword ptr [ebp-4], eax mov dword ptr [ebp-4], eax

462

Imagine a situation where a process switching (context switching)
happens from Process A to Process B when Process A is executing the
counter++; statement.

Process A accomplishes the counter++; statement through three
different low-level instructions.

Now imagine that the process switching happened at the point where
Process A executed the low-level instruction, `mov eax,dword ptr [ebp-4]'
and is about to execute the next instruction 'add eax,1'.

Task Synchronization Issues-Racing

463

Task Synchronization Issues-Racing

mov eax, dword ptr [ebp-4]

add eax,1
mov dword ptr [ebp-4], eax

mov eax, dword ptr [ebp-4]
add eax,1
mov dword ptr [ebp-4], eax

Process A Process B

Context Switch

Context switch

Figure: Race condition

Though the variable counter is incremented by Process B, Process A is
unaware of it and it increments the variable with the old value. This leads
to the loss of one increment for the Variable counter.

This problem occurs due to non-atomic Operation on variables. This issue
wouldn't have been occurred if the underlying actions corresponding to
the program statement counter++; is finished in a single CPU execution
cycle.

The best way to avoid this situation is make the access and modification of
shared variables mutually exclusive; meaning when one process accesses
a shared variable, prevent the other processes from accessing it.

To summarize, Racing or Race condition is the situation in which multiple
processes compete (race) each other to access and manipulate shared
data concurrently. In a Race condition, the final value of the shared data
depends on the process which acted on the data finally.

464

Task Synchronization Issues-Racing

(ii).Deadlock:

A race condition produces incorrect results whereas a deadlock condition
creates a situation where none of the processes are able to make any
progress in their execution, resulting in a get of deadlocked processes.

A situation very similar to our traffic jam issues in a junction.

465

Figure: Deadlock Visualization

Task Synchronization Issues-Deadlock

In its simplest form 'deadlock' is the condition in which a process is
waiting for a resource held by another process which is waiting for a
resource held by the first process.

To Elaborate: Process A holds a resource x and it wants a resource y held
by Process B. Process B is currently holding resource y and it wants the
resource x which is currently held by Process A. Both hold the respective
resources and they compete each other to get the resource held by the
respective processes.

The result of the competition is 'deadlock'. None of the competing
processes will be able to access the resources held by other processes
since they are locked by the respective processes.

466

Task Synchronization Issues-Deadlock

467

Process A Process B

Resource, X

Resource, Y

Figure: Scenarios leading to deadlock

Task Synchronization Issues-Deadlock

The different conditions favoring a deadlock situation are listed below.

Mutual Exclusion: The criteria that only one process can hold resource at
a time. Meaning processes should access shared resources with mutual
exclusion. Typical example is the accessing of display hardware in an
embedded device.

Hold and Walt: The condition in which a process holds a shared resource
by acquiring the lock controlling the shared access and waiting for
additional resources held by other processes.

No Resource Preemption: The criteria that operating system cannot take
back a resource from a process which is currently holding it and the
resource can only be released voluntarily by the process holding it.

468

Task Synchronization Issues-Deadlock

Circular Wait: A process is waiting for a resource which is currently held
by another process which in turn is waiting for a resource held by the first
process. In general, there exists a set of waiting process P0, P1, Pn with P0
is waiting for a resource held by P1 and P1 is waiting for a resource held
P0, Pn is waiting for a resource held by P0 and P0 is waiting for a resource
held by Pn and so on... This forms a circular wait queue.

Deadlock Handling: A smart OS may foresee the deadlock condition and
will act proactively to avoid such a situation. Now if a deadlock occurred,
how the OS responds to it? The reaction to deadlock condition by OS is
nonuniform. The OS may adopt any of the following techniques to detect
and prevent deadlock conditions.

469

Task Synchronization Issues-Deadlock

(i).Ignore Deadlocks: Always assume that the system design is deadlock free. This
is acceptable for the reason the cost of removing a deadlock is large compared to
the chance of happening a deadlock. UNIX is an example for an OS following this
principle. A life critical system cannot pretend that it is deadlock free for any
reason.

(ii). Detect and Recover: This approach suggests the detection of a deadlock
situation and recovery from it. This is similar to the deadlock condition that may
arise at a traffic junction.

When the vehicles from different directions compete to cross the junction,
deadlock (traffic jam) condition is resulted. Once a deadlock (traffic jam) is
happened at the junction, the only solution is to back up the vehicles from one
direction and allow the vehicles from opposite direction to cross the junction. If
the traffic is too high, lots of vehicles may have to be backed up to resolve the
traffic jam. This technique is also known as `back up cars' technique.

470

Task Synchronization Issues-Deadlock

Operating systems keep a resource graph in their memory. The resource
graph is updated on each resource request and release.

Avoid Deadlocks: Deadlock is avoided by the careful resource allocation
techniques by the Operating System. It is similar to the traffic light
mechanism at junctions to avoid the traffic jams.

Prevent Deadlocks: Prevent the deadlock condition by negating one of
the four conditions favoring the deadlock situation.

• Ensure that a process does not hold any other resources when it
requests a resource. This can be achieved by implementing the following
set of rules/guidelines in allocating resources to processes.

1. A process must request all its required resource and the resources
should be allocated before the process begins its execution.

2. Grant resource allocation requests from processes only if the process
does not hold a resource currently.

471

Task Synchronization Issues-Deadlock

Ensure that resource preemption (resource releasing) is possible at
operating system level. This can be achieved by implementing the following
set of rules/guidelines in resources allocation and releasing.

1. Release all the resources currently held by a process if a request made
by the process for a new resource is not able to fulfill immediately.

2. Add the resources which are preempted (released) to a resource list
describing the resources which the process requires to complete its
execution.

3. Reschedule the process for execution only when the process gets its old
resources and the new resource which is requested by the process.

Imposing these criterions may introduce negative impacts like low resource
utilization and starvation of processes.

472

Task Synchronization Issues-Deadlock

Livelock:

The Livelock condition is similar to the deadlock condition except that a
process in livelock condition changes its state with time. While in deadlock
a process enters in wait state for a resource and continues in that state
forever without making any progress in the execution, in a livelock
condition a process always does something but is unable to make any
progress in the execution completion.

The livelock condition is better explained with the real world example,
two people attempting to cross each other in a narrow corridor.

Both the persons move towards each side of the corridor to allow the
opposite person to cross. Since the corridor is narrow, none of them are
able to cross each other. Here both of the persons perform some action
but still they are unable to achieve their target, cross each other.

473

Task Synchronization Issues-Deadlock

Starvation:

In the multitasking context, starvation is the condition in which a process
does not get the resources required to continue its execution for a long
time.

As time progresses the process starves on resource.

Starvation may arise due to various conditions like byproduct of
preventive measures of deadlock, scheduling policies favoring high
priority tasks and tasks with shortest execution time, etc.

474

Task Synchronization Issues-Deadlock

(iii).The Dining Philosophers' Problem:

The 'Dining philosophers 'problem' is an interesting example for
synchronization issues in resource utilization. The terms 'dining',
'philosophers', etc. may sound awkward in the operating system context,
but it is the best way to explain technical things abstractly using non-
technical terms.

Now coming to the problem definition:

Five philosophers (It can be 'n'. The number 5 is taken for illustration) are
sitting around a round table, involved in eating and brainstorming.

At any point of time each philosopher will be in any one of the three states:
eating, hungry or brainstorming. (While eating the philosopher is not
involved in brainstorming and while brainstorming the philosopher is not
involved in eating).

 475

Task Synchronization Issues- The Dining Philosophers' Problem

For eating, each philosopher requires 2 forks.

There are only 5 forks available on the dining table ('n' for 'n' number of
philosophers) and they are arranged in a fashion one fork in between two
philosophers.

The philosopher can only use the forks on his/her immediate left and
right that too in the order pickup the left fork first and then the right fork.
Analyze the situation and explain the possible outcomes of this scenario.

Let's analyze the various scenarios that may occur in this situation.

Scenario 1: All the philosophers involve in brainstorming together and try
to eat together. Each philosopher picks up the left fork and is unable to
proceed since two forks are required for eating the spaghetti present in
the plate.

Philosopher 1 thinks that Philosopher 2 sitting to the right of him/her
will put the fork down and waits for it. Philosopher 2 thinks that
Philosopher 3' sitting to the right of him/her will put the fork down and
waits for it, and so on.

476

Task Synchronization Issues- The Dining Philosophers' Problem

477

Figure: Visualization of the ‘Dining Philosophers' Problem’

Task Synchronization Issues- The Dining Philosophers' Problem

Scenario 2: All the philosophers start brainstorming together. One of the
philosophers is hungry and he/ she picks up the left fork.

When the philosopher is about to pick up the right fork, the philosopher
sitting to his right also become hungry and tries to grab the left fork which
is the right fork of his neighboring philosopher who is trying to lift it,
resulting in a 'Race condition‘.

478

Task Synchronization Issues- The Dining Philosophers' Problem

Scenario 3: All the philosophers involve in brainstorming together and
try to eat together. Each philosopher picks up the left fork and is unable
to proceed, since two forks are required for eating the spaghetti present
in the plate.
Each of them anticipates that the adjacently sitting philosopher will
put his/her fork down and waits for a fixed duration grid after this puts
the fork down.

479

Figure: The 'Real Problems' in the 'Dining Philosophers

problem' (a) Starvation and Deadlock (b) Racing

Philosopher

1

Philosopher

2
Philosopher

3

Philosopher

4

Philosopher

5

Philosopher

1
Philosopher

2

Task Synchronization Issues- The Dining Philosophers' Problem

480

Philospher1

Philospher2 Philospher3

Philospher4

Philospher5

Figure: The 'Real Problems' in the 'Dining Philosophers problem‘

(c) Livelock and Starvation

Task Synchronization Issues- The Dining Philosophers' Problem

Each of them again tries to lift the fork after a fixed duration of time.
Since all philosophers are trying to lift the fork at the same time, none of
them will be able to grab two forks.

This condition leads to livelock and starvation of philosophers, where
each philosopher tries to do something, but they are unable to make any
progress in achieving the target.

481

Task Synchronization Issues- The Dining Philosophers' Problem

Solution:

We need to find out alternative solutions to avoid the deadlock, livelock,
racing and starvation condition that may arise due to the concurrent
access of forks by philosophers.

This situation can be handled in many ways by allocating the forks in
different allocation techniques including round Robin allocation, FIFO
allocation, etc.

But the requirement is that the solution should be optimal, avoiding
deadlock and starvation of the philosophers and allowing maximum
number of philosophers to eat at a time.

482

Task Synchronization Issues- The Dining Philosophers' Problem

One solution that we could think of is:

Imposing rules in accessing the forks by philosophers, like:

The philosophers should put down the fork he/she already have in hand
(left fork) after waiting for a fixed duration for the second fork (right fork)
and should wait for a fixed time before making the next attempt.

This solution works fine to some extent, but, if all the philosophers try to
lift the forks at the same time, a livelock situation is resulted.

483

Task Synchronization Issues- The Dining Philosophers' Problem

Another solution which gives maximum concurrency that can be
thought of is each philosopher acquires a semaphore (mutex) before
picking up any fork.

When a philosopher feels hungry he/she checks whether the
philosopher sitting to the left and right of him is already using the fork, by
checking the state of the associated semaphore.

If the forks are in use by the neighboring philosophers, the philosopher
waits till the forks are available. A philosopher when finished eating puts
the forks down and informs the philosophers sitting to his/her left and
right, who are hungry (waiting for the forks), by signaling the semaphores
associated with the forks.

484

Task Synchronization Issues- The Dining Philosophers' Problem

(iv).Producer-Consumer/Bounded Buffer Problem:

Producer-Consumer problem is a common data sharing problem where
two processes concurrently access a shared buffer with fixed size.

A thread/process which produces data is called 'Producer
thread/process' and a thread/process which consumes the data produced
by a producer thread/process is known as 'Consumer thread/process'.

Imagine a situation where the producer thread keeps on producing data
and puts it into the buffer and the consumer thread keeps on consuming
the data from the buffer and there is no synchronization between the
two.

485

Producer-Consumer/Bounded Buffer Problem

There may be chances where in which the producer produces data at a
faster rate than the rate at which it is consumed by the consumer. This will
lead to 'buffer overrun' where the producer tries to put data to a full
buffer.

If the consumer consumes data at a faster rate than the rate at which it
is produced by the producer, it will lead to the situation `buffer under-run'
in which the consumer tries to read from an empty buffer.

Both of these conditions will lead to inaccurate data and data loss.

The following code snippet illustrates the producer-consumer problem

486

Producer-Consumer/Bounded Buffer Problem

487

Producer-Consumer/Bounded Buffer Problem

488

Producer-Consumer/Bounded Buffer Problem

Here the 'producer thread' produces random numbers and puts it in a
buffer of size 20. If the 'producer thread' fills the buffer fully it re-starts
the filling of the buffer from the bottom.

The 'consumer thread' consumes the data produced by, the 'producer
thread'. For consuming the data, the 'consumer thread' reads the buffer
which is shared with the 'producer thread'.

Once the 'consumer thread' consumes all the data, it starts consuming
the data from the bottom of the buffer. These two threads run
independently and are scheduled for execution based on the scheduling
policies adopted by the OS.

489

Producer-Consumer/Bounded Buffer Problem

The different situations that may arise based on the scheduling of the
'producer thread' and 'consumer thread' is listed below.

1. 'Producer thread' is scheduled more frequently than the 'consumer
thread': There are chances for overwriting the data in the buffer by
the 'producer thread'. This leads to inaccurate data.

2. ‘Consumer thread' is scheduled more frequently than the 'producer

 thread': There are chances for reading the old data in the buffer

 again by the 'consumer thread'. This will also lead to inaccurate data.

The output of the above program when executed on a Windows XP
machine is shown in Figure. The output shows that the consumer thread
runs faster than the producer thread and most often leads to buffer
under-run and thereby inaccurate data.

490

Producer-Consumer/Bounded Buffer Problem

491

Figure: Output of win32 program illustrating producer-consumer problem

Producer-Consumer/Bounded Buffer Problem

(v).Readers-Writers Problem:

Tire Readers-Writers problem is a common issue observed in processes
competing for limited shared resources.

The Readers-Writers problem is characterized by multiple processes
trying to read and write shared data concurrently.

A typical real-world example for the Readers-Writers problem is the
banking system where one process tries to read the account information
like available balance and the other process tries to update the available
balance for that account.

This may result in inconsistent results. If multiple processes try to read a
shared data concurrently it may not create any impacts, whereas when
multiple processes try to write and read concurrently it will definitely
create inconsistent results. Proper synchronization techniques should be
applied to avoid the readers-writers problem.

492

Producer-Consumer/Readers-Writers Problem

(vi).Priority Inversion:

Priority inversion is the by-product of the combination of blocking based
(lock based) process synchronization and pre-emptive priority scheduling.

'Priority inversion' is the condition in which a high priority task needs to
wait for a low priority task to release a resource which is shared between
the high priority task and the low priority task, and a medium priority task
which doesn't require the shared resource continue its execution by
preempting the low priority task.

Priority based preemptive scheduling technique ensures that a high
priority task is always executed first, whereas the lock based process
synchronization mechanism (like mutex, semaphore, etc.) ensures that a
process will not access a shared resource, which is currently in use by
another process.

493

Task Synchronization Issues- Priority Inversion

The synchronization technique is only interested in avoiding conflicts that
may arise due to the concurrent access of the shared resources and not at
all bothered about the priority of the process which tries to access the
shared resource.

In fact, the priority based preemption and lock based synchronization are
the two contradicting OS primitives.

Priority inversion is better explained with the following scenario:

Let Process A, Process B and Process C be three processes with priorities
High, Medium and Low respectively. Process A and Process C share a
variable 'X' and the access to this variable is synchronized through a
mutual exclusion mechanism like Binary Semaphore S.

494

Task Synchronization Issues- Priority Inversion

Imagine a situation where Process C is ready and is picked up for
execution by the scheduler and 'Process C' tries to access the shared
variable 'X'. 'Process C' acquires the 'Semaphore S' to indicate the other
processes that it is accessing the shared variable 'X'.

Immediately after 'Process C' acquires the 'Semaphore S', 'Process B'
enters the 'Ready' state. Since 'Process B' is of higher priority compared to
'Process C', 'Process C' is preempted, and 'Process B' starts executing.

Now imagine 'Process A' enters the 'Ready' state at this stage. Since
'Process A' is of higher priority than 'Process B', 'Process B' is preempted,
and 'Process A' is scheduled for execution. 'Process A' involves accessing
of shared variable 'X' which is currently being accessed by 'Process C'.

495

Task Synchronization Issues- Priority Inversion

496

Task Synchronization Issues- Priority Inversion

Since 'Process C' acquired the semaphore for signaling the access of the
shared variable 'X', 'Process A' will not be able to access it.

Thus 'Process A' is put into blocked state (This condition is called Pending
on resource). Now 'Process B' gets the CPU and it continues its execution
until it relinquishes the CPU voluntarily or enters a wait state or
preempted by another high priority task.

The highest priority process 'Process A' has to wait till 'Process C' gets a
chance to execute and release the semaphore. This produces unwanted
delay in the execution of the high priority task which is supposed to be
executed immediately when it was 'Ready'.

Priority inversion may be sporadic in nature but can lead to potential
damages as a result of missing critical deadlines. Literally speaking,
priority inversion 'inverts' the priority of a high priority task with that of a
low priority task.

497

Task Synchronization Issues- Priority Inversion

Priority Inheritance: A low-priority task that is currently accessing (by
holding the lock) a shared resource requested by a high-priority task
temporarily 'inherits' the priority of that high-priority task, from the
moment the high-priority task raises the request.

Boosting the priority of the low priority task to that of the priority of the
task which requested the shared resource holding by the low priority task
eliminates the preemption of the low priority task by other tasks whose
priority are below that of the task requested the shared resource 'and
thereby reduces the delay in waiting to get the resource requested by the
high priority task.

The priority of the low priority task which is temporarily boosted to high is
brought to the original value when it releases the shared resource.
Implementation of Priority inheritance workaround in the priority
inversion problem discussed for Process A, Process B and Process C
example will change the execution sequence as shown in Figure.

498

Task Synchronization Issues- Priority Inversion

499

Figure: Handling Priority Inversion problem with priority Inheritance

Task Synchronization Issues- Priority Inversion

Priority Inversion: It refers to a situation where the use of a resource by a
low-priority thread delays the execution of a high-priority thread when
both are contending for the same resources. To address this you have
following solutions:

Priority Inheritance Protocol: It temporarily raises the priority of the low-
priority thread to match that of the blocked thread until low priority
thread releases the resource.

Priority Ceiling Protocol: Here the priority of the low-priority thread is
raised immediately when it lock the resource. rather then waiting for a
subsequent lock attempt by a high priority thread.

500

Task Synchronization Issues- Priority Inversion

Task Synchronization Techniques:

So far we discussed about the various task/process synchronization issues
encountered in multitasking systems due to concurrent resource access.
Now let's have a discussion on the various techniques used for
synchronization in concurrent access in multitasking. Process/Task
synchronization is essential for

1. Avoiding conflicts in resource access (racing, deadlock, starvation,
livelock, etc.) in a multitasking environment.

2. Ensuring proper sequence of operation across processes. The producer
consumer problem is a typical example for processes requiring proper
sequence of operation.

501

Task Synchronization Techniques

In producer consumer problem, accessing the shared buffer by different
processes is not the issue; the issue is the writing process should write to
the shared buffer only if the buffer is not full and the consumer thread
should not read from the buffer if it is empty. Hence proper
synchronization should be provided to implement this sequence of
operations.

3. Communicating between processes.

502

Task Synchronization Techniques

The code memory area which holds the program instructions (piece of
code) for accessing a shared resource (like shared memory, shared
variables, etc.) is known as 'critical section'.

In order to synchronize the access to shared resources, the access to the
critical section should be exclusive. The exclusive access to critical section
of code is provided through mutual exclusion mechanism.

Let us have a look at how mutual exclusion is important in concurrent
access.

Consider two processes Process A and Process B running on a multitasking
system. Process A is currently running and it enters its critical section.
Before Process A completes its operation in the critical section, the
scheduler preempts Process A and schedules Process B for execution
(Process B is of higher priority compared to Process A).

503

Task Synchronization Techniques

Process B also contains the access to the critical section which is already in
use by Process A. If Process B continues its execution and enters the
critical section which is already in use by Process A, a racing condition will
be resulted.

A mutual exclusion policy enforces mutually exclusive access of critical
sections. Mutual exclusions can be enforced in different ways. Mutual
exclusion blocks a process. Based on the behaviour of the blocked
process, mutual exclusion methods can be classified into two categories.

1. Mutual Exclusion through Busy Waiting/Spin Lock.

2. Mutual Exclusion through Sleep & Wakeup.

504

Task Synchronization Techniques

1. Mutual Exclusion through Busy Waiting/Spin Lock:

‘Busy waiting' is the simplest method for enforcing mutual exclusion.
The following code snippet illustrates how 'Busy waiting' enforces
mutual exclusion.

505

Mutual Exclusion through Busy Waiting/Spin Lock

The 'Busy waiting' technique uses a lock variable for implementing mutual
exclusion. Each process/ thread checks this lock variable before entering
the critical section.

506

Mutual Exclusion through Busy Waiting/Spin Lock

Lock Variable:

•Software mechanism (User mode)

•Busy waiting solution

•More than 2 processes.

While (Lock!=0)
LOCK=1

LOCK=0

C.S

Entry
section
P1 P2

Exit
section

N.C.S

The lock is set to '1' by a process/ thread if the process/thread is already
in its critical section; otherwise the lock is set to '0'.

The major challenge in implementing the lock variable based
synchronization is the non-availability of a single atomic instruction which
combines the reading, comparing and setting of the lock variable.

Most often the three different operations related to the locks, viz. the
operation of Reading the lock variable, checking its present value, and
setting it are achieved with multiple low-level instructions.

The low-level implementation of these operations are dependent on the
underlying processor instruction set and the (cross) compiler in use.

507

Mutual Exclusion through Busy Waiting/Spin Lock

The assembly language instructions reveals that the two high level
instructions (while(bFlag==false); and bFlag=true;), corresponding to the
operation of reading the lock variable, checking its present value and
setting it is implemented in the processor level using six low level
instructions.

Imagine a situation where ‘Process 1' read the lock variable and tested it
and found that the lock is available and it is about to set the lock for
acquiring the critical section. But just before 'Process 1' sets the lock
variable, 'Process 2' preempts 'Process 1' and starts executing.

'Process 2' contains a critical section code and it tests the lock variable for
its availability. Since 'Process 1' was unable to set the lock variable, its
state is still '0' and 'Process 2' sets it and acquires the critical section.

508

Mutual Exclusion through Busy Waiting/Spin Lock

Now the scheduler preempts 'Process 2' and schedules 'Process 1' before
'Process 2' leaves the critical section. Remember, `Process 1' was
preempted at a point just before setting the lock variable (‘Process 1' has
already tested the lock variable just before it is preempted and found that
the lock is available). Now 'Process 1' sets the lock variable and enters the
critical section. It violates the mutual exclusion policy and may produce
unpredicted results.

The above issue can be effectively tackled by combining the actions of
reading the lock variable, testing its state and setting the lock into a single
step. This can be achieved with the combined hardware and software
support.

Most of the processors support a single instruction 'Test and Set Lock
(TSL)' for testing and setting the lock variable. The 'Test and Set Lock
(TSL)' instruction call copies the value of the lock variable and sets it to a
nonzero value. It should be noted that the implementation and usage of

509

Mutual Exclusion through Busy Waiting/Spin Lock

510

 Critical Section P1 P2

-Wasting CPU time

Mutual Exclusion through Busy Waiting/Spin Lock

`Test and Set Lock (TSL)' instruction is processor architecture dependent.
The Intel 486 and the above family of processors support the 'Test and Set
Lock (TSL)' instruction with a special instruction CMPX-CHG—Compare
and Exchange. The usage of CMPXCHG instruction is given below.

CMPXCHG dest, src

This instruction compares the Accumulator (EAX register) with 'dest'. If
the Accumulator and 'dest' contents are equal, 'dest' is loaded with src'. If
not, the Accumulator is loaded with 'deg'.

Executing this instruction changes the six status bits of the Program
Control and Status register EFLAGS. The destination (`dest') can be a
register or a memory location. The source (`src') is always a register.

511

Mutual Exclusion through Busy Waiting/Spin Lock

2. Mutual Exclusion through Sleep &Wakeup:

The `Busy waiting' mutual exclusion enforcement mechanism used by
processes makes the CPU always busy by checking the lock to see whether
they can proceed.

This results in the wastage of CPU time and leads to high power
consumption. This is not affordable in embedded systems powered on
battery, since it affects the battery backup time of the device.

An alternative to `busy waiting' is the 'Sleep & Wakeup' mechanism. When
a process is not allowed to access the critical section, which is currently
being locked by another process, the process undergoes 'Sleep' and
enters the 'blocked' state.

512

Mutual Exclusion through Sleep &Wakeup

The process which is blocked on waiting for access to the critical section is
awakened by the process which currently owns the critical section. The
process which, owns the critical section sends a wakeup message to the
process, Which is sleeping as a result of waiting for the access to the
critical section, when the process leaves the critical section. The `Sleep &
Wakeup' policy for mutual exclusion can be implemented in different
ways.

513

 Critical Section P1

P2

Mutual Exclusion through Sleep &Wakeup

-No Wastage of CPU time

Implementation of this policy is OS kernel dependent.

The following section describes the important techniques for 'Sleep &
Wakeup' policy implementation for mutual exclusion by Windows XP/CE
OS kernels.

Semaphore:

Semaphore is a sleep and wakeup based mutual exclusion implementation
for shared resource access. Semaphore is a system resource and the
process which wants to access the shared resource can first acquire this
system object to indicate the other processes which wants the shared
resource that the shared resource is currently acquired by it.

The resources which are shared among a process can be either for
exclusive use by a process or for using by a number of processes at a time.
The display device of an embedded system is a typical example for the
shared resource which needs exclusive access by a process.

514

Mutual Exclusion through Sleep &Wakeup

The Hard disk (secondary storage) of a system is a typical example for
sharing the resource among a limited number of multiple processes.
Various processes can access the different sectors of the hard-disk
concurrently.

Based on the implementation of the sharing limitation of the shared
resource, semaphores are classified into two; namely

'Binary Semaphore' and 'Counting Semaphore'.

The binary semaphore provides exclusive access to shared resource by
allocating the resource to a single process at a time and not allowing the
other processes to access it when it is being owned by a process. The
implementation of binary semaphore is OS kernel dependent. Under
certain OS kernel it is referred as mutex.

515

Mutual Exclusion through Sleep &Wakeup

Unlike a binary semaphore, the 'Counting Semaphore' limits the access of
resources by a fixed number of processes/threads. It limits the usage of
the resource to the maximum value of the count supported by it. The
state of the counting semaphore object is set to 'signalled' when the
count of the object is greater than zero.

The count associated with a 'Semaphore object' is decremented by one
when a process/thread acquires it and the count is incremented by one
when a process/thread releases the 'Semaphore object'.

The state of the 'Semaphore object' is set to non-signalled when the
semaphore is acquired by the maximum number of processes/threads
that the semaphore can support (i.e. when the count associated with the
'Semaphore object' becomes zero).

516

Mutual Exclusion through Sleep &Wakeup

517

Mutual Exclusion through Sleep &Wakeup

A real world example for the counting semaphore concept is the
dormitory system for accommodation (Fig). A dormitory contains a fixed
number of beds (say 5) and at any point of time it can be shared by the
maximum number of users supported by the dormitory.

If a person wants to avail the dormitory facility, he/she can contact the
dormitory caretaker for checking the availability. If beds are available in
the dorm the caretaker will hand over the keys to the user. Those who are
availing the dormitory shares the dorm facilities like TV, telephone, toilet,
etc.

If beds are not available currently, the user can register his/her name to
get notifications when a slot is available. When a dorm user vacates,
he/she gives the keys back to the caretaker. The caretaker informs the
users, who booked in advance, about the dorm availability.

 518

Mutual Exclusion through Sleep &Wakeup

Device Driver:

Device driver is a piece of software that acts as a bridge between the
operating system and the hardware.

In an operating system based product architecture, the user applications
talk to the Operating System kernel for all necessary information exchange
including communication with the hardware peripherals.

The architecture of the OS kernel will not allow direct device access from
the user application. All the device related access should flow through the
OS kernel and the OS kernel mutes it to the concerned hardware
peripheral.

OS provides interfaces in the form of Application Programming Interfaces
(APIs) for accessing the hardware. The device driver abstracts the
hardware from user applications. The topology of user applications and
hardware interaction in an RTOS based system is depicted in Fig.

 519

Device Driver

520

User Level Applications/Tasks

Operating System Services

Device Drivers

Hardware

Apps Apps

Apps

Figure: Role of device driver in Embedded OS based products

Device Driver

Device drivers are responsible for initiating and managing the
communication with the hardware peripherals.

They are responsible for

 Establishing the connectivity,

 Initializing the hardware (setting up various registers of the

 hardware device), and

 Transferring data.

An embedded product may contain different types of hardware components
like Wi-Fi module, File systems, Storage device interface, etc. The
initialization of these devices and the protocols required for communicating
with these devices may be different. All these requirements are
implemented in drivers and a single driver will not be able to satisfy all
these. Hence each hardware (more specifically each class of hardware)
requires a unique driver component.

 521

Device Driver

Certain drivers come as part of the OS kernel and certain drivers need to
be installed on the fly.

For example, the program storage memory for an embedded product, say
NAND Flash memory requires a NAND Flash driver to read and write data
from/to it. This driver should come as part of the OS kernel image.

It contains only the necessary drivers to communicate with the onboard
devices (Hardware devices which are part of the platform) and for certain
set of devices supporting standard protocols and device class (Say USB
Mass storage device or HID devices like Mouse/keyboard).

If an external device, whose driver software is not available with OS kernel
image, is connected to the embedded device, the OS prompts the user to
install its driver manually.

522

Device Driver

Device drivers which are part of the OS image are known as 'Built-in
drivers' or 'On-board drivers'. These drivers are loaded by the OS at the
time of booting the device and are always kept in the RAM.

Drivers which need to be installed for accessing a device are known as
'Installable drivers'. These drivers are loaded by the OS on a need basis.
Whenever the device is connected, the OS loads the corresponding driver
to memory. When the device is removed, the driver is unloaded from
memory. The Operating system maintains a record of the drivers
corresponding to each hardware.

523

Device Driver

However regardless of the OS types, a device driver implements the
following:

1. Device (Hardware) Initialization and Interrupt configuration

2. Interrupt handling and processing

3. Client interfacing (Interfacing with user applications)

The Device (Hardware) initialisation part of the driver deals with
configuring the different registers of the device (target hardware). For
example configuring the I/O port line of the processor as Input or output
line and setting its associated registers for building a General Purpose IO
(GPIO) driver.

524

Device Driver

The interrupt configuration part deals with configuring the interrupts that
needs to be associated with the hardware. In the case of the GPIO driver,
if the intention is to generate an interrupt when the Input line is asserted,
we need to configure the interrupt associated with the I/O port by
modifying its associated registers.

The client interfacing implementation makes use of the Inter Process
communication mechanisms supported by the embedded OS for
communicating and synchronising with user applications and drivers.

525

Device Driver

526

UNIT-IV

EMBEDDED SOFTWARE
DEVELOPMENT TOOLS

SYLLABUS:
Host and target machines, linker/locators for embedded software,
getting embedded software into the target system; Debugging
techniques: Testing on host machine, using laboratory tools, an
example system.

527

 HOST AND TARGET MACHINES

528

Host:

 Where the embedded software is developed, compiled, tested,

debugged, optimized, and prior to its translation into target device.

(Because the host has keyboards, editors, monitors, printers, more

memory, etc. for development, while the target may have not of these

capabilities for developing the software.)

Target:

 After development, the code is cross-compiled, translated –

cross-assembled, linked (into target processor instruction set) and located

into the target

 HOST AND TARGET MACHINES

529

 Cross-Compilers :

 Native tools are good for host, but to port/locate embedded code to target,

the host must have a tool-chain that includes a cross-compiler, one which

runs on the host but produces code for the target processor

 Cross-compiling doesn’t guarantee correct target code due to (e.g.,

differences in word sizes, instruction sizes, variable declarations, library

functions)

 HOST AND TARGET MACHINES

530

 Cross-Assemblers and Tool Chain:

 Host uses cross-assembler to assemble code in target’s instruction syntax

for the target

 Tool chain is a collection of compatible, translation tools, which are

‘pipelined’ to produce a complete binary/machine code that can be linked

and located into the target processor

 HOST AND TARGET MACHINES

531

 LINKERS AND LOCATORS

532

Linker/Locators for Embedded Software:

 Native linkers are different from cross-linkers (or locators) that perform

additional tasks to locate embedded binary code into target processors

 Address Resolution –

 Native Linker: produces host machine code on the hard-drive (in a named

file), which the loader loads into RAM, and then schedules (under the OS

control) the program to go to the CPU.

 LINKERS AND LOCATORS

533

Linker/Locators for Embedded Software:

 Function calls, are ordered or organized by the linker. The loader then

maps the logical addresses into physical addresses a process called address

resolution. The loader then loads the code accordingly into RAM . In the

process the loader also resolves the addresses for calls to the native OS

routines

 Locator: produces target machine code (which the locator glues into the

RTOS) and the combined code (called map) gets copied into the target

ROM. The locator doesn’t stay in the target environment, hence all

addresses are resolved, guided by locating-tools and directives, prior to

running the code.

 LINKERS AND LOCATORS

534

 HOST AND TARGET MACHINES

535

 LINKERS AND LOCATORS

536

 Locating Program Components – Segments

 Unchanging embedded program (binary code) and constants must be

kept in ROM to be remembered even on power-off

 Changing program segments (e.g., variables) must be kept in RAM

 Chain tools separate program parts using segments concept

 Chain tools (for embedded systems) also require a ‘start-up’ code to be

in a separate segment and ‘located’ at a microprocessor-defined

location where the program starts execution

 Some cross-compilers have default or allow programmer to specify

segments for program parts, but cross-assemblers have no default

behavior and programmer must specify segments for program parts

 HOST AND TARGET MACHINES

537

GETTING EMBEDDED SOFTWARE INTO TARGET SYSTEM

538

Getting Embedded Software into Target System

 Moving maps into ROM or PROM, is to create a ROM using hardware tools

or a PROM programmer (for small and changeable software, during

debugging)

 If PROM programmer is used (for changing or debugging software), place

PROM in a socket (which makes it erasable – for EPROM, or

removable/replaceable) rather than ‘burnt’ into circuitry

 PROM’s can be pushed into sockets by hand, and pulled using a chip puller

 The PROM programmer must be compatible with the format

(syntax/semantics) of the Map

GETTING EMBEDDED SOFTWARE INTO TARGET SYSTEM

539

 GETTING EMBEDDED SOFTWARE INTO TARGET SYSTE

540

Getting Embedded Software into Target System – 1

 ROM Emulators – Another approach is using a ROM emulator (hardware)

which emulates the target system, has all the ROM circuitry, and a serial

or network interface to the host system. The locator loads the Map into

the emulator, especially, for debugging purposes.

 Software on the host that loads the Map file into the emulator must

understand (be compatible with) the Map’s syntax/semantics

 DEBUGGING TECHNIQUES

541

• Getting Embedded Software into Target System – 1

 Using Flash Memory

 For debugging, a flash memory can be loaded with target Map code

using a software on the host over a serial port or network connection (just

like using an EPROM)

 DEBUGGING TECHNIQUES

542

DEBUGGING TECHNIQUES

543

Advantages:

 No need to pull the flash (unlike PROM) for debugging different

embedded code

 Transferring code into flash (over a network) is faster and hassle-free

 Modifying and/or debugging the flash programming software requires

moving it into RAM, modify/debug, and reloading it into target flash

memory using above methods

DEBUGGING TOOLS

544

Advantages:

 New versions of embedded software (supplied by vendor) can

be loaded into flash memory by customers over a network - Requires a)

protecting the flash programmer, saving it in RAM and executing from

there, and reloading into flash after new version is written and b) the

ability to complete loading new version even if there are crashes and

protecting the startup code as in (a)

DEBUGGING TECHNIQUES

545

Advantages:

 No need to pull the flash (unlike PROM) for debugging different

embedded code

 Transferring code into flash (over a network) is faster and hassle-free

 Modifying and/or debugging the flash programming software requires

moving it into RAM, modify/debug, and reloading it into target flash

memory using above methods

 SIMPLE VOLT/OHM METER

546

Simple volt-ohm meter can be used to test the target hardware.

 It has two leds red and black

One end is connected to meter and other is connected to point

between which the voltage or resistance is to be measured

The meter is set for volt for checking the power supply voltage at

sorce and voltage level at chips and port pins.

The meter is set for ohm for checking thebroken

connections,improper ground connections,burn out resistance and

diods.

 SIMPLE LED TESTS AND LOGIC PROBE

547

 A logic probe is a hand-held test probe used for analyzing and

troubleshooting the logical states (boolean 0 or 1) of a digital circuit.

Most modern logic probes typically have one or more LEDs on the body of

the probe:

an LED to indicate a high (1) logic state.

an LED to indicate a low (0) logic state.

an LED to indicate changing back and forth between low and high

states.

 OSCILLOSCOPE

548

 An 'oscilloscope', previously called an 'oscillograph', and informally known

as a scope or o-scope, CRO (for cathode-ray oscilloscope), or DSO (for the

more modern digital storage oscilloscope), is a type of electronic test

instrument that graphically displays varying signal voltage, usually as a

two-dimensional plot of one or more signals as a function of time. Other

signals (such as sound or vibration) can be converted to voltages and

displayed.

 Oscilloscopes display the change of an electrical signal over time, with

voltage and time as the Y- and X-axes, respectively, on a calibrated scale.

 OSCILLOSCOPE

549

The waveform can then be analyzed for properties such

as amplitute, f requency, rise time , time interval, distortion, and

others.

The oscilloscope can be adjusted so that repetitive signals can be

observed as a continuous shape on the screen.

A storage oscilloscope can capture a single event and display it

continuously, so the user can observe events that would otherwise

appear too briefly to see directly.

Oscilloscopes are used in the sciences, medicine, engineer

 BIT RATE METER

550

In telecommunications and computng , bit rate (bit rate or as a

variable R) is the number of bits that are conveyed or processed per

unit of time.

The bit rate is quantified using the bits per second unit (symbol:

"bit/s"), often in conjunction with an SI prefix such as "kilo" (1 kbit/s

= 1,000 bit/s), "mega" (1 Mbit/s = 1,000 kbit/s), "giga" (1 Gbit/s =

1,000 Mbit/s) or "tera" (1 Tbit/s = 1000 Gbit/s). The non-standard

abbreviation "bps" is often used to replace the standard symbol

"bit/s", so that, for example, "1 Mbps" is used to mean one million

bits per second.

 BIT RATE METER

551

The bit rate is calculated using the formula:

1.Frequency × bit depth × channels = bit rate.

2.44,100 samples per second × 16 bits per sample × 2 channels =

1,411,200 bits per second (or 1,411.2 kbps)

3.14,411,200 × 240 = 338,688,000 bits (or 40.37 megabytes)

 LOGIC ANALYZER

552

A logic analyzer is an electronic instrument that captures and

displays multiple signals from a digital system or digital circuit.

A logic analyzer may convert the captured data into timing

diagrams, protocol decodes, state machine traces, assembly

language, or may correlate assembly with source-level software.

Logic analyzers have advanced triggering capabilities, and are

useful when a user needs to see the timing relationships between

many signals in a digital system

IN-CIRCUIT EMULATOR

553

An In-circuit emulator (ICE) is a debugging tool that allows you to

access a target MCU for in-depth debugging.

In-circuit emulation (ICE) is the use of a hardware device or in-

circuit emulator used to debug the software of an embedde system.

It operates by using a processor with the additional ability to

support debugging operations, as well as to carry out the main

function of the system.

IN-CIRCUIT EMULATOR

554

IN-CIRCUIT EMULATOR

555

ICE consists of a hardware board with accompanying software for

the host computer. The ICE is physically connected between the host

computer and the target MCU.

The debugger on the host establishes a connection to the MCU via

the ICE. ICE allows a developer to see data and signals that are internal

to the MCU, and to step through the source code (e.g., C/C++ on the

host) or set breakpoints; the immediate ramifications of executed

software are observed during run time.

Since the debugging is done via hardware, not software, the MCU’s

performance is left intact for the most part, and ICE does not

compromise MCU resources.

 MONITOR

556

Monitor is a debugging tool for actual target microprocessor or

microcontroller in ICE ROM emulator or in target development board.

It also lets host system debugging interface just like as an ICE.

Monitor means a ROM resident program at the target board or ROM

emulator connected to ICE.It monitors the device applications ,the

runs for different hardware architecture and is used for debugging.

UNIT-V

INTRODUCTION TO

ADVANCED PROCESSORS

SYLLABUS:

Introduction to advanced architectures: ARM and SHARC, processor
and memory organization and instruction level parallelism;
Networked embedded systems: Bus protocols, I2C bus and CAN bus;
Internet-Enabled systems, design example-Elevator controller.

558

 ARM instruction set

559

 ARM versions.

 ARM assembly language.

 ARM programming model.

 ARM memory organization.

 ARM data operations.

 ARM flow of control

ARM versions

560

ARM architecture has been extended over several versions.

We will concentrate on ARM7.

ARM assembly language

561

Fairly standard assembly language:

LDR r0,[r8] ; a comment

label ADD r4,r0,r1

ARM programming model

562

r0

r1

r2

r3

r4

r5

r6

r7

r8

r9

r10

r11

r12

r13

r14

r15 (PC)

CPSR

31 0

N Z C V

r0

r1

r2

r3

r4

r5

r6

r7

r8

r9

r10

r11

r12

r13

r14

r15 (PC)

CPSR

31 0

N Z C V

Endianness

 Relationship between bit and byte/word ordering defines
endianness:

byte 3 byte 2 byte 1 byte 0 byte 0 byte 1 byte 2 byte 3

bit 31 bit 0 bit 0 bit 31

little-endian big-endian

ARM data types

564

 Word is 32 bits long.

 Word can be divided into four 8-bit bytes.

 ARM addresses can be 32 bits long.

 Address refers to byte.

 Address 4 starts at byte 4.

 Can be configured at power-up as either little- or bit-endian mode.

ARM status bits

565

 Every arithmetic, logical, or shifting operation sets CPSR bits:

N (negative), Z (zero), C (carry), V (overflow).

 Examples:

-1 + 1 = 0: NZCV = 0110.

231-1+1 = -231: NZCV = 1001.

ARM data instructions

566

 Basic format:

 ADD r0,r1,r2

 -Computes r1+r2, stores in r0.

 Immediate operand:

 ADD r0,r1,#2

 -Computes r1+2, stores in r0.

ARM data instructions

567

 ADD, ADC : add (w. carry)

 SUB, SBC : subtract (w. carry)

 RSB, RSC : reverse subtract (w.
carry)

 MUL, MLA : multiply (and
accumulate)

 AND, ORR, EOR

 BIC : bit clear

 LSL, LSR : logical shift left/right

 ASL, ASR : arithmetic shift
left/right

 ROR : rotate right

 RRX : rotate right extended with
C

Data operation varieties

568

 Logical shift:

 -fills with zeroes.

 Arithmetic shift:

 -fills with ones.

 RRX performs 33-bit rotate, including C bit from CPSR above sign bit.

ARM comparison instructions

569

 CMP : compare

 CMN : negated compare

 TST : bit-wise AND

 TEQ : bit-wise XOR

 These instructions set only the NZCV bits of CPSR.

ARM move instructions

570

 MOV, MVN : move (negated)

 MOV r0, r1 ; sets r0 to r1

NUMBER BASE CONVERSION

571

 LDR, LDRH, LDRB : load (half-word, byte)

 STR, STRH, STRB : store (half-word, byte)

 Addressing modes:

 -register indirect : LDR r0,[r1]

 -with second register : LDR r0,[r1,-r2]

 -with constant : LDR r0,[r1,#4]

ARM ADR pseudo-op

572

 Cannot refer to an address directly in an instruction.

 Generate value by performing arithmetic on PC.

 ADR pseudo-op generates instruction required to calculate address:

 ADR r1,FOO

Example: C assignments

573

 C:

 x = (a + b) - c;

 Assembler:

 ADR r4,a ; get address for a

 LDR r0,[r4] ; get value of a

 ADR r4,b ; get address for b, reusing r4

 LDR r1,[r4] ; get value of b

 ADD r3,r0,r1 ; compute a+b

 ADR r4,c ; get address for c

 LDR r2,[r4] ; get value of c

C assignment, cont’d.

574

 SUB r3,r3,r2 ; complete computation of x
 ADR r4,x ; get address for x
 STR r3,[r4] ; store value of x

Example: C assignment

575

 C:
 y = a*(b+c);
 Assembler:
 ADR r4,b ; get address for b
 LDR r0,[r4] ; get value of b
 ADR r4,c ; get address for c
 LDR r1,[r4] ; get value of c
 ADD r2,r0,r1 ; compute partial result
 ADR r4,a ; get address for a
 LDR r0,[r4] ; get value of a

C assignment, cont’d.

576

 MUL r2,r2,r0 ; compute final value for y
 ADR r4,y ; get address for y
 STR r2,[r4] ; store y

Example: C assignment

577

 C:
z = (a << 2) | (b & 15);

 Assembler:
 ADR r4,a ; get address for a
 LDR r0,[r4] ; get value of a
 MOV r0,r0,LSL 2 ; perform shift
 ADR r4,b ; get address for b
 LDR r1,[r4] ; get value of b
 AND r1,r1,#15 ; perform AND
 ORR r1,r0,r1 ; perform OR

C assignment, cont’d.

578

 ADR r4,z ; get address for z

 STR r1,[r4] ; store value for z

Additional addressing modes

579

 Base-plus-offset addressing:
LDR r0,[r1,#16]
Loads from location r1+16

 Auto-indexing increments base register:
LDR r0,[r1,#16]!

 Post-indexing fetches, then does offset:
LDR r0,[r1],#16
Loads r0 from r1, then adds 16 to r1.

ARM flow of control

580

 All operations can be performed conditionally, testing CPSR:
EQ, NE, CS, CC, MI, PL, VS, VC, HI, LS, GE, LT, GT, LE

 Branch operation:
B #100
Can be performed conditionally

Example: if statement

581

 C:

 if (a > b) { x = 5; y = c + d; } else x = c - d;

 Assembler:

 ; compute and test condition

 ADR r4,a ; get address for a

 LDR r0,[r4] ; get value of a

 ADR r4,b ; get address for b

 LDR r1,[r4] ; get value for b

 CMP r0,r1 ; compare a < b

 BLE fblock ; if a ><= b, branch to false block

If statement, cont’d.

582

 ; true block
 MOV r0,#5 ; generate value for x
 ADR r4,x ; get address for x
 STR r0,[r4] ; store x
 ADR r4,c ; get address for c
 LDR r0,[r4] ; get value of c
 ADR r4,d ; get address for d
 LDR r1,[r4] ; get value of d
 ADD r0,r0,r1 ; compute y
 ADR r4,y ; get address for y
 STR r0,[r4] ; store y
 B after ; branch around false block

If statement, cont’d.

583

 ; false block
 fblock ADR r4,c ; get address for c
 LDR r0,[r4] ; get value of c
 ADR r4,d ; get address for d
 LDR r1,[r4] ; get value for d
 SUB r0,r0,r1 ; compute a-b
 ADR r4,x ; get address for x
 STR r0,[r4] ; store value of x
 after ...

Example: switch statement

584

 C:
 switch (test) { case 0: … break; case 1: … }

 Assembler:

 ADR r2,test ; get address for test

 LDR r0,[r2] ; load value for test

 ADR r1,switchtab ; load address for switch table
 LDR r1,[r1,r0,LSL #2] ; index switch table
 switchtab DCD case0

 DCD case1
 ...

Example: FIR filter

585

 C:
 for (i=0, f=0; i<N; i++)

 f = f + c[i]*x[i];

 Assembler
 ; loop initiation code

 MOV r0,#0 ; use r0 for I
 MOV r8,#0 ; use separate index for arrays
 ADR r2,N ; get address for N

 LDR r1,[r2] ; get value of N
 MOV r2,#0 ; use r2 for f

FIR filter, cont’.d

586

 ADR r3,c ; load r3 with

base of c

 ADR r5,x ; load r5 with

base of x

; loop body

loop LDR r4,[r3,r8] ; get c[i]

 LDR r6,[r5,r8] ; get x[i]

 MUL r4,r4,r6 ; compute

c[i]*x[i]

 ADD r2,r2,r4 ; add into

running sum

 ADD r8,r8,#4 ; add one

word offset to array index

 ADD r0,r0,#1 ; add 1 to

i

 CMP r0,r1 ; exit?

 BLT loop ; if i < N,

continue

ARM subroutine linkage

587

 Branch and link instruction:

 BL foo

Copies current PC to r14.

 To return from subroutine:

 MOV r15,r14

Nested subroutine calls

588

 Nesting/recursion requires coding convention:

 f1 LDR r0,[r13] ; load arg into r0 from stack

 ; call f2()

 STR r14,[r13]! ; store f1’s return adrs

 STR r0,[r13]! ; store arg to f2 on stack

 BL f2 ; branch and link to f2

 ; return from f1()

 SUB r13,#4 ; pop f2’s arg off stack

 LDR r13!,r15 ; restore register and return

SHARC instruction set

589

 SHARC programming model.
 SHARC assembly language.
 SHARC memory organization.
 SHARC data operations.
 SHARC flow of control

SHARC programming model

590

 Register files:

 R0-R15 (aliased as F0-F15 for floating point)

 Status registers.

 Loop registers.

 Data address generator registers.

 Interrupt registers.

SHARC assembly language

591

Algebraic notation terminated by semicolon:

R1=DM(M0,I0), R2=PM(M8,I8); ! comment
label: R3=R1+R2;

data memory access program memory access

SHARC MEMORY SPACE

592

SHARC DATA TYPES

593

 32-bit IEEE single-precision floating-point.

 40-bit IEEE extended-precision floating-point.

 32-bit integers.

 Memory organized internally as 32-bit words.

SHARC MICRO ARCHITECTURE

594

 Modified Harvard architecture.

 Program memory can be used to store some data.

 Register file connects to:

 multiplier

 shifter;

 ALU.

SHARC MODE REGISTERS

595

 Most important:

 ASTAT: arithmetic status.

 STKY: sticky.

 MODE 1: mode 1.

ROUNDING AND SATURATION

596

 Floating-point can be:

 rounded toward zero;

 rounded toward nearest.

 ALU supports saturation arithmetic (ALUSAT bit in MODE1).

 Overflow results in max value, not rollover.

MULTIPLIER

597

 Fixed-point operations can accumulate into local MR registers or be

written to register file. Fixed-point result is 80 bits.

 Floating-point results always go to register file.

 Status bits: negative, under/overflow, invalid, fixed-point underflow,

floating-point underflow, floating-point invalid.

ALU/SHIFTER STATUS FLAGS

598

ALU:

– zero, overflow, negative, fixed-point carry, input sign, floating-

point invalid, last op was floating-point, compare accumulation

registers, floating-point under/oveflow, fixed-point overflow,

floating-point invalid

Shifter:

– zero, overflow, sign

FLAG OPERATIONS

599

 All ALU operations set AZ (zero), AN (negative), AV (overflow), AC

(fixed-point carry), AI (floating-point invalid) bits in ASTAT.

 STKY is sticky version of some ASTAT bits.

SHARC load/store

600

 Load/store architecture: no memory-direct operations.

 Two data address generators (DAGs):

 program memory;

 data memory.

 Must set up DAG registers to control loads/stores.

SHARC program sequencer

601

Features:

– instruction cache;

– PC stack;

– status registers;

– loop logic;

– data address generator;

Networking for Embedded Systems

602

• Why we use networks.

• Network abstractions.

• Example networks.

Network elements

603

Distributed computing platform:

PEs may be CPUs or ASICs.

Networks in embedded systems

604

Why distributed?

605

 Higher performance at lower cost.

 Physically distributed activities---time constants may not allow

transmission to central site.

 Improved debugging---use one CPU in network to debug others.

 May buy subsystems that have embedded processors.

Network abstractions

606

 International Standards Organization (ISO) developed the Open

Systems Interconnection (OSI) model to describe networks:

 7-layer model.

 Provides a standard way to classify network components and

operations.

OSI model

607

OSI layers

608

 Physical: connectors, bit formats, etc.

 Data link: error detection and control across a single link (single

hop).

 Network: end-to-end multi-hop data communication.

 Transport: provides connections; may optimize network

resources.

 Session: services for end-user applications: data grouping, check

pointing, etc.

 Presentation: data formats, transformation services.

 Application: interface between network and end-user programs.

Bus networks

609

 Common physical connection:

Bus arbitration

610

 Fixed: Same order of resolution every time.

 Fair: every PE has same access over long periods.

 Round-robin: rotate top priority among Pes.

Crossbar

611

Crossbar characteristics:

Non-blocking.

Can handle arbitrary multi-cast combinations.

Size proportional to n2.

I2C bus

612

 Designed for low-cost, medium data rate applications.

 Characteristics:

 serial;

 multiple-master;

 fixed-priority arbitration.

 Several microcontrollers come with built-in I2C controllers.

I2C physical layer

613

I2C data format

614

I2C signaling

615

 Sender pulls down bus for 0.

 Sender listens to bus---if it tried to send a 1 and heard a 0,

someone else is simultaneously transmitting.

 Transmissions occur in 8-bit bytes.

I2C data link layer

 Every device has an address (7 bits in standard, 10 bits in

extension).Bit 8 of address signals read or write.

 General call address allows broadcast.

I2C bus arbitration

616

Sender listens while sending address.

When sender hears a conflict, if its address is higher, it stops

signaling.

Low-priority senders relinquish control early enough in clock

cycle to allow bit to be transmitted reliably.

I2C transmissions

617

CAN BUS

618

 CAN (Controller Area Network) is a serial bus system used to

communicate between several embedded 8-bit and 16-bit

microcontrollers.

 It was originally designed for use in the automotive industry but is

used today in many other systems (e.g. home appliances and

industrial machines).

CAN Controller Diagram

619

Data Format

620

 Each message has an ID, Data and overhead.

 Data –8 bytes max

 Overhead – start, end, CRC, ACK

Internet –EnAnalyzed systems

621

 Embedded systems are internet enabled by using

TCP/IP protocols for networking to internet and

assigning IP addresses to each systems.

 Internet provides a standard way for embedded

systems to act in concert with other devices and with

users.eg.

1.High end laser printers use internet protocols to receive

print jobs from host machines.

2.PDA can display web pages ,read email and synchronous

calendar information with remote computer.

ELEVATOR CONTROLLER

622

An elevator system is a vertical transport vehicle that efficiently

moves people or goods between floors of a building. They are generally

powered by electric motors.

The most popular elevator is the rope elevator. In the rope elevator,

the car is raised and lowered by transaction with steel rope.

Elevators also have electromagnetic brakes that engage, when the car

comes to a stop. The electromagnetic actually keeps the brakes in the

open position. Instead of closing them with the design, the brakes will

automatically clamp shut if the elevator loses power.

Elevators also have automatic braking systems near the top and the

bottom of the elevator shaft.

ELEVATOR CONTROLLER

623

ELEVATOR SYSTEM OVERVIEW

