INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad -500 043

ELECTRONICS AND COMMUNICATION ENGINEERING

COURSE DESCRIPTOR

Course Title	PROBABILTY THOERY AND STOCHASTIC PROCESS					
Course Code	AECB08	AECB08				
Programme	B.Tech	B.Tech				
Semester	THIRD					
Course Type	CORE					
Regulation	IARE - R18					
	Theory Practical			l		
Course Structure	Lectures	Tutorials	Credits	Laboratory	Credits	
	3	1	4	-	-	
Course Faculty	Dr. M V Kri	Dr. M V Krishna Rao, Professor				

I. COURSE OVERVIEW:

The course addresses the principles of probability theory and random variables. The course also introduces the concepts of random processes and sample functions, which are nothing but the noise signals that appear in a communication channel. The course also introduces the concepts such as Information, entropy of random sources and various coding techniques based on information theory. This course (along with the Signals and Systems course) forms the basis for the next level courses: Analog communication (AC), Digital communication (DC) and Digital Signal Processing (DSP), Radar Systems (RS) and Digital Image Processing (DIP). Students will learn the basics of probability functions (PDF and CDF), Moments, Random Variable Transformations, Temporal and Spectral properties of Random processes, Types of Random Processes, LTI system driven by Random Process, Input and output correlations, and Input and output Power spectral densities.

II. COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites	Credits
UG	AHSB11	II	Mathematical Transform Techniques	4

III. MARKS DISTRIBUTION:

Subject	SEE Examination	CIA Examination	Total Marks
Probability Theory and Stochastic Process	70 Marks	30 Marks	100

IV. DELIVERY / INSTRUCTIONAL METHODOLOGIES:

~	Chalk & Talk	×	Quiz	~	Assignments	×	MOOCs
~	LCD / PPT	>	Seminars	×	Mini Project	>	Videos
✗ Open Ended Experiments							

V. EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIA examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into five modules and each module carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each module. Each question carries 14 marks. There could be a maximum of two subdivisions in a question. The expected percentage of cognitive level of the questions is broadly based on the criteria given in Table 1.

Percentage of Cognitive Level	Blooms Taxonomy Level	
10%	Remember	
50 %	Understand	
25 %	Apply	
15 %	% Analyze	
0 %	Evaluate	
0 %	Create	

Table 1. The expected percentage of cognitive level of questions in SEE.

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 2), with 20 marks for Continuous Internal Examination (CIE), 05 marks for Quiz and 05 marks for Alternative Assessment Tool (AAT).

1 dolo 2. 1 lobebbillent puttern for en i	Table 2:	Assessment	pattern	for	CIA
---	----------	------------	---------	-----	-----

Component		Theory		Total Marks
Type of Assessment	CIE Exam	Quiz	AAT	Total Warks
CIA Marks	20	05	05	30

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8th and 16th week of the semester respectively. The CIE exam is conducted for 20 marks of 2 hours duration consisting of five descriptive type questions out of which four questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Quiz - Online Examination

Two Quiz exams shall be online examination consisting of 25 multiple choice questions and are to be answered by choosing the correct answer from a given set of choices (commonly four). Such a question paper shall be useful in testing of knowledge, skills, application, analysis, evaluation and understanding of the students. Marks shall be awarded considering the average of two quiz examinations for every course.

Alternative Assessment Tool (AAT)

This AAT enables faculty to design own assessment patterns during the CIA. The AAT converts the classroom into an effective learning center. The AAT may include tutorial hours / classes, seminars, assignments, term paper, open ended experiments, METE (Modeling and Experimental Tools in Engineering), five minutes video, MOOCs etc. The AAT chosen for this course is given in table 3.

Table 3: Assessment	pattern for .	AAT
---------------------	---------------	-----

5 Minutes Video	Assignment	Tech-talk	Seminar	Open Ended Experiment
20%	30%	30%	10%	10%

VI. COURSE OBJECTIVES:

The stude	ents will try to learn:
Ι	The fundamental concepts of the 1-dimensional and 2-dimensional random variables
	and their characterization in probability space.
II	The stationary random process, its framework and application for analysing random
	signals and noises.
III	The characteristics of 1-dimensional stationary random signals in time and
	frequency domains.
IV	Analysis of the response of a linear time invariant (LTI) system driven by 1-
	dimensional stationary random signals useful for subsequent design and analysis of
	communication systems.

VII. COURSE OUTCOMES:

After successful completion of the course, students will be able to:				
	Course Outcomes	Knowledge Level (Bloom's Taxonomy)		
CO 1	Infer the concepts of the random experiment, event probability, joint event probability, and conditional event probability for proving the Bayes theorem and for computing complex event probabilities and independence of multiple events.	Understand		
CO 2	Explain the concept of random variable, the probability distribution function (PDF), probability density function (pdf), joint and conditional probability density function (cpdf), and demonstrate the differences among various density functions such as Gaussian, Rayleigh, Poisson, Binomial etc.	Understand		
CO 3	Explain the transformation of random variables, the Expectation operator on functions of random variables to formulate the definition of moments and demonstrate the use of the characteristic and moment generating functions to analytically derive the standard moments.	Understand		
CO 4	Interpret the vector random variables as the extension of scalar random variables to characterize their joint, marginal, and conditional density/ distribution functions.	Understand		
CO 5	Derive the density function of sum of random variables for demonstrating the central limit theorem and its physical significance.	Apply		
CO 6	Explain the Expectation operator on functions of vector random variables to formulate the definition of joint moments (e.g. Correlation and Covariance) and demonstrate the use of the joint characteristic and joint moment generating functions to alternatively derive the joint standard moments.	Understand		
CO 7	Develop the framework for linear transformation of vector gaussian random variables using the properties of jointly gaussian variables.	Apply		
CO 8	Extend the random variable concept to random process and its sample functions for demonstrating the time domain characteristics such as stationarity, independence, and ergodicity of a random process.	Understand		
CO 9	Relate the correlation and covariance functions and their properties for the time domain classification of random processes.	Understand		
CO 10	Develop analytically the auto-power and cross- power spectral densities to solve the related problems of random processes using correlation functions and the Fourier transform.	Apply		
CO 11	Analyze the response of a linear time invariant (LTI) system driven by stationary random processes using the time domain description of random processes.	Analyze		
CO 12	Discover the frequency domain characteristics of of a linear time invariant (LTI) system response driven by stationary random processes using the relationship between correlation functions and power density spectra.	Analyze		

VIII. HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program Outcomes	Strength	Proficiency Assessed by
PO 1	Engineering knowledge: Apply the knowledge of	3	SEE/CIA/Quiz/
	mathematics, science, engineering fundamentals, and an		AAT
	engineering specialization to the solution of complex		
	engineering problems.		
PO 2	Problem analysis: Identify, formulate, review research	3	SEE/CIA/Quiz/
	literature, and analyze complex engineering problems		AAT
	reaching substantiated conclusions using first principles of		
	mathematics, natural sciences, and engineering sciences		

3 = High; 2 = Medium; 1 = Low

IX. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program Specific Outcomes (PSOs)	Strength	Proficiency assessed by
PSO 1	Formulate and Evaluate the applications in the field of	-	-
	Intelligent Embedded and Semiconductor technologies		
PSO 2	Focus on the practical experience of ASIC prototype	-	-
	designs, Virtual Instrumentation and SOC designs		
PSO 3	Build the Embedded hardware design and software	-	-
	programming skills for entry level job positions to meet		
	the requirements of employers		

3 = High; **2** = Medium; **1** = Low

Course	Prog	gram	Outco	omes					Program Specific Outcomes						
Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	\checkmark	-	-	-	-	-	-	-	-	-	-	1	-	-	-
CO 2	\checkmark	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 3	\checkmark		-	-	-	-	-	-	-	-	-	-	-	-	-
CO 4	\checkmark	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 5	\checkmark	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 6	\checkmark	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 7	\checkmark	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 8	\checkmark	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 9	\checkmark		-	-	-	-	-	-	-	-	-	-	-	-	-
CO 10	\checkmark	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 11	\checkmark		-	-	-	-	-	-	-	-	-	-	-	-	-
CO 12		\checkmark	-	-	-	-	-	-	-	-	-	-	-	-	-

X. MAPPING OF EACH CO WITH PO(s), PSO(s):

XI. JUSTIFICATIONS FOR CO – (PO, PSO) MAPPING – DIRECT

Course Outcomes	POs / PSOs	Justification for mapping (Students will be able to)	No. of key competencies
CO 1	PO 1	Make use of (<i>knowledge</i>) the concepts of the random	3
		experiment, sample space, and appreciate (<i>understana</i>) the	
		conditional event probability for (<i>apply</i>) proving the Bayes	
		theorem and for demonstrating (<i>understanding</i>) the random	
		variables using the mathematical principles and scientific	
		methodology to support the study of next-level courses such	
		as communications, digital signal processing, (own	
		engineering discipline) etc.	
CO 2	PO 1	Define (<i>knowledge</i>) a random variable using (<i>knowledge</i>) a	3
		real mapping function of outcomes of a random experiment	
		into a random variable, define (knowledge) the probabilities	
		and (<i>understand</i>) the continuous/discrete probability density	
		function and distribution function for characterizing	
		(knowledge, understand) various types of density functions	
		such as Gaussian, Rayleigh, Poisson, etc. using the	
		mathematical principles and scientific methodology to	
		support (understand) their applications in next-level	
		courses of the program. (own engineering discipline).	

Course Outcomes	POs / PSOs	Justification for mapping (Students will be able to)	No. of key competencies
CO 3	PO 1	Define (<i>knowledge</i>) the transformation and/or the expectation	3
		operation on random variables and their functions, to	
		formulate the definition of moments of a random variable	
		using mathematical principles and demonstrate (understand)	
		the use of the characteristic and moment generating functions	
		(<i>knowledge</i>) to analytically derive the standard moments (by	
		means of scientific principles and methodology) useful for	
		identifying (<i>understand</i>) various noises encountered in	
		communication systems and electronic circuits to support the	
		Demonstrate (understand) the physical significance of the	6
	PU 2	characteristic and moment generating functions and develop	0
		(apply) the Nth order, standard and central moments using the	
		above functions to identify formulate and state a problem	
		and develop solution that uses moments as features and	
		interpret and document the results.	
CO 4	PO 1	Define (<i>knowledge</i>) the vector random variables as the	3
		extension (understand) of scalar random variables using	
		mathematical principles and explain (understand) the	
		meaning of joint, marginal and conditional distribution and	
		density functions using scientific principles and	
		methodology and interpret (<i>understand</i>) them for supporting	
		the study of interdisciplinary courses such as digital image	
		processing (own engineering discipline) and data sciences	
	DO 1	(other engineering disciplines).	2
CO 5	POI	Relate (<i>understand</i>) the density function (<i>knowledge</i>) of sum	3
		random variables using the mathematical principles and	
		demonstrate (<i>understand</i>) the central limit theorem and its	
		physical significance using scientific methodology and	
		integrate these concepts into the study of communication	
		systems (own engineering discipline) and (complex) signal	
		processing systems.	
CO 6	PO 1	Define (<i>knowledge</i>) the expectation operation on vector	3
		random variables and their functions, to formulate the	
		definition of joint moments of a vector random variable using	
		mathematical principles and demonstrate (<i>understand</i>) the	
		use of the joint characteristic and joint moment generating	
		functions (knowledge) to analytically derive the joint standard	
		moments (by means of scientific principles and	
		disginling) some image processing elections	
CO 7	PO 1	Develop (apply) the framework for linear transformation of	3
01	101	vector gaussian random variables (knowledge) using the	5
		properties of jointly gaussian variables using mathematical	
		principles and scientific methodology for appreciating	
		(<i>understand</i>) the difference between correlated and	
		uncorrelated noises and integrate (knowledge) to analyze the	
		noisy communication signals (own engineering discipline).	
CO 8	PO 1	Extend (knowledge) the random variable concept to define	3
		(knowledge) random process and its sample functions using	
		mathematical principles, scientific principles and	

Course Outcomes	POs / PSOs	Justification for mapping (Students will be able to)	No. of key competencies
		methodology for demonstrating (<i>understand</i>) the time domain characteristics such as (<i>knowledge</i>) stationarity, independence, and ergodicity of a random process and integrate them to the study stationary signals encountered in communications (own engineering discipline)	
CO 9	PO 1	Define (<i>knowledge</i>) the correlation and covariance functions of multiple random variables (<i>knowledge</i>) using mathematical principles and scientific methodology and utilize (apply) these functions for classifying (<i>understand</i>) the random processes to support the complex problem of signal estimation in own engineering discipline.	3
	PO 2	Demonstrate (<i>understand</i>) the physical significance of the correlation and covariance functions, and identify , formulate , (<i>apply</i>) and state a (complex) problem , to develop (<i>apply</i>) solution using inversion of correlation/ covariance matrices in certain areas of communication (problems) and interpret and document the results.	6
CO 10	PO 1	Develop analytically (apply) the auto-power and cross- power spectral densities of random processes using correlation functions (<i>knowledge</i>) and Fourier transform (<i>knowledge</i>) using the mathematical principles and scientific methodology to support and integrate them into the frequency domain analysis (<i>understand</i>) of signals and systems encountered in (own engineering discipline) communications, radar, etc.	3
CO 11	PO 1	Recall (<i>knowledge</i>) the convolution integral to find the output time response (<i>understand</i>) of a linear time invariant system and analytically compute (apply) the system response when driven by a random process using mathematical principles and scientific methodology and analyze the system response in terms of autocorrelation and cross-correlation functions to support and integrate the (<i>knowledge</i>) results into the time- domain analysis of electronic systems (own engineering discipline).	3
	PO 2	Demonstrate (<i>understand</i>) the convolution integral as a filtering operation (<i>knowledge</i> , and identify , formulate , (<i>apply</i>) and state a (complex) problem , to develop (<i>apply</i>) solution using appropriate filters in certain areas of communication (problems) and interpret and document the results.	6
CO 12	PO 1	Recall (<i>knowledge</i>) the frequency domain description of convolution operation to find the output frequency response (<i>understand</i>) of a linear time invariant system and analytically compute (apply) the output frequency response when driven by a random process using mathematical principles and scientific methodology and analyze the output frequency response in terms of auto-power spectra and cross-power spectra and cross-correlation functions to support and integrate the (<i>knowledge</i>) results into the frequency -domain analysis of electronic systems (own engineering discipline).	3

Course Outcomes	POs / PSOs	Justification for mapping (Students will be able to)	No. of key competencies
	PO 2	Demonstrate (<i>understand</i>) the filtering operation (<i>knowledge</i> , in frequency domain, discover the frequency domain characteristics of a linear time invariant system that can produce white and colored noises, and identify , formulate , (<i>apply</i>) and state a (complex) problem , and develop (<i>apply</i>) solution using the power spectra analysis of noisy signals in the areas of communication, radar, image	6
		restoration/enhancement, etc. (complex problems), interpret and document the results.	

XII. TOTAL COUNT OF KEY COMPETENCIES FOR CO – (PO, PSO) MAPPING

Course		Progr	am O	utcon	nes / N	No. of	Key (Comp	etenci	ies Ma	atche	1	P S O / N com	rogra Specifi utcon [0. of] upeter	m ic 1es key 1cies
Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	3	10	10	11	1	5	3	3	12	5	12	8	-	-	-
CO 1	3	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 2	3	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 3	3	6	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 4	3	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 5	3	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 6	3	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 7	3	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 8	3	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 9	3	6	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 10	3	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 11	3	6	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 12	3	6	-	-	-	-	-	-	-	-	-	-	-	-	-

Course	Program Outcomes / No. of key competencies									Program Specific Outcomes/ No. of key competencies					
Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	3	10	10	11	1	5	3	3	12	5	12	8	-	-	-
CO 1	100.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
CO 2	100.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
CO 3	100.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
CO 4	100.0	60.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
CO 5	100.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
CO 6	100.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
CO 7	100.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
CO 8	100.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
CO 9	100.0	60.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
CO 10	100.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
CO 11	100.0	60.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
CO 12	100.0	60.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

XIII. PERCENTAGE OF KEY COMPETENCIES FOR CO – (PO, PSO):

XIV. COURSE ARTICULATION MATRIX (PO – PSO MAPPING)

COs and POs and COs and PSOs on the scale of 0 to 3, 0 being no correlation, 1 being the

low correlation, 2 being medium correlation and 3 being high correlation.

 $\mathbf{0} - \mathbf{0} \le \mathbf{C} \le 5\%$ – No correlation;

2 - 40 % < C < 60% – Moderate. $3 - 60\% \le C < 100\%$ – Substantial / High

~		110 00110100101
1	$-5 < C \le 40\%$	- Low / Slight;

Program Specific **Program Outcomes** Course Outcomes **Outcomes CO 1 CO 2 CO 3 CO 4 CO 5**

CO 6	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0
CO 7	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0
CO 8	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0
CO 9	3	3	0	0	0	0	0	0	0	0	0	0	0	0	0
CO 10	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0
CO 11	3	3	0	0	0	0	0	0	0	0	0	0	0	0	0
CO 12	3	3	0	0	0	0	0	0	0	0	0	0	0	0	0
TOTAL	36	12	0	0	0	0	0	0	0	0	0	0	0	0	0
AVERAGE	3.0	3.0	0	0	0	0	0	0	0	0	0	0	0	0	0

XV. ASSESSMENT METHODOLOGY - DIRECT

CIE Exams	PO 1,PO 2	SEE Exams	PO 1,PO 2	Assignments	PO 1,PO 2	Seminars	-
Laboratory Practices	-	Student Viva	-	Mini Project	-	Certification	-
Term Paper	-	Five Minutes Video	PO 10	Tech Talk	PO 10	Open Ended Experiments	-

XVI. ASSESSMENT METHODOLOGY - INDIRECT

>	Early Semester Feedback	~	End Semester OBE Feedback
X	Assessment of Mini Projects by Experts		

XVII. SYLLABUS

MODULE-I	PROBABILITY, RANDOM VARIABLES AND OPERATIONS ON RANDOM				
	VARIABLES				
Random Experiments, Sample Spaces, Events, Probability, Axioms, Joint, Conditional and Total					
Probabilities, Bay's Theorem, Independent Events. Random Variables: Definition, Conditions for					
mapping function of a Random Variable, Types of Random Variable, Distribution and Density					
functions: Definition and Properties, Binomial, Poisson, Uniform, Gaussian, Exponential,					
Rayleigh, random variables, Methods of defining Conditioning Event, Conditional Distribution,					
Conditional Density and their Properties, Expected Value of a Random Variable, Function of a					
Random Variable, Standard and Central Moments, Variance and Skew, Chebychev's Inequality					
MODULE-II	SINGLE RANDOM VARIABLE TRANSFORMATIONS- MULTIPLE				
	RANDOM VARIABLES				
Characteristic Function, Moment Generating Function, Monotonic and Non-monotonic					
Transformations of Single Random Variables (Continuous and Discrete), Vector Random					
Variables, Joint Distribution Function and its Properties, Marginal Distribution Functions, Joint					
Density Function and its Properties, Marginal Density Functions, Conditional Distribution and					
Density - Point Conditioning, Conditional Distribution and Density - Interval conditioning,					
Statistical Independence, Sum of Two and more Random Variables, Central Limit Theorem: Equal					

and Unequal Distribution.						
MODUI	MODULE-III OPERATIONS ON MULTIPLE RANDOM VARIABLES – EXPECTATIONS					
 PART:1 Expected value of a function of multiple random variables, Correlation and Covariance, Correlation Coefficient, Joint Moments about the origin, Joint Central moments, Joint characteristic function, Joint moment generating function. PART:2 Jointly Gaussian random variables: Two random variables case and N random variable case, Properties, Transformations of Multiple Random Variables, Jacobian Matrix, Linear Transformations of Gaussian Random Variables 						
MODU	LE-IV RANDOM PROCESSES – TEMPORAL CHAR	ACTERIS	TICS			
Random Process: Definition and Classification, Distribution and Density Functions, Stationarity and Statistical Independence., First- Order, Second- Order, Wide-Sense Stationarities (N-Order) and Strict-Sense Stationarity, Time Averages and Ergodicity, Mean-Ergodic and Correlation- Ergodic Processes, Autocorrelation Function and Its Properties, Cross-Correlation Function and Its Properties, Covariance Functions, Gaussian and Poisson Random Processes. Response of Linear Systems to Random Process input, Mean and MS value of System Response, Autocorrelation Euler Covariance Function between Input and Output						
MODUI	LE-V RANDOM PROCESSES – SPECTRAL CHARA	CTERIST	ICS			
Power Density Spectrum: Definition and Properties, Relationship between Power Density Spectrum and Autocorrelation Function, Cross Power Spectral Density: Definition and Properties, Relationship between Cross-Power Spectrum and Cross-Correlation Function, System Evaluation using Random Noise, Spectral Characteristics of System Response: Power Density Spectrum of Response, Cross-Power Density Spectra of Input and Output, Noise Bandwidth, White and Colored Noises						
TEXT BOO	DKS:					
1. Peyton Z Hill, 4 th I	. Peebles, "Probability, Random Variables & Random Signal Edition, 2001.	Principles",	Tata McGraw			
REFEREN	CE BOOKS:					
 Probability Theory and Stochastic Processes - Y. Mallikarjuna Reddy, University Press, 4th Edition, 2013. Probability, Random Variables and Stochastic Processes – Athanasios Papoulis and S. Unnikrishna Pillai, PHI, 4th Edition, 2002. Probability, Statistics & Random Processes- K .Murugesan, P. Guruswamy, Anuradha Agencies, 3rd Edition, 2003. Random Processes for Engineers-Bruce Hajck, Cambridge University Press, 2015 Signals, Systems & Communications - B.P. Lathi, B.S. Publications, 2003. 						
XVIII. COURSE PLAN						
I ne course plan is meant as a guideline. Probably there may be changes.						
No	Topics to be covered	Outcomes	Reference			
1-3	Define random experiments, sample spaces, events,	CO 1	T1:1.1-1.5			
	probabilities, bay's theorem, independent events					
4	Random variables: definition, conditions for mapping	CO 2	T1:2.0-2.1			

function of a random variable, types of random variable,

Lecture	Topics to be covered	Course	Reference
N0		Outcomes	T1 2 2 2 5
5-9	Distribution and density functions: definition and	CO 2	11:2.2-2.5
	properties, binomial, poisson, uniform, gaussian,		
10	exponential, and rayleigh random variables	GO 3	T (A (
10	Methods of defining conditioning event, conditional	CO 2	T1:2.6
11.10	distribution, conditional density and their properties,	GO 0	E (0 0 0
11-13	Expected value of a random variable, function of a random	CO 3	T1:3.0-3.2
	variable, standard and central moments, variance and		
	skew, chebychev's inequality		
14	Characteristic function, moment generating function	CO 3	T1:3.3
15-18	Monotonic and non-monotonic transformations of single	CO 3	T1:3.4
	random variables (continuous and discrete)		
19-22	Vector random variables, joint distribution function and its	CO 4	T1:4.0-4.4
	properties, marginal distribution functions, joint density		
	function and its properties, marginal density functions,		
23-24	Joint Conditional distribution and density – point	CO 4	T1:4.5
	conditioning, Joint conditional distribution, and density –		
	interval conditioning, statistical independence,		
25-26	Sum of two and more random variables, central limit	CO 5	T1:4.6-4.7
	theorem: equal and unequal distribution.		
27-28	Expected value of a function of multiple random variables,	CO 6	T1:5.0-5.1
	correlation and covariance, correlation coefficient,		R1: 5.2-5.5
29-31	Joint moments about the origin, joint central moments, joint	CO 6	T1:5.2
	characteristic function		
32-33	Jointly gaussian random variables: two random variables	CO 7	T1:5.3
	case and n random variable case, properties		
34-36	Transformations of multiple random variables, Jacobian	CO 7	T1:5.4-5.5
	matrix, linear transformations of gaussian random		R1: 5.6-5.8
	variables		
37-40	Random process: definition and classification,	CO 8	T1:5.4-5.6
	distribution and density functions, stationarity and		R1: 6.7
	statistical independence.		
41-43	First- order, second- order, wide-sense stationarities (n-	CO 8	T1:6.1-6.2
	order) and strict-sense stationarity, time averages and		R1: 6.7
	ergodicity, mean-ergodic and correlation-ergodic		
	processes		
42-44	Autocorrelation function and its properties, cross-	CO 9	11:6.3
	correlation function and its properties, covariance		R1: 6.8-6.9
	tunctions, gaussian and poisson random processes.		R1: 6.12
45-49	Response of linear systems to random process input, mean	CO 11	T1:8.2
	and MS value of system response, autocorrelation function		
TO T	of response, cross- correlation between input and output.		
50-52	Power density spectrum: definition and properties,	CO 10	T1:7.1-7.2
	relationship between power density spectrum and		R1: 7.2-7.5
	autocorrelation function		

Lecture No	Topics to be covered	Course Outcomes	Reference
53-54	Cross power spectral density: definition and properties,	CO 10	T1:7.3-7.4
	relationship between cross-power spectrum and cross-		
	correlation function		
55-57	System evaluation using random noise, spectral	CO 12	T1:8.3-8.4
	characteristics of system response: power density		R1: 8.3-8.4
	spectrum of response, cross-power density spectra of input		
	and output.		
58-60	Noise bandwidth, white and colored noises	CO 12	T1:8.5-8.7

Prepared by: Dr. M V Krishna Rao, Professor, ECE

HOD, ECE