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MODULE-I
PROBABILITY AND RANDOM VARIABLES AND OPERATIONS ON
RANDOM VARABLES

Introduction

It is remarkable that a science which began with the consideration of games of chance should have
become the most important object of human knowledge.

A brief history

Probability has an amazing history. A practical gambling problem faced by the French nobleman Chevalier
de Méré sparked the idea of probability in the mind of Blaise Pascal (1623-1662), the famous French
mathematician. Pascal's correspondence with Pierre de Fermat (1601-1665), another French Mathematician
in the form of seven letters in 1654 is regarded as the genesis of probability. Early mathematicians like Jacob
Bernoulli (1654-1705), Abraham de Moivre (1667-1754), Thomas Bayes (1702-1761) and Pierre Simon De
Laplace (1749-1827) contributed to the development of probability. Laplace's Theory Analytique des
Probabilities gave comprehensive tools to calculate probabilities based on the principles of permutations and
combinations. Laplace also said, "Probability theory is nothing but common sense reduced to calculation.”

Later mathematicians like Chebyshev (1821-1894), Markov (1856-1922), von Mises (1883-1953), Norbert
Wiener (1894-1964) and Kolmogorov (1903-1987) contributed to new developments. Over the last four
centuries and a half, probability has grown to be one of the most essential mathematical tools applied in
diverse fields like economics, commerce, physical sciences, biological sciences and engineering. It is
particularly important for solving practical electrical-engineering problems in communication, signal
processing and computers. Notwithstanding the above developments, a precise definition of probability
eluded the mathematicians for centuries. Kolmogorov in 1933 gave the axiomatic definition of probability
and resolved the problem.

Randomness arises because of
o random nature of the generation mechanism
o Limited understanding of the signal dynamics inherent imprecision in measurement,
observation, etc.

For example, thermal noise appearing in an electronic device is generated due to random motion of
electrons. We have deterministic model for weather prediction; it takes into account of the factors affecting
weather. We can locally predict the temperature or the rainfall of a place on the basis of previous data.
Probabilistic models are established from observation of a random phenomenon. While probability is
concerned with analysis of a random phenomenon, statistics help in building such models from data.

Deterministic versus probabilistic models
A deterministic model can be used for a physical quantity and the process generating it provided sufficient
information is available about the initial state and the dynamics of the process generating the physical

guantity. For example,

e We can determine the position of a particle moving under a constant force if we know the initial
position of the particle and the magnitude and the direction of the force.

e We can determine the current in a circuit consisting of resistance, inductance and capacitance for a
known voltage source applying Kirchoff's laws.

Many of the physical quantities are random in the sense that these quantities cannot be predicted with
certainty and can be described in terms of probabilistic models only. For example,

e The outcome of the tossing of a coin cannot be predicted with certainty. Thus the outcome of tossing
a coin is random.




e The number of ones and zeros in a packet of binary data arriving through a communication channel
cannot be precisely predicted is random.

e The ubiquitous noise corrupting the signal during acquisition, storage and transmission can be
modelled only through statistical analysis.

Random Signal

Many of the signals encountered in practice behave randomly in part or as a whole in the sense that
they cannot be explicitly described by deterministic mathematical functions such as a sinusoid or an
exponential function. Randomness arises because of the random nature of the generation mechanism.
Sometimes, limited understanding of the signal dynamics also necessitates the randomness assumption. In
electrical engineering we encounter many signals that are random in nature. Some examples of random
signals are:

i. Radar signal: Signals are sent out and get reflected by targets. The reflected signals are received
and used to locate the target and target distance from the receiver. The received signals are highly
noisy and demand statistical techniques for processing.

ii.  Sonar signal: Sound signals are sent out and then the echoes generated by some targets are
received back. The goal of processing the signal is to estimate the location of the
target.

iii.  Speech signal: A time-varying voltage waveform is produced by the speaker speaking over a
microphone of a telephone. This signal can be modeled as a random signal. A sample of the speech
signal is shown in Figure 1.

iv.  Biomedical signals: Signals produced by biomedical measuring devices like ECG, EEG, etc., can
display specific behavior of vital organs like heart and brain. Statistical signal processing can predict
changes in the waveform patterns of these signals to detect abnormality. A sample of ECG signal is
shown in Figure 2.

v.  Communication signals: The signal received by a communication receiver is generally corrupted by
noise. The signal transmitted may the digital data like video or speech and the channel may be
electric conductors, optical fiber or the space itself. The signal is modified by the channel and
corrupted by unwanted disturbances in different stages, collectively referred to as noise.

These signals can be described with the help of probability and other concepts in statistics. Particularly
the signal under observation is considered as a realization of a random process or a stochastic process. The
terms random processes, stochastic processes and random signals are used synonymously.

A deterministic signal is analyzed in the frequency-domain through Fourier series and Fourier
transforms. We have to know how random signals can be analyzed in the frequency domain.

Basic Concepts of Set Theory

The modern approach to probability based on axiomatically defining probability as function of a set. A
background on the set theory is essential for understanding probability.

Some of the basic concepts of set theory are:
Set

A set is a well defined collection of objects. These objects are called elements or members of the set.
Usually uppercase letters are used to denote sets.

Probability Concepts

Before we give a definition of probability, let us examine the following concepts:




1. Random Experiment: An experiment is a random experiment if its outcome cannot be predicted
precisely. One out of a number of outcomes is possible in a random experiment. A single
performance of the random experiment is called a trial.

2. Sample Space: The sample space “is the collection of all possible outcomes of a random
experiment. The elements of < are called sample points.

o A sample space may be finite, countably infinite or uncountable.

o A finite or countably infinite sample space is called a discrete sample space.

e Anuncountable sample space is called a continuous sample space
3. Event: Anevent A is a subset of the sample space such that probability can be assigned to it. Thus
A X

o For adiscrete sample space, all subsets are events.

o Tjsthe certain event (sure to occur) and ';Ef'is the impossible event.

Figure 1

Consider the following examples.

Example 1: tossing a fair coin

The possible outcomes are H (head) and T (tail). The associated sample space is S={A, T} It is a finite
sample space. The events associated with the sample space < are: ST and ';t'.

Example 2: Throwing a fair die:

The possible 6 outcomes are:

. . L

|'I|||'

bt
L
4;_":
taty
S

The associated finite sample space is S={T, 2,73, 4.5, %} .Some events are

A =The event of getting an odd face={'1, '3, 57,
B =The event of getting a siz={'6"}
And so on.

Example 3: Tossing a fair coin until a head is obtained




We may have to toss the coin any number of times before a head is obtained. Thus the possible outcomes
are:

H, TH, TTH, TTTH,
How many outcomes are there? The outcomes are countable but infinite in number. The countably infinite

sample space is*
Example 4 : Picking a real number at random between -1 and +1

The associated sample space is © ~ (¢ |SE R, ~1s s T =[~1. 1]

Clearly 'is a continuous sample space.

Definition of probability

Consider a random experiment with a finite number of outcomes #¥ If all the outcomes of the experiment are
equally likely , the probability of an event A is defined by

_¥,
R4 =2

where
N, = HMumber of cutcomes favourable to 4

Example 6 A fair die is rolled once. What is the probability of getting a ‘6* ?
Here S = {Il I, Izl, I3I, I4I, I5I, I6I} and Jq ={ I6 I}
LA =6 and N =1

.'.P(ﬂ)=%

Example 7 A fair coin is tossed twice. What is the probability of getting two ‘heads'?

Here S ={HH TH,L6 HT, mand A={HH4}
Total number of outcomes is 4 and all four outcomes are equally likely.

Only outcome favourable to 4 is {HH}

e

] =

Discussion

e The classical definition is limited to a random experiment which has only a finite number of
outcomes. In many experiments like that in the above examples, the sample space is finite and each
outcome may be assumed ‘equally likely.' In such cases, the counting method can be used to
compute probabilities of events.

o Consider the experiment of tossing a fair coin until a ‘head' appears.As we have discussed earlier,
there are countably infinite outcomes. Can you believe that all these outcomes are equally likely?

e The notion of equally likely is important here. Equally likely means equally probable. Thus this

definition presupposes that all events occur with equal probability . Thus the definition includes a
concept to be defined

Relative-frequency based definition of probability




If an experiment is repeated * times under similar conditions and the event - occurs in ™+ times,

P(A)= Lim 4
then e R

Example 8 Suppose a die is rolled 500 times. The following table shows the frequency each face.

Face i 2 3 4 h] ]
Freguency 82 871 | 88 81 | 90 | 78
Relative frequency  |0.164|0.1620.176\0.162|0.18 |0.156
1
We see that the relative frequencies are close to & . How do we ascertain that these relative frequencies will

1

approach to © as we repeat the experiments infinite no of times?
Discussion This definition is also inadequate from the theoretical point of view.

= We cannot repeat an experiment infinite number of times.
» How do we ascertain that the above ratio will converge for all possible sequences of
outcomes of the experiment?

Axiomatic definition of probability

We have earlier defined an event as a subset of the sample space. Does each subset of the sample space
forms an event?

The answer is yes for a finite sample space. However, we may not be able to assign probability meaningfully
to all the subsets of a continuous sample space. We have to eliminate those subsets. The concept of the sigma
algebra is meaningful now.

Definition Let < be a sample space and F'a sigma field defined over it. Let £ F — I he a3 mapping from

the sigma-algebra Flinto the real line such that for each A= F | there exists a unique £ <Y €& clearly P
is a set function and is called probability, if it satisfies the following three axioms.

1. P(A) 20 foral AeF

FEy =1
Countable additivity If 4,4, are pair-wise disjoint events,i.e. 4 md, =¢ fori=j, then

Pfgm - gftﬂ,-)

i
+ 1
fﬁk
/ \
o) —
"“\-\._\___,_.-"' 1 E}
&




Figure 2

Discussion

The triplet (5. F.7) is called the probability space.
e Any assignment of probability assignment must satisfy the above three axioms

f i AnB=0 P(AUB) = P(4)+F(B)

This is a special case of axiom 3 and for a discrete sample space , this simpler version may be
considered as the axiom 3. We shall give a proof of this result below.

e The events A and B are called mutually exclusive i AnB =1 .

Basic results of probability

From the above axioms we established the following basic results:

1 Fl@r=0
Suppose, 4= %A =d.A=d
Armd =gfori=;

Then
P(f) = P 4)
-3 P(4)
=3p
Therefore E @)
Pgp=%pP
Thus @ E @ which is possible only if Flg)=0
o if AEeFand AnB =0, F(AB) = P4+ P(E)
We have ,

AoB=AuF g g
SP(AQE = PLAVH POEY+ P+ Pl + .. (using axiom 3)
SCP(ALEY = LAY+ POED
3. P4 = 1- P (A yhere where A€ F
Ao At =8
= PlAUAT = PS5
= PA+PAY=1 —AnA =g
We have, SPA) =1- Pl
4. If ABelF, PlANBE) =FP(A) - F(ANED)




We have,
(ANB Y U(AmE) =4

e Y
CHCANBE YOl Ar B)Y] = PrA) l (('w.lg )
= P(ANE)+ P(ArE) = P(A) k &G L

= P(ANE) = P(A) - P(ANB) /L J\&

. Ar B A B
We can snn:larly show that , A=(AnBYU (AN E)
FlA mBy=F(E)-Fl(AnE

¢ ABEF, P(AUB)=P(4)+P(B)- P(ANB)
We have ,
AVB={4 nBu(drmBraidmE)
SE(ALE = FiA By AnBiuiAn B
= P(A° NB)+ P(AnB)+ P(Ar BY)
=P(E)- P(Ar B) + P(AN B+ P(A) - (A B)
=P(E)+ P(4) - P(Ar B)

6. We can apply the properties of sets to establish the following result for
A8 CelF

PALUBUCY =PA+ P+ POV -PANE) - P(BENC - PANC) + PFIANE )
The following generalization is known as the principle inclusion-exclusion.

Probability assignment in a discrete sample space

Consider a finite sample space . Then the sigma algebra is defined by the power set of S. For
any elementary event , we can assign a probability P( si ) such that,

it

2P({s}) =1

i=1

Ae ]F, we can define the probability

P(ay=>" P(4)

e

For any event

In a special case, when the outcomes are equi-probable, we can assign equal probability p to each
elementary event.




2.p =1

i=1

= p = 1=

Py = 2| | (4)

i

#(d) ©
M

n(A
M
Example 9 Consider the experiment of rolling a fair die considered in example 2.

suppose ¥ =128 ronrecent the elementary events. Thus “Xis the event of getting “1', 4+ is the
event of getting '2' and so on.

Since all six disjoint events are equiprobable and S=dugu. we get ,

P(A) = P(4,) = .= P(4) =%

Suppose A is the event of getting an odd face. Then

A=A oA

CP(A) = PLAY+ PA) + PLA) = 3><é =1§

Example 10 Consider the experiment of tossing a fair coin until a head is obtained discussed in Example 3.

Here © ~ W1, TH.TTH, .} | et us call
5 =H
5, =TH
s, =TTH
1
s == 2 Plighi=1 _
and so on. If we assign, 2" then =5 Let A={5,55,5) is the event of

obtaining the head before the 4 th toss. Then

PlAy=Fl{s})+ P{s)) + Pl{s))
1117
2 2° 28 8
Probability assignment in a continuous space

Suppose the sample space S is continuous and un-countable. Such a sample space arises when the
outcomes of an experiment are numbers. For example, such sample space occurs when the experiment
consists in measuring the voltage, the current or the resistance. In such a case, the sigma algebra consists of

the Borel sets on the real line.

suppose 5= Eand & ' = R 5 4 non-negative integrable function such that,




lf{x} dr =1

For any Borel set 4,
FlAy = J'f(xj dx
4 defines the probability on the Borel sigma-algebra B .

2 3
We can similarly define probability on the continuous space of R ] etc.

Example 11  Suppose

forxela, &]
Jrlxi=<b - a
] otherwize
Then for [a), ] cla, &]
Play, b)) = 24
b - a

Probability Using Counting Method

In many applications we have to deal with a finite sample space “ and the elementary events formed
by single elements of the set may be assumed equiprobable. In this case, we can define the probability of the
event A according to the classical definition discussed earlier:

A
By =

e

where “4= number of elements favorable to A and n is the total number of elements in the sample
-
space .

Thus calculation of probability involves finding the number of elements in the sample space * and the

event A. Combinatorial rules give us quick algebraic formulae to find the elements in = .We briefly outline
some of these rules:

1. Product rule Suppose we have a set A with m distinct elements and the set B with n distinct

AxB=ila.b;||aedb 8 . .

elements and [(a’ J ) & J ] . Then 4% & contains mn ordered pair of elements.
This is illustrated in Fig for m=5 and n=4 n other words if we can choose element a in m possible
ways and the element b in n possible ways then the ordered pair (a, b) can be chosen in mn possible
ways.




B al’b-‘- ﬂg,f;'l‘_ ﬂ3,b4 fz.‘_,b.‘, aj :b.¢

ay, & @y, s, & aty, by as, by

ap, by ;.5 s, 8y iy, by s, 8y

ay, @y, i @3, 8 @y, a5,

=

Figure 1 Ilustration of the product rule

The above result can be generalized as follows:
The number of distinct k -tupples in AN KA = {{al’aﬂ """ a )| €Aty €y % © ﬂ"'} is

e CRERE %x where ™ represents the number of distinct elements in _,q!.'

Example 1 A fair die is thrown twice. What is the probability that a 3 will appear at least once.

Solution: The sample space corresponding to two throws of the die is illustrated in the following table.

& x 6 = 36

Clearly, the sample space has elements by the product rule. The event corresponding to

11
getting at least one 3 is highlighted and contains 11 elements. Therefore, the required probability is 3% .

(1,6 | (2,6) |(3,6) | e |(56) |(6E)
(1,5 [ @250 [35) [ @5 [(55) |(65)
(14 |24y [E4) [@4) [ (540 | (64)
(1,2) |23 |33 [@3 |53 |63
(1.2) | (2.2 [(532) [ @2 |(52) |(62)
(L &0 [0 [ @1 |51 |61

Throw /

ba 0 Y e e

Example 2 Birthday problem - Given a class of students, what is the probability of two students in the
class having the same birthday? Plot this probability vs. number of students and be surprised!.

Let k <365 be the number of students in the class.

Then the number of possible birth days=365.365_..365 ( k-times) = 365"
The number of cases with each of the & students having a different barth

day is =""F =365 364 (365-k+1)

%5
Therefore, the probability of comm on bitthday =1- 36?




Number of persons Probability
2 0.0027
n 11169

13 (4114
25 0.5687
40 (1.8912
50 0.9704
] 0.9941
80 {1.9999

g

The plot of probability vs number of students is shown in above table. Observe the steep rise in the
probability in the beginning. In fact this probability for a group of 25 students is greater than 0.5 and that for
60 students onward is closed to 1. This probability for 366 or more number of students is exactly one.

0&r .

[
o

probability

o
E=
T

1

nz-# -

1 I 1 I 1
a0 100 150 200 240 300 350
Mumber of people

Example 3 An urn contains 6 red balls, 5 green balls and 4 blue balls. 9 balls were picked at random from
the urn without replacement. What is the probability that out of the balls 4 are red, 3 are green and 2 are
blue?

Solution :
e o 13l
=
9 balls can be picked from a population of 15 balls in alal,
i, 1 A x
e
Therefore the required probability is 9

Example 4 What is the probability that in a throw of 12 dice each face occurs twice.

Solution: The total number of elements in the sample space of the outcomes of a single throw of 12
L2
dice is = ©

The number of favourable outcomes is the number of ways in which 12 dice can be arranged in six
groups of size 2 each — group 1 consisting of two dice each showing 1, group 2 consisting of two dice each




showing 2 and so on.
Therefore, the total number distinct groups

_ 12
212121212121

121

. L (2" g
Hence the required probability is
Conditional probability

Consider the probability space (5T, P:'. Let A and B two events in ' . We ask the following
guestion —
Given that A has occurred, what is the probability of B?

The answer is the conditional probability of B given A denoted by PB4 . We shall develop the
concept of the conditional probability and explain under what condition this conditional probability is same
FE)
as :

Notation
P B/} = Conditional probability of B
given A

N

Let us consider the case of equiprobable events discussed earlier. Let ~"4& sample points be

favourable for the joint event A & .

ANk

Figure 1




Mumber of outcomes favourable to A and B

P(BiA) =

Mumber of outcomes in A
ml AR
=H(ﬂ3) _ n =P(Hr“|5’]
nidy  nld) P4

b

Clearly,

This concept suggests us to define conditional probability. The probability of an event B under the condition
that another event A has occurred is called the conditional probability of B given A and defined by

P(ArB)

P(BIA)= , B =0

We can similarly define the conditional probability of A given B, denoted by F(AIB)

From the definition of conditional probability, we have the joint probability PLANE) of two events
A and B as follows

P(ANB) = PEAYP(B I A) = P(BYP(AI B)

Example 1 Consider the example tossing the fair die. Suppose

A=event of getting an even number ={2, 4,6}
b =event of getting a number less than 4 =1{1,2,3}
SANE={2}
FlAmEY 16 1
P4 36 3

S E(BIA) =

Example 2 A family has two children. It is known that at least one of the children is a girl. What is the
probability that both the children are girls?

A = event of at least one girl

B = event of two girls




& = {gg, gb, bg, bb}, A={gg, gb, bg} and B ={gg}
Amb={gg}
P(ANB) _1/4 _1

B =0 T

Clearly,
Conditional probability and the axioms of probability

In the following we show that the conditional probability satisfies the axioms of probability.

FlEIA) = M,P(ﬂ) =[]
By definition
Axiom 1:
FlAMEB 20, P(4) >0
SRR A =M2 0
Bl A
Axiom 2 :
We have , S A=A
(ST A = FlimA _ FiA) -1
FiA FiA)
Axiom 3 :

Consider a sequence of disjoint events 3.

(EJ ByrmA= D(Bi )
il

iml

We have ,

B B2

%y
L

Figure 2




Note that the sequence Fmd, 1=1la,. is also sequence of disjoint events.

P(U (B, i A)) = iP(Bi )
il

i=1

P(U B, A) iP(Bi )

B 1B Ay = = ANy
(zg! ) FrA) P ;(; )

Properties of Conditional Probabilities

it B A tnon FB14)=1and P(AIB) 2 P(4)
We have , AmE& =48

PLANB) _ P _,

PRy =
574 P4 PLA

and
PlANE)
P(B)
_P(AVP(BIA)
T P(B)
_ P
P(B)
2 P

P(AIB) =

Chain Rule of Probability

P4 Ay ) = PEAYP(4 T A)PUA T4 A) PUATANL N4

We have ,

(ANMEB T =(An BT
PANEB nT) = FAAnBIPICIANE
=FAFPENAPCTANE

L EARBAC) = BB APCT AN E)

We can generalize the above to get the chain rule of probability

P4 Ay ) = PAYP(4, T 4 )P4 14 A A). PUAT AN

A, )




Joint Probability

Joint probability is defined as the probability of both A and B taking place, and is denoted by P(AB).

Joint probability is not the same as conditional probability, though the two concepts are often
confused. Conditional probability assumes that one event has taken place or will take place, and then asks for
the probability of the other (A, given B). Joint probability does not have such conditions; it simply asks for
the chances of both happening (A and B). In a problem, to help distinguish between the two, look for
qualifiers that one event is conditional on the other (conditional) or whether they will happen concurrently
(joint).

Probability definitions can find their way into CFA exam questions. Naturally, there may also be questions
that test the ability to calculate joint probabilities. Such computations require use of the multiplication rule,
which states that the joint probability of A and B is the product of the conditional probability of A given B,
times the probability of B. In probability notation:
P(AB) = P(A | B) * P(B)
Given a conditional probability P(A | B) = 40%, and a probability of B = 60%, the joint probability P(AB) =
0.6*0.4 or 24%, found by applying the multiplication rule.
P(AUB)=P(A)+P(B)-P(AnB)
For independent events: P(AB) = P(A) * P(B)

Moreover, the rule generalizes for more than two events provided they are all independent of one another, so
the joint probability of three events P(ABC) = P(A) * (P(B) * P(C), again assuming independence.

Total Probability

Let 44 "A”be n events such that

= g ) 4 ..... (W d A .= f | & .'
S=du 4 4, md 44, =@ fori JThenforanyeventB,

P(BY =2 P(AYP(BIA)
i=l

]
| JBn4 =B
Proof : We have i-1 and the sequence En4 is disjoint.

LEPE =P B4

i=1

=D P(Br4)
iml

= iP(ﬂi)P(Bf A
il




Figure 3

Remark

(1) A decomposition of a set S into 2 or more disjoint nonempty subsets is called a partition of S.The
subsets 4" = - = A form a partition of 5 if © ~ 1 A and 4 md;=¢ fori=}

(2) The theorem of total probability can be used to determine the probability of a complex event in terms
:)Jcr[ﬁlrzt.ed simpler events. This result will be used in Bays' theorem to be discussed to the end of the

Example 3 Suppose a box contains 2 white and 3 black balls. Two balls are picked at random without
replacement.

Let "41: event that the first ball is white and
A
Let “1 = event that the first ball is black.

Clearly ‘qland A4 form a partition of the sample space corresponding to picking two balls from
the box.

Let B = the event that the second ball is white. Then .

P(B) = P(4)P(BI A) + P(&)P(B 1 &)
21,32 2
5 4 5 4 5

Bayes' Theorem




Suppose 4. 4. ... A are partitions on S such that S = 4o A4 and 4 M, = ¢ fori# |
suppose the event 5 occurs 1f one of the events 4, 4, ... A, occus. Thus we have the information of the
probabilities P(4) and P(B/ 4),i =1,2.,» We ask the following question:

(iven that 5 has occured what 1s the probalalily that a particular event A, has cccured? In other words

what is PIAIB)?

We have F{5) = ZP(AE,J P[B | A}:] { Using the theorem of total probability)

B4 ) P(BI4)
(B

_ P{4)P[BIA4)
> P4 )P(BI4)

iml

' P4, |B)=

This result is known as the Baye's theorem. The probability P is called the a priori probability and
PA15) is called the a posteriori probability. Thus the Bays' theorem enables us to determine the a
posteriori probability FL415) from the observation that B has occurred. This result is of practical
importance and is the heart of Baysean classification, Baysean estimation etc.

Example 6

In a binary communication system a zero and a one is transmitted with probability 0.6 and 0.4
respectively. Due to error in the communication system a zero becomes a one with a probability 0.1 and a
one becomes a zero with a probability 0.08. Determine the probability (i) of receiving a one and (ii) that a
one was transmitted when the received message is one.

Let S be the sample space corresponding to binary communication. Suppose et be event of

transmitting 0 and 71 be the event of transmitting 1 and & and £ be corresponding events of receiving 0
and 1 respectively.

Given P(T) = 0.6, P(T) =04, (R ) = 0.1, P(R,IT;) = 0.08.

(1) F(A) = Probabilty of receiving 'one'
- P(T)P(R I T) + P)P(R, I T,)
=04x0592+06x0.1
=0.448
{11) Using the Baye's rule
PG PR IT)
FLR)
_ PIDPE )
PONPR T+ PP(R T
04092

T 04%0.92+0.6%0.1
- 0.8214

PR =




Example 7: In an electronics laboratory, there are identically looking capacitors of three makes

0
A A and A0 e ratio 2:3:4. It is known that 1% of “2, 1.5% of “2 @94 270 of & 50 Gefective. What
percentages of capacitors in the laboratory are defective? If a capacitor picked at defective is found to be

defective, what is the probability it is of make 4 ?

Let D be the event that the item is defective. Here we have to find F0) and P41 D) .

2 -1 _4
e A =g PlA) = 5 and PLA) = o

The conditional probabilities are F(D{A) =001 2(Df4)=0015and F(D/ 4)=0.02
S P(D) = PLAYP(D] A)+ PIA)YP(DI &) + P(4) P(DI 4)

= Ex U_m+l><0_015+ix0.02
9 2 9

=0.0167

and

P4 1Dy = FAIPDI )

(D)

i><IZI.I32
3

0.0167
=533

Independent events

Two events are called independent if the probability of occurrence of one event does not affect the
probability of occurrence of the other. Thus the events A and B are independent if

P(BIA)=P(B) . | P(AIE)=P(A)

and

Pl P(E)

where and are assumed to be non-zero.

Equivalently if A and B are independent, we have

P(ANB) _

20A) F(8)

Joini probability is the
product of individual
probabilities.

or P[ﬂ r"..E’) = P{AVF(E)
Two events A and B are called statistically dependent if they are not independent. Similarly, we can define

os

the independence of n events. The events Ao Ay are called independent if and only if




P(4 1 A4)) = P(4)P(4,)
P(A4 M A; M) = POAYPA)IP(A)
P4 MA A, O A) = PIAYPIA)IP(A) . PA)

Example 4 Consider the example of tossing a fair coin twice. The resulting sample space is given by

§ = {HH AT, TH,TT) and all the outcomes are equiprobable.

Let A={TH.TT} be the event of getting ‘tail’ in the first toss and B ={TH. 47} be the event of
getting ‘head' in the second toss. Then

(A B) = (TH)

Again, so that

P(ARB)- i - P(A)P(B)
Hence the events A and B are independent.

Example 5 Consider the experiment of picking two balls at random discussed in above example

ey =2 pmray=1
In this case, and 4

Therefore, P8y = P8 4) and ‘qland B are dependent.
RANDOM VARIABLE
INTRODUCTION

In application of probabilities, we are often concerned with numerical values which are random in
nature. For example, we may consider the number of customers arriving at a service station at a particular
interval of time or the transmission time of a message in a communication system. These random quantities
may be considered as real-valued function on the sample space. Such a real-valued function is called real
random variable and plays an important role in describing random data. We shall introduce the concept of
random variables in the following sections.

Random variable

A random variable associates the points in the sample space with real numbers.

Y- i=R

Consider the probability space I:S’ F’ P) and function mapping the sample space =

into the real line. Let us define the probability of a subset SCR by

Pp({B)) = PLXTH(B)) = P{s| X (5)e BY)




-1 -1
Such a definition will be valid if (AL70ED is a valid event. If 'is a discrete sample space, SN E))

is always a valid event, but the same may not be true if is infinite. The concept of sigma algebra is again

necessary to overcome this difficulty. We also need the Borel sigma algebra & -the sigma algebra defined on
the real line.

The function £ : 5" — K s called a random variable if the inverse image of all Borel sets under % is
an event. Thus, if < is a random variable, then

XYB)={s| X(s)eB}eF

Figure: Random Variable

Observations:

e <isthe domain of < .

R

e Therange of - denoted by “*¥ is given by

Ry ={X(s)|s €5)
Clearly Ry Q]R.

-1
« The above definition of the random variable requires that the mapping <X is such that (A (5) is
avalid event in . If <'is a discrete sample space, this requirement is met by any mapping
X5 — R Thus any mapping defined on the discrete sample space is a random variable.

Example 2 Consider the example of tossing a fair coin twice. The sample space is S={ HH,HT,TH,TT} and
all four outcomes are equally likely. Then we can define a random variable <X as follows

Sample Point | Value of the

random
Variable
HH 0
HT 1
TH 2




Here Ry ={0.1.23 .

Example 3 Consider the sample space associated with the single toss of a fair die. The sample space is

given by 5 = {12.34.5.6}

If we define the random variable < that associates a real number equal to the number on the face of

the die, then < ~ :2:3.4.5.6}

Discrete, Continuous and Mixed-type Random Variables

« A random variable < is called a discrete random variable if Fy () is piece-wise constant. Thus

Fy () is flat except at the points of jump discontinuity. If the sample space = is discrete the random variable
£ defined on it is always discrete.

 Xis called a continuous random variable if Fy () is an absolutely continuous function of x . Thus

Fy (%) is continuous everywhere on I and Fy (%) exists everywhere except at finite or countably infinite
points .

+ Xis called a mixed random variable if Fy () has jump discontinuity at countable number of points
and increases continuously at least in one interval of X. For a such type RV X,

Hplx) = plylx)+(1-plF.(x)

Fo(x)

where Fplax) is the distribution function of a discrete RV, is the distribution function of a

continuous RV and o< p <1.

Typical plots of Fy () for discrete, continuous and mixed-random variables are shown in Figure 1,
Figure 2 and Figure 3 respectively.

The interpretation of Fplx) and Fe (%) will be given later.

'

iy (x)

1 -+

Y

&

Figure 1 Plot of Fy (x) vs. & for a discrete random variable




k)

Probability Distribution Function

We have seen that the event & and (& |€()€ 5} are equivalent and
(B} = Plis| X(s) € B) .The underlying sample space is omitted in notation and we simply write

(€ B} gng £UL €8 jnstead of 1851 48)E B} gy UL (5)E B regpectively.

Consider the Borel set':_m= x] , Where & represents any real number. The equivalent event
e _
A (e, 7]) = {s]| £(5) 2%, 8€5} i5 denoted as 4 =% The event 4 * % can be taken as a

representative event in studying the probability description of a random variable £ . Any other event can be
represented in terms of this event. For example,

(X>n=(X<x (n< X <x)={X <x)\(X <x),
x-a-Alxeavra-y
n=1 M

and so on.

The probability L& < x1) = P({s| £(s) £ %, 5€51)is called the probability distribution function ( also

called the cumulative distribution function , abbreviated as CDF ) of X and denoted by Fy () . Thus

Fp(x) = P& < x3)

Value of the random variable

H,(x)
’-

\ Random variable

Figure 4




Example 4: Consider the random variable <X in the above example. We have

Value of the
random P(iX = x})
Variable X' =x
0 1/4
| 1/4
2 1/4
3 1/4
Forxz <0,
Felmy=F{A <xp=10
For0 £x<1,
1
Felm=FP{X ix)=FP{A=01= 7

Forlz x< 2,
Flm)=FP{X <x

1)

=P{X=0p{X=1)
= P& =0+ PUA =1

1 1 1

= _ 4+ __=_

4 4 2
For2ix<5,

Fylx)= P& £ x1)

Forx 23,

= PUX =0y (X =Tho{X =2
=P{A =0+ FPH{A =T+ P{X =2}

Fp(x) = P& La1)

= F(5)
-1

Figure 5 shows the plot of Fx(x)

11 1 3
=_+_+_==
4 4 4 4

Fx(:’-’)“

1+

Figure 5




Forlz x< 2,

Fyix)=F({& £ x})
=PUX=0h{X =1
=FPHA=0N+FUHL =1}

_1,o1 1
4 4 2
For2 x5,

Fplx) = P{& £x3)
=PHA =00 X =Tho{X =2}
=PHA =0 +PHA =)+ F{X=12})
N S
4 4 4 4
Properties of the Distribution Function

0< Fy(x) <1

This follows from the fact that Fy () is a probability and its value should lie between 0 and 1.

o Fx(®)is 3 non-decreasing function of X . Thus, if ®1 < %z» then Fx(5) < Fy (x)

x X

S {AE S Cc{XEn)
=S PAE Sx L PEE L 5]
S FL (xR

o Fx(®) s right continuous.
Fy(x") =lim . (x+) = Fy (1)

B
Eecause, lkiﬂ% Folx+h= km& PlXi= A x+ k)

Ex0 Bl
=FPXi=) L x}
=y (x)
Fy(m) =10

Because, Fy(—m)=Flz|A(s) £ -} = Plg) = EII.

Fyl(m)=1
Because, Fo(w)=Fig| L(5) Lm} =Pl =1 '

Plin < X< m=F,(x) - F(x)

We have ,




(T ix) = {T < mtim <X <xy)
SR S = POT <+ Plin <X <))
= FPlin <X Sxp = FH{A Snn - FOL i) = Fin)- Fin)

Fy (5" )=y () = P(X = )

Fo(x7)= lim P, (x— k)
B0
= Eﬂ% PlEE Sx-h)
£0
=PX(e iy -PX(s)=x
=R, (x)—FPlX =x)
We can further establish the following results on probability of events on the real line:

PlosX 2xt=Fyln) - Fyx)+ PIX=x)
Plin =X ax))=Fn)-Fyln)+ Pl =x)-PX=x)
Pl{X>x})=P{x <X <ool)=1-F,(x)

Fy(2), -0 <X < e can determine the probability of any event

Thus we have seen that given
Fy(x) ¥z € X 5 3 complete description of the random

involving values of the random variable < .Thus
variable < .

Example 5 Consider the random variable <t defined by

Foix)=0, i -2
=lx+l, -25x<0
2 4
=1, x 20
Find a) £t =0), py FIE <0} o F1E>2 g P1<x <
Solution:
a) P =10 =FX(D+}—FX{D'}
1.3
4 4

b) P{ X <0} = F(0)
=1

QP{X >2) =1-Fu(2)
=1-1=10
&) P{-1< X <1)
=P -F(-T)
1 7

=1— = __

B8




Figure 6 shows the plot of Fx(x).

A
#y(x)

1

A

Figure 6
Discrete Random Variables and Probability DENSITY functions

A random variable is said to be discrete if the number of elements in the range Ry is finite or
countably infinite.

First assume Ry to be countably finite. Let f1:%2: %302 2y pe the elements of R-’f. Here the mapping

#12) partitions 'into 2V subsets (el X&) =x}i=12 N

The discrete random variable in this case is completely specified by the probability mass function
(pmfy Zx(%) = Pls[ Lls) =x)a =12, N

Clearly,

. Px(%)20 ¥x € Ry and
2 Pxin)=1
R

i) = Fylx) - Fy(x7) forall ne K

P{zxel))=> px()

DR
« Suppose = “X.Then Hel
Figure 6 illustrates a discrete random variable.

R
K ()

& (sy)

b X (sy)
X (s0)

Figure 6 Discrete Random Variable




Example 1 Consider the random variable < with the distribution function

i

0 x<0

! 0Lx<1
Fx(x)=44

! 14x<2

2

1 x22

The plot of the Fx(x) is shown in Figure 7 on next page.
(%)

;1 4= - - —

1+ -

2 |

1 [

4 | I
|

0 1 2 x

The probability mass function of the random variable is given by

Value of the random

variable X =x Px()
1
0 —
4
1
1 4
5 1
2

Continous Random Variables and Probability Density Functions

For a continuous random variable <% , Fy (x) is continuous everywhere. Therefore,
F.ix)=F,(x") vxelR

This implies that for ¥ € B

Py(x)=F{X =x})
= Fylx)—Fe(x7)
=0

Therefore, the probability mass function of a continuous RV <% is zero for all *.A continuous random
variable cannot be characterized by the probability mass function. A continuous random variable has a very




important chacterisation in terms of a function called the probability density function.

If Fy (%) is differentiable, the probability density function ( pdf) of <X denoted by Fx (%) is defined as

d
fx(?f:' = EFX ()

Interpretation of Sz ()

Fa(®) =L F)
dx
Folx+ihx) - Fix)

= limn
ax—+0 Py
£
i PUE < Cxv i)
x—+0 Do

so that

P({x < X < x+ ) = Fy(0)hx

Thus the probability of £ lying in some interval (%> % * £%]is determined by Fx () |0 that sense,

Jx(x) represents the concentration of probability just as the density represents the concentration of mass.
Properties of the Probability Density Function

Fe(®) 20

This follows from the fact that Fx(x) is a non-decreasing function
F(m) = [ S ()

[ fa(dx =1

L]
Plm<dXin)= Ifxﬂxjdx

. =%
Figure 8 below illustrates the probability of an elementary interval in terms of the pdf.
S

0
X Xy + i x

Figure 8 Tlustration of P({x; < X £ x + Ax)) = £E ()




Example 2 Consider the random variable <% with the distribution function
x40

0
F.ix=
x(2) {1—.3-“,.:;;»0 x20

The pdf of the RV is given by

P 0 x40
x:
* e g0 . x20

Remark: Using the Dirac delta function we can define the density function for a discrete random
variables.

Consider the random variable - defined by the probability mass function (pmf)

prix)=Fls|X(=E)=x)i=1l2 .n

The distribution function Fy(x) can be written as

Fp(x) = pylaulx—x)

iml

ul(x—x)

where is the shifted unit-step function given by

{1 for x2 z,
ulx—x)=

0 otherwisze

Then the density function Fz(x] can be written in terms of the Dirac delta function as

Fr(x) = py(5)8(x ~ %)

iml

Example 3

Consider the random variable defined with the distribution function Fy () given by,

F.(x)= %u(x} +£u(x -1 +%u(x— Y
Then

o) - %5@. +%5{x—1} +1§5|:x—2:|

Probability Density Function of Mixed Random Variable

Suppose < is a mixed random variable with Fy (x) having jump discontinuity at A=xi=la.,

As already stated, the CDF of a mixed random variable - is given by

Fy(x) = pFp(x)+ (1= p) Fo(x)




where Fp [xj is a discrete distribution function of < and Fe [x:l is a continuous distribution function of % .
The corresponding pdf is given by

Jelx) = piplx) + {1 - plifaix)

where

Jolx) = ZF’X (% )8(x —x;)
il

and Je [xj is a continuous pdf. We can establish the above relations as follows.

suppose &2 = (%172 e} denotes the countable subset of points on “ such that the random variable is

Px '[x:' JXER Ro = By li‘j‘ﬂbe a continuous

subset of points on By such that RV is characterized by the probability density function Je (x) TE K :
By P(&p)= # then P(Ry)=1-p :

characterized by the probability mass function o Similarly, let

Clearly the subsets £p and o partition the set

<
Thus the probability of the event {X - x} can be expressed as

P{X <x)=P(RP({X <} Ry )+ P(RP({X < x| Ry

Taking the derivative with respect to x , we get
Jx (%= pfp(x) +(1-p) fo ()

Example 4 Consider the random variable <% with the distribution function

0 <0

B () = 01 x=10
01+086x  0<4x<1
1 2l

The plot of Fy (%) is shown in Figure 9 on next page

FafX) A

I
u.ﬂ;———J

0.1

0 X —




where

D x <0
Folxy=4025 D=x =1
1 x »1
0 —_—
Figure 10

The pdf is given by

Sy (x)=0275(x) +0.87.(x)

where
Fplx)=0580x)+0.54(x -1
and
o) = 1, 0<x21

ehd 0 elsewhere

&
Fx(x)
& &
i] & —;
Example 5

X is the random variable representing the life time of a device with the PDF Sz () for ZZ 0 Define the
following random variable

r=x if X ia
=g if X >a
Find Fy(y).




Solution: £y ={a}

Other distribution and density rvs

In the following, we shall discuss a few commonly-used discrete random variabes. The importance of these
random variables will be highlighted.
Bernoulli random variable

Suppose X is a random variable that takes two values 0 and 1, with probability mass functions

And

Px0=1-p, pyl=P{X=1=p
Such a random variable X
is called a Bernoulli random variable, because it describes the outcomes of a Bernoulli trial.

The typical CDF of the Bernoulli RV A is as shown in Figure 2

£y (x)

Figure 2
Remark

We can define the pdf of < with the help of Dirac delta function. Thus Fx(x) = (1= p)8(x) + pdila)

Example 2 Consider the experiment of tossing a biased coin. Suppose P[{H}) ~ ¥ and P[{T}) =1-r .
If we define the random variable < “7J = and €(70 = Othen X is a Bernoulli random variable.

Mean and variance of the Bernoulli random variable
1
sy =EX =D dpy k) =1xp+0x(1-p)=p
k=0

1
EX =30y (k) =1xp+0x(1-p) = p
1]

oy = BX -y = p(1-p)

Remark




e The Bernoulli RV is the simplest discrete RV. It can be used as the building block for many discrete
RVs.

e For the Bernoulli RV,

EX™=p m=1273..

Thus all the moments of the Bernoulli RV have the same value of #-

Binomial random variable

Suppose X is a discrete random variable taking values from the set {D’l """ H} . <L is called a binomial
random variable with parameters n and 0<psl if

pll)="Cp - k=01
where

U
Ck_k!(n—k)!

As we have seen, the probability of k successes in n independent repetitions of the Bernoulli trial is
given by the binomial law. If X is a discrete random variable representing the number of successes in this
case, then X is a binomial random variable. For example, the number of heads in ‘n ' independent tossing of a
fair coin is a binomial random variable.

e The notation A~ B(np) is used to represent a binomial RV with the parameters #and P

Dyt => "0 - =[p+1-p) =1
Kml] Jomll

e The sum of n independent identically distributed Bernoulli random variables is a binomial random
variable.

e The binomial distribution is useful when there are two types of objects - good, bad; correct,
erroneous; healthy, diseased etc.

Example 3 In a binary communication system, the probability of bit error is 0.01. If a block of 8 bits are
transmitted, find the probability that

(a) Exactly 2 bit errors will occur
(b) At least 2 bit errors will occur
(c) More than 2 bit errors will occur
(d) All the bits will be erroneous

Suppose <X is the random variable representing the number of bit errors in a block of 8 bits. Then
X ~HB(8 001

Therefore,
{a) Probability that exactly 2 bit errors will occur
=px(2)
= %, % 0,07 %0 99°
=0.0026
(b1 Probabality that at least 2 bit errors will occur
= py(0)+ py(l+ pyZ)

=0.99% + #C % 0.01 %0 997 + 37, % 0.01% x0.99°
= 0.9999




() Probability that more than 2 bat errors wall ocour
2
=1- 2 pylk)
k=0

=1-0.95%%
=0.0001

() Probability that all & bats will be erronecus
= py(8)
=0.07° =107"

The probability mass function for a binomial random variable with n = 6 and p =0.8 is shown in the
Figure 3 below.

s Bionomial Distribufion withp=08 .n=8

—
=
H..
Gl
o
al

ale s <|3
ZI 3 L 5 53 7
k—
Figure 3
Mean and Variance of the Binomial Random Variable
“We have
EX =hp, (k)
k=il
=Skt -py
]
=qu:! +kackpk(1_p)x—k
K]
i a2l
— i k 1- »-k
; k!(m—k}!p( ?)
3 nl K n-k
=N __ " xF1-
2D ? 1P
- n—1l k-1 n-1-Fk
=x - 1-
P kDo’
2l .?2_-.“ Ky 1 . .
=mp > —— PR 1-pyN (Substituting &, =k -1
p;}%!(n_l_kﬂ!p (1-p) ™ ( gk )

=np(p+1-p)*"




similarly
EX* =X Kpy(k)
L]
= > BT -y
]

=0%xg" + > k" Cp*(l-p)
k=1

] P |

= kz : -‘!-1_ n-k
; Mgt 47
- . 7! kg -k
e P
= \ _ n -1l Bl eq _ wnel{k-1)
Hp;(k M e m? 1P
N — z 1l Kl g _ s mele(kel) : xn—1l
(e S GNP YT ey
=npX(n-Dp+tap
=?z(n—1}p2+np
Where
§ _ (2—-1)1 L G g
;{k Ry pu s v 2

is the mean of Bz -1 p)
Oﬁf = vartance of A
=xnin —1};3 +up _ngg
=upil-p)
Poisson Random Variable

A discrete random variable X is called a Poisson random variable with the parameter 4 if 4 > 0 and

k=012

The plot of tHe pmf of the Poisson RV is shown in Figure 2
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Figure 2
Mean and Variance of the Poisson RV

1= p)

a=1-(k-1)




The mean of the Poisson RV X is given by

Hy = i’g‘?’z (k)
Fom

k-1l

-1+ DAk
§ k-1

=g o
=k -2l =i -1l

g AT MA“
=g /’i'. —2| Z

..1

=g~7 fi:‘e" +g71 17
=A*+A
oy =EX' -y =2
Example 3 The number of calls received in a telephone exchange follows a Poisson distribution with an

average of 10 calls per minute. What is the probability that in one-minute duration?

i no call is received
ii. exactly 5 calls are received

iii. More than 3 calls are received.
Solution: Let X be the random variable representing the number of calls received. Given

&l Where 4 =10. Therefore,
- - -l _
i.  probability that no call is received pxl0)=e 0.000095

é‘—ll:l 5 1 I:Ij
y . T 215 R
ii.  probability that exactly 5 calls are received 31 0.0378
2 3
1=y - 1m0 D L 1T
gy FIRET
0.9897

iii.  probability that more the 3 calls are received
Poisson Approximation of the Binomial Random Variable

The Poisson distribution is also used to approximate the binomial distribution Bin, p) when n is very large

and p is small.
Consider binomial RV with A ~Bln pm with 2 = @ p— 0 sothat 5 =»p =4 remains constant.

Then




p, ) ="C p -

al

R o 2=k
“ ot P
=m(n—1](?3—2)...(.’3—.3:+1]pk(1_pj,¢_k
k!
n*r;l—l}(l—g)...(l—ﬂj
— A X

2 2 pt1-prt

a-Ha-3 . a-Fh
L ”kl 2 (p)t (1= p)™"

a-Ha-3. - hmra- 2y
Fy Fy Frd Fs

kil —ﬂ)"*
H

Mote that limlil—ﬂ)” =g~

N—rm H

a-Ha-3.a-Ehaa-dr L
Sopy(k) =lim—2 % % 2=
o kllz]._i:lk .E.':l
M

Thus the Poisson approximation can be used to compute binomial probabilities for large n. It also makes the
analysis of such probabilities easier. Typical examples are:

e number of bit errors in a received binary data file

e number of typographical errors in a printed page
Example 4 Suppose there is an error probability of 0.01 per word in typing. What is the probability that there
will be more than 1 error in a page of 120 words?
Solution: Suppose X is the RV representing the number of errors per page of 120 words.

A~ 8120,2) \where # =01 Therefore,
SoA=120=001=012
Pimore than one errors)

=1-px ) - px (D

=1-g™ - ™

= 00066

In the following we shall discuss some important continuous random variables.
Uniform Random Variable

A continuous random variable X is called uniformly distributed over the interval [a, b],
—w <a <h <o jfjts probability density function is given by




1
frixy=qb-a |
]

a=xsh

otherwize

1)

ha----

Figure 1

We use the notation X ~Ula, ’b)to denote a random variable X uniformly distributed over the interval
[a,b]. Also note that

w 3
[ o= e

Distribution function (%)

Forx<a
F(x)=0
Foraixih

}fz(u)du
-]
r—a

el
-

IB\.-

—id

Forx >h,

Fixr=1

Figure 2 illustrates the CDF of a uniform random variable.

F 1_{.1‘,!

a b X

Figure 2




Mean and Variance of a Uniform Random Variable
A

;&=EX=iﬂﬂﬂﬂ=l;%&

=.:;:+E:n

2

2

w A
EX2=£x%;uﬁx=!j;;h

b tab+a’

3
B +ab+at  (a+h)?
Loy =EX - = -
x Hy 3 P
_(&-a)
12

The characteristic function of the random variable A~ Ula, b) is given by

. B TWE
(W) = B™ = |
a — o

g™ — give

jw[f:l —.:z)

Example 1
Suppose a random noise voltage X across an electronic circuit is uniformly distributed between -4 V and

5 V. What is the probability that the noise voltage will lie between 2 V and 3 V? What is the variance of the

voltage?
3 dx 1
FPlz<X 3= =_.
( 2 ’:[5—{—4) 9
2
z=(5+4j =E‘Jj_
12 4

Normal or Gaussian Random Variable

The normal distribution is the most important distribution used to model natural and man made
phenomena. Particularly, when the random variable is the result of the addition of large number of
independent random variables, it can be modelled as a normal random variable.

A continuous random variable X is called a normal or a Gaussian random variable with parameters Hx

2
and % ifits probability density function is given by,

2
A
g X \

fz(x}=ﬁ‘:rz -0 <X <o

Where “Zand <% ’ Uare real numbers.

N a2
We write that X is (’HX’ £ )distributed.




If Hx =Ijand sz =1

.
Fuld) - J;_ﬁe 2

and the random variable X is called the standard normal variable.
Figure 3 illustrates two normal variables with the same mean but different variances.
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Figure 3

« 25 3 pell-shaped function, symmetrical about = ~ # |

2 2
“X Determines the spread of the random variable X . If “% s small X is more concentrated around

the mean “%.
o Distribution function of a Gaussian random variable

Fy(x)= P(X £ 2)

R et
= 1 J‘ 2[ Tx ] i
N2y, 4
_ i Hy
Substituting Tx o we get
1 % _%uq
Fyix) _E _l g ? du
=& x_.'HX]
Oy

where T(x) is the distribution function of the standard normal variable.

Thus Fy (%) can be computed from tabulated values of'i:'(x:' . The table i) was very useful in the pre-
computer days.

In communication engineering, it is customary to work with the Q function defined by,
x) =1-Pix)
1

Nezd

i
I

L




00) =L, 0(-x) - 0()
Note that 2 and

Q2(x) =1-g(-2)

These results follow from the symmetry of the Gaussian pdf. The function Qi) is tabulated and the
tabulated results are used to compute probability involving the Gaussian random variable.

Using the Error Function to compute Probabilities for Gaussian Random Variables

The function Qi) is closely related to the error function erf (%) and the complementary error function

erfe(x)

2
arf(xi=—= [ ™ du
Note that, ﬁ ‘I;

And the complementary error function %% is given by

erfo(x) = %]‘e_fcﬁx
ﬂ_ x
=1l-erfizx)

Mean and Variance of a Gaussian Random Variable

N 2
If X is (#X’JX :Idistributed, then
EX =iy

var(X) = oy’

Proof:

. I (= :
BEX = _‘!; Hy(xdx = ETJX _‘L xe TV dx
L o

1 Mz 0
Jxﬂ_‘q[udu+v%r:!;e

u?

e %y

}[”‘jz +iy)e

—n

9

T

i

ML‘I: —

XMy -y

Hx or Ty =K Ox
f2r J * sothat x = way, + 4,

Substituting

=] “'2
2




Var(X) = B (X -ty
_ 1 - _ 2 “%[t—fr]?
7.‘!271_@_1 _llix ,{.{X:] & ax

1 = — L _ x—
= IJ"’:EHEQ P apdn (substituting w = #X)

~emmo, A4 Oy
2w —l.!ﬁ
= 2><%‘]‘u23 T Gy
I

o
N7
()
()
- Exﬁ

_ 2
= JX

2

w1
= 2% ﬁt[zﬂe“’d: (substituting ¢ = %}

= D

Exponential Random Variable

A continuous random variable << is called exponentially distributed with the parameter 4 = [ if the
Ag~ x=0

fz(x:':{ ,

0 aElerwise

El

probability density function is of the form
The corresponding probability distnbut on funch on is

Fy(x) = [ FrG)au

_fo x<0 Similarly Zx'
1-2™ x20 =
- = [ A ™dx
We have pi, = BX = Tl‘xﬂ.e_’”dx
1 L] a ] ] — p 2 —\Hd
= — |ue "de ( subsHiuting = Ax) ? ke &
1
i 1
F] B _EE
_1
,a -2
A
sz = Ex2 _'L{xj 0026
21
v
1 R ; s
s

Figure 1 shows the typical pdf of an exponential RV
Figure 1




Example 1

Suppose the waiting time of packets in <% in a computer network is an exponential RV with

Fylx) =057 x2 0
Then,

ns

PH01< X <050 = Io.i:.-“”dx
ol
:E—Eljxtl.j _g—ﬂjxﬂ.l
=0.0241
Rayleigh Random Variable

A Rayleigh random variable X is characterized by the PDF

& et

—= . x=0
Jxlx)= a

o, x <l

where is the parameter of the random variable.

The probability density functions for the Rayleigh RVs are illustrated in Figure 6.

Figure 6

Mean and Variance of the Rayleigh Distribution
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Similarly,
Ef=ngmﬂ

x o
f—je e
a

1 Py

T =
=24 Iue'“.:fu ( Substituting z: = Fj
0 a

=30 { Noting that Iue'“cﬁx is the mean of the exponential RV with 4=1)
0

2
L Oy = 252—[ Eﬂ]

. 2
=(2-=
(2- o
Relation between the Rayleigh Distribution and the Gaussian Distribution

X~ N0,a*y X, ~ N0, )

A Rayleigh RV is related to Gaussian RVs as follow: If and are

= [w2 12
independent, then the envelope A=A+ has the Rayleigh distribution with the parameter .
We shall prove this result in a later lecture. This important result also suggests the cases where the
Rayleigh RV can be used.

Application of the Rayleigh RV

v Modeling the root mean square error-
v" Modeling the envelope of a signal with two orthogonal components as in the case of a signal of the

following form:

Conditional Distribution and Density functions

We discussed conditional probability in an earlier lecture. For two events A and B with £B)=0 , the

conditional probability P[‘{” B:' was defined as
P(ﬂ r".B)
P[ﬂf B) =

e

Clearly, the conditional probability can be defined on events involving a random variable X .

Conditional distribution function

4
Consider the event {X - x} and any event B involving the random variable X . The conditional
distribution function of X given B is defined as
Fy(xiB)= P[{X <x}/B]
_P[{x<apna]
P(B)

P(B)=0

By (x/B)

We can verify that = * satisfies all the properties of the distribution function. Particularly.




F, [—mfﬂj =0AndFX[mej =1.

0LF, [xfB]il

F [ﬂ B) Is a non-decreasing function of & .

P({xl CX A xz}fB) =PUXSx M B -PU{X £x)/5)
= Fylx A B)— Fyim )

Conditional Probability Density Function

fz'[x’rg)

In a similar manner, we can define the conditional density function of the random variable

X given the event B as
FolxiBY=L 7, (x18)
fx
All the properties of the pdf applies to the conditional pdf and we can easily show that

fe(xiB)20

[ fx(x/ B = Fy (1 B) -1

¥

Fy(xiB)= Ifx (1 / B

o -

P{x < X< x)}iB) = Fy(xyd B)— Fy(x | B)

Fy(xiB)= EE)
CP({X <xpn{ X <))
) P{X <b)
_P{X Lxpn{ X LB
) Fx(®)
Casel: X <&
Then
7, (21 B)- P s;}}f;gx 5y
_ P[{Xi x}) _ Fy (%)
Fyp(B)  Fx(2)
And




Case2: ¥4

and

Folxi By =B, (x1B) =0
adx
Fy (x1 B) and (%1 Bjare plotted in the following figures.

7l B

N

AN

Fe (0

Figure 1

S G
Felx/By |

e

Bu
=

Example 2 Suppose X is a random variable with the distribution function i [x) and = {X ’ b} .

P{X <x}nB)
£(8)

CP{X <x){X >a))
P{X >b)

P{X <x) (X >BY})

F(xiB)-

Then 1= (2)




For X = (X Cafnld > b= ? Therefore,

Fy(xiB)=0 x<h
forX = b (XX Y8 = (<X LR 1oeore

P({p< X <x})

FoixliB)=
_Fx(x)- (3
1= Fy (&)
Thus,
0 xih
Py (21 B)={ Fy (x) - Fy (2) I
1- 7y [b)
the corresponding pdf is given by
oo, xih
f.l’ I:XIB:I = f.l’ I:x:l ath e se
-7 [b)
PRCIE
8 \% and

Example 3 Suppose X is a random variable with the probability density function
b= {—1 {A< 1}
. Then

Fy(x1B)= 26




r

0, xi-1

F,(xiB) = {M -1<x<1

1 ¥t i
1 =
e
;I;TE?TQ %
1,

| x=21
&, -1<x<1
SelziB) = erf%}
o, otherwise

2

. 2 %
(X = —e 1 erf(x)=—le s
where N and T

Remark

1 -2
EE

Jyplx) =
N2 is the standard Gaussian distribution.

Sy (x/ ) is called the truncated Gaussian and plotted in Figure 3 on next page.

5 PN
//5 : .

Truncated Gaussian
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Expected Value of a Random Variable

.
4 5

e The expectation operation extracts a few parameters of a random variable and provides a summary

description of the random variable in terms of these parameters.

e It is far easier to estimate these parameters from data than to estimate the distribution or density

function of the random variable.

e Moments are some important parameters obtained through the expection operation.

Expected value or mean of a random variable

The expected value of a random variable & is defined by

ExX = | xfy (x)dx

T xfy(2)dx

Provided —= exists.




EX |s also called the mean or statistical average of the random variable % and is denoted by *-

M

Note that, for a discrete RV X with the probability mass function (pmf) Fx )3 =1 2. * the pdf

Jx (@) s given by
ay
Fe(®) =D pa(%)8(x—x)

iml

iy = BLX]= | 23 py (1)6(x- x)dx

R

ar 0w
=§1pz (%) [ x8(x— x)dx

A
=2 %Px (%) v [ xd(x— x)dx

—

......

Thus for a discrete random variable X with #% ()i =1,

My = Z. 5Py (%)

Fxix)

Figurel Mean of a random variable
Example 1

Suppose < is a random variable defined by the pdf

! aixih
f_X(x:I = E'-" —f o, - _
0 otherwize
Then
My = I?g’x(x].:ix
2 1 o
- 'Ia-xf:'—.::r
_a+b
2
Example 2

Consider the random variable < with the pmf as tabulated below

Val_ue of the random 01 b 1
variable x




1 1 1
X — — —_ —_
P 8 8 4 2
Then
IF
Hy =§1%—pz(xi}
=III>=:1+1>=:l+2::<l+3><l
8 8 4 2
U
8
Example 3 Let X be a continuous random variable with
Felx)=—2 —o (x>0
J‘T(x +a )

Then
EX = Ixfx (x)dx

w
P 2%
— ==
I Il

£ o
=;1n[1+x )L

Hence EX does not exist. This density function is known as the Cauchy density function.
Expected value of a function of a random variable

suppose ¥ = &LL)

Then,

is a real-valued function of a random variable X as discussed in the last class.

BY = Fg(X) = [ g(x)fy (dx

We shall illustrate the above result in the special case X7 when ¥ = €(%) is one-to-one and
monotonically increasing function of x In this case,

A
gix)

Yo |7 T T T T T T =

\j

Figure 2




Jx(x)

g'(x) B=g )

Jy () =

EY = nyf(y)dy

»a -1
U Ao
o @

where ) = g(—=) and )y, = g(=).
Substituting x = g7 () so that ¥ = g(x) and dv = g'(X)dx, we get

EF=I g(x) fy(X)dx

The following important properties of the expectation operation can be immediately derived:

() If © isaconstant, &£ =¢

o

Bo= Jofy(Rdx=c | f(Xdr=c
Clearly - —w

(b) If g (&) and g, (X) are two functions of the random variable & and “1 and ¢ are constants,

Eley g (X )+ e85, (X 0]= 0 Bg (X0 + 0, B, (X

E['ﬁgﬂ:X:' + o Ey (X)) = I cl[gl(x) + Oy Ey (x:']fz (X

-

=] () ()dr+ T gy () (e
= o] 50 (e, | 230y (R
= o Fg (X)+ 0,82, (X)

The above property means that & is a linear operator.

MOMENTS ABOUT THE ORIGIN:

Mean-square value

EX? = T 2y (xdx

MOMENTS ABOUT THE MEAN
Variance

Second central moment is called as variance




4
For a random variable £ with the pdf Fx(%) and mean #x+ the variance of X is denoted by “%and

. 5§f = B(X - ﬂ::::'z = [(x- ﬁxr'gfx(x:'fix
defined as —o

-------

Thus for a discrete random variable X with £% (%),

o —E (% — byl py(x)

The standard deviation of X is defined as Tz =y E(X - “HX}

Example 4

Find the variance of the random variable in the above example

o = E{X— ax )

o +E:' 1
= I (- —=) o —
3 2
=1 (X zx“’_’fjxd [‘“’5] [dx
(b—a)
12
Example 5
Find the variance of the random variable discussed in above example. As already computed
17
Hy = E
- 4
oy = B(X - pty)

174 1 17, 1 1751 17, 1
=0- s 4+l -—r=" 4+ (- x4+ (- x_
( 8) 2 ( 8) 2 ( 8) y ( 8) >

_ 7l
£
E KA and 2,
or example, consider two random variables with pmf as shown below. Note that each of
JER D
dYI 5 X‘! o - -
& and X, has zero mean.The variances are given by 2 and 3 implying that % has more

spread about the mean.
Properties of variance
) 2 2
(1) C:'_X = EX - -'UX
o% = E(X - px)’
= B(X? - 2u, X+ pid
= BX? - 2, BX + Bus
= BX® - 2p} + 4}
= EX* - u}

Oy = EX -
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@) If ¥ =cX +&, wherec and & are constants, y o -:r}:f =cg-:r§

o = BleX +b—cp, - b)Y
= Bc* (X - #z]‘z
=l

(3) If ©is a constant, var(c) = 0.

Nth moment of a random variable
We can define the nth moment and the nth central- moment of a random variable X by the following
relations

nth-order moment X = T XA (xNdy =12,

nth-order central moment BUX - g, )" = T'[ (x—p ) f(xiden=12, .
Note that e

e Themean #x= EX

is the first moment and the mean-square value &4 ? is the second moment

2 _ _ 2 i
o The first central moment is 0 and the variance “% = X - ) is the second central moment
SKEWNESS
ElX - #1}3
%

e The third central moment measures lack of symmetry of the pdf of a random variable is called the
coefficient of skewness and if the pdf is symmetric this coefficient will be zero.
e The fourth central moment measures flatness or peakedness of the pdf of a random variable.
E(X - py)t
4
“x Is called kurtosis. If the peak of the pdf is sharper, then the random variable has a higher
kurtosis.

Inequalities based on expectations
The mean and variance also give some quantitative information about the bounds of RVs. Following
inequalities are extremely useful in many practical problems.

Chebyshev Inequality

. 2
Suppose X a parameter of a manufactured item with known mean £x @8 varanceoy.

The quality control department rejects the item if the absolute deviation of X from #+"is greater than oy

The standard deviation gives us an intuitive idea how the random variable is distributed about the mean. This

idea is more precisely expressed in the remarkable Chebyshev Inequality.

: 3
stated below. For a random variable & with mean #x @18 varancey.

P{|X—yX|ZE}£iEj§—
Proof:
ot = ] G- e f (0
=[x )P (x)dx

= fe

2
N P a2} = &

= £ P X - x|z




MODULE-II
SINGLE RANDOM VARIABLE TRANSFORMATIONS AND MULTIPLE

RANDOM VARIABLES
Characteristic function

Consider a random variable <% with probability density function Fx(x) The characteristic function of

denoted by (@), is defined as
dy (@) = Be'™

- j &l £ (x)dx
where j = =1

Note the following:

. Oz (@), is a complex quantity, representing the Fourier transform of Jx (%) and traditionally using
2™ instead of £~ This implies that the properties of the Fourier transform applies to the
characteristic function.

e The interpretation that (@), is the expectation of g helps in calculating moments with the help
of the characteristics function. In a simple case,
if ¥=aX+h

(@) = B
-e®¢ @a)

w

Sy (x)dx=1
. AsSxlE always non-negative and = : Pe(@), always exists. We can get Sx(x)

from Py (@), by the inverse transform

Lie]

Sz (x)= - _I. Py {m}é_jﬂdm

2
Example 1
Consider the random variable X with pdf <% %) given by
Jylx)= ! @ixih
h-a = 0 otherwise. The characteristics function is given by
1 s
@ =——— (M — g
drl@) = — s )
Solution:
A 1 )
@)= [—™"dx
‘?@X[ ) EJ_E:' -
o
_ 1 g™
b-a Jo |
__ 1 (2 - e22)
jw[b —c;tj
Example 2

The characteristic function of the random variable < with




Fela)=de™ A>0,x50is
(@) = [ =727
i

= A[e P Mgy
]

_ A
A—jm
Characteristic function of a discrete random variable

Suppose X is a random variable taking values from the discrete set By = {xl’ Ao } with corresponding

probability mass function Px (x" ) for the value

Then,
gy (@) = Ee™*
= Z p_x (xz- )EJ‘”‘
Ko By
dy (@)= B’
= Z Px [xz'}é'j”
If R, is the set of integers, we can write Hy=ky

In this case Pz (@), can be interpreted as the discrete-time Fourier transform with g% substituting ¢ T
the original discrete-time Fourier transform. The inverse relation is

1 3 _
Py &)= ﬂ.{,é g (@da

pylk)=pl1-p¥*, k=01 isgiven by
dp(@) = Y e p(1-p)*
]
-p S (1-
k=l
- £
1-(1- e’
Moments and the characteristic function

Given the characteristics function Py (@), the nth moment is given by

1 4"
= @z[m)

EX® -————
Jdar »

. . . . X
To prove this consider the power series expansion of #

R B | PN Sl
Ejn.i-..’fz1+I'WX+M+_””+M+..
2| d
2 b
EX EX-, EX to exist, we get

. w2 2 C M "

g}x(m)=1+ij¥+M+ ______ L)y B
21 #l

Taking the first derivative of (@) ith respect to @at @ =0 we get

dgﬂﬂm}L .
& e 0

Similarly, taking the #¢% derivative of % (@) with respect to @at @ =0 e get

Taking expectation of both sides and assuming




d gy (@) P
25T - prEX
o I

BY = ldgﬁ.k'(m)
j da
and generally
By = i d gﬁf(m)
Jr'?’! dm?‘!

Thus,

w=l

=0

TRANSFORMATION OF A RANDOM VARIABLE
Description:
Suppose we are given a random variable X with density fX(x). We apply a function g
to produce a random variable Y = g(X). We can think of X as the input to a black
box,and Y the output.
Multiple Random Variables

In many applications we have to deal with more than two random variables. For example, in the
navigation problem, the position of a space craft is represented by three random variables denoting the x, y
and z coordinates. The noise affecting the R, G, B channels of colour video may be represented by three
random variables. In such situations, it is convenient to define the vector-valued random variables where
each component of the vector is a random variable.

In this lecture, we extend the concepts of joint random variables to the case of multiple random
variables. A generalized analysis will be presented for 2 random variables defined on the same sample space.
Jointly Distributed Random Variables

We may define two or more random variables on the same sample space. Let <% and £ be two real
random variables defined on the same probability space (5.F. F). The mapping 5— R such that for
4
s€ .5, (A(s). 750 €5 called a joint random variable.
F 3
Yi(s) Xis),Y(s)
mﬂ

Y

X(s)

Figure 1

Joint Probability Distribution Function

X<

Recall the definition of the distribution of a single random variable. The even x} was used to

define the probability distribution function Fy ':x:'. Given Fy ':x:', we can find the probability of any event

involving the random variable. Similarly, for two random variables -fand ¥, the event

xSy ={X Lxpnll Lo} considered as the representative event.
4

The probability £ & <% F Sy VX )€ R called the joint distribution function or the joint

cumulative distribution function (CDF) of the random variables < and ¥ and denoted by Fr (%)) :




)
Y
(%)
<~
Figure 2
Properties of JPDF
Tz (x.)) satisfies the following properties:
1) Fyylm )2 Pyt mExandy, =y,
It x<x and v <y, 2
W im i Cld S£x.7 L)
3) ' J_I(_T? e _T.? e h .-"_J_i( T.: e xﬂ,}! ih}?j}
S Notethat (X € =7 <) £ (H < ~=)

Co LA A S Pyl )
4) Fy plm,m =1

5) Ty y(2.5) is right continuous in both the variables.

6) Ix<xand vy <
Pin<d iz, 71 2y} = F.ﬁ:,}"ixs:r}"z:' _F.X,}’(xlryj:l _Fx,}":xz:}"lj +F_ﬁ:,}f'ix1=}’1:'

Given Frp(xy) -mxdm oyl ,we have a complete description of the

random variables £ and ¥ .

7) Fy (%) = Py (x,+00)

To prove this
A ix={X {xym{¥ £ +w}

LE(R) = P(X <) = P{X <xY <)) = By, (x, +e)
similarly 200 = £z (.57

Given Fry(xy) - <xdm-m{ylem . each of Fy(x) and F}’U)is called a marginal

Distribution function or marginal cumulative distribution function (CDF).

Jointly Distributed Discrete Random Variables

If X and I are two discrete random variables defined on the same probability space (5.5, F) such that

A takes values from the countable subset Ry and I takes values from the countable subset By .Then the

joint random variable (A7) can take values from the countable subset in Ry ¥ By . The joint random
(A.7)

variable is completely specified by their joint probability mass function




Pryxy)=Ple|X ()= xTis) =y, VFixy)e Ry x &

sz'(x:}’:'

Given , we can determine other probabilities involving the random variables < and '

Remark

. Prylzy)=0for (z,y)@ Ry ® Ry

>z X Pz,f':-"f:}":':l

o [ By Ry
> X Pxr (m.y)=F( U {x.y)
(3,30 Ry %Ry (E e Ry B
=P(E, % R,)

=P(s| (X (). Y (s)) e (Ry By )}
This is because =P[5 =1

» Marginal Probability Mass Functions: The probability mass functions Px(%) and Py are obtained
from the joint probability mass function as follows

pxlx)=PHX = xR,
=2 P‘z,?':x:.?"':'
=Ry

and similarly

pyly) = > F'z,}":xr}":'

e R}(

These probability mass functions Px(%) and Py obtained from the joint probability mass functions
are called marginal probability mass functions .

Example 4 Consider the random variables <t and ¥ with the joint probability mass function as tabulated in

Table 1. The marginal probabilities px(x) and Pyl are as shown in the last column and the last row
respectively.

\Y\ 0 I 2 |
Y

o [o025 01 [ 015 | 05
1 [o014 035 [ oot [ 05
py(x) | 039 045 | 016

Table 1
Joint Probability Density Function

If X and I are two continuous random variables and their joint distribution function is continuous in

both* and ', then we can define joint probability density function Jxx(x.7) by
32
Jrylxy)= Ty Fy yix y)
xdy provided it exists.

¥ ¥
Fxf(x,yj = J'fxf(u,vjdvdu
Clearly -0 o




Properties of Joint Probability Density Function

. fz,}f(xs}”:'

is always a non-negative quantity. That is,

Fep(x2) 20 ¥(xyeR

) fz,}f (x, yidxdy =1

p—n

» The probability of any Borel set can be obtained by
PEY= [ Fyr(x yidrdy
(%03

Marginal density functions

The marginal density functions Tz (%) and Sy ) of two joint RVs < and < are given by the
derivatives of the corresponding marginal distribution functions. Thus

Fe(x) =& Fx(®)

=L 7, (xe0)

= L (T Fypls Y)dy)du

—

— g

F (% y)dy

Sy (x) = ? fx,f (x, yidy

g

Thus @ =T fuy(my)dy

and similarly £ (¥)= | fyp (% y)dx
Frp(xy)

Example 5 The joint density function of the random variables in Example 3 is

PE
fz,}' (%)= —Fz,}r (x.p)

Axche
32
= axay[(l—e'g")(l—e"’)] x20,y20
= 2g ™% x20¥20

Example 6 The joint pdf of two random variables <t and < are given by

Syp(xyy=cry 04x42,08y4L2

=0 otherwize
e Find 7.
« Find “xx (%00
« Find Jx(x) andf? () _

« What is the probability 70 <€ £L0 < <1,
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[ [ e vz =c [} [ v

= I:Jf xdx Ljydy
=de

_x
2
X
fz(x:'=§ DLys2
similatly
ffm% 0<y<2

FO<X L0440
= Fx.r 1,1+ Fx.r 0.m - Fx.r':D= Y _Fx.rﬂsnj
1
=_—+0-0-0
14
1
16

Conditional Distributions

We discussed the conditional CDF and conditional PDF of a random variable conditioned on some events
defined in terms of the same random variable. We observed that

P({X <z nB)
P(B)

Fy(xiB)= P(B)=0

and

I [xf3)=%ﬁz (x/ B)

We can define these quantities for two random variables. We start with the conditional probability mass
functions for two random variables.

Conditional Probability Density Functions

Suppose <X and ¥ are two discrete jointly random variable with the joint PMF Pxalx, y}'The conditional
PMF of ¥ given X = Xis denoted by Prix0/ %) and defined as




PrxWix)= PUY =y H{X = x})
_ P& = x 0l =)

FlX=x
= —pr(x,y] provided py{x) =0
pxlx)
Thus,
pwx(yij=w provided po(x) =0
pxlx)

Similarly we can define the conditional probability mass function

Pxry (x.»)

Brl¥

Priylxiy)= provided p,(y) =0

Conditional Probability Distribution Function

Consider two continuous jointly random variables <% and ¢ with the joint probability distribution function

Frr(xy) We are interested to find the conditional distribution function of one of the random variables on
the condition of a particular value of the other random variable.
We cannot define the conditional distribution function of the random variable £ on the condition of the
event X = %}y the relation
FowxD=PF=yi¥X=2
iy

_P¥EyX=x)
4s PLE=2)=10

sense as follows:

Foo(ylx)=lim, PY=ylxcX Zx+Ax)
YiX

in the above expression. The conditional distribution function is defined in the limiting

P2y xaX =5+ 4%)

=lim
E T Pxe X £x+ AD)

T ey (o)
zlimﬁx—ﬂl =
Fe (Ax
ijz,}' (7, 12 )ck
AR
T ey (r )

(yfx)=2=2
& Jx (%)
Conditional Probability Density Function

L F
r
Frex01 &= 5= Frux W 5)is called the conditional probability density function of ¥ given £

Let us define the conditional distribution function .

The conditional density is defined in the limiting sense as follows




Frzyi X =x) =1imﬁy—>n(wa(J’+@“’fX=xj_F}'xx':J’fX= X Ly
S SprWI A == lim gy o (B (P A C X Sxt ha) - By (v x XS xtla)) M hy

Because, (L =x)= limﬁx_m (x< X L x+hn

The right hand side of the highlighted equation is
iy g e (P x (F+ &9/ 3 X S x4 Ax) - Py (¥ x < X <x+ AX)) By

=iy g o (PLY <V 2 y+ Ayl x < X x4+ Ax)) Ay
=lhm,, g g (P <V S y+ Ay x <X Sx+ Ax))IP(x < X Sx+ Ax)dy
= limu oo Jrr LR VIAxAY] f (x)Axdy

=y (x ¥ fx(x)

L TexPIx) = Fay (2 9 5 (2)
Similarly we have

LS (YY) = By (R Y e (Y)

2
Two random variables are statistically independent if for all (xy) el

ez x) = 1 ()

ot equivalently

Srr(xy)=jx(xFfr )

Example 2 X and Y are two jointly random variables with the joint pdf given by
Fyplxy) =k for0 £z <1

= 0 otherwise
find,
(a) *
(b)fz'ix:' and f}' (¥)
(C)f_w}":x’f}":'
Solution:
[ Sy (y)dyen =1
Since "~ —w
We get
k xl xlxl=1
2
=k==2
Sy plxy =2 forOixilasyix
= () otherwize

fx(x:' = Ifx,y(X,F)fff = Erl‘ffy =2x
w 1

FO) = [ Fry(n2)dn = 2[dx = 201- )
o »

Independent Random Variables (or) Statistical Independence




Let X and ¥ be two random variables characterized by the joint distribution function
Fyy(xy)=F{X LxY <y}

_ 8
xnyl= Ho iz,
and the corresponding joint density function Txx(®7) F xr (5.7)

]
Then X and ¥ are independent if * %) € B LA L2} ang (T 29} are independent events. Thus,

Foylzy)=PiALxT 2y}
=PIX L x}PF <)
= Fy(x) 5 ()

dxdy
_diy(x) dFy(y)
dx dy
= Fx (2 )
S Ty () = f ()

-'-fx.}":xs.l”:' =

and equivalently Jrix ) = Jr()

Sum of Two Random Variables
We are often interested in finding out the probability density function of a function of two or more RVs.
Following are a few examples.
 The received signal by a communication receiver is given by
Z=X+Y

where £ is received signal which is the superposition of the message signal <% and the noise ¥ .

* The frequently applied operations on communication signals like modulation, demodulation, correlation
etc. involve multiplication of two signals in the form Z = XY.

We have to know about the probability distribution of £ in any analysis of £ . More formally, given two

random variables X and Y with joint probability density function Sxz (%) and a function Z=g [X’F)

have to find Jz [Z) )

‘we

In this lecture, we shall address this problem.

Probability Density of the Function of Two Random Variables

. Tm2
We consider the transformation & E—=R

< 2
Consider the event {Z B Z} corresponding to each z. We can find a variable subset Dt such that

Dy ={{x.y)l g(xy) <z




Figure 1
LR (z)=P{Z <zp
= P{(x0)|(xr)€ Dy}
= J;[ Fxy (%) dyedx and f; (z) = dFy;(z)

(e

dz

Probability density functionof Z=X+Y .

Consider Figure 2

Figure 2
We have
Ziz
=X+¥=z
Therefore, ‘Dzis the colored region in the Figure 2.

S (z) = LL} Tyy (.5 dxdy

[x.»
I Jxy [x, J’}f}f] dx

Fd
Ifx,F [x,i«f - x)cfu dx  substituting y =u - x

I
da— u fae— 8 fo—

Ifff (x4~ x)dx|du interchanging the order of integration




fi‘ F
- [z)=£ J'fx}, bt T x)c:t’x]du

-

= Ifz,F (x,u— x)dx

z)= _I-_,f'}:‘1r (x,2—x)dx

If X and Y are independent
Frx(xz-x)= fr(x) fy(z %)
Ifz My (7 - x)dx
= fxlz)* fy (2)

Where * is the convolution operation.
Example 1

Suppose X and Y are independent random variables and each uniformly distributed over (a, b). Jx [x) And

e ["V) are as shown in the figure below.

flx)
-L.-'b_a .......
' a b X
Fely)
1/b-a
& b ¥
fz{z)
2/b-a
a b 2h-a z

The PDF of £ = + ¥ js a triangular probability density function as shown in the figure.
Central Limit Theorem

Consider * independent random variables o, Xy Xy .The mean and variance of each of the

3= X)=o3
random variables are assumed to be known. Suppose Bl Hzy and var () % Form a random
variable

Y =X+ X, + X,

The mean and variance of Z are given by
By = My, = Hy *Hy T % iy,




var(f) = 02 =B (X -py) P
iml

= YE - r DD B ) (K- )
iml fml feljwi
- Grdy v

and o f andXJ.aremdepmdmtfuri?fj.
Thus we can determine the mean and the variance of Y .

Can we guess about the probability distribution of L ?

The central limit theorem (CLT) provides an answer to this question.

Sl
The CLT states that under very general conditions { 1=l converges in distribution to

¥~ Ny, 03 ) as 2 —#® _The conditions are:

X, X, X

o, &y Xy are independent with same mean and variance, but not

1. The random variables = are independent and identically distributed.

2. The random variables
identically distributed.

X, Xy, X

3. The random variables =are independent with different means and same variance and

not identically distributed.

X, X, . X

4. The random variables =are independent with different means and each variance being

neither too small nor too large.
We shall consider the first condition only. In this case, the central-limit theorem can be stated as follows:

Proof of the Central Limit Theorem:
We give a less rigorous proof of the theorem with the help of the characteristic function. Further we

consider each of 41 %2> ¥xt0 have zero mean. Thus B SR R )’f“-"'_
Hy =0,
Oy T O
E(F) = E(X3)f\|"; and so on.

Clearly,

The characteristic function of Fﬂ is given by

Py (@) = E[:EJ'G}’M:I _ g E[m;%gﬁ_]

P,

We will show that as # —“®the characteristic function ™ *®is of the form of the characteristic function of a

Gaussian random variable.
. Jally | .
Expanding ¢ in power series
[ m)z viog (J '531:'3 viog
21 3

Jark,

g = 1+ jaf, +

Assume all the moments of e to be finite. Then

@ = (@) =1+ o+ YD pah - YD ey

=0 and E(¥Y*=of =ai, t
Substituting Hr, = () = o7, = O we ge




(@) =1-(& 12)ay + Ri@,n)

3
R(@,n) is the average of terms involving " and higher powers of & .

Note also that each term in F-0&:#]
lim R{@,x) = 0

where
involves a ratio of a higher moment and a power of # and therefore,

o _ bl
S lim gzﬁp"(m):l—gajxﬂe 2

2
which is the characteristic function of a Gaussian random variable with 0 mean and variance “x .
¥o—2 5 N0, g




MODULE Il
OPERATIONS ON MULTIPLE RANDOM VARIBLES-EXPECTATIONS

Operations on multiple random variables & Expected values of functions of random variables

If ¥ =gld) is a function of a continuous random variable &, then

¥ EY =Eg(X)= X g(x)py(2)
 then we R

is a function of continuous random variables & and ¥ then the expected

if ¥ = 24045 a function of a discrete random variable
Suppose £ = 8L F)
value of Z is given by

w

EZ = Bgi&.y)= | zfy(z)dz

8

b— g

T 2 fra Gr2)dndy

Thus £ can be computed without explicitly determining Jz2),
We can establish the above result as follows.

suppose £ = B ) has A roots (B2 12122 7 =2 Then

M

(2¢Z Cz+ ) =| J(z.pn)e an)

il
Where
AL Is the differential region containing (% ’yi:"The mapping is illustrated in Figure 1 for? =3,
. ‘2
¥
{z«ZZz+Az}
¥ o
'X
£y
AL,
Figure 1
Note that
Pllz<Z iz+lely= fp(z)de = Z Fey (x y) Ay,
(% .3 e
Sogfy(z)ie = Z oy p (7, 0 ) L L
(%0 =i l)
= 2 (w0 () Ay,
(% e

As £ is varied over the entire £ axis, the corresponding (non-overlapping) differential regions in < — ¥
plane cover the entire plane.

L #@d = | [ gy (xy)dxy

-

Thus,




Bg(X.3) = | [ g(xy) fay (x,y)dudy

— —

If Z=gldl) is a function of discrete random variables < and ¥ , we can similarly show that

EZ=Fg(X. V)= 2 Zelxylpxy(xy)
¥R By
Example 1 The joint pdf of two random variables X and ¥ g given by
fx‘},(x,y)=%xy DLxi2 Doyl

=0 otherwize

— 3
Find the joint expectation of glA ) =47F

Bg(X.¥)=EX?Y

= T [ 2(x.2) fyp (x.)dxdy

—n —i

22 1
= [[ 5y = zydxdy
0 4

12 2
= — [Fdx[y"dy
43 0

Example 2 If Z =aX +bY, where @ and & are constants, then

EZ =afX +bREY

Proof:
BZ = [ [ (@x+by) fyp(x.0)dudy

—n —0

= | | axfyy(x, Vidudy + [ [ Byfyy(x, y)cdudy
= [ax [ fyy(x »idvdx+ [ By [ fyylx yidady

= a [ 2y (R)dx+B | 3fy )y
= aBEX +LEY

Thus, expectation is a linear operator.
Example 3
Consider the discrete random variables & and ¥ discussed in Example 4 in lecture 18.The joint

probability mass function of the random variables are tabulated in Table . Find the joint expectation of
glX V=XV
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\3’\ il I 2 |
v

o [ozs o1 [ 015 | 05
1 [o14 035 [ oot | 05
py(x) | 039 045 | 016

Clearly, EXY = T Zg0x oy ))

ARy ¥Ry
=1x1x0304+1x2x0.01

=037
Remark

(1) We have earlier shown that expectation is a linear operator. We can generally write
Elayg (A7) +ayg (4. 1)) =a Bg (A7) +a,Bg, (4. T)

Thus E(XY +5log, XT) = EXY +5Elog, XV

() If ¥ and ¥ are independent random variables and &%+ ) = 8 (I8 ED ey

Eg(X,Y)=Eg (X)g,(¥)

- T T2 ()& @) frp(x ydx

-0 =g

— I 18 ) () fy Yidady

—oa —a

- T (D) (R g, () fy Oy
= Fg [Xj'Egz (¥

Joint Moments of Random Variables

Just like the moments of a random variable provide a summary description of the random variable, so also
the joint moments provide summary description of two random variables. For two continuous random

variables £ and ¥ the joint moment of order # * #is defined as
EXTY )= [ [ &Y foy(x y)udy

And the joint central moment of order #2 ¥ #is defined as

B(X =y (V= ) = | [ (= gV (= iy W iy y (., Y)idy

where 4z = B gng #y = EY

Remark
(1) If &£ and ¥ are discrete random variables, the joint expectation of order % and 2 is defined as

EX"F )= 3 ExXYpyyxy)
(v.pieRy

EX-puy V-0 = 5 Bl py =yl pry (¥

(X :"‘!Rx.r




(2) If  =land #=1 we have the second-order moment of the random variables & and ¥ given by

T T Xy v (2, Y)edady 1f X and ¥ are continaous
F(XV)= dos

T ORRpysnY) if ¥ and ¥ are dizorete
(rpke Ry, .

(3) If ¥ and ¥ are independent, £Y) = EXEY
Covariance of two random variables

The covariance of two random variables £ and ¥ js defined as
Cov(X,¥) = B(X - py X ¥~ pty)

Cov(X, Y) is also denoted as Txx,
Expanding the right-hand side, we get

Cov( X 1) = BLA - iyl - piy)
T BAY -y - T iy )
= BEXY -y BX - py BY + pig ity
= BXY - piy by

Cov( X,

Opdy

o(X,T) =

The ratio is called the correlation coefficient.

it % 7 Othen X and ¥ are called positively correlated.

it ©xr < Ohen X and ¥ are called negatively correlated

if Pz = O4pen I and ¥ are uncorrelated.

. < . . .
We will also show that |’G(X’ Y:'" L To establish the relation, we prove the following result:

2 1 1
For two random variables X and ¥ & (X¥) = EX°EY
Proof:
Consider the random variable £ = a&& + ¥

ElaX +¥) 20

= @*BX* + BV +2aRXY >0

Non-negativity of the left-hand side implies that its minimum also must be nonnegative.
For the minimum value,

dEZ* EXY
=0l=a=- >
e A
so the corresponding minimum is
Xy Xy
—+ BV -2 ——
EXY EX
B Xy
= EY - ——
B

Since the minimum is nonnegative,




BT
b
= B ¥V L EFRY

= |Exy|:VEX® BT

Now

BT - 0

_ Cov(E,T)
Oxoy
BT - piy Y - iy
BT - i) BCE - g’
|BOT - )Y - )|
JECT - ) BT - )
BT~ ) BT -
BT - ) BT - i)’
=1

o(X,T)

et T =

s LD
Uncorrelated random variables
Two random variables 4 and ¥ are called uncorrelated if
Cov(X.¥) =0

which also means

E(XY ) =y iy

Recall that if & and ¥ are independent random variables, then

Frr xR yl= F (05 )

EXY = ? ? 0y (% y)drdy asmuming X and ¥ are continuous

-0 =0

= T T (0 £ ey

- [ (e | v (y)dy

then = EXEY

Thus two independent random variables are always uncorrelated.

Note that independence implies uncorrelated. But uncorrelated generally does not imply
independence (except for jointly Gaussian random variables).
Joint Characteristic Functions of Two Random Variables

The joint characteristic function of two random variables X and Y is defined by
Oy y (@, @) = Be™2T0

If < and ¢ are jointly continuous random variables, then

wow

';é}f,}’(ﬁt.l? mzj = J‘ J‘fX1}r|:x,y:|EJ'ﬂ|x+jﬂg}ldydx

-~

Note that 'ﬁ’ff(ml’ @) is same as the two-dimensional Fourier transform with the basis function

E.r'cauﬁ.i"mar

instead of




g—i.i"calﬂ.i"um _
fz,r (x, %)

is related to the joint characteristic function by the Fourier inversion formula
r o —far-foyy
= of aved
Frp(x ) P _‘!;_i Py y (&, @4 Je het &,

If £ and { are discrete random variables, we can define the joint characteristic function in terms of the joint
probability mass function as follows:

@z,}r l:'ml: m_g:' = Z Z Pxy (I,y}g Jok+ jog

(%0 eRy= B

Properties of the Joint Characteristic Function
The joint characteristic function has properties similar to the properties of the chacteristic function of a
single random variable. We can easily establish the following properties:

1 gy () = gy y (@, 1)
) 3@ = 6, 0.@)

3.1f L and { are independent random variables, then

';éx‘}r(ﬂztl, mj:' = EE.?.G|X+_;I'QQ}I'
= E{é..i"m.xé‘jmq}’}
= EEJ-Q'XEEJ-“J
= gy la@)de (@)
4. \We have,
‘;E}X,y(ﬂ?ﬁ, CFJE) = FoloXeinl
a ) .
=E(1+jc‘ﬂlX+jm2}’+M+ .............. )
2
P 2 . 2 3
TR e = mzzgf + @@ EKY +..
Hence,
Py (0,00 =1

1 3
B =———dy play. @)
Joay

=]

1 4
BY = ———gy y (@, @)
Jday

"
gy - 1 Tler(@.0)
Jodede, | o
In general, the T )2 order joint moment is given by

1 gy (o, @)

;4N

J de] B

XY =

=l gl




Example 2 The joint characteristic function of the jointly Gaussian random variables <% and £ with the
joint pdf

el
ﬂl:l—Px.r:'[[ "x] ol ey N\ o S

EMXJ}“\/I - p?s’,}’

f:x:.}"ixsu)’:' = £

Let us recall the characteristic function of a Gaussian random variable

X~ Ny, 03)
s (@ = BT

2

o 1 Ay

1 O3 o

=—— |¢ ool e
1.@?1'0"{ .

en 1202 oy xH ity - e 1y - b o) M

1 4 T
=——|# * x
Rro, -[

—0
1 (—ap@?+2 gy i) L {xw-,;ﬁ ‘
2 T T3
=g & —_— ‘[ & ikt a!’x
t-\."zfm'x A
J‘J.reumv.‘erwa. e siny

_ e,.:ggju—a'}mg i w1
= Eﬁz.i"r-—a}gmz 12

If £ and £ is jointly Gaussian,

Tl ) e
xg}'\/l - p?i}f

f:x:.}' (x,0)= £

we can similarly show that

Be (@, @) = B0

. o
_ e i by~ TGO AR o o e T )

We can use the joint characteristic functions to simplify the probabilistic analysis as illustrated on next
page:

Jointly Gaussian Random Variables

Many practically occurring random variables are modeled as jointly Gaussian random variables. For
example, noise samples at different instants in the communication system are modeled as jointly Gaussian
random variables.

Two random variables X and ¥ are called jointly Gaussian if their joint probability density

(g B o iy K] (g
-1 p Ly BT T
=T SR

= D0 <x <00 0y <0
f;;;(x,y) m ] X, F




The joint pdf is determined by 5 parameters

e means #¥ and iy

|::r2 atrd C-'z
e variances & ¥

« correlation coefficient “4>¥
We denote the jointly Gaussian random variables <% and " with these parameters as
(X.7)~ Nty ty. O Oy, Oy )

The joint pdf has a bell shape centered at (il ) as shown in the Figure 1 below. The variances

2 v

@ x 94 SF gotermine the spread of the pdf surface and “-¥ determines the orientation of the surface in the
p p

A =¥ plane.

f fe
Tyl

Figure 1 Jointly Gaussian PDF surface

Properties of jointly Gaussian random variables
(1) If X and < are jointly Gaussian, then X and £ are both Gaussian.

We have
Fylx = .[fx,y (x, y)dy
-1 -y P 0 g M N ] U"—M}IF
“ 1 Wepd 1| =% oy Ty =3
] —‘Fm—e ' dy
_mz.ﬂm'xﬂ'y = ey
%[” XT - -1 “’i’,}'t’:‘”X’E_zmi’f—?i}'-}w,rw—?ﬁ
_ Fx I ﬂfl—p_AX‘}rJ =5 Xy =3 dy
I'EJX - mﬂ'}r\ﬂ ,Oi-}
21 ‘MX - _ 1 EJ"_ _Fxy r}ri* #:,_-:':r
T I 1 P Ergfl—piv_}r:l[ = X d};‘
1'2_0'_}: N J}'Jl _.0%-
1]
o
1 x
\EJX e
Similarly
2
7]
Ty




(2) The converse of the above result is not true. If each of < and {"is Gaussian, <€ and ¥ are not
necessarily jointly Gaussian. Suppose

L T
A

Jyr iyl =gi-e ](1 +sin x5 ¥)

Jzy(%.5) in this example is non-Gaussian and qualifies to be a joint pdf. Because,

>
fz.}":-’%}":' s DAnd

1 e remae?
ST R
J‘ J‘ P {1+ sin x sin ¥ dvdx
— o
oW _l |:”_”Y]i+ry_”r:'2:| wow -1 |:“_"'X:F ”"”r:'i]
— 1 Sy cr dvdr + 1 Sy o : : el
‘I‘J‘mé LVl ‘I“I‘mé 111 X511 Yo
—o — —o —
wo oy I i © TRy
=1+ zmlxrr Ie ¥ osin xdx Ie ¥ osiny dy
— —
\—V—r'
Ritegration o an odd fimction
=1+0
=1
The marginal density <% ® is given by
o N rx—uxf*_'_ry—u,.]*
1 |:l_,‘.-E |'.r,-E . .
Felx)= J‘me {1+ sin xsin ydy
—
@ L Tt o | n—pyﬁ .r:.'-J-I,-]q
= 1 - = ¥ ol 1 wd o | ® 0 oF ; ;
‘I‘ i iy Ime sin x sin Yy
- - irtegration of anodd functon

Sy
f Y’
—_ 1 o 2 L
3
[ e
E[%:

— 1
= &
Similarly, 5

Thus <& and  are both Gaussian, but not jointly Gaussian.
(3) If < and ¥ are jointly Gaussian, then for any constants ¢ and & the random variable £ given by

2 2 2 2 2
. . . = + . O =atat v+ 2aba,e
Z = aX + Y is Gaussian with mean ~2 ~ 4z T B4 a0 variance 7= 4 ¥ T Fxy

(4) Two jointly Gaussian RVs < and < are independent if and only if <t and ¥ are uncorrelated

xr =9 opserve that if X and ¥ are uncorrelated, then




_1
I

(=gt :':"'_l_i}'-#kr:'g
1 X ¥
fx,}’(xs.}’:' = meg}r £

{Hmpy B { e 12
1 1 e
— & 4 ¥

‘JIZ_?TJX \‘EJFE
= Fr )y ()

Example 1 Suppose X and Y are two jointly-Gaussian 0-mean random variables with variances of 1 and 4

respectively and a covariance of 1. Find the joint PDF Jzz (%)
pig= iy =0, 0% =1, o = dand cov(X, F) =1
CoviX, 1) 1 1

oy, 1x2 2

e Fyr

and

_ 1
fz,}f (x,») MJ‘. g
LA
= g
We have 2n

[ rdE]

¥

Example 2 Linear transformation of two random variables
Suppose £ = aX + &Y then

g (@) = Be’®? = BT = g (am, ba)

If < and { are jointly Gaussian, then

P (@) = @y y(a®, ba)

. 1
_ e.,i"::':‘f.i:"'ﬂ':'"‘_i':ﬂzaix*'gs"“x.rﬂe"}'x“_:f +EJIG-'¥ it

Which is the characteristic function of a Gaussian random variable with

2 2 2
. Jg =0y +2 + 0,
mean HE =+ e and variance "% x Tody vy Oy r

thus the linear transformation of two Gaussian random variables is a Gaussian random variable.

Example 3 If Z=X+Y and X and Y are independent, then
go @) = gy yla, @)

= gy l@gy (@)

Using the property of the Fourier transform, we get
Jz(z) = Fylz)* fy(z)
Hence proved.
Univariate transformations
When working on the probability density function (pdf) of a random variable X, one is often led to
create a new variable Y defined as a function f(X) of the original variable X. For example, if X~N(u, ),
then the new variable:
Y =1X) = (X-Wl=
IsN (0, 1).
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It is also often the case that the quantity of interest is a function of another (random) quantity whose
distribution is known. Here are a few examples:
*Scaling: from degrees to radians, miles to kilometers, light-years to parsecs, degrees  Celsius to

degrees Fahrenheit, linear to logarithmic scale, L to the distribution of the variance
* Laws of physics: what is the distribution of the kinetic energy of the molecules of a gas if the
distribution of the speed of the molecules is known ?

So the general gquestion is:
*IfY =h(X),
* And if f(x) is the pdf of X,

Then what is the pdf g(y) of Y?
TRANSFORMATION OF A MULTIPLE RANDOM VARIABLES
Multivariate transformations

The problem extends naturally to the case when several variables Y;are defined from several
variables X; through a transformation y = h(x).
Here are some examples:
Rotation of the reference frame
Let f(x, y) be the probability density function of the pair of r.v. {X, Y}. Let's rotate the reference
frame {x, y} by an angle@. The new axes {x', y'} define two new r. v. {X', Y'}. What is the joint
probability density function of {X', Y'}?
Polar coordinates
Let f(x, y) be the joint probability density function of the pair of r. v. {X, Y}, expressed in the
Cartesian reference frame {x, y}. Any point (x, y) in the plane can also be identified by its polar
coordinates (r, ). So any realization of the pair {X, Y} produces a pair of values of r andf}, therefore
defining two new r. v. R and#).
What is the joint probability density function of R and? What are the (marginal) distributions of R and
of ?
Sampling distributions
Let f(x) is the pdf of the r. v. X. Let also Z; = z1(X;, X,... X,,) be a statistic, e.g. the sample mean.
What is the pdf of Z,?
Z, is a function of the n r. v. X; (with n the sample size), that are lid with pdf f(x). If it is possible to
identify n - 1 other independent statistics Zi, i = 2... n, then a transformation Z = h(X) is defined, and
g(2), the joint distribution of Z = {Z,, Z,, ..., Z,} can be calculated. The pdf of Z; is then calculated as
one of the marginal distributions of Z by integrating g(z) over z;,i=2, .., n.
Integration limits
Calculations on joint distributions often involve multiple integrals whose integration limits are
themselves variables. An appropriate change of variables sometimes allows changing all these
variables but one into fixed integration limits, thus making the calculation of the integrals much
simpler.
Linear Transformations of Random Variables

A linear transformation is a change to a variable characterized by one or more of the following
operations: adding a constant to the variable, subtracting a constant from the variable, multiplying the
variable by a constant, and/or dividing the variable by a constant.

When a linear transformation is applied to a random variable, a new random variable is created. To
illustrate, let X be a random variable, and let m and b be constants. Each of the following examples show
how a linear transformation of X defines a new random variable Y.

* Addingaconstant: Y =X +Db

= Subtracting a constant: Y = X -b

=  Multiplying by a constant: Y = mX

* Dividing by a constant: Y = X/m

= Multiplying by a constant and adding a constant: Y = mX + b
= Dividing by a constant and subtracting a constant: Y = X/m - b




_ T _
Suppose the vector of random variables X = (X1.----&N) has the joint distributionft) = Ax1.---.xN).

set ¥ =AX+Bgor some square matrix Aand vector® 1f 9et4 # Ohen Thas the joint distribution

B 40 D).

Indeed, suppose T2(¥) (this is the notation for "the ) is the distribution density of ¥") and X%} For
| £Gdy = Prob(¥ € D) = Prob(4X + B < D) =

any domain Dot the ¥ ~space we can write b

- th(‘YE A_I(D_B)?) = I Fix)dx =
B We make the change of variables ¥ = Ax+B;,

the last integral.

_ 1y Dix) | . _ 1, 1 (Linear transformation of
B .Ilnn"‘t:"1 v B)j ‘ D(v) ‘d}_ .Ilnﬁd v B)DH@' random variables)

2
The linear transformation @& * His distributed asr"]rc‘“"tI ) The & was defined in the section (_Definition
of normal variable).

For two independent standard normal variables (s.n.v.) €1 and &2 the combination 181 T 0282js

o.Tret)

A product of normal variables is not a normal variable. See the section on the chi-squared distribution.

distributed as
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RANDOM PROCESSES-TEMPORAL CHARACTERISTICS
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Random Processes

In practical problems, we deal with time varying waveforms whose value at a time is random in
nature. For example, the speech waveform recorded by a microphone, the signal received by communication
receiver or the daily record of stock-market data represents random variables that change with time. How do
we characterize such data? Such data are characterized as random or stochastic processes. This lecture
covers the fundamentals of random processes.

Recall that a random variable maps each sample point in the sample space to a point in the real line. A
random process maps each sample point to a waveform.

Consider a probability space (5., 7} . A random process can be defined on (5.F. 7} as an indexed

family of random variables X5} s€5.8€l hare Tis an index set, which may be discrete or

continuous, usually denoting time. Thus a random process is a function of the sample point ¥ and index
Xit.8)

variable ¥ and may be written as

T w
\ 527 g, — X{8,51) P oA NI

2k A L L L L
0 1iC X X o€ <€

L ' .
Z LU E X 10

Figure : Random Process L
Example 1 Consider a sinusoidal signal ** & =605 @ \ynare s 4 binary random variable with

probability mass functions alll=r gpg Pa-D =12

Clearly, X, tel} is a random process with two possible realizations &,() = cosat and

&2 (8) = ~cos at. At a particular time fy Alty) is a random variable with two values ©°% “0and

—Cod i,

Classification of a Random Process

a) Continuous-time vs. Discrete-time process
If the index set L'is continuous, (X@, el is called a continuous-time process.
If the index set L'is a countable set, (L), el is called a discrete-time process. Such a random process

. . =00,
can be represented as {X[H]’ R Z} and called a random sequence. Sometimes the notation {Xﬁ’ "= D} is
used to describe a random sequence indexed by the set of positive integers.




We can define a discrete-time random process on discrete points of time. Particularly, we can get a

] PEEE}

discrete-time random process { by sampling a continuous-time process \{X #). 1T} ata

uniform interval T such that <171 = £ &T).

The discrete-time random process is more important in practical implementations. Advanced
statistical signal processing techniques have been developed to process this type of signals.

b) Continuous-state vs. Discrete-state process
The value of a random process X0 is at any time ¥ can be described from its probabilistic model.

The state is the value taken by ) atatime t, and the set of all such states is called the state space.
A random process is discrete-state if the state-space is finite or countable. It also means that the
corresponding sample space is also finite or countable. Otherwise , the random process is called continuous
state.

Firtst order and nth order Probability density function and Distribution functions

X

As we have observed above that at a specific time ¥ is a random variable and can be described

= <
by its probability distribution function Fyy (1) = PLAE) £ JC:"This distribution function is called the first-
order probability distribution function.

We can similarly define the first-order probability density function dx

(X(,teT)

To describe , We have to use joint distribution function of the random variables at all possible

AL represents 2 jointly distributed random

71— th order

values of . For any positive integer X)L, s

variables. Thus a random process (X eely

distribution function .

can thus be described by specifying the joint

Fowizm xe - o BI=PAG) =R, ) 2x, A =x), Vezland ¥, e

or th the 2 ~ 2 7 deF joint brobability density function

¢ (X (.61}
71— th order

joint probability mass function

is a discrete-state random process, then it can be also specified by the collection of

Moments of a random process
We defined the moments of a random variable and joint moments of random variables. We can define all the

possible moments and joint moments of a random process ) el . Particularly, following moments
are important.

. K‘E":X(r) ~ Mean of the random process at t=EX)

. Bylt.t) = autocorrelation function of the processat timest), t, = F(X (1) X ()




Note that

Ryltaty) = Ry(E,,t) and

Ry(t,f) = EX?(t) = second moment or mean square value attime ¢

i

 The autocovariance function Crltifa) of the random process at time ands, is defined by

Cpll b)) = BLA () = M (A ) — (5 ))
= Ry, 8) = Uy ()15 ()
Cleatly

U (8,8) = B{A(E) — ty (£1)* =variance of the processat time#
These moments give partial information about the process.

(g
Bylh.t) = = xk E‘;}I
The ratio “J'[ PLCRVERCR2Y is called the correlation coefficient.

The autocorrelation function and the autocovariance functions are widely used to characterize a class of
random process called the wide-sense stationary process.

We can also define higher-order moments like

Rl fa.82) = B(X (8, X (8,0, X (600 = Triple correlation function at £, £,,£, etc.

The above definitions are easily extended to a random sequence {X[H]’n < E} .

Cross — covariance furcionof the pr
Cyylf1.80) = B(A() — sy (G 07
= R};}r (f'lsf'g) _z{"rx(zl).“}

_rogs-cotrelation codh o ent
O (8.8 )

Oty ) = — e
et Cott )

On the basis of the above definitions, we can study the degree of dependence between two random processes

This also implies that for such two processes
Ry (0. 8) = fy (&) 2y ()

Orthogonal processes: Two random processes LA).cel] and ri).eely
are called orthogonal if

Ryt 5) =075l

Stationary Random Process

DCESS
52)_

(2,




The concept of stationarity plays an important role in solving practical problems involving random

processes. Just like time-invariance is an important characteristics of many deterministic systems,
stationarity describes certain time-invariant property of a class of random processes. Stationarity also leads to
frequency-domain description of a random process.

Strict-sense Stationary Process

£ @)

A random process is called strict-sense stationary (SSS) if its probability structure is invariant with

time. In terms of the joint distribution function,{X':ﬂ} is called SSS if
Ptz Taos %) = Fargny zing . it 0 Taoos %)

waue N, ¥i,el andfor all choices of sample points 4,4, 6,21

Thus, the joint distribution functions of any set of random variables X)Xty Xity) does not depend
on the placement of the origin of the time axis. This requirement is a very strict. Less strict form of
stationarity may be defined.

Particularly,

it Tzt e ) (e Tae o 2e) = Pty 1t 2t 001 (B0 T B) for n =120 AL O ¢ 10

&% order stationary.

{X@} Is called %% order stationary does not depend on the placement of the origin of the time axis. This
requirement is a very strict. Less strict form of stationary may be defined.

. pl%0)

is stationary up to order 1

FX(& J'(xl:I - FX(:. +:r,,3':-’f1:', Y eT

Let us assume @ = 7 Then
Py (®) = Fyylx) which s independent of time.
As a consequence

EX(5) = EX(0) = g, (0) = constant

. i)

is stationary up to order 2
put fo T %2

Frtn1ztn) (R %) = Fapy e 0 (700 %)
This implies that the second-order distnbution depends only on the time-lag 4 -4,

As a consequence, for such a process




Ryt ty) = BLAE)A ()

I 4 xzf;qn;,xq:, -, (3. % Jdmdx,

g, B

I
H.’:U

(4 —4)

Similarly,

Cpll bty )= Cyll) —1y)

Therefore, the autocorrelation function of a SSS process depends only on the time lag
AN

We can also define the joint stationary of two random processes. Two processes

{X@} And {I"(.tj} are called jointly strict-sense stationary if their joint probability distributions of any

V2@ =X+ T E)

order is invariant under the translation of time. A complex random process is called

SSSif {X(ﬂ} and {}’(g)} are jointly SSS.
Example 1 A random process is SSS.

This is because *

Fxegy .. 0, C10 0 %n) = Flre) () Flyy) 2)-- Flre, ) (050
= Fy(q iRy (o) Fy(x,)
= Fyty 1) Q00 F g, 0,y 000 Py 1y (5,
= FX(;I 1, X0+, K, ﬂu)(ﬁq,xz,.._ =y

Wide-sense stationary process

It is very difficult to test whether a process is SSS or not. A subclass of the SSS process called the wide sense
stationary process is extremely important from practical point of view.

X))

A random process { is called wide sense stationary process (WSS) if

EX ()= py = constant
and
EX ()Xt =Ry —t,0 1z afunction ofime lag g - ¢,

Remark

(1) For a WSS process {X (-f)}




EX?($) = Ry (0) = constant
varl X (O=EX* (1) - (EX (1)) = constant
Cyglh.ty) = EX () Xt ) - EX (418X (t)

= Ry, —4) - u3
L Cy Bz a fonction of the lag @y -4

(2) An SSS process is always WSS, but the converse is not always true.

Example 3 Sinusoid with random phase

(£

Consider the random process given by

Alt) = Acos(ayt + ) where A and v, are constants and ‘E’r'are unifirmly distributed between ad i,

This is the model of the carrier wave (sinusoid of fixed frequency) used to analyse the noise
performance of many receivers.

Note that

L oocpion

Jo (@) =q2m

0 otherwize

By applying the rule for the transformation of a random variable, we get

1

Jrinlx) = A -

0 otherwise

Aixs A

(£

Which is independent of £ Hence is first-order stationary.

Note that
EX(f) = Edcos(ayt + @)
ax

1
= [Acostay + o _d s

= [0 which 15 a constant

and




Rylfby) = BX(5) A (L)
= BEdcos( @y, + ) Acos(@f, + )

2

= %E[cos(mnzl + @+ @ty @)+ oos(ayy @ - @ty — @]

2

= %E[cos(&ﬂu(ﬁl +E )+ 28 Hoosiay (g —4)]

2
= %cos(mn(zl —£ ) which 1z afunction of the lag £ —£,.

Hence {X(ﬂ} is wide-sense stationary

Properties of Autocorrelation Function of a Real WSS Random Process

Autocorrelation of a deterministic signal

Consider a deterministic signal x(t) such that
.1 r
0<lim— [ x°(&)dt <
P 27
Such signals are called power signals. For a power signal x(t) the autocorrelation function is defined as

r
R.(r)= il,i_ﬂ ;—T _L Xt + TV R8s

£, (7) Measures the similarity between a signal and its time-shifted version. Particularly,

.1 r
R,(0)=lim — [ x'(e)dt (6

e 2T is the mean-square value. If is a voltage waveform across a 1 ohm
resistance, then £(0) is the average power delivered to the resistance. In this sense, £, (0) represents the
average power of the signal.

Example 1 Suppose X&) = A£05 8% The autacorrelation function of ¥ at lag  is given by

T
R.(r)= 11"1_1339 % _[rﬂn:os @t + 1).A cos aidt

li A 2 o
= — il tr)t i
lim 4T__J[“[|:os( )+ cos air |

1
A coswr

2

We see that &, (1) of the above periodic signal is also periodic and its maximum occurs when

2
2m 4 RK(U)=%-

T=0+t— +—  etc
a ar The power of the signal is




The autocorrelation of the deterministic signal gives us insight into the properties of the autocorrelation
function of a WSS process. We shall discuss these properties next.

Properties of the autocorrelation function of a real WSS process

Consider a real WSS process {X(ﬂ} " Since the autocorrelation function Ryl 5) of such a process is a

function of the lag * ~ 21~ %

R, (r) = EX(t +1)X(f)

we can redefine a one-parameter autocorrelation function as

If {X(ﬂ} is a complex WSS process, then

R, (1) = EX(t+ 1) X *(f)

*
Where A is the complex conjugate of Xig). For a discrete random sequence, we can define the
autocorrelation sequence similarly.

The autocorrelation function is an important function charactering a WSS random process. It possesses some
general properties. We briefly describe them below.

_ 2
1. & (0= EX°0) Is the mean-square value of the process? Thus,

R (0= EX*(t)z0.
Remark If =40 is a voltage signal applied across a 1 ohm resistance, and then £z (0) is the ensemble
average power delivered to the resistance.

X(6), Ry

2. Forareal WSS process (%) is an even function of the time T Thus,

Ey(—7)= Ey(7).
Because,

R (-t)=EX(t-r) X
=EX(0X(E-1)
=HEX (g +r) X (4 (Substtuting £ =£-1)
= Ry(7)

Remark For a complex process Ry(-7)= Ry(7)
3. |R~’f ':f:'li: Rz (M) This follows from the Schwartz inequality
|« ey, it + ) =f < |l |2+

We have




(0= {(BX ()X (t+ Y
SEXADEXN 1+ D)
= Ry (D) Ry (D)

Ry (2)] 2Ry ()

4. Fx(Tigq positive semi-definite function in the sense that for any positive integer # and real Ay ,

E E ﬂ:‘ﬂjﬁx (I: - IJ)ED
=17=1

Proof

Define the random variable

¥= % X (1)
7=l
Then we have

02 EV? = 3 7 aa, BX ()X ()
ial jol

= ﬁ i ﬂiﬂjﬁxﬁi _‘t.i":I

iml jml

It can be shown that the sufficient condition for a function Ry (1) to be the autocorrelation function of a real
WSS process Ly is that ©(7) pe real, even and positive semidefinite.

If A1) is MS periodic, then Fx(7) Jsalso periodic with the same period.

Proof: Note that a real WSS random process i) is called mean-square periodic ( MS periodic ) with a

period 5 if for every £ €T

BXE+T)-X(E' =0
= BX ¢+ T)+ BX () - 2BEX ¢+ T)X(5) =0
= Ry (D) + Ry (0) - 2R, (7,3 =0
= Ry (T,) = Ry (0)

Again

(BHE+T+T) - Xe+oNXO) & BX(e+T+T) - X+ D) EX ()
{By applying Cauchy Schwartz inequality)
= (R (T+T,) — Ry (1))* L2(Ry(0) - Ry (T, 1R, (0)
= (R, (T+T,) - Ry (z))* <0 R (0) = Ry (T,)
SRy (THT) = Ry (1)

Cross correlation function of jointly WSS processes




If E40) and rien are two real jointly WSS random processes, their cross-correlation functions are
independent of £and depends on the time-lag. We can write the cross-correlation function

R (r) = BEX(t+ 1) (£)

The cross correlation function satisfies the following properties:

Ry (r) = BX(E+ 7)Y (£)
=BY{nX{+r)
= Ry (-7}

(1) |Riy ()] € R (O)IR, (0
We Have

|Rey (O =|EX 2 + ¥ O)f
LEX*:+DEYAE) using Cauchy-Schwartz Inequality
= Ry ()R, (0)

Ry ()] < B ()R, (0)

Further,

By (R (D) 2 %[RX(D) + R, (Dj) v Geometric mean £ Anthmatic mean

iii. If &) and Y (t) are uncorrelated, Ry (1) = BXE+T)ET () = pyhy

iv. IfX(t)andY (t) are orthogonal processes, Ry (z)= EX{'ﬁ " ij [z) =0

Example 2

Z(h)

Consider a random process which is sum of two real jointly WSS random processes.

A9 and HEl \we have

Zig) = X () +FiE)

Rr)=EBZ(t+1)Z(¢)
= HX{g+o)+ i+ )] [X )+ )]
= Ry(r) + By(r) + Ry (1) + Ry (1)

If &) and ¥ 'iﬁ:'are orthogonal processes,then Ry () = Ry (w) =0

S Rp () = Ry (T) + Rylr)




Example 3

Suppose

Zy(E) = K )cos(ayt + D) and
Zygr=A ) anlayt + )

Where X (t) is a WSS process and £~ U1027]

By (8= BLH (e 0)] = 5 [T x(0ngle - g

[X(6) X (¢ — o) | E[cos(ayt + D)sin{ayt - ayT + D))

ba| — [y

RX{r)[E[Sinl[Emnz ~ @yt + 2] E[Sin{mncr]l]]

-~ 1 Bylm)sin(aye)

Time averages and Ergodicity

Often we are interested in finding the various ensemble averages of a random process{X@} by means of
the corresponding time averages determined from single realization of the random process. For example we
can compute the time-mean of a single realization of the random process by the formula

.1
(b = ﬂEJ‘;xg)cﬁ
which is constant for the selected realization. Note that ‘(,Hx };— represents the dc value of * (t) .
Another important average used in electrical engineering is the rms value given by

. 1 r
{ X >r = jl}_t}li Jﬁ I—T x4 (et

Time averages of a random process

The time-average of a function & 4t of a continuous random process{X(ﬂ} is defined by

1
(X O), = [,z e

where the integral is defined in the mean-square sense.

A,)

Similarly, the time-average of a function gl of a continuous random process {X"} is defined by

|
{E(Xn}}N = migﬁg(fﬂ

The above definitions are in contrast to the corresponding ensemble average defined by




Bg(X(e) = [ 2la) fuyy(x)dn

for continuous case

z E(%) P (%) for discrete case
il

AT

The following time averages are of particular interest

(a) Time-averaged mean

1 :
{,{JX }r = E\Ii" AT {continuous case)
{#3}N=ﬁigﬁjﬁ (discrete case)

(b) Time-averaged autocorrelation function

(RX(T)}T = %\I‘iX{z]X@ + Tt (contihuous case)

N .
{Rz[m]}N =TTl z__E_NX;-X;-m (discrete case)

Note that, {g (&) }i" and {g ':X"}>N are functions of random variables and are governed by respective
probability distributions. However, determination of these distribution functions is difficult and we shall
discuss the behaviour of these averages in terms of their mean and variances. We shall further assume that

the random processes {X@} and {X"} are WSS.

Mean and Variance of the Time Averages

Let us consider the simplest case of the time averaged mean of a discrete-time WSS random process{X"}
given by

1w

{’“X }N TN+l z‘ENXi

The mean of {’“ X }N

N
E{#‘Y L"r £ 2N +1 z‘EMXi

1 oy
- 2N +1 :‘ENEL
=Hy

and the variance

Bty i) = E[

I g :
AT Ll

=K ! = X, 2
- [2N+li§j¢(i ’H‘Y)]

1 N ; v
=w iENE(Xi_#X) te n B B A )

I i iy e B




Hoars K grarses K1 Lgoos &

&7 are uncorrelated,

-----

If the samples

2 1 N 4
EKH’:}N_*MX) =E[2N+15§NX5 _e'”z]

TON+1

i E({itg}y - 5T =0
We also observe that i T\WHx iy T Hx

M5, E
From the above result, we conclude that {,ux >N Hy

Let us consider the time-averaged mean for the continuous case. We have
{3y J‘ X (s

LB J‘r EX ()t

= % .[—T Hydlt = [y
and the variance

2
E((ﬂx};- _ﬂxjg = E[%fi‘x(ﬂdﬁ _ﬁx]
ol e ’
E[ o7 [eaeAty Pr:x::'df]
: %ﬁ" P B G) - ) (08 - 1) ddt

4?2 Irf JJI'C (51 52:'d51d52

i ; £, =xT £, =17 . .
The above double integral is evaluated on the square area bounded by 1 and 2 We divide this
square region into sum of trapezoidal strips parallel to h=5=0 (See Figure 1)Putting 975 " Tang noting

that the differential area between 5= Tand hh = T+dfis (2T~ |f|jdf

, the above double integral is
converted to a single integral as foIIows.

E[(*{IX :"'r' fr frr'c '(51 z]fﬂlfifz

-5
Tz BT - [pCy (Tt

= Efi}[ L?[]G (DT




f}f" //—\51—£2=T+d1‘
ﬁl 1‘,2:2T # _l_ //”/
’ L7 L& =T
T I \M_f*/l g
!
A
< ([ >
T AV TS
//
g i, = 2T
#
T L7
&
Y
Figure 1

Ergodicity Principle

If the time averages converge to the corresponding ensemble averages in the probabilistic sense, then a time-

average computed from a large realization can be

used as the value for the corresponding ensemble average.

Such a principle is the ergodicity principle to be discussed below:

Mean ergodic process

A WSS process{‘ﬂﬂ} is said to be ergodic in mean, if <’“~’f }T ~ 7 Hzas T — o Thys for a mean

ergodic process{‘}f(ﬂ} :

lim B{pty )y = py
and
fim var st}

We have earlier shown that
E(:'L{X >r = -'HX

and

var{,{ix}r ET LC" (T 1

I}ﬁ

therefore, the condition for ergodicity in mean is

Further,

ngmqudm—ﬁcmm

Therefore, a sufficient condition for mean ergodicity is




ar
J;|C*X (DT <=

Example 1 Consider the random binary waveform {X(ﬂ} discussed in Example 5 of lecture 32.The process
has the auto-covariance function given by

I e,

Cy(T) = 1 T

?
0 otherwise

Here

ar ar
L|CX (OfT= EJ‘|CX(T}|Q‘T
- ! ]
= 2}]‘[1—?]&!’1‘
LT
)
_2h

3

ar

L|CX (TIHT { o

hence {X(ﬁ}} is mean ergodic.
Autocorrelation ergodicity

{Ry (D)), =—LX(§)X{; + )t

We consider £ = XEILE+T) 5ty Hz = Ry (T)
Then {X(ﬂ} will be autocorrelation ergodic if 40} is mean ergodic.

Thus {X(ﬂ} will be autocorrelation ergodic if

1 i
J"—m:-_’j" J

where

|T1| (AT =0

Cp(%) = BZ(OZ(t-Ty) - EZ() BZ(t - )
- EXOX¢-DXG-DXG-1-1) -RE (D)

Cz(z, :' involves fourth order moment.
Simpler condition for autocorrelation ergodicity of a jointly Gaussian process can be found.

Example 2



http://nptel.iitm.ac.in/courses/Webcourse-contents/IIT-%20Guwahati/probability_rp/module_04_random_processes/lect_32/slides/slide9.htm

Consider the random—phased sinusoid given by

Alt) = Acos(apt + ) where Aand @, are constants and ¢~ Ul0, 27] is a random variable. We have
]

A
~0 R (T)=—rcosayT
earlier proved that this process is WSS with Hx and 2

For any particular realization x(g) = Acos(wi + 4),
1
{4, = Efrﬂcos(wuﬁ +)dt

1 .
= — Aziniw
= (v )

Wy
and

17
(Rx Y] }r = ﬁ_‘l:ﬂcos{wnﬁ +d A cos(w £+ T) +)de

ar
= T i[cos wy T+ Acos(w, (26 + 1)+ 24 )]

_ A coswr . A sinfw, (2T + 1))
2 dw, T

A coswT
(T) ) — ———
We see that as? —+ {#h)r =0 and (& }r 2

For each realization, both the time-averaged mean and the time-averaged autocorrelation function converge
to the corresponding ensemble averages. Thus the random-phased sinusoid is ergodic in both mean and
autocorrelation.

LINEAR SYSTEMS RESPONSE TO RANDOM INPUTS

Consider a continuous LTI system with impulse response h (t). Assume that the system is always
causal and stable. When a continuous time Random process X (t) is applied on this system, the output
response is also a continuous time random process Y (t). If the random processes X and Y are discrete
time signals, then the linear system is called a discrete time system. In this unit we concentrate on the
statistical and spectral characteristics of the output random process Y (t).

System Response: Let a random process X (t) be applied to a continuous linear time invariant system
whose impulse response is h(t) as shown in below figure. Then the output response Y (t) is also a random
process. It can be expressed by the convolution integral, Y (t) = h (t) *X (1)

X(t) Y (1)

—> h (t) —>

That is, the output response is

Y ()= h(DX(t — )dr.

Mean Value of Output Response: Consider that the random process X (t) is wide sense stationary
process.

Mean value of output response=E[Y (1)],
Then E[Y (t)] = E [h (t) * X (t)]




=E [ h@)X(t — D)d1]

=2 R@EX(t — D]dr

But E[X(t — 7)] = X =constant, since X (t) is WSS.

ThenE[Y (t)]=Y = X f_mm h(t) dt. Also if H (w) is the Fourier transform of h (t), then

H(w)= _f_mm h(t)e /@t dt. Atw =0, H (0) = ffom h(t) dt is called the zero frequency response

of the system. Substituting this we get E[Y (t)] =Y = X H (0) is constant. Thus the mean
value of the output response Y (t) of a WSS random process is equal to the product of the mean value
of the input process and the zero frequency response of the system.

Mean Square Value of Output Response:

Mean square value of output response is

ELY* ] =E[(h ®* X ©)1=E[(h ) *X ) (h ©* X ()]

=E[[ hGX(t—t)d Ty [© h(1)X(t —15)d T3]

=E [fw f_moo X(t —1)X(t — 1,)h(rh(r,)d 1,d7,)

ELV()]= [0, [0 E[X(t — t)X(t — )]h(xh(r,)d 14d7,
Where 1, and 1, are shifts in time intervals. If input X(t) is a WSS random process then
E[X(t —t)X(t —12)] = Ryx(ty — 12)

Therefore E [Y*(t)] = _f_mm j_ij Ryy(ty — 15) h(ty)h(15)d 1,dT,




This expression is independent of time t. And it represents the Output power.

Autocorrelation Function of Qutput Response: The autocorrelation of Y (t) is

Ryy(t1, T2) = E[Y (£1) Y (£2)
= E[(h (t2) * X (ts)) (h (t2) * X (t2))]
e[ [ hGx(t, —t)dty o h(r)X(t; — 15)d 73]
=BT IS, X —t)X (6 — w)h(r)h(r2)d 11d7]
S -1 (RN ) (RN FICHVICARENCE
We know that E [X(t; — 7)X(t; — 75)] = Rxx(t; — t; + 71 — T5).
If input X (t) is a WSS random process, Let the time difference T = t;-1; and t=t, Then
E[X(t —1)X(t + 71— 13)]=Rxx(t + 74 — T2). Then
Ryy(t,t +7) = Ryy(t,7) = [ [ Rux (0 + 11 — 1) h(z)h(rp)d 1y,
If = Ryx(t) is the autocorrelation function of X (t), then Ryy(t) = Ryxx(t) * h(t) h(-1)

It is observed that the output autocorrelation function is a function of only t. Hence the output random
process Y(t) is also WSS random process.

Cross Correlation Function of Response:

If the input X (t) is WSS random process, then the cross correlation function of input X (t) and output
Y(t) is
R'\')'(f,( +1)=E |X ()Y (t+ l’)]

Ryy(t) =E X (1) h(ty) X (t+T-13) dry ]
Ryy() =[ T, E [X (®) X (t + T- 73)] h(ry)dr,]
Ryy(7) -J_far Ryx(t = 1)) h(7y)dty which is the convolution of Ryx(t) and h (1).

Therefore Ryy(7) = Ryx(t) * h (1) similarly we can show that Ryx(7) = Rxx(t) * h (-1)
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This shows that X (t) and Y(t) are jointly WSS. And we can also relate the autocorrelation functions

and the cross correlation functions as
Ryy(7) = Rxy(t) * h (1)

Ryy(t) = Ryx(t) * h (1)

Spectral Characteristics of a System Response: Consider that the random process X (t) is a WSS
random process with the autocorrelation function (t) applied through an LTI system. It is noted that
the output response Y (t) is also a WSS and the processes X (t) and Y (t) are jointly WSS. We can
obtain power spectral characteristics of the output process Y(t) by taking the Fourier transform of the
correlation functions.

Power Density Spectrum of Response: Consider that a random process X (t) is applied on an LTI
system having a transfer function H(w). The output response is Y (t). If the power spectrum of the input
process is Sxx (®), then the power spectrum of the output response is given by Syy (o) =

|H ()17 Sxx (w).

Proof: Let () be the autocorrelation of the output response Y (t). Then the power spectrum of the
response is the Fourier transform of ().
Therefore Syy (0) =F [Syy (®)]

= |7, Ryy(2)e /7 dr
We know that Ryy(t) = ffom f_czoRXX(T + 1, — 75) h(t)h(7,)d 1,d7>

Then Sy (w) = f_mm fjom ffom Ryx(t + 1, — 12) h(t)h(15)d 1,d15 e 797dt

- I Rey (@)1 du
We know that Ryy (1) = J—CZ:. f_mmRXX(I + 1, — 15) h(14)h(15)d 11dT5

Then Sw(w)=[* [ [ Rxx(t + 71 — 1) h(zh(r,)d 1ydt, e 19%dx

= [ h(ry) 7 h(ry) |7 Ryx(r + 1y — 1) e /*"dr dr, dr,

P jory [® jors [® jwr  jwty oty
=| " h(ry)e’™ | h(r,)e 2 Ryx(t4+1,-15)e e/ e/ dr dr, dr
o 1 o oo XX 1 1
B ) 2 J oo "X 2 2
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Let T +14-Ty=t, dt = dt
Therefore Sy (w) = Ir h(ry)e/*"dr, | h(zy)e/®"2dr, | IJ Ryx(t) e /*dt

We know that H (w) I " h(r)e /" dt

= J-_U;:,h(rl) f:um h(t;) f_meXX(T +1, - 1) e dr dr, dry

= fw h(t,)e/om f_mm h(t,)el®™ f_mm Ryx (T + 1, — ;) e J9%e/@T1e/9% 1 g1, d1,

Let T+13-T,=t, dT =dt

Therefore Sy (w) = _m 1§ el¥n T jo T, elom T3 _m Ryx(t e It de
herefore Sw(w) = [ h(z)eTdr, [ h(x)eldr, [ Rey(t) e /otd

We know that H (w) = f;h(“r)e_jwt dt.

Therefore SYY (o) = H*(®w) H(0) SXX (o) = H(-0)H(®) SXX (®)
Therefore SYY (o) = |[H(w)|2 SXX (o). Hence proved.

Similarly, we can prove that the cross power spectral density function is Sxy
() = Sxx (®) H(®w) and Syx (®) = Sxx (o) H(-®)

Spectrum Bandwidth: The spectral density is mostly concentrated at a certain frequency value. It
decreases at other frequencies. The bandwidth of the spectrum is the range of frequencies having
significant values. It is defined as “the measure of spread of spectral density” and is also called rms
bandwidth or normalized bandwidth. It is given by

oo 2o

2 _
Wins <o
—oo - xxlw)dw

Types of Random Processes: In practical situations, random process can be categorized into different
types depending on their frequency components. For example information bearing signals such as
audio, video and modulated waveforms etc., carry the information within a specified frequency band.

The Important types of Random processes are;

Low pass random processes
Band pass random processes
Band limited random processes
4. Narrow band random processes
(1).Low pass random processes:

N e
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A random process is defined as a low pass random process X (t) if its power spectral density Sxx
(m) has significant components within the frequency band as shown in below figure. For example
baseband signals such as speech, image and video are low pass random processes.

S, )

A
71N
y | \

{

(2).Band pass random processes: A random process X (1) is called a band pass process if its power
spectral density Sxx (o) has significant components within a band width W that does not include ®

=0. But in practice, the spectrum may have a small amount of power spectrum at ® =0, as shown in the
below figure. The spectral components outside the band W are very small and can be neglected.

For example, modulated signals with carrier frequency ®, and band width W are band pass random
processes. The noise transmitting over a communication channel can be modelled as a band pass
process.

(3).Band Limited random processes: A random process is said to be band limited if its power
spectrum components are zero outside the frequency band of width W that does not include ® =0. The
power density spectrum of the band limited band pass process is shown in below figure.

@, 7
le—p—|

(4).Narrow band random processes: A band limited random process is said to be a narrow band
process if the band width W is very small compared to the band centre frequency, i.e. W<< g, where
W=band width and , is the frequency at which the power spectrum is maximum. The power density
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spectrum of a narrow band process N(t) is shown in below figure.

Bl

|

:

i

i

I >
— @), +@), @
b > b= Y

Representation of a narrow band process: For any arbitrary WSS random processes N(t), The
quadrature form of narrow band process can be represented as N(t) = X(t) Cos ot — Y(t)Sin mot

Where X(t) and Y(t) are respectively called the in-phase and quadrature phase components of N(t).
They can be expressed as

X (t) = A (t) Cos[O(1)]

Y (t) = A (t) Sin[B(t)] and the relationship between the processes A(t) and B(t) are given by

A (t) = VXZ® + Y2® and 8 (t) = tan—1( %}
Properties of Band Limited Random Processes: Let N (t) be any band limited WSS random process
with zero mean value and a power spectral density, Syn(®). If the random process is represented by
N (t) = X (t) Cos wet — Y(t)Sin wot then some important properties of X (t) and Y (t) are given below

If N (t) is WSS, then X (t) and Y (t) are jointly WSS.

If N (t) has zero meani.e. E[N(1)]=0,thenE[Xx )] =E[Y (1)]=0

The mean square values of the processes are equal i.e. E [N*(t)] = E [X?(t)] = E[Y?(1)].
Both processes X (t) and Y (t) have the same autocorrelation functions i.e. .

The cross correlation functions of X (t) and Y (t) are given by Ryx(T)=-Ryx(T). If the
processes are orthogonal, then Ryx(T) =0.

6. Both X (t) and Y (t) have the same power spectral densities

uhwN e

S - <.
SW{UJ] = S)O((UJ] :{ NEW wo)+SN(mSwD) for|Wl=swg

7. The cross power spectrums are Sxy (®) = -Syx (o).

8. If N (t) is a Gaussian random process, then X (t) and Y (t) are jointly Gaussian.
9. The relationship between autocorrelation and power spectrum Syy (®)is

1 oo
RXX(T) =L fU SNNcm)cos[{m—wo)T]dw and

) 1 poo
Ryy(7) = ;fg Sy cosw-wo ) T]dw

10. If N (t) is zero mean Gaussian and its psd, Sy(w) is symmetric about +/-w0 then X (t) and Y (t)
are statistically independent.
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MODULE-V
RANDOM PROCESSES—SPECTRAL CHARACTERISTICS

Definition of Power Spectral Density of a WSS Process

Let us define the truncated random process (Lr(8) as follows

Xeftl=Xp0)  -T<ALT

=0 otherwize

- X(ﬁ)recﬁ(;—T)

rect (—)
where 2T is the unity-amplitude rectangular pulse of width 27" centering the origin. As
i e, {Xp(2) will  represent the random process X define the mean-square integral
r

FTX (@)= l‘_xr(z)e-f“’dz
Applying the Pareseval's theorem we find the energy of the signal
r

[ e - (|7t (a)fde
Therefore, the power associated with {Er () is

17 1"
— [4reht = — [|FTd (@) do
2T _l 2T;L And
The average power is given by

LA
1 Ein()dz = igﬂﬁm}(mﬂ da=F IM
E|FTX, (m)|
Where T the contribution to the average is power at frequency w and represents the power
spectral

density of () .As T = the left-hand side in the above expression represents the average power
of (X

Therefore, the PSD Sy (@) of the process (X} is defined in the limiting sense by
2
E|FI’XT (m]|
2T
Relation between the autocorrelation function and PSD: Wiener-Khinchin-Einstein theorem

S(@) =lim

105




We have
E|ETXT{m} P EFTXT (@) FTX, (@)

2T 2T
1 rr
"0 l !: P (8Kt e e g d,
1 r r
- l lR e (6 —8)e ™ dnd,
f.‘ /’\
51_52=2T ./fﬁ} g 1‘.1—1‘.2—‘?.'+ch
I T P
JOdE v NS
U[ﬂ
<= ([ 3 ¢
TP T
P d 51 52 - _ET
Tl 7
Y
Figure 1

Note that the above integral is to be performed on a square region bounded by h= ﬂnand =T as

illustrated in Figure 1.Substitute h7h " Tothat h ™5 T Tigq family of straight lines parallel to

h=6 = I:]'The differential area in terms of  is given by the shaded area and equal to (2T-|TdT. The

double integral is now replaced by a single integral in ©
Therefore,

)

FTX (@)X, (@) _ 1 I
2T o7 R (@ TTRT-|T]dT

= T R (@1 —g)afr

-ir

T Ry (Ded¥7dy

If Fx(®) s integral then the right hand integral converges to - as I —#w
E\FTY,
i ZF ) wof [ Ry(0)e™ %74z

i"—:m I

¥

B FTY (@
5y ()= lim &
As we have noted earlier, the power spectral density T ar is the contribution to

the average
power at frequency # and is called the power spectral density of (X} . Thus,

Syle) = J-RX (D™ dr
and using the inverse Fourier transform
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Rﬂﬂ=—l:[3ﬂmkﬁﬁm
2m d

Example 1 The autocorrelation function of a WSS process S0} is given by
R, (m=a%"F >0
Find the power spectral density of the process.

_ 7 - j@T
SX(&J) _j Rx(*.rje 4T
] _b o
J ae |TL3 ST
0 2 bT —jaT T o b —jet
J'.:;té'Te:'J dT+ [a”e A
—o [:|
flz |:I2
= +
B—jam A+ i@
2ah
E:n2 + .5312
The autocorrelation function and the PSD are shown in Figure 2

T

e Figure 2

Example 3 Find the PSD of the amplitude-modulated random-
phase sinusoid

X(£) = M() cos{at+d), @~ [0, 27]

Where M(t) is a WSS process independent of P.

Ry(Ti=8 ME+1T) cos(a@(t+D)+P) M) cos(at+d)
=E Mt+T) M) Ecos(@(f+T) +P) cos({@T+ D)

{ Using the independence of M{#) and the sinuscid)
2
= Ry (T) - cos &7
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< 5(0) = 2 (s (0+0) + Sy (0-2)

where o, [m) 15 the PSD of Af(f)
Figure 4 illustrates the above result.

S (1)
il
Syl
/I\ /I\
—-:?I‘:fc_E - —m{+E dﬂc—E < o+ — w
2 2 2 £
Figure 4

Properties of the PSD
Sxl@) being the Fourier transform of Rx(T) it shares the properties of the Fourier transform. Here we

discuss

important properties of Sy (@)

1) the average power of a random process () is

EX*{#) = Ry ()

- %13;5 (a)dw
2) If A2 is real, Ry (T) is a real and even function of © .Therefore,
S (@) = j‘RX (L) P
= }RX (Ti{cos@T+ jain @TdT
= }RX(T:I cos @TdT

= EJ‘RX (T cos ardT

Thus for a real WSS process, the PSD is always real.
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3) Thus Syla) is a real and even function of @ .

]
S5 o) =litny ,, 2P

4) From the definition 2" is always non-negative. Thus Sxl@)20.

5) If i) has a periodic component, Fultlis periodic and so Sy (@) will have impulses.

Cross Power Spectral Density
Consider a random process e which is sum of two real jointly WSS random processes
(A0} and {1} Aq we have seen earlier,
Bz (T) = Ry(T) + Ry(T) + Ry (T} + Ry (T)
If we take the Fourier transform of both sides,
Sz (@) = Sy l@) + Sylan) + FT(Rn (1)) + FT{ Ry (1))

Where FT() stands for the Fourier transform.

Thus we see that Sz (@) includes contribution from the Fourier transform of the cross-correlation
functions

Ry (7) and Ry (7). These Fourier transforms represent cross power spectral densities.
Definition of Cross Power Spectral Density

Given two real jointly WSS random processes (&)} and (T(Y)} the cross power spectral density
(CPSD) “xx'@) i defined as

S ()= i T PO P

FTX. (@) and PTY, (@)

Where are the Fourier transform of the truncated processes

() = Xitrect(==) and T (6) = Forect(—) .
2T respectively and ~ denotes the complex conjugate
operation.

We can similarly define (@) by
Sy (@) = lim BL L @A, (@)
I 2

Proceeding in the same way as the derivation of the Wiener-Khinchin-Einstein theorem for the WSS
process, it
can be shown that

Sl = [ R (r)e @ dr

and
S (@) = [ Ry (D)7 ¥% a1

The cross-correlation function and the cross-power spectral density form a Fourier transform pair and
we can
write
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Ry ()= | Sy ()T da
and

Ry ()= [ Sy ()2’ o

Properties of the CPSD

The CPSD is a complex function of the frequency *w’. Some properties of the CPSD of two jointly WSS
processes

(X8} and {0} a6 listed below:
(1) Sy (@) = Séz':m:'

Note that (T} = S (~T)

L Sp(w)= | Ryp(nev ™ de
Ry (— D™t

Ry (D)e*d e

s g

= S.mf{ﬁl}

(2) B (@00 s an even function of @ and ™ “xr(@) is an odd function of @ .
We have

S (1) = ?Rﬂ(r)(cnsm T4 jenadt

= ?RH(E:I cosa T+ j? Rpltistnat)d

= RelSyy (@))+ Flm{S5y (@)
where

Re(Sy (w)) = nj' Ry (t)coswtdt 12 an even function of @ and

Il Sy (a1 = j’ Fo(g)ain @t T 12 an odd function of o and
3 If (£fe)} and (¥R} are uncorrelated and have constant means, then

Sy} = g (@) = py iy O a1
Where da) is the Dirac delta function?

Observe that
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Rnlt)=EXt+0)FiE)
= BX(t + D)EY(¢)
= Hxhy
= Hriy
= R (1)
LBy () = Sy (@) = sy iy dia)
(4) 1f 8} and LX) are orthogonal, then

Sir(@) = Sye(@) =0

if 18} and (T} e orthogonal, we have

R (T)= EX Tt + TIF(})
=10

= R:x;}f':f:'
L@ =Sy (a)=10

(5) the cross power P between (A)} and {F(2)} is defined by
Fop =1 ! Er KiO¥iod
=lim — E) 5t
A The o7 _'En

Applying Parseval's theorem, we get
.1z
Py = lim = E_Ir X(OHY(2de

1 =
=lim —E [ (0T (e

- 1imi52i T PR (@) FTY (@)d @
T

F—mw 2T
_ LT i EFTX, (m)mr(m)dm
DT S T 2T
-1 Y5, (@wdae
2
1 w
L =— [ S (ad@
27T
Similarly,

B, =P (ede
2T Zw

-1 T Spl@da
2T

=p£}r

Example 1 Consider the random process given by 2= X)) discussed in the beginning of the
lecture. Here e is the sum of two jointly WSS orthogonal random processes (A1t)} and {(T(H)}
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We have,
BTy = Ry(D + By (T + By (T + By (T)

Taking the Fourier transform of both sides,
S (@) = 8, (@) + Sy (@) + S (@) + S (@)

1 = J J J 1 =
So— o (ade=s— [S.(anda+— [ S, (ada+— [ S (@dae+— [ S (ada
@i 7 Lo 2 L @dor T 5y(@dor 2T (o

Therefore,

Fola) = Prl@) + H (@) + P (@) + By (@)

Wiener-Khinchin-Einstein theorem
The Wiener-Khinchin-Einstein theorem is also valid for discrete-time random processes. The power

spectral density Sy () of the WSS process (Lln]) is the discrete-time Fourier transform of
autocorrelation sequence.

Syla)= 5 Rx[m]e'j"’” —-TEiwER

TH=—

B Im] s related to Sz (@) by the inverse discrete-time Fourier transform and given by

R, [m]) =% I Sy (@e™™d @

Thus & [ and Sx (@) forms a discrete-time Fourier transform pair. A generalized PSD can be defined
in terms of Z — transform as follows

Sy(z) = i R [m]z™

Mt

clearly,

Sp(a)=S5x(2) .
Linear time-invariant systems
In many applications, physical systems are modeled as linear time-invariant (LTI) systems. The
dynamic behavior of an LTI system to deterministic inputs is described by linear differential equations.
We are familiar with time and transform domain (such as Laplace transform and Fourier transform)
techniques to solve these differential equations. In this lecture, we develop the technique to analyze the
response of an LTI system to WSS random process.

The purpose of this study is two-folds:

e Analysis of the response of a system

e Finding an LTI system that can optimally estimate an unobserved random process from an
observed process. The observed random process is statistically related to the unobserved random
process. For example, we may have to find LTI system (also called a filter) to estimate the signal
from the noisy observations.
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Basics of Linear Time Invariant Systems

A system is modeled by a transformation T that maps an input signal * (£) to an output signal y(t) as
shown in Figure 1. We can thus write,

y(8) = T[x(t)]

xfe) ¥e)

Figure 1
Linear system
The system is called linear if the principle of superposition applies: the weighted sum of inputs
results in the weighted sum of the corresponding outputs. Thus for a linear system

T [czlxl (£)+ayx, (1 j] = cle[xl [ﬁ)] +a,T [xz (¢ )]

Example 1 Consider the output of a differentiator, given by

dxE)
yig) =

e}
Then E( @y (£) + ayxy (£) )

d d
= ﬂlEﬁ(f) + %Exz (£)

Hence the linear differentiator is a linear system.
Linear time-invariant system
Consider a linear system withy (t) =T x (t). The system is called time-invariant if
Tx(t-t) =y(t-t0) V¥ 4
It is easy to check that that the differentiator in the above example is a linear time-invariant system.

Response of a linear time-invariant system to deterministic input

As shown in Figure 2, a linear system can be characterised by its impulse response kif) = T8 where
a1f) is the Dirac delta function.

d (1)

LTI ho(t
: (r)

system —

Figure 2
Recall that any function x(t) can be represented in terms of the Dirac delta function as follows

o

x(f) = Ix(s) J(t—s) ds

-

If x(t) is input to the linear systemy (t) =T x (t), then
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YiE) r }x(sj 5[3 - s) ds

Ix{s) Trﬁ‘[.ﬁ - .S':I s [ Tsing the linearity property ]

-

Lin)

Ix(s) kits) ds

-

Where f [ £ S) - Tg[f’ _Sj is the response at time t due to the shifted impulse? E[ﬁ - S:]
If the system is time invariant,

Ez[f,s) = }z[r.—s)

Therefore for a linear-time invariant system,

L]

»@) = [ x(s) kft—s) ds = x(e) * (o)

e
where * denotes the convolution operation.

We also note that x(£) ®hig) = ki) *xit).

Thus for a LTI System,
y(g) = (L) * kL) = k) *xig)
Taking the Fourier transform, we get

I(e)=H{e) X(e)
where H[m) =FTh (.ﬁ) = Ik[ﬁ) g™ df 15 the frequency response of the system

Figure 3 shows the input-output relationship of an LTI system in terms of the impulse response and the
frequency response.

x(t) LTI System yit)
BE— —
i) LTI System Vi

()

Figure 3
Response of an LTI System to WSS input

Consider an LTI system with impulse response h (t). Suppose ) is a WSS process input to the
system. The output ey of the system is given by

P()= [h(s) X(t-e)de = [h(t-5) () ds

Where we have assumed that the integrals exist in the mean square sense.

Mean and autocorrelation of the output process 40y
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Where H2{0) is the frequency response at 0 frequency (¢ =0 ) and given by
Hiw)|,, = }k[ﬁj@"‘md.ﬁt = }k[ﬁjafﬁ
= - w
T The Cross correlation of the input {X(t)} and the out put {Y (t)} is given by
E(X(+a)7 ()= 2 X(t+c) [ Als) X(-5) ds

kl[s:l F Xl[.t+r:l Xl{:—s:l efs

ol

(5) Ryl(r+s)ds

h[—u) Rr[r—u)cﬁx [ Put r = -1 ]

,Elé-—.s P A

|
=i
—
*
e
H
——
=i
—

Rglr) = h(-1) * Rylz)
alsa Ry (t) = Rupl-t)= &(t)* Ry(-7)
= A7) * Ry (7)

Therefore, the mean of the output process e IS a constant

The Cross correlation of the input {X ()} and the out put {Y (t)} is given by
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E(X(t+0)¥(t))= EX(t+t T;z

le[s:l F Xl[.t+r:l X[:—sj s

,Eé-—.s P A T

|

b |
—
*
o

2 (7]

Rgl(r) = h(-1) * Rylz)
alse Ry (1) = Rapl-t)= k(r)* Ry(-7r)
= A7) * Ry (r)

Thus we see that = [T) is a function of lag T only. Therefore, ) and e are jointly wide-

sense stationary.

The autocorrelation function of the output process {Y (1)} is given by,

E(Y{¢+a)Y(e)) = E };g(sj X{t+r-s)ds¥(t)

= }k[s) E}f[£+r—s) Fit) ds

—a

Iﬁz T—.S' .:i’s

= k(r) * R lz) = h(r) *h(-1) *R 7

Thus the autocorrelation of the output process e depends on the time-lag T e,
EY(a)¥(e+v)=Ry(7)
Thus
Byl(w) = Ry (r)*h(z)*h(—7)
The above analysis indicates that for an LTI system with WSS input

e the output is WSS and
e The input and output are jointly WSS.
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The average power of the output process e is given by

Power spectrum of the output process
Using the property of Fourier transform, we get the power spectral density of the output process

given by

Sy (@) = Sy (@) H(2) H' (2)
S (@) (@)

Also note that
Ralr) = A7) * R4(7)
and Ry (t) = h(r) * Ry(r)

Taking the Fourier transform of R IiJ"r)we get the cross power spectral density ~& [m) given by

Fore (T R (T)
Rel®) W T N
S () Sy (1)

M’ H‘I(El:l:l —- HliflJ:I i

Figure 4
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Example 3
My

A random voltage modeled by a white noise process S ['ﬁ )} with power spectral density 2 is input
to an RC network shown in the Figure 7.

Find (a) output PSD ¥ (@)
(b) output auto correlation function By [T)

2
(c) average output power =24 [;j

R

— WY

Xt ¢ =Y

Figure 7
The frequency response of the system is given by

1

Therefore,

1
_chzmz_i_lgzli )
_ 1 N
@) R +1 2
(b) Taking the inverse Fourier transform
M K
By(z)= e
4 R
(c) Average output power
A
ET* (&)= R, (0) =~
(0)= Ry (0)= 2L

Rice's representation or quadrature representation of a WSS process
An arbitrary zero-mean WSS process iS40 can be represented in terms of the slowly varying

2 45 s follows:
Al =X (flcosays — X (£) sin ayt

components and

(1)
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B
(e >

i|a:r|i a, +£)} X0
where s a center frequency arbitrary chosen in the band 2 e

and
A, ()

are respectively called the in-phase and the quadrature-phase components of ).
Let us choose a dual process e such that

X+ Yy = (X0 X,0)e
= [}fﬁ(ﬁ) cosapt — X, (£ sin ﬂjnf) + j[Xc(.t) sin eyt + X (f) cos .-:q:,.t)

., il [

il

Xit) ¥t}
then,
A ()= Kt cosayt + () sin ays @)
and
A ()= A cosapt —F(£) sin ayf 3)

For such a representation, we require the processes L) and EA) to be WSS.

Note that
HE(f) = cosemfBX_(£) —sin ey BX (£)

As E40) is zero mean, we require that
EX (f1=0

And
EX ig)=0

Again
EX _(f)=cosept EX(})+sinayt BV (2)
EX (t)=cosaptBX (}) —sin aptBY (L)

Aseach of £X (1), £X, (¢) and £X(¢) 1s zero-mean, we require that
E¥iti=10,

Alzo
Ry (t+t.t)= E[Xl[.Hr:lt:nsmn |[.t+ r)+ If"l[.t+ f:lsin .:a:[,[:w)][){(z) cos el + Y1) sin ant]
= Rylricosay(t+ r)cos ayt + Ry (T)sin ey [.-.? + E') Sin et + R (T) cozan, (F+ T)sin at
+ Ry (T)sin ey (+ ) cos et
atd
Ry (+7.8)=Ry(r)cos aqqif +T)cosapl + Ry (r)sin ay [ﬁ + *.r:lsin ayt
~ Ryplrhcosay (f+7)sdnay — Ry (r)sinay (¢ +7)cosayt

atd
Ry x, B+ T.0) =Ry (T)cos @yl +T)cos @y — Ry (T)sin a (£ + T) s1in @t

— R (Ticos@ (f+T)sin aff + R, (T)sin @ (2 + T)cos @i

Thus, By (£ + 1.6, Ry (£ +T.2) and Ry » (¢ + T, wall be independent of t1f and only 1f
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and
Ry x, (T) = Ry(r)cosay(f +r)cos apf — Ry () sin ay, (£ + 1) sin ayt
— Ry (Ticosay it +r)sn ays + Ry (r)sin ay, (£ + 1) cos ayt
= Fy(r)[cosa(f +T)cosant —sin ay (f + 1) sin apé ]
— R (ricosay(f+r)anmd —sinay (i +1)cosay]
= Rylricosayr — Rplr)sinl—ayr)
=R (ricosayr — R (r)sin oyt
How to find @)} satisfying the above two conditions?
For this, consider 40y to be the Hilbert transform of S40) ,1.e.

YL = ]‘X{s}h(ﬁ — 5)ds

1
Bif)=—
Where 7t and the integral is defined in the mean-square sense. See the illustration in Figure 2.
Xt ¥it
FE e L Q)
xl
Figure 2
H [ﬂ}) . L
The frequency response of the Hilbert transform is given by
—-i, it @=0
Hiay=2¢ j,  if @=0
0, if =0

S H (@) = jsgn(@)
and |2 (@) =1
,'.S},[m)=|H[m)|23;f(m}=Sz[m:‘
and
_ _ | Sml@), fora@>0
Wy () H[m)SH(m) {—jSH(m), for <D

ey (GF) = H‘[mjgﬂ(@ ={ 7"’3_&.:5: (@), for @=0
IS (@), for @=0
The Hilbert transform of Y(t) satisfies the following spectral relations

Sy (@)= 5 (@)

and

Sy (@) = -5y (@)
From the above two relations, we get
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Ry (T) = Fy(T)
and

Ry (T) = — By (T

The Hilbert transform of () is generally denoted as () Therefore, from (2) and (3) we establish
Xolt) = XD cos @yt + Xt sin ayt,
X () = X () cos ayt — X(£) sin eyt

and
A=A (flcosapt — X (f) sin oyt

The realization for the in phase and the quadrature phase components is shown in Figure 3 below.

G0 dil

+ +
A ) J
JYL{;) X-sﬁ}
+ -
Hithert
fransform

‘ singmt

Figure 3
From the above analysis, we can summarize the following expressions for the autocorrelation functions

Ry (1) = Ry (D)
=R, (Ticos ayT+ R (Tain @ T
=R (TicosayT+A(O*R, (TanaT VR (T =A(T)* R, (T)
=Ry (Ticos @T+ ﬁx (Dsin @ T
Where
R, (T) = Hilbert transform of B, (1)

=J‘i Ry (T -8)ds
s

See the illustration in Figure 4

Rylr h(r) = 1] Ri(r)

v

Figure 4

The variances Oi and ai are given by
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%, = 0%, = R (0).

Ry (1) and By (1),

Taking the Fourier transform of we get

{Sz(m—mﬂwx(wwu) @ < B

S (@) = 8 (@)= otherwize
Similarly,

RX«:X;- (r) =R, (r)sinmr — R, (t)cosa,T

=R, (r)sinmr - ﬁz (T)cosayT

and

Sy, (@) = {;[Sxtmmu:l—sx(m—mu)] | < B

otherwize

(a)

Notice that the cross power spectral density SLX is purely imaginary. Particularly, if Sy (@) is

locally symmetric about T
Sy, (@) =0
Implying that

Ryx(r)=0

Consequently, the zero-mean processes EAQ) and EHO) are also uncorrelated.
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