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MODULE-I
Probability and Random Variable



Set: A set is a well defined collection of objects. These objects are
called elements or members of the set. Usually uppercase letters are
used to denote sets.

The set theory was developed by George Cantor in 1845-1918. Today,
it is used in almost every branch of mathematics and serves as a
fundamental part of present-day mathematics.

In everyday life, we often talk of the collection of objects such as a
bunch of keys, flock of birds, pack of cards, etc.

In mathematics, we come across collections like natural numbers,
whole numbers, prime and composite numbers.



Laws in set theory

* ANB=BNA (Commutative law)

« (AnB)NC = An (BNC) (Associative law)

e ®NA=0(Law of D)

* UnA=A (Law of U)

« ANA=A (Idempotent law)

e AN(BUC) =(AnB) U (ANC) (Distributive law) Here N distributes over U

* Also, AU(BNC) = (AUB) n (AUC) (Distributive law) Here U distributes
over N



Probability

* Experiment:

In probability theory, an experiment or trial (see below) is any
procedure that can be infinitely repeated and has a well-defined set
of possible outcomes, known as the sample space.

* An experiment is said to be random if it has more than one possible
outcome, and deterministic if it has only one.

« A random experiment that has exactly two (mutually exclusive)
possible outcomes is known as a Bernoulli trial.



Experiment

Experiment Outcomes
Flip a coin Heads, Tails
: Numbers: 0, 1, 2, ..., |
| Exam Marks 100 :
Assembly Time t> 0 seconds
Course Grades FD C B A A+




Random Experiment

An experiment is a random experiment if its outcome cannot be
predicted precisely. One out of a number of outcomes is possible in
a random experiment.

A single performance of the random experiment is called a
trial.Random experiments are often conducted repeatedly, so that
the collective results may be subjected to statistical analysis.

A fixed number of repetitions of the same experiment can be
thought of as a composed experiment, in which case the individual
repetitions are called trials.

For example, if one were to toss the same coin one hundred times
and record each result, each toss would be considered a trial within
the experiment composed of all hundred tosses.



Relative frequency, Experiments

Relative Frequency:

Random experiment with sample space S. we shall assigh non-
negative number called probability to each event in the sample space.
Let A be a particular event in S. then “the probability of event A” is
denoted by P(A).

Suppose that the random experiment is repeated n times, if the event
A occurs n, times, then the probability of event A is defined as
“Relative frequency

Event A is defined as

P(4) = lim =

= H



Sample Space

Sample Space: The sample space is the collection of all possible
outcomes of a random experiment. The elements of are called
sample points. A sample space may be finite, countable infinite or
uncountable.

A list of exhaustive [don’t leave anything out] and mutually
exclusive outcomes [impossible for 2 different events to occur in
the same experiment] is called a sample space and is denoted by S.

The outcomes are denoted by O,, O,, ..., O,

Using notation from set theory, we can represent the sample space
and its outcomes as:

S={0,, 0,, ..., O}



Sample Space

* Given asample space S ={0,, O,, ..., O,}, the probabilities_assigned
to the outcome must satisfy these requirements:

(1) The probability of any outcome is between 0 and 1
i.,e.0<P(O,) <1foreachi,and

(2) The sum of the probabilities of all the outcomes equals 1
i.e. P(O;) +P(O,) +...+P(0,) =1
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Discrete and Continuous Sample Spaces® "

Probability assignment in a discrete sample space: Consider a finite
sample space . Then the sigma algebra is defined by the power set of
S. For any elementary event , we can assign a probability such that,
For any event , we can define the probability



Continuous sample space

Suppose the sample space S is continuous and uncountable. Such a
sample space arises when the outcomes of an experiment are
numbers. For example, such sample space occurs when the

experiment consists in measuring the voltage, the current or the
resistance.



Events

The probability of an event is the sum of the probabilities of the
simple events that constitute the event.

E.g. (assuming a fair die) S=1{1, 2, 3, 4, 5, 6} and P(1) = P(2) = P(3) =
P(4) = P(5) =P(6) =1/6

 Then: P(EVEN)=P(2)+P(4)+P(6)=1/6+1/6+1/6=3/6=1/2



Types of Events

1. Exhaustive Events:

A set of events is said to be exhaustive, if it includes all the possible
events. Ex. In tossing a coin, the outcome can be either Head or Tail
and there is no other possible outcome. So, the set of events{H, T }
is exhaustive.

2. Mutually Exclusive Events:

Two events, A and B are said to be mutually exclusive if they cannot
occur together. i.e. if the occurrence of one of the events precludes
the occurrence of all others, then such a set of events is said to be
mutually exclusive. If two events are mutually exclusive then the
probability of either occurring is



Types of Events

3. Equally Likely Events:

If one of the events cannot be expected to happen in preference to
another, then such events are said to be Equally Likely Events.( Or)
Each outcome of the random experiment has an equal chance of
occurring.

Ex. In tossing a coin, the coming of the head or the tail is equally
likely

4. Independent Events:
Two events are said to be independent, if happening or failure

of one does not affect the happening or failure of the other.
Otherwise, the events are said to be dependent.
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Probability Definitions and Axioms ="

LS
&

Relative frequency Definition:

Consider that an experiment E is repeated n times, and let A and B be
two events associated with E. Let n, and ng; be the number of times
that the event A and the event B occurred among the n repetitions

respectively. The relative frequency of the event A in the 'n'
repetitions of E is defined as

f( A)=nA/n



Axioms of Probability

* The Relative frequency has the following properties:
« 0<f(A)<1
* f(A) =1if and only if A occurs every time among the n repetitions.

* |If an experiment is repeated n times under similar conditions and
the event A occurs in n,times, then the probability of the event A is
defined as



Joint probability

Joint probability:

Joint probability is defined as the probability of both A and B taking
place, and is denoted by P (AB) or P(ANB) .

probability notation: P(AB) = P(A | B) * P(B)



Conditional probability is used to determine how two events are
related; that is, we can determine the probability of one event given
the occurrence of another related event.

Experiment: random select one student in class.
P(randomly selected student is male)
P(randomly selected student is male/student is on 3" row)

Conditional probabilities are written as P(A | B) and read as “the
probability of A given B” and is calculated as

P(A and B)

P(Al B)= P(B)




Bayes’ Theorem

Bayes’ Law is named for Thomas Bayes, an eighteenth century
mathematician.

In its most basic form, if we know P(B | A),

we can apply Bayes’ Law to determine P(A | B)

Bayes' theorem centers on relating different conditional
probabilities. A conditional probability is an expression of how

probable one event is given that some other event occurred
(a fixed value).

For a joint probability distribution over events A and B,
P(A”B), the conditional probability of given is defined as



Bayes’ theorem

P(AnB
P(A|B)=%.
* Note that P(A”B) is the probability of both A and B occurring, which
is the same as the probability of A occurring times the probability
that B occurs given that A occurred P(B/A)*P(A)
e Using the same reasoning P(A”B), is also the probability that B
occurs times the probability that A occurs given that B occurs:
P(A/B)*P(B) The fact that these two expressions are equal leads to

Bayes' Theorem. Expressed mathematically, this is:

P(ANB)

PUAIB) = o i P(B) 40,
A
waﬂzpﬁiﬂ,ﬁﬂﬁ#&
= P(ANB) = P(4 | B) x P(B) = P(B| ) x P(A),
. p(a|B)= PEIAXPA) e pp 4,

P(B)



Bayes’ theorem

 The probabilities P(A) and P(A®) are called prior probabilities
because they are determined prior to the decision about taking the
preparatory course.

* The conditional probability P(A | B) is called a posterior probability
(or revised probability), because the prior probability is revised
after the decision about taking the preparatory course.



A (real-valued) random variable, often denoted by X (or some other
capital letter), is a function mapping a probability space (S, P) into
the real line R. This is shown in next slide.

Associated with each point s in the domain S the function X assigns
one and only one value X(s) in the range R. (The set of possible
values of X(s) is usually a proper subset of the real line; i.e., not all
real numbers need occur. If S is a finite set with m elements, then
X(s) can assume at most m different values as s varies in S.)



A random variable: a function

X

Domain: probability space Range: real line



RV in graphical representation =%,

Random variable

— A numerical value to each outcome of a particular
experiment

[ W\
NCARAA




Discrete random variable

A random variable is called a discrete random variable is piece-wise
constant. Thus is flat except at the points of jump discontinuity. If

the sample space is discrete the random variable defined on it is
always discrete.

¢ S



Continuous random variable

X is called a continuous random variable if is an absolutely continuous
function of x. Thus is continuous everywhere on and exists
everywhere except at finite or countable infinite points.

4
F,(x)

/

r

X —

F.(x)

'l

e |

X —>




Mixed random variable

e X is called a mixed random variable if has jump discontinuity at
countable number of points and it increases continuously at least at
one interval of values of x. For a such type RV X.

I—



MODULE-II
Distribution and Density Functions



Random Variable

Review of the concepts
1. Random Experiment
2. Random Event
3. Outcomes
4. Sample Space
5. Random Variable:
Mapping of sample space to a real line



Random Variable

Mapping of sample space to a real line



Distribution function

Probability Distribution Function

The probability P(X =< x) is the probability of the event
X =x}. ie

F.(x) =P{X<x}, —oco<x<oo



Properties of CDF

The properties of a distribution function:
® F,(=o0) =0
® F(e0) =1
e 0<F(x)<1
e F.(x1) < E.(x,),if x; < x, (Non-decreasing function)
o Plx; <X <xp} = E(xz) — F.(xq)
e F.(x™) =F,(x) (Continuous from the right)



Properties of CDF (contd..)

Proof for F,.(x,) — F,(x4)

e The events {X < x,} and {x; < X < x,} are mutually
exclusive,ie. {X <x,} =X < xJU{x; <X < x,}
¢ PIX < x,} =PX =x;} + Pix; < X < X3}
e Plx, < X< 5%} =P X <%} PX <x;}
= Eix;) — E.(x,)



Properties of CDF (contd..)

If X is a discrete random variable taking values
x;, i =1,2,....,N, then E.(x) must have a staircase
function given by

N
Eile = Z P{X = x;} u(x — x;)

=1

N
= Z P(x;) u(x — x;)
=
where u(.) is the unit-step function defined by:
1, .Xx =0
u(x) =

0, x<0
If N is infinite, then
P x:) = PIX = x;}



Probability density function

Probability Density Function
The probability density function of the random variable

X is defined as the derivative of the distribution

function:
dF,(x)
dx

F(x) =



Probability density function (contd..) . %

1.1f the derivative of E,.(x) exists then f,.(x) exists

dFy(x) is not defined at

2.There may be places where

points of abrupt change, then we shall assume that
the number of points where E,(x) is not
differentiable is countable.

3.For discrete random variables having a stair step form

of distribution function.

[0 =) P(x)8(x — 1)
=1



Properties of PDF

Properties of Density Functions.
e 0 < f.(x)allx

e [ fi(x)dx=1
e F.(x) = ffmfr(x)dx = |
o« Ply = Xlu, b= f;gfr(x)dx



Gaussian Probability density function %

Gaussian Density Function

A random variable X is called Gaussian if its density

function has the form

[ () = ——— e ~(x-a0)?/20
2o 2

Where g, > 0 and —e° < a,. < oo are real constants.

fypix)

i
J 2 n'u.-f
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Gaussian Probability density function (contcﬁ%

fyix)

|
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1.lts maximum value (2mwo5) 2 occursatx = a, .

2.1ts “spread” about the point x = a,, is related to g,

3.The function decreases to 0.607 times its maximum at
X'= @ +0,; and X'= @ — 0.

4.The Gaussian density is the most important of all

densities. It enters into nearly all areas of engineering



Gaussian Probability density function (contgﬁﬁf

Fylx)

0 @x =0y gy iy



Gaussian Probability density function (contdy.

¢ This integral has no known closed-form solution and

must be evaluated by numerical methods.

¢ We could develop a set of tables of E,.(x) for various x
and «, and g, as parameters (infinite number of
tables ).

e Only one table of E.(x) for the normalized (specific)

values a,, = 0 and 0,.—, given by
X

1 2
F(x) =—— | e=5/24
o ]

which is a function of x only & tabulated for x = 0.

¢ For negative values of x we have
F(—x) =1—-F(x)



Gaussian Probability density function (contcﬁﬁg

{—a

¢ Making the variable change u = - = we get
(x—ay)/ox X —a
E{x) = e Ut/2 gy = F( I)
3 \'2“: — D0 G-J_',‘



Binomial Probability density function

‘Binomial Denﬁity Function
N

N
L@ =) ()pka —p¥rex — k)
k=0
where (i:} is the binomial coefficient defined as

(N) N!
kKl k'(N — k)!
andD=p= 1, N=12:.: sanins

* [xlx)
0.3560
L 02966 (N=6, p=0.25)
03}
D.I?E'ﬂl 0.1318
1 0.{}130 n.u?ﬁ u.n?m

'ﬂ 1 1 3 4 s & x



Binomial Probability density function (cont(ﬁﬁg

1.The binomial density is applied to Bernoulli trail
experiment, having only two possible outcomes on
any given trial.

2.1t applies to many games of chance, detection
problems in radar and sonar, and many

experiments



Binomial Probability density function (contﬁg

By integration, the binomial distribution function is

found:
N
k=10
Fylx)
0.9624 0.9954 0.9998 1.0000
1.0} 9
0.8306
0.5340
0.5}
‘ J.1780
1 L " i
® | : 3 4 5 6  x

Figure: Binomial distribution function (N =6, p = 0.25)



Poisson Probability density function *

Poisson Density Function

) =¢e" » ——§(x—1k)
2.7

Eixy—=e™® —Iu(x — k)
2%

where b > 0 is a real constant.
e These functions appear quite similar to binomial
e f N - ccand p — 0 for the binomial case in such a

way that Np = b, a constant, the Poisson case results.

e The Poisson random variable applies to a wide variety

of counting-type applications.



Poisson Probability density function (contol:%%%

e |t describes

» the number of defective units in a sample taken
from a production line,

» the number of telephone calls during a period of
time,

» the number of electrons emitted from a small
section of a cathode in a given time interval, etc.

» If the time interval of interest has duration T, and
the events being counted are known to occur at

an average rate X and have a Poisson
distribution, then b =X T



Uniform Probability density function

Uniform Density Function
3 1
fx(x) =4 b—a’

.0, elsewhere
| Litx)

a<x<bh

— Wb = u)

0 a b X

for real constants —ee < a < ecoand b > a.



Uniform Probability density function (contd?.%

Fye(x)

w P N NN TS NN — —



Uniform Probability density function (contcﬁ%

» The error of quantization of signal samples prior to
encoding in digital communication systems.

» Quantization amounts to “rounding off” the actual
sample to the nearest of discrete quantum level.

» The quantization error introduced in the round-off

process are uniformly distributed.



Exponential Probability density functionﬁ%s

Exponential Density Function

1
e~ (x—a)/b
fe@) =15 v

0, x < a
Sy (x)

1/

0 d
for real numbers —ece < g < ecand b > 0



Exponential Pdf (contd..)

1 — e~ (x—a)/b X > a
EAx) =
x () {0, b i
F,txl‘
1.0}




Exponential Pdf (contd..)

» The exponential density is useful in describing
raindrop sizes when a large number of rainstorm
measurements are made.

» It is also known to approximately describe the

fluctuations in signal strength received by radar

from certain types of aircraft.



Rayleigh Probability density function %

Rayleigh Density Function
2

- . —(x—a)2/b
£.(x) =17 (x —a)e 4 X =
0, X <<
Srlx)]
0,607 7;'-:-
N a ﬂ"'\/%'. 3

for the real constants —eco < a < ecand b > 0



Rayleigh Probability density function (contg*g

1 — e~ (x—a)2/b x >a
0, x<a

Fe(o) = |




Rayleigh Probability density function (contﬁg

» The Rayleigh density describes the envelope of
white gaussian noise when passed through a band-
pass filter.

# It is also is important in analysis of errors in various
measurement systems.



Conditional distribution function

Conditional Distribution Function\
e Let A and B be the two events & P(B) # 0, then

P{A N B}
P(B)

e Let A be defined as the event {X < x} for the
random variable X.

e The resulting probability P{X < x|B} is defined as
the conditional distribution function of X , which is
denote d by

P(A|B) =

P{X < xn B}

P(B)
where {X < x N B} is the joint event {X < x} N B. This
joint event consists of all outcomes s such that
X(s)<xandseB

F.(x|B) = P{X < x|B} =



Properties of Conditional distribution funct;avﬁg

Properties of Conditional Distribution Function
[ (=2°[B) =0
o Fi(o|B) =1
e 0<FE.(|B)<1
o Iy (x1|B) < Fe(x2|B)  if %1 <xy
o Plx; <X < x3|B} = F(x3|B) — F(x41|B)
 F.(x¥|B) = F,(x|B)



Conditional density function

Conditional Density Function

The conditional density function of the random variable
X is defined as the derivative of the conditional
distribution function, and is given by
dF,(x|B)
x|B) =
fe(xIB) = ——

If F,.(x|B) contains step discontinuities (when X is a
discrete or mixed random variable), we assume that
impulse functions are presentin f,.(x|B) to account for
the derivatives at the discontinuities.



Properties of Conditional density functioﬁﬁf

Properties of Conditional Density Function
* fx(x|B) =2 0
o [T felx|B)dx =1
o Fe(x|B) = [ fe(€|B) d¢
* Plx; <X <xq|B} = f;zfx(x\B)dx
1



Methods of conditioning event *

Methods of Defining Conditioning Event

If event B is defined in terms of the random variable X

as B = {X < b}, where b is some real number
—oco < h < oo & P{X < b} # 0, then we have

E.(x|B) = P{X < x
= P{X < x

B}
X < b}
NX < b}

PlX < x
B P{X

< b}



Methods of conditioning event (contd..)%%g

Case (i):

If b < x, then the event{X < b} is an subset of the
event {X < x},s0{X <x}N{X < b} =1{X < b}. Then
we have
P{X <xNX<b}
P{X < b}
P{X < b}
“Px<b

F(x|X<b)=




Methods of conditioning event (contd..)%%g

Case (ii):

P{X <xnX<b}
P{X < b}

PIX <x} F.(x)

TPX<b FE.(b)

F.(x|X <b) =

x <b




Methods of conditioning event (contd..)%%;;

By combining the last two expressions, we have

(Fy ()
x < b

FE(x|X <b) ={FE.(b)
Kll x=b

From our assumption that the conditioning event has
nonzero probability, 0<E,.(b) < 1, so the conditional
distribution function is never smaller than the ordinary
distribution function F.(x|X < b) = F,.(x)



Methods of conditioning event (contd..)%%;;

Similarly the conditional density function is
) )
fe(x|X < b) = { Fa(x) f_bmfx(x)dx

\ 0, e
From our assumption 0<f,.(x) < 1, so the conditional

density function is never smaller than the ordinary

x <b

density function

rxlX <b) = fr(x)  x<b
The result can be extended to more general event
B= {a<X<bhb}



Moments about origin

Moments About the Origin

The expected value of X™, n =0,1,2, ...... ... IS given
by
E[X"] = f R By b

gives the moments about the origin of the random
variable X. These are also called standard moments

and are denoted as m,,



Moments about mean

Moments About the Mean

The expected value of (X — X)™, n=0,1,2,....... .. is
given by

E[(X - X)"] = f (x — X)f, (x)dx

gives the moments about the mean of the random

variable X. These are also called central moments and
are denoted as



Characteristic function

Characteristic Function

The characteristic function of a random variable Xis
defined by

o0

O, (w) = E[ej‘”x] = f eJOXf (x)dx

—_— 0

where = v—1. It is a function of the real number
—oo < () < o9,

D, (w) is seen as the Fourier transform (with the sign
of w reversed) of f,.(x)



Moment generating function

Moment Generating Function

The moment generating function of a random variable
Xis defined by

My(v) = E[e™] = f_mfx(X)ewdx

Where v is a real number —eo < 1 < oo,



Moment generating function o

e Moments are related to M,.(v) by the expression
d" M, (v)
n
dv .
e The main disadvantage of the moment generating

function is that it may not exist for all random
variables.

e Infact, M, (v) exists only if all the moments exist

My = (_j)n




Monotonically increasing RV

Transformations of A Random Variable

e Quite often one may wish to transform one random
variable X into a new random variable Y by means

of a transformation

L Y = T(X) B
fx (x) )

e Typically, the density function f,.(x) or distribution
function F,.(x) of X is known, and the problem is
to determine either the density function f,,(y) or

distribution function F,(y) of Y.

e The transformation 7 can be linear, nonlinear,
segmented ,staircase, etc



Monotonically increasing RV (contd..) <

Monotonic Transformation of a Continuous

Random variable

e Atransformation T is called monotonically

increasing if T (x4) < T(x,) for any x; < x,.
y=Tix)

Yo

/ ,.




Nonmonotonic Transformation of a RV ><

Nonmonotonic transformations of a
continuous random variable

¥ =Tix)

e n this case, there may be more than one interval of
values of X that correspond to the event {Y < y,}
corresponds to the event {X < x;and x, < X < x5}



Nonmonotonic Transformation of a RV (contels)

e Thus, the probability of the event{Y < y,} now
equals the probability of the event
{x valuesyielding Y < y,}, which we shall write as

{x|Y < yotie,
RO =pr Sy =pll sywl=| s
e Differentiating we get the density function of Y as
fy(J’U) — i fr(x)dx

AYo Jixiy<y,)



Nonmonotonic Transformation of a RV (contels)

e The density function is also given by

kit = z f (xn)

dT (x)
dx _—
where the sum is taken so as to include all the roots
x,,n=12,....,which are the real solutions of the

equation
y =T(x)



Transformation of a DiscreteRV L o)

Transformation of a Discrete Random Variable
e |If X is adiscrete random variable

fx(x) = Z p(xn)ﬁ(x - xn)
Fox) = ) plen)ulx —x,)

where the sum s taken to include all the possible
valuesx,, , n=1,2,...... ,of X.

e |If the transformation Y =T(X) is continuous and
monotonic, there is a one-to-one correspondence
between X and Yso that a set {x,}, through the

equationy, = T{x,} sothat P{y,} = P{x,}.



Transformation of a DiscreteRV (contd..)><

e If the transformationY = T'(X) is continuous and
monotonic, there is a one-to-one correspondence
between X and Y so that a set {x,,}, through the
equation y,, = T{x,} so that P{y,} = P{x,}.

e Thus,we have

() = Z P(Y)S (Y — yu)

T
Fy(y) = an(yn)u(y - yn) where y,, = T(xn,)
e |f T is not monotonic, the above procedure remains
same, but P(y,,) will equal the sum of the
probabilities of the various x,, for which y, = T(x,,)



Expected value of a RV

Expected Value of a Random variable

In general, the expected value of any random variable
X is defined by

E[X] = X = fmxfx(x)dx



Expected value of a RV (contd..)

™ =

% IARE §
B \3
>, &

If X is discrete with N possible values x; having
probabilities P(x;) of occurrence, then

N
fi(x) = Z x;P(x;)6(x — x;)
Then we have =
N
Elx] = ) x;P(x;)
2

If the density is symmetrical aboutaline x = a i.e.
fx(x 5 {1) — fx(_x + {1)
then
Elx] = a



Conditional Expected value of aRV  B&

Conditional Expected Value

If f,.(x|B) is the conditional density where B is any
event defined on the sample space of X, then the

conditional expected value of X, is given by

o0

E[X|B] = f il | B i

—_— 0



Conditional Expected value of a RV (contd,J<

If the event B ={X < b}, co < b < oo
[ fr(x)
frx|X < b) =< f_bmfx(x)dx

% X =D
Then, the conditional expected value is given by

ffmxfx(x)dx
f_bmfx(x)dx

which is the mean value of X when X is constrained
to the set {X < b}.

x <b

Elx|X < b] =



Moments about origin

Moments About the Origin

The expected value of X™, n =0,1,2, ...... ... IS given
by
E[X"] = f R By b

gives the moments about the origin of the random
variable X. These are also called standard moments

and are denoted as m,,



Moments about origin (contd..)

™ =

% IARE §
B \3
>, &

Forn = 0,

mgy = E[X°] = J.m x° fr(x)dx = J.mfx(x)dx

is the area of under the function £, (x).

Forn =1,

my = E[X] = f_mxfx(x)dx = X

Is the expected value of X.



Moments about mean

Moments About the Mean

The expected value of (X — X)™, n=0,1,2,....... .. is
given by

E[(X - X)"] = f (x — X)f, (x)dx

gives the moments about the mean of the random

variable X. These are also called central moments and
are denoted as



Moments about mean (contd..)

Forn = 0,

= Bl =M = | (= D feo)d
po = EIX = D)%l = | fulo)dx
is the area of under the function f,.(x).

Forn =1,
uy = E[(X — X)] = E[X] — X=0



Variance

Variance

The second central moment g, is given by

iy = E[(X — B)?] = f (X — B)2f, (x)dx

1.1t is popularly known as the variance o2 of the
random variable X.

2.The positive square root g, of variance is called the
standard deviation of X.

3.1t is a measure of the spread in the function f,.(x)
about the mean.



Variance (contd..)

The second central moment is given by
Hy = EJ(X — X)?]

By expanding we get
U, = E[X?—2XX + X?]
= E[X?%] - 2XE|X]|+ X?
= E[X?] — X% =my — uy°



Skew

The third central moment is given by

iz = E[(X — X)°]

iy = E[X*— 3X°X +3XX*— X~]
= E[X3] - 3E[X?]X + 3X°E[X]-X?
= m3 — 3mypy +3uy° — 1y
= mgz — 3myy + 2p11°



Skew (contd..)

* 15 is @ measure of asymmetry of f,.(x) about the
mean.

e [t will be called the skew of the density function.

e If a density is symmetric about x = X, it has zero
skew. For this case, u,, = 0 for all odd values of n.

e The normalized third central moment u3/0,> is
known as the coefficient of skewness.



MODULE-III
Multiple Random Variables and
Operations



Vector random variables

There are many cases where the outcome is a vector of numbers.
We have already seen one such experiment, in, where a dart is
thrown at random on a dartboard of radius r. The outcome is a pair
(X, Y) of random variables that are such that X? + Y2 < r2.

we measure voltage and current in an electric circuit with known
resistance. Owing to random fluctuations and measurement error,
we can view this as an outcome (V, I)of a pair of random variables.

Mapping the sample space to joint sample space

Y

.¢I H‘(\'l

/ ‘ J

000000000000
" R o 0 ’ \‘
oooo QAN = R
’-’o X b
IR (X <, V< p)

2 .o,o.oto'.'ofo.o.o.oto..o..f.\
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IRRRRERIE
QRRRALRH : :010‘4:0, (r<y I'\
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Joint distribution function

Let X and Y be random variables. The pair (X, Y) is then called a (two-
dimensional) random vector.

The joint distribution function (joint cdf) of (X, Y) is defined as F(x, y)
=P(X<x,Y<y)forx,y €ER.

Assume the joint sample space S, has only three possible elements
(1,1),(2,1),(3,3).The probabilities of the elements are to be
P(1,1)=0.2,P(2,1)=0.3 ,P(3,3)=0.5.We find F,(X,Y)

In constructing joint distribution function we observe that has no

elements for x<1,y<1.only at the point (1,1)does the function assume
a step value.

So long as x=1,y=1 this probability is maintained.For larger x and y
the point(2,1) produces a second stair step of 0.3 which holds the
region x>2,y>1.The second step is added to the first.Finally third step
of 0.5 is added to the two for x>3,y>3



Properties of Joint Distribution

* Properties:
1) Fyy(=o,y) = Fyy(x,-m)=0
Note that (X il iy c{i{-o

2) Fyrla ) 2 Fyy ()t 5 2x and y,) =y,
If x <z, and v € vy,

(X Lix,FLiwmtoc{X £x,7 £
CCEA Sx Y Rt R PA Sx,, Y 20

o (3.0 Sy (2L )

3) Fyyloe.m=)=1

4) Fyy(x.») is right continuous in both the variables
e = B



Properties of joint distribution L -~

=
o
=~

“H ror v
5) If =, < o, and =, < 27y

Plin<dix, vl in) =Fx,y(xzdf’z:"Fx,y':xp}"z:"FX,F(I3=J’1:'+F.'::,F(I1=J’1:'
Feylzy), -oixdim-al{y{e

6)

Fy (x) = o (x,+00)

(X L xt ={X £ a2y {F £ 4+
S EE = P{X L - P{X L ¥ L) = Fy L (x +o)

Py () = Hpy (00, ¥)

Fyplry), -odrde-ndyle

7 x3 and 7 ) Called marginal cumulative distribution function



Marginal distribution functions

The distribution of one random variable can be obtained by setting
the other value to infinity in Fy(x,y). The functions obtained in this
manner F,(x),F,(y) are called marginal distribution functions.
Example:

Fyyv(Xy)=P(1,1)u(x-1)u(y-1)+P(2,1)u(x-2)u(y-1)+ P(3,3)u(x-3)u(y-3)
P(1,1)=0.2, P(2,1)=0.3, P(3,3)=0.5 if we set y=o then
Fy(x)= 0.2u(x-1)+0.3u(x-2)+ 0.5u(x-3)
similarly
Fy(y)= 0.2u(y-1)+0.3u(y-1)+ 0.5u(y-3)
=0.5u(y-1)+0.5u(y-3)
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Marginal distribution functions %

* Consider two jointly distributed random variables and with the
joint CDF

(l1-e?)1-e”’) x=>20,y>0

0 otherwise

FX,Y(an’):{

1) Find the marginal CDFs
2) Find the probability P(1<x<2, 1<y<2)



Marginal distribution functions

. l—-e® x>0
a) F;((X) = JI;EIoo}EX’Y (xa Y ) = {O elsewhere
I-e” y=0

E.(y)=lmF, ,(x,y)=
2 X0 xr(%) {O elsewhere

PI<X<, 1<Y<=F, (2)+F, (L)~F,,(,2-F,, ()
=(1—-e*Y1—e")+(1—-€ Xl ) (- Xl-e*)~(1-e*)l—€")
=00272



Joint Probability Density Function

« If and are two continuous random variables and their joint
distribution function is continuous in both and then we can define
joint probability density function by

52
0x0y

fX,Y(xsy)z FX,Y(xay):

provided it exists.

Clearly
x Y
FX,Y(an/): I IfX,Y(uaV)dVdu



Marginal density function

The marginal CDF and pdf are same as the CDF and pdf of the
concerned single random variable. The marginal term simply refers
that it is derived from the corresponding joint distribution or
density function of two or more jointly random variables.

With the help of the two-dimensional Dirac Delta function, we can
define the joint pdf of two discrete jointly random variables. Thus
for discrete jointly random variables and

feren= 2 2Py 6yol—x,y=y; )

(xz 9yj )ERXXRY'



Marginal density function

 The joint density function

B (l-e*)1l=-e’) x>20,y>0
Fay (e 3) = {0 otherwise
82
fX,Y(xoy) = %FX,Y(X:)/)
62

= l—e* (1 -e x>20,y>20
oxdy [( )( )] y

=2e e’ x20,y20



Conditional distribution

* We discussed the conditional CDF and conditional PDF of a random
variable conditioned on some events defined in terms of the same
random variable. We observed that

R

P(B) %0



Conditional density function

* Suppose and are two discrete jointly random variable with the joint
PMF fxy(x,y) . The conditional PMF of y given x=x is denoted by and

defined as
fy/x(y/'x)

Byl x)= P = 7/{X = x})
_ FUE = xr o {F = 270

25 = x}
= Py L2 2) provided gL {x) =0
P;{'ix:'
Thiss,
Py lwix) = LR ASIP provided z o (x) =0

2 LX)
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Conditional Probability Distribution Functiﬁﬁg

Consider two continuous jointly random variables and with the
joint probability distribution function We are interested to find the
conditional distribution function of one of the random variables on
the condition of a particular value of the other random variable.

We cannot define the conditional distribution function of the
random variable on the condition of the event by the relation

Fyy (/)= P(Y < p/ X = x)
P <y, X =x)
P(X =Xx)




Point conditioning

* First consider the case when X and Y are both discrete. Then the
marginal pdf's

« fyly)=P(Y=y) fy(x)=P(X=x)

* The joint pdf is, similarly
fX,Y(X;y)zp(XSXlYSy)

* Conditional density function is given by

fy(x/B)= LG




Point conditioning (contd..)

* The conditional pdf of the conditional distribution Y| X is

Foyin=PFeylX=x
riX

PFeyX=x
FX=x)

* Distribution function of one random variable X conditioned by that
second variable Y has some specific values of y. This is called point
conditioning
e B={y-Ay<Y<y+Ay}

Where Ay is a small quantity that we eventually let approach O.



Point conditioning (contd..)

y+Ay

[ /0, (£, E)dedE,
Fx(x/ y-Ay<Y$y+Ay)= y-j Ay —L |

y+Ay

[ fr(£)ae

y—Ay

Fyy(6,3)=D> P(x,y)8(x—x)5(y—,)

i=1 j=1

Now the specific value of y of interest is y,

Fx(/Y = yk) =le“ P;x(ly’y)k)

x(x/Y = yk) = zNj POy s 2

u(x — x,)




Interval Conditioning

e Distribution function of one random variable X conditioned by that
second variable Y has some specific values of y. This is called point
conditioning B={y_<Y<y,}

* P(xy,y,)=2/15,P(x,,y,)=3/15.etc.since P(y;)=4/15+5/15=9/15 find
f(x/y=ys)




Statistical independence

* Let and be two random variables characterized by the joint distribution

function
Foylay) =PlAxl Lyl

and the corresponding joint density function

fr89)= o Fag ()



Sum of two random variables o

* We are often interested in finding out the probability density function
of a function of two or more RVs

*The received signal by a communication receiver is given by

L=4+F

¥

* where is received signal which is the superposition of the message
signal and the noise.
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Sum of two random variables %

corresponding to each z.{z<z)We can find a variable subset o, -{(z )/ g(xy)<2)

Z

L [z =P £z}
= P{{x») | (x0) = D)
— . _j[j’[z- S (7. ) dhvdx



Central Limit Theorem

* Consider n independent random variables x,,X,,X5.....xn ,The mean
and variance of each of the random variables are assumed to be
known. Suppose E[x]=p, var(x)=0,% and . Form a random variable

var (1) = &y -E{Z(ﬁf iy ) Y

i=]

SEE -l ¢ YD B ) (K )

il Gl Jel,jiwi

= gy tay .t ay

|
A, and Xj.aremdepmdmtfuri?fj.



The CLT states that under very general conditions {}; ZX}

converges in distribution tor~»c4. ) as o
1. The random variables are independent and identically distributed.

2. The random variables are independent with same mean and
variance, but not identically distributed.

3. The random variables are independent with different means and
same variance and not identically distributed.

4. The random variables are independent with different means and
each variance being neither too small nor too large.



RE &

Expected Values of Random Variables *.

* If g(x,y) is a function of a continuous random variables X and Y then
then the expected value of is given by

f J-_OO g(x,y)fyy (x,y)dxdy Continuous

g=E|g(X,Y)] = |
[ ] Z Z g(Xi oY k )PX,Y (Xi Yk ) Discrete
L 1k




Example

* Consider the discrete random variables x and y. The joint probability
mass function of the random variables are tabulated in Table . Find the
joint expectation of g(x,y)=xy.

E[XY]=) > g(x,y) Py (x,)

\A’\ 0 . 2 2y (¥
¥
1 .25 0.1 0.1% 0.5
1 0.14 035 0.01 0.5
FE{I:I 0.39 0.45 016

=1x1x0.35+1x2x0.01

=0.37




Properties

 Expectation is a linear operator. We can generally write
E[a;8,(x,y)+a,8,(x,y)=a,E(8;(x,y)+a,E(g,(x,y))
E[xy+5log xy]=E[xy]+5E[log xy]

 If xandy are independent random variables and
g(x,y)=g1(x,y)xg2(x,y) then E[g(x,y)]=E[g1(x,y)]xE[g2(x,y]

FEolX V)= 8g (X g, (F)

= T T g (Xg, (F) Frp(x yidx

—oa —&a

= | | & (X)g, (V) Fy(x) A O)dxdy

Ll = =y = = |

= j = {I}fI[I}de Ea {ﬂﬁ’{.}?:ﬂﬁ?
= g (X1 8g,(¥)



Joint moments about the origin

For two continuous random variables X and Y, the joint moment
of order m+n is defined as

BV = [ [x797 £y o vy

And the joint central moment of order m+n is defined as

EX—pu)"EY =u)" = [ [Or=p)"(y=1,)" frr (x,)dxdy

M, = E[x]
1, =E[y]



31 -1al0[0]01
The covariance of two random variables X and Y is defined as
Cov(X,Y)=E(X-1,)E(Y- 1)

Cov(X, Y) is also denoted as oy,.
Cov (X,Y) = E(X —p)"E(Y = p,)"
=E(XY —pu X —pu Y +pu.pu,)

= E(XY ) - puy E(X) - ux E(y)+ pyty
= E(XY)—-pu.u,



Uncorrelated random variables

Two random variables are called uncorrelated if
Cov(X,Y)=0

Which also means E(XY)=p, L,

If are independent random variables, then

Sk )=/ (91,()

Thus two independent random variables are always uncorrelated.



joint characteristic function

The joint characteristic function of two random variables Xand Y is

defined by o
bo@, @) =Ee ™ ]

If and are jointly continuous random variables, then

ber(@,0) = [ | [y, )€™ dixdy
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Joint moments about the origin %

For two discrete random variables X and Y, the joint moment of order
m+n is defined as

myn m_.n
EX"Y")=> "> x"y" fry (x, y)dxdy
X Yy
And the joint central moment of order m+n is defined as

E(X-u)"EX —p )" =) > (x=pu)"(y=u,) fo(x,»)

p, = E[x]
w1, =E[y]



Covariance of two random variables

The covariance of two random variables X and Y is defined as
Cov(X,Y)=E(X-1L, ) E(Y- 1)

Cov(X, Y) is also denoted as oyy.
Cov (X,Y) = E(X = u)"E(Y =)’
=E(XY —pu X —pu Y +pu.pu,)

= E(XY ) - puy E(X)—ux E(y)+ pypty
= E(XY)—pu. u,



Two Random variables

Two random variables X and Y are called jointly Gaussian if their joint
probability density

I ) _%(x—ux)wm )’

[ |

XY o >
22qO N 1=Pyy

2

1 ]
Foyy) oy OxOy Oy

-00X< 00 -0aLY <00

means W, and

variances o,> o,

correlation coefficient py,

We denote the jointly Gaussian random variables and

with these parameters as (X,Y)~ N(ux,uy,oxz,cyz,va )
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Transformations of multiple random variables:

The joint density function of new random variable Y=T(X},X,,......X\)
i=1,2,3....n

The random variable Xj can be obtained from inverse transformation
X j=Tj'1(Y1,Y2,.....YN)

N

xi =gl Ly Vi)

2 =82 (.72 7k) L

Xy =g£1(y1,yzr--,yk:n),
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Transformations of multiple random variables:

: : - -1 : :
« Assuming that the partial derivatives 0g; 7/ 0y; exist at every point
(Y1, Yo Yien)- Under these assumptions, we have the following
determinant J

M D
J =det| : . :
og," o,
oy vy

called as the Jacobian of the transformation specified by (**).
Then, the joint pdf of Y,, Y,,...,Y, can be obtained by using the
change of variable technique of multiple variables.



Transformations of multiple random variables

* As aresult, the new p.d.f. is defined as follows:

froon g @l )1 T for(3, -, ) €

s V29" " Vy =9
g(y1 & y) 0,0therwise
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Linearly transformation of Gaussian RV %

* Linearly transforming set of Gaussian random variables X;,X,,.....Xy
for which the joint density function exists. The new variables
Y, Y5,....Yy are

* Yi=ap Xitap Xt a Xy

* Y,=a, X +a,, X+ A Xy

* Yy=ay Xira Xt ag Xy

all al2... alN

a2l a22.. a2N
aN1l aN2.. aNN

[T] =

) |
vl = [ :
YN

X=TiY(Y,....Yy)=atY +a%y,+...+aiNY

[Y1=[T][X]



MODULE-IV
Stochastic Processes: Temporal
Characteristics



Random Process

[ The concept of random variable was defined previously as mapping
from the Sample Space S to the real line as shown below

Sample Space

1 A random process is a process (i.e., 5
variation in time or one dimensional

space) whose behavior is not

completely predictable and can be

characterized by statistical laws.

d Examples of random processes
Daily stream flow x
Hourly rainfall of storm events
Stock index



d The concept of random
process can be extended to
include time and the outcome
will be random functions of
time as shown beside x(z, s)

d Where s is the outcome of
an experiment

1 The functions

.“xn+2 (t)7'xn+1 (t)9'xn (t)ﬂxn—l (t)7
are one realizations of many of
the random process X(t)

[ A random process also represents a random variable when time is fixed
X(t,) is arandom variable



Classification of Random Process

Classification of random process
dContinuous random process
(A Discrete random process
(dContinuous random sequence
Discrete random sequence

Continuous time t => x(t) = Random process
Discrete time n => x[n] = Random sequence



Continuous Random Process

O Continuous random process * .
7 Y . /\’:\ /\ t
Continuous time t N N~

X+ 1(D) i é
= ntin /_'+/\_/_,:\
X(t) = Continuous = : :
Random process =T ; TN
X, (1) E
~ AN LN
7 \Q_/ fil \/ No” \r
x5, 1(8)




(] Discrete random process

Continuous time t

X(t) = Discrete Random
process

X0+ 2(8)

X+ 1(8)

x5, ()

X — l(t)




d Continuous random sequence .- .

1
/
4
1 B
1
F
\
,_
a
N\

discrete time n

Xy + 1(1)

x(n) = Continuous
Random sequence .

T T e T
7 ~ i.__ ,L_,,

~

x5, (D)

-~

r'T/\T\\ - )4 /A-T\
pr N~ I

e

xn —1 (I)
1 A T -

~.
o No_1 417 <1 :

L J

L g
L ]



Discrete Random Sequence

[ Discrete random sequence . .
discrete time n -"-—i i—-«—w——l T_—
f—— ’ L—l-—-l —-1 I _= !
x(n) = discrete Random e
sequence —_—— —-— ———
L] 1l




Random Process Concept

(J Deterministic random process
dFuture values of any sample function can be predicted exactly from
the past values

X(t) = Acos(w,t +0), A, w,,0: tv's

(d Non deterministic random process
 Future values of any sample function can not be predicted exactly
from the past values



What is a distribution and density? 3%

1 A distribution characterises the probability (mass) associated with each
possible outcome of a stochastic process

[ Distributions of discrete data characterised by probability mass functions

P =) I I Y P(X =x)=1

X
0 1 2 3
1 Distributions of continuous data are characterised by probability density

functions (pdf)

J(x) »
A jf(x)dx =1

[ For RVs that map to the integérs or the real numbers, the cumulative
density function (cdf) is a useful alternative representation




Stationary and Independence

1 Stationary Random Process
O all its statistical properties do not change with time

1 Non Stationary Random Process

d not stationary

One particular realization of the random process {X(#)}

A

\.
Al

I;

P

X(z) PDF

Pﬂf/

(1)

/

time, 1

time. t

>
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Stationary and Independence (Contd..) 5%

[ First-order densities of a random process

O A stochastic process is defined to be completely or totally
characterized if the joint densities for the random variables

X(t),X(t,),---X(t,)are known for all times 7,,¢,,---,¢ andalln.

1 For a specific t, X(t) is a random variable with distribution
F(x,t) = plX(?) < x]

 The function F(x,t) is defined as the first-order distribution of the
random variable X(t). Its derivative with respect to x
OF (x,t)
J(x,0) =
ox

is the first-order density of X(t).
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Stationary and Independence (Contd..) 5%

 If the first-order densities defined for all time t, i.e. f(x,t), are all the
same, then f(x,t) does not depend on t and we call the resulting
density the first-order density of the random process {x(t)} ; otherwise,
we have a family of first-order densities.

 The first-order densities (or distributions) are only a partial
characterization of the random process as they do not contain
information that specifies the joint densities of the random variables

defined at two or more different times.
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Stationary and Independence (Contd..) %

d Fort=t,and t=1t,, X(t) represents two different random variables
X1 = X(t1) and X, = X(t;) respectively. Their joint distribution is given by

Fo(x,x,,t,t,) = P{X (1)< x,,X(1,) < x,}
and
52FX(x1,x2,t1,t2)

Ox, Ox,
represents the second-order density function of the process X(t).

fo (X, x,,8,t,) =

Q Similarly f, (x,, x5, x,, t,,t, -+ ,t,) represents the nt" order density
function of the process X(t).



 The first-order density of a random process, f(xt), gives the
probability density of the random variables X(t) defined for all time t.
The mean of a random process, m,(t), is thus a function of time specified

by

+00
my () = ELX (0] = ELX,]1= | x.f(x,.t)dx,
[ For the case where the mean of X(t) does not depend on t, we have
m,(t)=E[X(t)]=m, (aconstant)

1 The variance of a random process, also a function of time, is defined

by o (1) :E{[X(t)—m)((t)]z}=E[th]—[””lx(f)]2



Stationary and Independence

1 The random process X(t) can be classified as follows:
O First-order stationary

[ A random process is classified as first-order stationary if its first-order
probability density function remains equal regardless of any shift in time
to its time origin.

4 If we X,;let represent a given value at time tlthen we define a first-
order stationary as one that satisfies the following equation:

fx (xy) =t Xyt 1)
O The physical significance of this equation is that our density function,

fy (X,;) is completely independent of t1
and thus any time shift t

For first-order stationary the mean is a constant, independent of
any time shift
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Stationary and Independence (Contd..) %

(JSecond-order stationary

A random process is classified as second-order stationary if its second-
order probability density function does not vary over any time shift

applied to both values.

d In other words, for values X,; and X, then we will have the following
be equal for an arbitrary time shift t

fx (XX ) = T (X140 X 01¢)

dFrom this equation we see that the absolute time does not affect our
functions, rather it only really depends on the time difference between

the two variables.



Stationary and Independence (Contd..) 5%

J For a second-order stationary process, we need to look at the
autocorrelation function ( will be presented later) to see its most
important property.

d Since we have already stated that a second-order stationary
process depends only on the time difference, then all of these types
of processes have the following property:

R . (t,t+1) = E[ X(£) X(t+7)]
=R« (1)



Wide-Sense Stationary (WSS) o

O A process that satisfies the following:

(1 The mean is a constant and the autocorrelation function depends only
on the difference between the time indices

E :X(t)] = X = constant

E[X(0)X(t+1)] =Ry (1)
is @ Wide-Sense Stationary (WSS)

Second-order stationary ‘ Wide-Sense Stationary

The converse is not true in general



Wide-Sense Stationary (Example)  3&

X(t)=acos(wt+¢), @~U(0,2r).
This gives

H (1) = E{X(t)} = aE{cos(oyt + @)}
=acosw,t E{cos@}—asinw,it E{sinp} =0, Constant

since E{cosqp}= ﬁjjﬂcosgadgp =0= E{singp}.

Similarly

R_(t,t,)=a’E{cos(wt, +p)cos(w,t, + @)}

2
a

= EE{cosa)O(t1 —t,)+cos(w,(t, +1,)+2¢)}

2
a
— Ecos w,(t, —t,). So given X(t) is WSS



Nth order and Strict-Sense Statlonary

O In strict terms, the statistical properties are governed by the joint
probability density function. Hence a process is nth-order Strict-Sense

Stationary (S.S.S) if
I X, , oty ot )= (XX, X, 8 6t et +0) (1)

[ For any ¢, where the left side represents the joint density function of

the random variables X, =Xt), X,=X(,), -, X, =X(t,)
and the right side corresponds to the Jomt den5|ty functlon of the random

variables X = X(¢, +c¢), X, =X(, +¢), -+, X, =X (¢, +0).

1 A process X(t) is said to be strict-sense stationary if equation (1)
trueforall ¢, i=1,2,---,n, n=1,2,--- and any c.



Ergodic Process

A stationary random process for which time averages equal ensemble
averages is called an ergodic process:

<x[n]>= m .
(et m B[] = g [ ]



It is common to assume that a given sequence is a sample sequence of
an ergodic random process, so that averages can be computed from a

single sequence.

In practice, we cannot
compute with the limits, but
instead the quantities.

Similar quantities are often
computed as estimates of
the mean, variance, and
autocorrelation.

| Lol
m,=— x|n]
Ln=0
LS ol
o.=—)> \x|n|—-m,
Ln=0

(sfo-+ e’ lnl) :%’ij[nm]x*[n]



Time Average and Ergodicity

1 The time average of a quantity is defined as
N
Ale]=lim—| [e]dt
T—0 2T -T
Here A is used to denote time average in a manner analogous to E
for the statistical average.

1 The time average is taken over all time because, as applied to random
processes, sample functions of processes are presumed to exist for all
time.



Time Average and Ergodicity (Contd..)

O Let x(t) be a sample of the random process X(t) were the lower case
letter imply a sample function.

 We define the mean value X = A[X(t)]

( a lowercase letter is used to imply a sample function)
and the time autocorrelation function ERXX (T) as follows:

X =A[x(t)] = lim % x(t) dt

Rx (1) = A[x(Dx(t +1)] = = lim Ly X(Ox(t+ 1) dt

[ For any one sample function (i.e., x(t)) of the random process X(t),
the last two integrals simply produce two numbers.

3 Anumber for the average X and a number for Ry, (1)
for a specific value of 1



Time Average and Ergodicity (Contd..) %

m =
4 IARE K

 Since the sample function x(t) is one out of other samples functions
of the random process X(t),

U The average X and the autocorrelation ERXX (T) are random variables

O By taking the expected value for X and R, (T) we obtain

E[X] = E[A[x(t)]]=E [hm% x(t) dt} = lim — j E[x(t)] dt

_lim —[" Xdt = lim X(1) =

T—)oozT -T T—>
1

E[R (O] =E [A[x(Dx(t+1)] ] = [ lim ey I X(t)X(t + 1) dt}

1 1
lm}o peg I E[X(t)x(t +1)]dt= hm ey I8 RXX (tr) dt =R (7)



Time Average and Ergodicity (Contd..) %

% IARE

1 Time cross correlation
R )
R, (7) = ALY+ 1)) = lim— j_T X(£)y(t +7)dt

 Ergodic => x =X
ERXX(’Z'):RH(T)

[ Jointly Ergodic => Ergodic X(t) and Y(t)
mxy (T) — RXY (T)



2 00D

Introduction to Autocorrelation %

()
7.

7, \2
 pon \\®

! Autocorrelation occurs in time-series studies when the errors
associated with a given time period carry over into future time periods.

! For example, if we are predicting the growth of stock dividends, an
overestimate in one vyear is likely to lead to overestimates in
succeeding years.

) Times series data follow a natural ordering over time.

! It is likely that such data exhibit intercorrelation, especially if the time
interval between successive observations is short, such as weeks or
days.



Introduction (contd..)

! We expect stock market prices to move or move down for several days
in succession.

] We experience autocorrelation when
E(uu;)#0
! Tintner defines autocorrelation as ‘lag correlation of a given series

within itself, lagged by a number of times MODULEs’ whereas serial
correlation is the ‘lag correlation between two different series’.



Autocorrelation and its Properties 2%

1 The autocorrelation function of a random process X(t) is the correlation
E[X,X,] of two random variables X,= X(t,) and X,= X(t,)

by the process at times t1 and t2

Ryx(t,t,) =E [X(t1 )X(t, )]

1 Assuming a second-order stationary process

R, (t, t+1) = E[X(O)X(t + 1)] Ry (1) = E[X()X(t + 1)]
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Autocorrelation and its Properties (Contd. <

] Autocorrelation :

N a A

IRV ARV

time, t T

 The autocorrelation, or auto covariance, describes the general
dependency of x(t) with its value at a short time later, x(t+t1)

p.(7) = %ijg% [ -x]lxct+ o - xat

 The value of p,(t) at T equal to 0 is the variance, G2

0 Normalized auto-correlation : R(t)=py(t)/0,> R(0)=1
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Autocorrelation and its Properties (Contd. <

R(7)

Time lag, ©

1 The autocorrelation for a random process eventually decays to
zero at large 1

( The autocorrelation for a sinusoidal process (deterministic) is a
cosine function which does not decay to zero
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Autocorrelation and its Properties (Contd. <

T = j: R(r)dr
R(7)

0 N
Time lag, ©
d The area under the normalized autocorrelation function for the
fluctuating wind velocity measured at a point is a measure of the

average time scale of the eddies being carried passed the
measurement point, say T,

O If we assume that the eddies are being swept passed at the mean

velocity, U.Tl is @ measure of the average length scale of the eddies.
This is known as the ‘integral length scale’, denoted by |,



Autocorrelation and its Properties (Contd. <

J Properties of Autocorrelation function
R, (t,t+7)=EX@)X(E+7)]=R,(7)
(1) |Ry (7)) <R (0)
(2) Ry (-7) =Ry (7)
(3) Ry (0)=E[X(t)]
(4) stationary & ergodic X (¢) with no periodic components

= lmR,(r)=X

[7]—0
(5) stationary X (¢) has a periodic component

= R, (7) has a periodic component with the same period.



Cross-correlation

J Cross-correlation

x(t) AN /\J\ /\/\/\/\ /[

T

time, t T
(t)
Tl N
Y W N U
V4
| time, t T

1 The cross-correlation function describes the general dependency
of x(t) with another random process y(t+t), delayed by a time

delay, T . (7)= ];LI}.}% J'OT [X(t) ';][Y(H 7) '§]dt



Correlation coefficient

J Correlation coefficient

O The correlation coefficient, p, is the covariance normalized by the
standard deviations of x and y

X0y

0,.0,

P

When x and y are identical to each other, the value of p is +1 (full
correlation)

When y(t)=—x(t), the valueof pis—1

In general, — 1< p<+1



Application of correlation

[ Correlation - application :

[ The fluctuating wind loading of a tower depends on the correlation
coefficient between wind velocities and hence wind loads, at
various heights

Zy

u'(z,).u'(z,)

6,(z)).0,(z,)

For heights, z,, and z, p(z,,2,) =



Properties of Cross Correlation o

Properties of cross-correlation function of jointly w.s.s. r.p.’s:
Ry (1) = E[ X ()Y (¢ +7)]

(1) RXY (_T) = RXX (T)
2) |Ry (D) <Ry (0)R,(0)

®) [Ro@)] 5 [Rur(0)+ R, O]

E[{Y(t+7)+aX(®)}']=0, Va

JRLOR,(0) < %[RXX (0)+ R, (0)]



Example of Cross Correlation

A,B:rv's @, =const

E[A|=E[B]=0, E[AB]=0, E[A]=E[B’]=0"

X(t) = Acos(wyt)+ Bsin(w,t), Y(t)=Bcos(wyt)— Asin(a,t)
E[X(2)]= E] Acos(awyt) + Bsm(w,t)] = E] A]cos(w,t) + E] B]lsin(w,t) =0
R, (t,t+7)=E[X@O)X(t+7)]

= E[ A’ cos(a,t) cos(ayt + @, 7) + AB cos(w,yt)sin(a,t + o, 7)
+ ABsin(a,t) cos(wyt + @, 7) + B sin(w,t)sin(wyt + @,7)]
= 0 {cos(w,t) cos(w,t +w,r) +sin(@yt) sin(at + @,7)} = 0~ cos(@,7)

= X(t):w.s.s.



Example of Cross Correlation

Y(t): w.s.s.

R, (0)=E[X@®)Y(+7)]
= E{[ Acos(aw,t)+ Bsim(w,t)][ Beos(aw, (1 + 1)) — Asin(w, (t +7))]}
= E[ ABcos(w,t) cos(ayt +w,7) + B’ sin(a,t) cos(w,t + @, 7)
— A’ cos(a,t)sin(w,t + a,7) — ABsin(w,t)sin(wyt + @, 7)]
= 0" [sin(@w,t) cos(@,t + @,T) — cos(@,t)sin(wyt + @, 7)]

=—o” sin(@,7)

= X(¢) & Y(¢):jointly w.s.s.



Covariance

1 Covariance

[J The covariance is the cross correlation function with the time
delay, t, set to zero

¢ 0 =x®y0) = Lim— [ [x0 -]y y]at

(1 Note that here x'(t) and y'(t) are used to denote the fluctuating
parts of x(t) and y(t) (mean parts subtracted)



Auto Covariance

1 The auto covariance Cx(t1,t2) of a random process X(t) is defined as the
covariance of X(t1) and X(t2)

Cx(t1,t2)=E[{X(t1)-mx(t1){X(t2)-mx(t2)}]
Cx(t1,t2) = Rx(t1,t2)-mx(t1)mx(t2)

[ The variance of X(t) can be obtained from Cx(t1,t2)
VAR[X(t)] = E[(X(t)-mx(t))2] = Cx(t,t)

[ The correlation coefficient of X(t) is given by

C,(¢,t,)
JC (1, t)C i (t,1,)
p.(t,,t,) <1

px(tlatz) -




Auto Covariance Example#l

Example:

Let X(t) = Acos2mtt, where A is some random variable
The mean of X(t) is given by

m,(t)=E[Acos2nt]= E[A]cos2nt

The autocorrelation is

R, (t,,t,)=E[Acos(2nt ) Acos(2nt,)]
R, (1,,t,) = E[A*]cos(2nt,) cos(2nt,)

And the autocovariance
Cy(t),8,) =Ry (t),8,) —my (8,)my (1)
Cy(t,.1,) = {E[A*]- E[AT |cos(272,) cos(27t,)
C,(t,t,)=VAR[A]cos(2nt,)cos(2nt,)



Auto Covariance Example#2

Example:

Let X(t) = cos(wt+0), where 06 is uniformly distributed in the interval (-m, m).
The mean of X(t) is given by

m, (t) = E[cos(awt +0)]|=— J. cos(wt+6)=0
The autocorrelation and autocovanance are then
C,(t,t,)=R,(t,,t,) = E[cos(wt, + O) cos(awt, + )]

C,(t,t,) = 2i j l{cos(a)(z1 —t,))+cos(a(t, +1,)+26)}d6
T2

Co ()= ~ cos(a(t, 1)



Cross Covariance

(1 The cross covariance Cx,y(t1,t2) of a random process X(t) and Y(t) is
defined as

Cx,y(t1,t2)=E[{X(t1)-mx(t1)H{Y(t2)-my(t2)}]
Cx(t1,t2) = Rx,y(t1,t2)-mx(t1)my(t2)

1 The process X(t) and Y(t) are said to be uncorrelated if
Cx,y(t1,t2) =0 for all t1, t2



Random sequence

Random Sequence (=Discrete-time R.P)
X(nT) = X[n]

Mean = E(X[n])

R, (n,n+k)=E(X[n]|X[n+k])

Coo(n,1n-+K) = E{(XTn] ~ X[n])(XTn-+ k] X[n-+ K])}
=R, (n,n+k) — X[nX[n+k]

R, (n,n+k)=E(X[n]Y[n+k])

Cyy (mn+k) = E{(X[n]— X[n)(Y[n+k]-Y[n+k])}
=R, (n,n+k)—X[n]Y[n+k]



Gaussian Random Process

d Let X(t) be a random process and let X(t1), X(t2), ....X(tn) be the random
variables obtained from X(t) at t=t1,t2........ tn sec respectively

d Let all these random variables be expressed in the form of a matrix
X(t) ]
X(t,)

X(t,)
O Then, X(t) is referred to as normal or Gaussian process if all the
elements of X are jointly Gaussian



Gaussian Random Process

- continuous r.p. X(¢), —oo<t<o®

1
N)_ ~
\/(2”) Cy

fX(xla Na 19 )

exp{—%[x—)?]f Co[x— X}

)—(i :E[X(ti)] Cu :C)(X(ti’tk)

stationary => E[X(¢)]=X (const) & R, (t.,t,)=R,.(t,—t,)
Cor(t:,1,) = Ci (1, —1,)

w.s.s. Gaussian = strictly stationary



Gaussian Random Process

Ww.s.S. gaussian r.p. X(¢)

Cy = Co(t,,1,) = Ry (t,,1,)—X* =25¢ > —16

3

i | 25-16 25¢2-16 25¢>-16

QI (712 Q3 _3 _3
C,=|C, C, C,|=|25%2-16 25-16 25¢?-16
c, C, C :

- P 10563 16 25¢2-16 25-16




Properties of Gaussian Process

m =
% IARE §
o \
2, Q

O If a gaussian process X(t) is applied to a stable linear filter, then the
random process Y(t) developed at the output of the filter is also
gaussian.

1 Considering the set of random variables or samples X(t1),
X(t2),.....X(tn) obtained by observation of a random process X(t) at
instants t1,t2,.......tn, if the process X(t) is gaussian, then this set of
random variables are jointly gaussian for any n, with their n-fold joint
p.d.f. being completely determined by the set of means.

mx(ti) = E[X(ti)] for i=1,2,....n
and the set of auto covariance function
Cxx(t1,t2) = E[{X(t1)-E[X(t1)]HX(t2)-E[X(t2)]}]

O If a gaussian process is wide sense stationary, then the process is also
stationary in the strict sense

 If the set of random variables X(t1),X(t2)...X(tn) are uncorrelated then
they are statistically independent



Poisson Random Process

J we introduced Poisson arrivals as the limiting behavior
of Binomial random variables

where
"k arrivals occur 1n an LA
. . — -, k:O,l,z,...
interval of duration A" k!
}L:np:ﬂTé:ﬂA
T
k arrivals k arrivals
R R

| —A— | =2A



Poisson Random Process (contd..)

L It follows that

. {.'k arrivals occur in an } o Q22
k!

o . 2 k:O, ]‘9 29...9
interval of duration 2A"

since in that case

2A

np, :,uT-7:2,uA=2/1.

1 From the above equations, Poisson arrivals over an interval form
a Poisson random variable whose parameter depends on the duration
of that interval.

(d The Bernoulli nature of the underlying basic random arrivals, events
over non overlapping intervals are independent. We shall use these two
key observations to define a Poisson process formally.
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Poisson Random Process (contd..)

m T =
% IARE §
o \

2, Q

[ Definition: X(t) = n(0, t) represents a Poisson process if
(i) the number of arrivals n(ty, t;) in an interval (ty, t;) of length t =t,— t;
is a Poisson random variable with parameter j;.

Thus
k
P{n(tl,l‘z):k}Ze_ﬂt (ﬂ]z') , k=0,1,2,---, =1, -1
and '

(ii) If the intervals (t1, t;) and (ts, t4) are non overlapping, then the random
variables n(ty, t;) and n(ts, ts) are independent.
Since n(0, t) ~ P(At),we have

E[X(t)]=E[n(0,t)]= At
and

E[X*()]=E[n°(0,1)]= At + 1t



Poisson Random Process (contd..)

[ To determine the autocorrelation functionRXX (tl, tz), let t, > t1,
then from (ii) above n(0, t1) and n(ty, t;) are independent Poisson
random variables with parameters jy and A(t, —t, )respectively.

s E[n(0,¢)n(t,,t,)] = E[n(0,8,)]E[n(t,,t,)] = /12t1(t2 —1).

But
n(t,t,)=n(0,2,) —n(0,t,) = X(¢,) - X(¢,)

and hence the left side of above equation can be rewritten as
E[X(){X () - X ()} =R, (1,,t,) — E[X *(8)].
Ry (t,,1,) = 2At,(t, = ) + E[X(1,)]
= At, + At t,, t,>t.

Similarly R _(t,t,)=At, + At t,, t, <t .

Thus R, (t,t)= ﬂ’ztl t, + Amin( ¢,,1,).



Poisson
x o \‘/\—

arrivals
> ¢

0 e

1 Notice that the Poisson SR
process X(t) does not :
represent a wide

sense stationary process.

v
~

A Y (1) i

+ 1 ¢

v
~

[ Define a binary level process
Y(1)=(-D)*"

that represents a telegraph signal Notice that the transition
instants {t;} are random Although X(t) does not represent a

wide sense stationary process,



Poisson Random Process (contd..)

its derivativeX'(t) does represent a wide sense stationary process.

d(:)
X)) — —F —— X't
0 p 0
(Derivative as a LTI system)
From there
u.(t)= i, (1) = d =A, aconstant
dt dt
and
At t, <t
Rnr(tl,tz):aRH(tl, tz): 21 1 i
0 t, A't+A >t
nd =t +AU(t, —t,)
OR_.(t,t,)

=2+ A5t - t,).

Rmr(tp tz) — Py
1



Poisson Random Process (contd..)

Define the processes
X (1) X(1)

Y(1) = ZNZ- , Z(1)= Z(l—N,-)=X(t)—Y(t)

we claim that both Y(t) and Z(t) are independent Poisson processes
with parameters Apt and Agt respectively.

Proof:

Y(1) = ZP{Y(t) k| X(t)=nyPiX(t)=n);.

But given X(t) = n, we have Y (1) = ZN ~ B(n, p) sothat

i=1

PY(=k|X(0)=n}=(;)p'¢"", 0<k<n,

nd n
a P{X()=nt=e" (/Z') .




Poisson Random Process (contd..)

_ | e e
PY(1) = k}—e”z(n aapig = E (/It) Z(?,f”k).

n=k k'
—(1-g) At k
_ k e - Apt (lpt)
_(ﬂ’pt) k' =€ k' p k_Oa 1929
~  P(Apt).

More generally,
PlYt)=k,Z(t)=m} =P{Y(t) =k, X(@)-Y(t) =m}
=P{Y(t)=k,X(t)=k+m}
=P{Y()=k|X()=k+m}P{X(t)=k+m}

(’”’”)p q" oA (ﬂ«f)hm _ oA (Apt)” o4t (Agt)”
(k+m)! k! m!
P(Y (£)=k) P(Z(1)=m)

= P{Y(t) = k}P{Z(t) = m}, which completes the proof.



Poisson Random Process (contd..)

™ =

% IARE §
B \3
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-- integer-valued discrete r.p.  X(¢), —oo<t <o

X(0)=0 t,<t, = X(,)<X(@,)

. k
P[X(ra>—X<rb)=k]=W"k,tb)] e, k=012,

t, <t <t <t = X(@,)-X()&X()-X(¢,)arendep.

X)) =E[X()]=At R, (t,0)= EJX(£)’]= At +(At)’

C..(t,0)=At



Poisson Random Process (contd..)
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0<<t, =

P[X(tl) :kpX(tz) :kz] :P[X(tl) :klaX(tz)_X(tl) :kz _k1]

( k _ (K~ )

_ (/1123 e [/I(sz tl;j)' e, ky 2k 20
— . 2 - .

\ 0, otherwise
((lﬁ)kl [A(%, -4 )](kz_kl) e
— kl '(kZ - kl )'

N 0, otherwise

. k,2k >0




Poisson Random Process (contd..)

™ =

% IARE $
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0<t,<t, =

P[X(tz):kz‘X(tl):kl]:P[X(tz)_X(t1):k2_kl‘X(t1):kd]
:P[X(tz)_X(t1):k2_k|]

([ﬂ(tz —1 )](kz_kl) G N A2

= (h—k)! S

N 0, otherwise




Example

X(t) =Poisson r.p.
0<t <t <t
0<k <k, <k =
PIX(1) =k, X(t,) =k, X(t,) =k,]
=P X()=k,X(t,)-X(¢)=k —k,Xt,)-Xt,)=k —k,]
= PLX(1,) =k JPLX(1,) - X (1) =k, —k JPLX(8,) ~ X(t,) =k, — ]
()" [ =™ ey A =0
k! (k, —k)! (k,—k,)!
UMV SRV RN S
k\(k, —k)\(k, —k,)!




MODULE-V
Stochastic Processes: Spectral
Characteristics



 Fourier integral

X(t) = [ j X(0)e ™ drle™ dw

(1 Fourier transform
X(w)= j T x()e M dt

U Inverse Fourier
transform

() == [* X(w)e™ de
277 9>



Introduction (Contd..)

x(t), —-T<t<T
% (1) = 0 o/w

Assume [ |x,(1)|dt <oo, for all finite T.
o0 . T .
X, ()= j x, (e " df = j_Tx(t)e—fwfdz

U Energy contained in x(t) in the interval (-T,T)

E(T)=| x(t)dt = fo(t)z dt = i [ X (@) deo



Introduction (Contd..)

J Average power in x(t) in the interval (-T,T)

(w)\

P(T) _% Xt dt =— LO

x(t) > X(¢), take expectation, let 7"— oo,

1 Average power in random process x(t)

B ‘XT (0))‘2]
Py hm f ELX(¢) Jdt = f 11 o
Po=AEXQY  Py= [ Su(odo
E[‘ Ar (a))‘ ] power density spectrum

Sw =
==l



Example-1

Py = A{ELX (@)1}

ws.s. = P, =R, (0)

d Example- X (z‘) — Ao Cos(a)ot + @) O - uniformly distributed on (O, %)
1 2 2
E[X(¢)*]= E[ 4 cos’(at+0)]= E[% + % cos(2a,t +20)]

4 42 £ L
=—+— 20t +20)d0 =—+—sin(2w,t + 20
55 _[ ﬂcos( @, \d 5 2ﬂsm( @, )| 2

4 4

=———sin(2w.t
S (2wyt)

Py = A{ELX(1)']} = hsz j [Ag —/f sin(2a)0t)]dt=%?



Example-2

1 Example- X(t) = A, cos(w,t +0O)
2 T o T 1 6 inr 0 —imia —io
XT(w)zj_TAocos(mot+®)e J“’dt:J‘_TAoi[e’ eV +e T’ e/ dt

:ie]®jT ej(a)o_a))tdt_i_ie—j@JAT e—j(a)o+a))tdt

2 -T 9) T

o SIn[(w—aw,)T] AT sin[(w+w,)T]
(0—w,)T (0+aw,)T

_ AT

AT —jpT -
r e —e :2Tsm(,6’T)

jT e’ dt =Lejﬂt
-T

g jp pT
. El| X (o ?
Sy = l}m [‘ ;1(, )‘ ] power density spectrum



Example-2 (Contd..)

o S[(@=0)T] o sinf(@+@,)T]

XT(w):AoTe (a)—a)O)T -I—AOTe (a)-|-a)0)T
X () = A Te sinf(@=w)T] |, - o sinl(@+@))T]
' (0-a)T (@+ay)T

72 sin’[(w—a,)T] 7 sin’[(@+w,)T]
(-, T’ (0+w,)’' T’
sin[(w—w,)T'] sin[(w+w,)T]
(w—w,)T (w+aw,)T
2

E[e”*® +e7*°]= E[2c0s20] = jEEZCOSZHdQ ==sin26|7* =0
4 V4

X, (@) = X (@)X, (@) = A ]

+ AT+

E[X, (@)1_ 4z T sin’[(@ -0 T sin’[(@+ )T

2T 2 7 (0-w0)'T° 7 (0+w,)T’ |



Example-2 (Contd..)

J‘Sln de -
j Ts1n(aT)da I Tsmxldx i @)
=1 (al)’ /s T
i T sin”(aT) _ {00, l.f a=0 (b)
o1 (al)’ 0, 1if a#0
()& (b) = limL 3 (@l )=5(a)
-7 (aT)’
ma))—;ggE[‘XzT;”)‘ A 50 0,)+ 50+ 0,)

_ 1 L pedm o 4
PXX—zﬂLoSH(a))da) 27ZLO 5 [O(w—w,)+o(w+w,)|dw 5



Properties Power density spectrum 3<

Properties of the power density spectrum:
1 S, (w)=0
(2) X(@#) real = §,,(-w)=S,,(®)
3) S,;(w) 1sreal

1 5. (@) =fim (@) ]
@) | Su(@do=AEX ]
T

T—o0 2T

PFof(2): X, ()= jTT X(0)e ™ d
X, (@) =[ X@'edt=[ Xt dt=X,(-0)

E[ X, (-0) X, (-0) ] —tim E[ X, (0) X, (0)] _
2T T 2T o

()

() =1im



Properties Power density spectrum 3<

Properties of the power density spectrum
6) Su@=0'Sy@ L x()=lim IO

dt E
PF of (5): y y
. lim 2+ 8)~ (t), —T<t<T
Xp(8)=q &0 &
| 0, o/w |
f(t—a) «X— F(w)e’™

X, (@) — X, (@)
&

X, (6) <" lim S0 X, ()

E[\XT(m)\z]_h HjoX, @)1 . HX (o1
= lim =@ hm =
T T—00 2T T—0 2T

Sy (@) =lim 'S, (w)



Properties Power density spectrum

Bandwidth of the power density spectrum
X(@)real = S§,,(w)even

© 2
S, (®) lowpass form = e Loa) Sy (@)dw
root mean square Bandwidth I 0 Spr(@)dw
j S w(w)dw
S, (@) bandpass form = @, =" mean frequency
| Su(@dw

2 _4jooo(a)—a_)0)2SH(a))da)
™ I:Sﬂ(m)dm

ms BW




Example

10
S, ()= S..(w) lowpass form
o0 0 10 /2 10
LO 0c(©) LO [1+(w/10)°T -“—”/2[1+tanz«§?2

_ j’”z 100 1o— j 100cos? 0 d6 = [ 1001559529 o _ 50,
72 gec’ @ 2

/2 —/2

10sec* 8 d6

w=10tanf = dw=10sec*6do

10sec* 8 d6

100 =2 10 tan” @
da)zj —
[1+(w/10)*T -712[1+tan” 0]

_ j’”z 10° tazn 9 0= 10"sin>0d0= [ 10° 126820
/2 secC 9 /2 /2

j 0’S, (w)dw = LO

d6 =50007




Example

) .‘Z 0’S . (w)dw

| Sy (@)de
ms BW  W__ =10 rad/sec

W2

=100

10
[1+(w/10)*T

Sy(@) =



Relationship between PSD and autocorrelatigf

A
27w

S, (@)= [’; AR, (t,t+7))e " dr

S (@) dw=AR,, (t,t+7)]

8 () = lim OO i [ waye i, [ X(a)e )
_ 1 Loem g7 jo(tt)
=tim—— [ [ ELX(5)X (6] drdr
—1i L fr g7 Jjo(t—t,)
‘TE?OE._T._TRH(’IJ )e’” ™ dy dt,
;ﬂ SXX(a))ef"”a’a)—— L}E{.}ﬁ j j (L, 0)E T dr dt € dw

_ ;EEE j j Ry (t:0)— j &) d ot i,



Relationship between PSD and autocorrelatig

| swerdr=1

5(t) &> 1 U

5(t)=— j e dew
277 9

1 Sy (@ do= hm— j j (E,0)S(z+t, —t, )t dt,
27z
=1imi "Ry (t1 +7)dk, =lim—_ L7 R (et + )i
) T - ’
=A[R,, (t,t +7)]

AR, (t,t+7)] <= S, (o)

S, (@)= j: AR, (t,t+7)]e " dr



Relationship between PSD and autocorrelatig

Q X(@#) wss. = AR, (t,t+7)]=R,, (7)

Ry (1) <~ Sy(w)

Sp(@)=| Ry (e)e”dr

R, ()= i [ Sy (@edo



Cross-power density spectrum L o)

Wit)=X@)+Y()

R, t,t+0)=EWOWt+0)|=E{{X@O)+Y O XE+)+Y(+7)]}
=R, (t,t+7)+ R, (1, +7)+ R, (2,1 +7)+ R, (£, +7)

Sy (@) =Sy (0)+ Sy, (0)+ F{AR,, (¢t +7)|} + F{A R, (¢, +7)]}



Cross-power density spectrum

XT(t):{x(t), —T<t<T yT(t):{y(t), —T<t<T

0, o/w 0, o/w

Assume [ |, (0]dt <o & [ |y (0|t <oo, forall finite T.
G0 I X0 w0 I Y (o)

Cross Power contained in x(¢), y(¢) n the interval (-7, 7))

PoD) =[x, Ot = [ st =—— [ 2122 g

Parseval's theorem



Cross-power density spectrum

average Cross Power contained in X (¢), Y(¢) in the interval (—7.,7)

E[X (@)Y, @),
2T

(T)—— R o (o)t =— Lo

total average Cross Power contained 1in X (¢), Y (¢)

E] X, (a)) r()] ,

1
P, —hm— R t,t a’t—— hm

X (o) Y (0
cross-power density spectrum Sy (@)= hig EL Xy (2; r(@)]



Cross-power density spectrum L o)

1
P, = =51 S w(@)dw
ENY, (@) X ()]

2T

Sy (@) =lim

P, :2L | Sy(@)do="P,
T

Total cross power = P, +F,

X(),Y(t) orthogonal = P, =P, =0



Properties of cross-power density spectrum<.

X(2),Y(t) real

Properties of the cross-power density spectrum:

() Sy(@)=5,(-w)=S5, (a))*

PFof () X,(0)=] X(e"dr
X, (@) = jTT X(1) e™dt = j_TTX(z)ef“”dz - X, (~)

HY,(-0) X (o) _ | HY,(@)X,(@)]
2T T 2T
HY,(-0) X,(-0)] _ . H%L@X,(@)]_

Sy (-0) = lim ==L = lim == =S, ()

Sy (~) =lim =S (@)




Properties of cross-power density spectrum<.

(2) RelS,,(w)] &RelS,, (®)] --even

3) Im[S,, (@)] & Im[S,, ()] —-odd
AR, (t,t +7) [« S, (w)
AR, (t,t+ 1)« S, (@)

(4) X(¢) & Y(¢) orthogonal = S§,,(w)=S,,(w)=0

X(@) & Y(t) orthogonal = R, (t,t+7)=0 = A[R,(t,t+7)]=0

(5) X(t) & Y(t) uncorrelated & have constant mean X, Y
= S, (0) =S, (0)=27XY5(w)



Properties of cross-power density spectru%g

PFof(5): R,@t+7)=XY = AR, (tt+7)]=XY

= S, (0)=271XY5(w)=S,, ()

X(),Y(t) —-jointlyw.ss. = R, (1) «—— S, ()

Ry, (7) «—> Sy (@)



Relationship between C-PSD and cross- %

1 | Sp(@e”do= AR, (t.t+7)]
27 =

Sy (@)= ARy (t.t+1))e " dz

L EX ()Y ()] . 1 T P o

S (@) = lim - =lim—_£] | X@e™dn, | v(t,)e ™ dt,]
Ctim— [ [ E[LX )Y (Y d
_Tlsz.—T-—T [X(#)Y(2,)]e 244
— 1 1 er 7 Jo(t—t,)
—}nnﬁ._ﬂ . XY(tlﬂt )e dt dt

SXY(a))e’“”da)—— jm;uﬁﬁ j j R, (1,,,)e" "™ dt dt, & de

‘}“ﬁﬁ j j RXY(tl,t)— _[ & ot di,

1
27z



Relationship between C-PSD and cross- <

T S(te ™ dt =1
5() <> 1 L"’

5(t) = i j T edw

—00

— j S, (w)e dow = lim-— j j (6,85)5(T+t —1,)dt,dt,

1 ¢r 1
=lim— 1,1, +7)dt, —hm t,t+7)dt
lim— [, Rty + ) =lim = [ R, (11-+7)
=A[R,, (2,1 +7)]

AR, (tt+7)] < S, ()

S, ()= j: AR, (t,1+ 7)) " dr



Example

Example:

R, (tt+7)= % {sin(@,7)+cos[w, (2t +7)]}

S
AR, (t,t+7)]= ;H_)gﬁ . R, (t,t+7)dt
AB . AB.. 1 7
= > sin(@,7) + EY ;Egﬁ . cos| @, (2t +7)]dt
_4B sin(w,7) = ﬁ [e/"" —e /]
2 4
_irAB
S, (@)= %[2@(@—@0) —218(w+a,)] =2~
J

[0(@~ay) —o(w+a,)]



Linear system fundamentals

Linear System YO = MOt EAE wos—s

Linear
system

— Output ()

oit—-&) — h(té) impulse response

h(t,7)
(a)

Linear Time-Invariant System (LTI system) Iput (1) —>

LTI
system

—> Output (1)

WO = x(Eht-&dE= [ hEx(t-EdE

(f) = x(£)*h(f) = h(t)*x(t)  convolution integral
Y(w) = X(w)H ()

yoy [ e Ve

x(7) e’

x(t)=e”" =

h(t)
H(w)

(b)

= | 1§ " dé = Hlw)



Linear system fundamentals

R
Example-1: H(s)= .
P =T 1R o——"n °
H (a)) _ R Input x(2) R Outputy(f)
JoL+R
0 0
LTI causal < A(t)=0 forz<0

LTI stable <> [ [(t)|dt <o



Ideal lowpass filter G or 0)

e_ﬂo”, ‘(()‘ <W s S 7 (@)
H(w)= e _
09 O/W (a) TN o)
1w _., 1 ew .
h(t)=— PRIV P o/ g
27 W Q2 I |H ()| or 0(@)
w s H@) 1 .
— 1 1 ej(t—to)a) \\\\\\
27 J(t_to) _w 0 — @
T O0(w)
1 /W _ o= il=t)W ®)
272- j(t B tO) |H ()| or 8 ()
w sin[(t — Z‘O)W] \1“—3’\—4 1} e 7rr—]
B N | (@)
T (t o to)W — = - _
© [ S

Not causal = Not physically realizable



Random signal response of linear systems><

X(#) - w.s.s. random input Y(£) = j: WEX (t—E)dE

EYO]=El| hOX(-&)dé)=| hEELX(—&)dé

= X[ h&dé=Y
R, (t,t+7)=E[Y()Y(t+7)]
= B[ &)X (—=E)d& | &)Xt +71-E)dE)

E[X (=) X (t+7-5)(G)h(s,)dedg,
Ry (746 —&)h(g)h(s, )dg dg,

X(t) ws.s. = Y(t) ws.s.

® 00
—00 o
° 00
—00 o

éSéé




Random signal response of linear systems><

Ry@ =] [| Ry(z+&-EME)ENE S,
= [ [[ Ru(e=& =Eh(=E)dETNE)dE,

=[" Ra@)*h(=5), ., hE)dE,
~ Ry (£)* h(~) *h(2)

YO’ 1=] [ Ry(&—E)ENE)EE,
Example-1: white noise X(¢) Ry (7)=(N,/2)o(7)

HY@1=[ [ (N,/2)8(& - EENE)dEE,

o0
—0 o

=(N,/2)|_ h(&)dg




Random signal response of linear systems><

R, (tt+7)=E[X@O)Yt+7)]=E]X (t)j hWEOX(t+1-<&)dE]
= [ BX(O)X(t+7-EN(E)dé

=" Ry (r-Oh(&)dE
=Ry (1) *h(z) =Ry (7)

Ryy (£) = Ry (<7) = Ryy (=7 *h(~7) = Ry () % (1)
=[" Ry (z-Oh(=&)dé

X() wss. = X(¢t) & Y(¢) jointly w.s.s.

Ry (7) = Ry (7) ¥ 1(=7) = Ry (7) * h(7)



Random signal response of linear systems><

Example-2: white noise X (¢) R (1) =(N,/2)o(r)

Ry(0)=Ry (D) #h(r) = [ Ry (1= ENE)dE
= J: (N, /12)o(z=E)(E)dE = (N, /2)h(T)

Ry (1) = Ry (=7) = (Ny / 2)1(~7)



Spectral characteristics of system response’<

R, (1) =R, () *h(7) Sy (@) =Sy (w)H(w)
R, (0)=R, (0)*h(-7) Sy (@) =S (@)H(-0) =S (0)H(w)
R, (7) = Ry (7) *h(—7) = Ry () * h(7) * h(—7)

Sy (@) =S, (@) H(0) =S, (@) H(@)H(w)' =S, (0)|H(w)|

Wr) <« H(w)

Wr) real = h(-7) <> H(-0)=H(w)



Spectral characteristics of system response’<

1 1 e
average power  p_ = — LO S (w)dw = — Lo S (@) H(o)| do
1

1+ (jolL/R)

E le-1:
AATPIE S, () =% H(w)=

N,/2

Syy(@) =Sy (a))‘]—l(a))‘z T4 (wL/R)’

1 e N, > 1
P.=—| S, (0)do=—2 dw
" 27zLo (@) 47zL°1+(a)L/R)2

T R T R
Do L R gup =R 172 g =No
4 -721+tan" 0 L A v-7/2 4L




Spectral characteristics of system response’<

W) =(R/ Du@e™ T H(w)=—

1+(jwL/R)
By Example-1,
N o0 N o0 NR 0 NR
P :_() h t 2dt:_0 R/L Ze—ZRt/Ldt: 0 e—ZRt/L — 0
) Lo ) 2 jo( ) 4L 0 4L




Random process through a LTI System %

Impulse

X(r) —> res};z(o?se —> Y1)  Y(¢)= jooh(rl)X(t —1,)dr,
{ -00

where h(t) is the impulse response of the system
puy(t)=E [Y(t)]
= E Uw h(t )X (t-1,) dzl}

= [ h(z)E [x(t-1)]dr,

If E[X(t)] is finite
and system is stable

If X(t) is stationary, = h(c)Hu, (t-1,) dr,
H(0) :System DC response.” "~

Hy = Hy _[_Oo h(z)) dv, =y, H(0),



Random process through a LTI System %

Consider autocorrelation function of Y(t):
R, (1) = E[Y ()Y (1)]

—E| [ ThE)X (=1 dn [ h)X (-1 dr|
If E[ X *(¢)] is finite and the system is stable,

Ry(tw)=| de h(zr)|  dr, h(z)Ry(t -7, 1)
f Ry (t—7,00—7,) =R (t— pu—17 +1,) (stationary)
Ry()=[ [ h(z)h(z,)Rx(z—17, +1,) dr, dr,

Stationary input, Stationary output

R,(0)=E[Y’(®)]=] [ h(x)h(z,)R,(z,~1,) dr, dr,



Power Spectral Density (PSD) %

*aa IARE

Consider the Fourier transform of g(t),

G(f)= | g(tyexp( ~j2aft) di

g(t)= [ G(f)exp( j2aft)df

Let H(f ) denote the frequency response,

h(r)= | H(f)exp(j2afr,) df

E[Y®]=[ j:[ | H(f)exp(j27fr) df} h(z,)R, (z, - 1,) dr, dr,

= df H(N)| duh()| R, -1 )exp(j2xfr)dr,

= [ df H(N)|  deh(z, Jexp(j2fr,)| Ry (v)exp(-j2xfr)dr
f

H ' (f) (complex conjugate response of the filter)

T =72-T1




Power Spectral Density (PSD)

E[Y0)]=[ df|H(P[ | Ry(r)exp(—j2nf7) dr

H(f) .the magnitude response SN =[" Ry (e)exp(2nfe) de

E[r0]=["|H S, () df
Define: Power Spectral Density ( Fourier Transform of R(T))

E[Y2 (t)] = J-Z J-_Zh(tl)Rx(t2 —1,) dt, dr,

Recall H(f)|=
0, \f+f\> Af
Le t|H(f)|be the magnitude response “of an ideal narrowband filter

IH(F)I

Df :Filter Bandwidth 1 [ -

If Af << f. and S, (/) 1s continuous, | |
E[Y*(t)|~287S,(f) in W/Hz i as




The PSD of the Input and Output Random Process%%%g

X(t)

Sy ()

h(t)

Y(t)

R, (7)= Jjo I_Z h(z)h(7,)) R, (t — 1, +7,) d7, d7,

5/(f)

S,(N=[ | | h@)h(,)Ry(x—1,+1,)exp(~j27f7) dr, dr, dz

Let t—7,+7,=7, , 00 T=7,+7,—7T,

S,(N=[_ [ [ h)h(z,)Re(z,)exp(j27 f7,)exp(=j27 fT,)exp(=j27 [ 7,) dr,dr, dr,

=S, (NH(H*(f)
=|H ()| Sx(f)



2 00D

Relation Among The PSD and

S IARE &

The Magnitude Spectrum of a Sample Function >,

Let x(t) be a sample function of a stationary and ergodic Process X(t).
In general, the condition for Fourier transformable is

[ )] dt < o

This condition can never be satisfied by any stationary x(t) with infinite
duration.

We may write X (f,T)= j_TT x(t)exp(—j2rx ft) dt

Ergodic = Take time average

S Y
Ry(7)=lim—— j_T x(t+1)x(t) dt
If x(t) is a power signal (finite average power)

I ¢r 1 2
57 _Tx(t+r)x(t)dt<:> E|X(f’T)|

Time-averaged autocorrelation  periodogram function



Relation Among The PSD and

The Magnitude Spectrum of a Sample Function

Take inverse Fourier Transform

L j " xX(t+x()dt = [ LIX (f> D) exp(j27 ST)df

we have

R (r)—hm_“ —|X(f T)| exp(j27z fr)df

Note that for any given x(t) periodogram does not converge as 7 — o0

Since x(t) is ergodic

1

E[R,(0)|=R ¥ (7) = lim —EﬂX( [T\ ]exp(ﬂ;gfr)df
R0 =[ {tim - e - Jewarmar
Ry ()= S,(f)exp(;27f7)df

1

S, (f) = lim—— E[X (.7

is used to estimate the PSD of xft{

T .
= ;@OﬁE{ j_T x(t) exp(— j27ft)dt

)

2 00D

m =
%IAREg



Cross-Spectral Densities

® OO

Suw(N=]" Ry @ exp(-j2nf1)dz

S ()= Ry (r)exp(-j27 fr)dr

S (f) and §,, (f) may not be real.
Ry (1) = Sy (f)exp(j2afr)df

Ry ()= S, (f)exp(j2afr)df

W Ry () = Ry (- 7)
SXY(f) = SYX(_f) = S;X(f)




Cross-Spectral Densities Example

Example: X(t) and Y(t) are jointly stationary.

X(f) =—— h(f) —<y(}) Y(t) —=  hy(t)  —==7(1)

R, (t,u) =E[V()Z(u)]

- E[_:hl(fl )X (t— z'l)dﬁj_i h,(7,)Y (u -1, )dfz}

= [ [ m@)h(@)Ry (t~1,,u—7,)dzdr,
Let t=¢t—u

R, (7) = _E:O _[_i h(t)h, (7R, (Tt — 17, + 7,)d7,dT,

F
=S8, () = H,(f)H,(/)Sxr(f)



Cross-Spectral Densities

Output Statistics: the mean of the output process

is given by 4 (t) = E{Y (1)} = I_*:E{X(z-)h(t —7)drt}

= [ u (O =1)dT = 11, (1) % h(2).
Similarly the cross-correlation function between the input and output

processes is given by ,
RXY (tlatz) — E{X(tl)Y (tz)}

= E{X(1)[ [ X" (1, ~e)h’ (a)da}

= [ TE{X ()X (t, - a)h (a)da

=[ "R, (t,.t, — )k (a)dex

=R, (t,,,)%h"(1,).
Finally the output autocorrelation function is given by



Cross-Spectral Densities

R, (t,,1,)=E{Y ()Y (1,)}
=E{[ "Xt~ PH(BBY (1)}
= [ TE{X(t, - )Y (t,)}h(B)dp

=[ "R, (t; - B.t,)h(B)dp
=R_(t,,t,)*h(t,),
R (t,t,)=R_(t,5,)*h (t,)*h(t,).

or

lLlX(lL) — h(t) — ;uy(t)
(a)

R, (t,t,) —| ht) e d B B e R, (1,1,)
(b)




Cross-Spectral Densities

In particular if X(t) is wide-sense stationary, then we have u ()= pu
sothat  ; (£)=p, j _mh(r)d T=u.c, aconstant.

Also R_(t,,t,)=R_(t —t,) so that reduces to
R, (t,,)=| R, (t —t, +@)h (a)da

=R _(t)*h (-7)2R (1), 7=t —t,.

Thus X(t) and Y(t) are jointly w.s.s. Further, the output
autocorrelation simplifies to

R, (t,)=[ R, (t,= B—t)h(B)dB, T=1—t,
=R _(7)*h(t)=R (7).

we obtain

R (r)=R_(7)* h' (—=7)* h(7).



Cross-Spectral Densities

the output process is also wide-sense stationary.
following representation

IS gives rise to the

- X(1) Y (1)
WIfie-Sense | LTI system ~ wide-sense
stationary process ; h(t) " stationary process.
(2)
X (1)
strict-sense LTI system , stric{s(é?wse
stationary process h(t) stationary process
(b) (see Text for proof )
X(1) Y (1)
Gaussian Gaussian process

Linear system :
process (also (also stationary)

stationary) (c)

A 4

v




White Noise Process

WV(t) Is sald to be a white nolise process |
R, (t,t,)=q(t)o(t —t,),

i.e., E[W(t1) W'(t;)] =0 unless t;=t,.
W(t) is said to be wide-sense stationary (w.s.s) white noise
if EfW(t)] = constant, and

R, (t,t,)=qo(t —t,)=qo(7).

If W(t) is also a Gaussian process (white Gaussian process), then all of
its samples are independent random variables

, _ Colored noise
White noise LTI .
w(t) h(t) N(t)=h(t)*W(t)

For w.s.s. white noise input W(t), we have



White Noise Process

E[N(®)]=u, j j:h(r)d 7, a constant
and

R, (7)=q5(z)*h (=7)*h(7)
=gh’ (=) * h(7) = qp(7)

where

L) =R Iy ( j (a)h ﬁq—l—rda
us the output of a whlte noise’process through an LTI system
represents a (colored) noise process.
Note: White noise need not be Gaussian.
“White” and “Gaussian” are two different concepts!



] Shot noise
(] Thermal noise

E

E

—0 ———O
R § E[13] C) § G
evil ()
— 0 o

V2 |= 4kTRAF

1

12 |=—E2 |= kT = Af AKTGAf

R2

volts®

2
amps

k: Boltzmann’s constant = 1.38 x 10 23 joules/K, T is the absolute

temperature in degree Kelvin.



White noise

Ny A ﬁb‘(’r)
> 2
0 ¥ 0 '
(a) (b)
N
. 0
Sy (f) = ES
N, = kT.

T, : equivalent noise temperature of the receiver

R, (7) = N7 5(7)



Ideal Low-Pass Filtered White Noise =<

(a) (b)
-B<f< B
/| > B

N,
SN(f):<7
0

R, (7)= j —exp(]Zﬂfr) df
= N,Bsinc(2B7)



2 00D

Correlation of White Noise with a Sinusoidal Way&

m =
3 IARE
T e

White noise ~ W() [ dr w (1),

\/% cos(2naft) fc:; , kisinteger
w'(1) = \/gj:w(t)cos( 2 7f t)dt

The varance of w'(?)is

ot = E{ijTij(tl)cos( 2 f .t )w(t,)cos( 27 f.t,)dt, dtz}
= —j j [w(t,)w(t,)]cos( 27 f t,)cos( 2 f,t,)dt, dt,
= ?jo jo R, (t,,t,)cos( 27 f.t,)cos( 27 f,t,)dt, dt,

—t,)cos( 2z f t,)cos( 2z f t,)dt, dt,

T <0 J0 2

_ Ny g7 2 _ Ny
=7 IO cos “(2xf t) dt = 5




Narrowband Noise

Sy(f)

1
Fi_ﬁﬂ
-~
~

| AN Meer

|

| 0

| . \ ]
- > f
e — B 2 fe+ B

Two representations 4 -
a. in-phase and quadrature components (cos(2x f.t), sin(2m f.t))
b. envelope and phase

In-phase and quadrature representation
n(t)=n,(t)cos(2xzf t)—n 0 (t)sm(27zf 1)
n,(t) and n,(¢) are low - pass signals

Low-pass

) filter [ @ ry (1) )
Kf/ \f/ .
1(1) —=—tp 2 cos (2mf.1) cos (2. 1) (e
Low-pass no o)

filter

>()

—2 sin (29f.1) sin (2 f,.1)

(a) (b)



Important Properties

1.n/(t) and ng(t) have zero mean.
2.1f n(t) is Gaussian then n/(t) and ny(t) are jointly Gaussian.
3.If n(t) is stationary then n/(t) and ng(t) are jointly stationary.

Sy(f =JI)+Sy(f+]), -B=f<B

0 otherwise

4 Sm(f)=Sfo)={

5. n/(t) and ny(t) have the same variance %
6.Cross-spectral density is purely imaginary.

SN,NQ (f)= _SNQN, (f)
s+ f)=-su(r=£. -B<f<B

0 otherwise
7.1f n(t) is Gaussian, its PSD is symmetric about f, then n/(t) and n(t) are

statistically independent.



Ideal Band-Pass Filtered White Noise

4
/. AN
.S
- P
N ’s
Ve
hY I
N s
AL
7
1
T = 1

b)

~1.+BN
Ry(@)=[ ~ —texp(j2zfo)df + j —exp(j27f0)df
= N,Bsinc(2B7)|exp(—j2xf.7) eXp( j2xf.7)]
=2N,Bsinc(2Bt)cos(2xf,7)
Compare (a factor of 7),

Ry (7)=R Ny (r) =2N,Bsinc(2B7).



