INSTITUTE OF AERONAUTICAL ENGINEERING

(**Autonomous**) Dundigal, Hyderabad - 500 043

ELECTRONICS AND COMMUNICATION ENGINEERING

TUTORIAL QUESTION BANK

Course Title	PROBABILIT	PROBABILITY THEORY AND STOCHASTIC PROCESSES							
Course Code	AECB08	AECB08							
Programme	B.Tech	B.Tech							
Semester	THIRD	THIRD							
Course Type	CORE	CORE							
Regulation	IARE - R18								
		Theory		Practic	al				
Course Structure	Lectures	Tutorials	Credits	Laboratory	Credits				
	3	1	4	-	-				
Course Faculty	Dr. M V Krish	na Rao, Professo	or						

COURSE OBJECTIVES

2000

The stude	nts will try to learn:
Ι	The fundamental concepts of the 1-dimensional and 2-dimensional random variables and their characterization in probability space.
II	The stationary random process, its framework and application for analysing random signals and noises.
III	The characteristics of 1-dimensional stationary random signals in time and frequency domains.
IV	Analysis of the response of a linear time invariant (LTI) system driven by 1-dimensional stationary random signals useful for subsequent design and analysis of communication systems.

COURSE OUTCOMES

After su	ccessful completion of the course, students will be able to:	
	Course Outcomes	Knowledge Level (Bloom's Taxonomy)
CO 1	Infer the concepts of the random experiment, event probability, joint event probability, and conditional event probability for proving the Bayes theorem	Understand

	and for computing complex event probabilities and independence of	
	multiple events.	
CO 2	Explain the concept of random variable, the probability distribution	Understand
	function (PDF), probability density function (pdf), joint and conditional	
	probability density function (cpdf), and demonstrate the differences among	
	various density functions such as Gaussian, Rayleigh, Poisson, Binomial etc.	
CO 3	Explain the transformation of random variables, the Expectation operator	Understand
	on functions of random variables to formulate the definition of moments	
	and demonstrate the use of the characteristic and moment generating	
	functions to analytically derive the standard moments.	
CO 4	Interpret the vector random variables as the extension of scalar random	Understand
	variables to characterize their joint, marginal and conditional density/	
	distribution functions.	
CO 5	Derive the density function of sum of random variables for demonstrating	Apply
	the central limit theorem and its physical significance.	
CO 6	Explain the Expectation operator on functions of vector random variables to	Understand
	formulate the definition of joint moments (e.g. Correlation and Covariance)	
	and demonstrate the use of the joint characteristic and joint moment	
	generating functions to alternatively derive the joint standard moments.	
CO 7	Develop the framework for linear transformation of vector gaussian random	Apply
	variables using the properties of jointly gaussian variables.	
CO 8	Extend the random variable concept to random process and its sample	Understand
	functions for demonstrating the time domain characteristics such as	
	stationarity, independence, and ergodicity of a random process.	
CO 9	Relate the correlation and covariance functions and their properties for the	Understand
	time domain classification of random processes.	
CO 10	Develop analytically the auto-power and cross- power spectral densities to	Apply
	solve the related problems of random processes using correlation functions	
	and the Fourier transform.	
CO 11	Analyze the response of a linear time invariant (LTI) system driven by	Analyze
	stationary random processes using the time domain description of random	
	processes.	
CO 12	Discover the frequency domain characteristics of of a linear time invariant	Analyze
	(LTI) system response driven by stationary random processes using the	-
	relationship between correlation functions and power density spectra.	

MAPPING OF EACH CO WITH PO(s), PSO(s):

Course	Outcomes	Program Outcomes									S	Program Specific Outcomes			
Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	3	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 2	3	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 3	3	6	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 4	3	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 5	3	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 6	3	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 7	3	-	-	-	-	-	-	-	-	-	-	-	-	-	-

CO 8	3	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 9	3	6	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 10	3	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 11	3	6	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 12	3	6	-	-	-	-	-	-	-	-	-	-	-	-	-

TUTORIAL QUESTION BANK

S.No	Question	Blooms taxonomy level	How does this Subsume the levels?	Course Outcomes
		MODULE	-I	
	PROBABILI	FY AND RANI	DOM VARIABLES	
	PART – A (S	HORT ANSW	ER QUESTIONS)	
1	Define the probability of occurrence of an event.	Remember		CO 1
2	What are the axioms of probability?	Remember		CO 1
3	Define sample space and classify the types of sample space.	Remember		CO 1
4	How probability can be considered as relative frequency?	Remember		CO 1
5	Define conditional, joint and total probability.	Remember		CO 1
6	Explain Mutually Exclusive Events.	Understand	Recall the concept of mutual exclusiveness and explain the mutually exclusive events of a random experiment.	CO 1
7	Explain independent events.	Understand	Recall the concept of statistical independence and explain the independent events of a random experiment	CO 1
8	What is the concept of random	Remember		CO 2
9	Give the classifications of Random variable	Remember		CO 2
10	Define Cumulative distribution function (CDF) and Probability density function (pdf).	Remember		CO 2
11	List any four properties of density function.	Remember		CO 1
12	List any four properties of distribution function.	Remember		CO 1
13	Define Bernoulli distribution function.	Remember		CO 2
14	Define Binomial Distribution function.	Remember		CO 2
15	Define Poisson Random Variable.	Remember		CO 2
16	Define Uniform Random Variable.	Remember		CO 2

S.No	Question	Blooms taxonomy level	How does this Subsume the levels?	Course Outcomes
17	Define gaussian random variable	Remember		CO 2
18	Define exponential random variable.	Remember		CO 2
19	Define Rayleigh random variable.	Remember		CO 2
	PART – B (LONG ANSW	ER QUESTIONS)	
1	State and prove Bayes theorem.	Apply	Recall the statement of Bayes theorem and the definitions of conditional, joint probabilities, and apply them to prove the theorem.	CO 1
2	State and prove total probability theorem.	Apply	Recall the statement of total probability theorem and the definitions of conditional, joint probabilities, and apply them to prove the theorem.	CO 1
3	Derive expressions for mean and variance for uniform random variable.	Understand	Recall the probability density function of uniform random variable, and definitions of mean and variances and apply them to obtain the required expressions.	CO 2
4	Explain conditional probability theorem with properties.	Understand	Recall the definition of conditional probability and related theorem and explain its properties.	CO 1
5	Explain the properties the probability density function.	Understand	Recall the definition of probability, its axioms, and explain various properties of the probability density function of a random variable X.	CO 1
6	Derive the expression for mean and variance for Poisson random variable.	Apply	Recall the probability density function of Poisson random variable, and definitions of mean and variances and apply them to obtain the required expressions	CO 1
7	Derive expressions for mean and variance for binomial random variable.	Apply	Recall the probability density function of binomial random variable, and definitions of mean and variances and apply them to obtain the required expressions	CO 1
8	Explain the method of defining a conditioning event.	Understand	Recall the definition of at least two events and understand the interrelationship of the events and define the conditioning event.	CO 1
9	Derive expressions for mean and variance for exponential random variable.	Apply	Recall the probability density function of exponential random variable, and definitions of mean and variances and apply them to obtain the required expressions	CO 1
10	Derive the expressions for mean and variance for gaussian random variable.	Apply	Recall the probability density function of gaussian random variable, and definitions of mean and variances and apply them to obtain the required expressions.	CO 1
11	Compute the probability that exactly 5 of the items tested are defective if A batch of 50 items contains 10 defective items. Suppose 10 items are	Understand	Recall the permutation and combinations of choosing items from a sample, understand the definition of probability, and solve the problems of	CO 1

S.No	Question	Blooms taxonomy level	How does this Subsume the levels?	Course Outcomes
12	selected at random and tested. Assume that the height of clouds σ , above the ground at some location is a gaussian random variable X with mean value 2km and σ =0.25km. Find the probability of clouds higher than 2.5km.	Understand	finding the required event probability. Recall the gaussian density, understand its characteristics and solve the given problem to obtain the required probability.	CO 2
13	A production line manufactures $1K\Omega$ resistors that must satisfy 10% tolerance. If a resistor is described by the gaussian random variable X, for which μ =1000 Ω , σ = 40 Ω , what fraction of the resistors is expected to be rejected?	Understand	Recall the gaussian density, understand its characteristics and solve the given problem to obtain the required fraction.	CO 2
14	The power reflected from an aircraft received by radar is described by an exponential density. The pdf is given by $f_X(x) = 0.1e^{-x/10}$, x>0. The average power is 10W. What is the probability that the received power is greater than the average power?	Understand	Recall the exponential density, understand its characteristics and solve the given problem to obtain the required fraction.	CO 2
15	Explain the Standard Moments and Central Moments.	Understand	Recall the definitions of Standard Moments and Central Moments, interpret their physical meaning from the mathematical expressions.	CO 2
	PART – C (Problem S	olving and Cr	itical Thinking Questions)	
1	Assume that the number of automobiles arriving at a gasoline station is Poisson distributed and occur at an average rate of 50/hour. The station has only one gasoline pump. If all cars are assumed to require one minute to obtain fuel, what is the probability that a waiting line will occur at the pump?	Understand	Recall the definition of Poisson density function and interpret its parameters and compute the required probability substituting the given parameters.	CO 1
2	Find the value of C, for A random variable X has a probability density function $f_X(x) = C(1-x^4)$; -1 <x<1 = 0; elsewhere.</x<1 	Remember	Recall definition of density function, understand the third axiom of probability and compute the required constant substituting the given parameters.	CO 2
3	Find the value of K and also find P{2 $\leq X \leq 5$ } Let X be a Continuous random variable with density function f(x)=x/9+k for 0 <x<6; =0; otherwise</x<6; 	Understand	Recall definition of density function, understand the third axiom of probability and compute the required constant substituting the given parameters.	CO 2
4	A shipment of components consists of 3 identical boxes. one box contains 2000 components of which 25% are defective, the second box has 5000 components of which 20% are defective, third box contains 2000 components of which 55% are defective. A box is selected at random and a component is removed at	Understand	Recall the concept of the permutation and combinations of choosing items from a sample, understand probability definition, and compute the required probabilities.	CO 1

S.No	Question	Blooms taxonomy level	How does this Subsume the levels?	Course Outcomes
	random from the box what is the probability that this component is defective? What is the probability by that it came from the second box?			
5	The lifetime of IC chips manufactured by a semiconductor manufacturer is approximately normally distributed with a mean $=5x10^6$ hours and standard deviation of $5x10^6$ hours. A mainframe manufacturer requires that at least 95% of a batch should have a lifetime greater than $4x10^6$ hours. Will the deal be made?	Understand	Recall the gaussian density, understand its characteristics and solve the given problem to obtain the required probability.	CO 2
6	Find the probability that at least one diode is defective. If a box contains 75 good diodes and 25 defective diodes and 12 diodes are selected at random?	Remember	Recall the concept of the permutation and combinations of choosing items from a sample, understand probability definition, and compute the required probabilities.	CO 1
7	A certain large city averages three murders per week and their occurrences follows a Poisson distribution 1. What is the probability that there will be five or more murders in a given week? 2. On the average, how many weeks a year can this city expect to have no murders? 3. How many weeks per year (average) can the city expect the number of murders per week to equal or exceed the average number per week?	Remember	Recall the concept of the permutation and combinations of choosing items from a sample, understand probability definition, and compute the required probabilities.	CO 1
8	Calculate the probabilities of system error and correct system transmission of symbols for an elementary binary communication system consisting of a transmitter that sends one of two possible symbols (a 1 or a 0) over a channel to a receiver. The channel occasionally causes errors to occur so that a "1" show up at the receiver as a "0" and vice versa. Assume the symbols 1 and 0 are selected for a transmission as 0.6 and 0.4 respectively. $p(A_1/B_1) = 0.95$ $p(A_1/B_2) = 0.05$, $(A_2/B_1) = 0.05$ and $p(A_2/B_2) =$ = 0.95	Understand	Recall the definitions of joint and conditional probabilities, understand the communication system model, apply the related expressions and compute the required probabilities.	CO 1

S.No		Questi	on		Blooms taxonomy level	How does this Subsume the levels?	Course Outcomes
9	Find the individual, joint and conditional probabilities. For a given problem as shown below. In a box there are 100 resistors having resistance and tolerance values given in table. Let a resistor be selected from the box and assume that each resistor has the same likelihood of being chosen. Event A: Draw a 47Ω resistor, Event B: Draw a resistor with 5% tolerance, Event C: Draw a 100Ω resistor.				Understand	Recall the definitions of joint and conditional probabilities, understand the communication system model, apply the related expressions and compute the required probabilities.	CO 1
	Resistance	Tolera	nce	Total			
	(Ω)	5%	10%	10141			
	22	10	14	24			
	47	28	16	44			
	100	24	8	32			
	Total	62	38	100			
	gets two head coin. The pro- with the coi probability th he play this probability o getting at leas Should he pla	bability in is 0.7 ne man y game? f winnin st four he	of getting 7. i) Fin will win. 5 ii) What ig if he we eads in five	a head nd the Should is the ins by		conditional probabilities, understand the communication system model, apply the related expressions and compute the required probabilities.	
					MODULE	·II	
	OPERAT	IONS O	N SINGLI	E & MU	ILTIPLE RAN	DOM VARIABLES – EXPECTATION	IS
			PAR	Г – А (S	HORT ANSW	ER QUESTIONS)	
1	What are the values?				Remember		CO 3
2	Give the expr transformatio variable, with	n of a sir	ngle randoi	n	Remember		CO 3
3	Define N-dim	nensional	random v	ector.	Remember		CO 4
4	Define the joint distribution function of two continuous random variables X and Y.				Remember		CO 4
5	Define the joint distribution function of two discrete random variables X and Y.			oles X	Remember		CO 4
6	Define the density func form, of N- random vector	ctions, i -dimensi	n mather	natical	Remember		CO 4

S.No	Question	Blooms taxonomy level	How does this Subsume the levels?	Course Outcomes	
7	Define the joint distribution and density functions, in mathematical form, of N-dimensional discrete random vector X	Remember		CO 4	
8	List any five properties of joint distribution function of two random variables.	Remember		CO 4	
9	List any five properties of joint density function of two random variables.	Remember		CO 4	
10	Define the relation between the marginal distribution functions and their joint density function of a 2- dimensional random vector	Remember		CO 4	
11	Comment on the density function of a sum of two random variables.	Apply	Recall the definitions of density function and convolution integral and develop the density function of the new variable after addition.	CO 5	
12	Explain joint probability distribution function properties of a random variable	Remember		CO 4	
13	State the Central Limit Theorem.	Remember		CO 5	
	PART – B (I	LONG ANSWI	ER QUESTIONS)		
1	Define and explain joint distribution function and joint density function of two random variables X and Y.	Apply	Recall the concept of a vector random variable, definitions of joint probabilities, and explain joint distribution and joint density functions of two variables X and Y.	CO 5	
2	Distinguish between joint distribution and marginal distribution.	Understand	Recall the concept of a vector random variable, definitions of joint and marginal probabilities, and distinguish between joint distribution and marginal distributions.	CO 4	
3	Define and explain conditional distribution and density function of two random variables X and Y.	Understand	Recall the concept of a vector random variable, definitions of joint and marginal probabilities, and distinguish between joint distribution and marginal distributions.	CO 4	
4	What is the probability density function of the sum of two uniform random variables? Prove.	Apply	Recall the definitions of uniform density function and convolution integral and obtain the density function of the new variable after addition.	CO 5	
5	The characteristic function for a Gaussian random variable X, having a mean value of 0, is $\Phi_X(\omega) = \exp(-w^2/\sigma^2)$. Find first three moments of X using $\Phi_X(w)$.	Understand	Recall the definition of characteristic function, understand the method of obtaining moments from characteristic function and compute the first three moments.	CO 3	
6	State the properties of a joint distribution function.	Understand	Recall the definition of joint and marginal distribution functions, understand axioms of probabilities and state the properties of joint distribution function.	CO 4	

S.No	Question	Blooms taxonomy level	How does this Subsume the levels?	Course Outcomes
7	Explain how a discrete random variable is transformed to a new discrete random variable.	Understand	Recall the definition of cumulative distribution of a discrete random variable and a transformation function and explain the mapping by equating the cumulative distributions of both input and output random variables.	CO 3
8	Find the moment generating function of Y, if X is a random variable with a Moment generating function of $M_X(v)$, Y=aX+b	Understand	Recall the definition of moment generating function, relate to the transformation of variables and obtain the moment generating function of the output variable.	CO 2
9	State and prove the central limit theorem.	Apply	Recall the concept of addition of two random variables and understand the convolution integral and obtain the density function of the new variable obtained after adding N-random variables to prove the central limit	CO 5
10	A random variable has a probability density function $f_X(x)=(5/4)(1-x^4)$ for $0= 0$ other wise Find a) E[X] b) E[4X+2] and c). E[X ²]	Understand	Recall the concept of statistical expectation operator and understand its application on the function of random variables to compute the required expectations.	CO 3
11	The pdf of a random variable X is given by $fx(x)=x/20$; $2 \le x \le 5$, find the pdf of Y = 3X-5.	Understand	Recall the monotonic transformation and understand the relation for the monotonic transformation of a random variable and derive the required probability density function.	CO 3
12	The pdf of a random variable X is $f_X(x)=(1/2)\cos(x)$; $-\pi/2 < x < \pi/2$, find the mean of the function $g(X)=4X^2$.	Understand	Recall the nonmonotonic transformation and expectation operator, understand the relation for nonmonotonic transformation of a random variable and compute required mean.	CO 3
13	Explain the significance of the characteristic function of a random variable.	Understand	Recall the definition of characteristic function, understand its relationship with the density function, and explain its significance.	CO 3
14	Explain the significance of the moment generating function of a random variable.	Understand	Recall the definition of moment generating function, understand its relationship with the density function, and explain its significance.	CO 3
15	Obtain the probability of the random variable obtained by the monotonic transformation of a random variable.	Understand	Recall the definition of cumulative density function and the monotonic transformation and derive the required probability by equating the eq cumulative densities of both input and output random variables.	CO 3

S.No	Question	Blooms taxonomy level	How does this Subsume the levels?	Course Outcomes
16	Obtain the expression for a nonmonotonic transformation of a single random variable.	Understand	Recall the definition of cumulative density function and the nonmonotonic transformation and derive the required probability by equating the cumulative densities of both input and output random	CO 3
	PART-C (Problem So	olving and Cr	itical Thinking Questions)	
1	Find $f_X(x)$ and $f_Y(y)$, the marginal pdfs of X and Y. The joint probability density function of random variables X and Y is $f_{XY}(x, y) = 6(x + y^2)/5$ $0 \le x \le 1, 0 \le$ $y \le 1,$ is zero otherwise.	Understand	Recall the definition of joint and marginal density functions, understand their relationship, and compute the marginal densities.	CO 3
2	Calculate the marginal pdfs $f_X(x)$ and $f_Y(y)$ The joint Pdf of X and Y is $f_{X,Y}(x, y) = 5xy/4$ $-1 \le x \le 1, -2 \le y \le 1, =0$ otherwise.	Understand	Recall the definition of joint and marginal density functions, understand their relationship, and compute the marginal densities.	CO 4
3	Find $f(y/x)$ and $f(x/y)$ for The joint density function of random variables X and Y is $f_{X,Y}(x,y)=8xy; 0=0, otherwise$	Understand	Recall the definition of joint and marginal density functions, understand their relationship with the conditional density functions, and compute the required conditional densities.	CO 4
4	Find the probability density function of the random variable <i>Y</i> obtained by the transformation $Y = 3X^3 - 3X^2 + 2$ of the discrete random variable <i>X</i> whose density function is given below. $\frac{X 0 1 2 3 4}{P(x, y) 0.2 0.15 0.3 0.15 0.2}$	Understand	Recall the variable transformation of a discrete random variable and understand the relation for the monotonic transformation of a random variable and derive the required probability density.	CO 3
5	P(x, y) 0.2 0.13 0.3 0.13 0.2 The probabilities of the random variables X and Yare given in Table .Find (a) value of K and (b) the joint distribution function and marginal distribution functions.Joint probabilities of X and Y X/Y -1 0 0 $3/18$ $2/18$ 1 $1/18$ $K/18$ 1 $1/18$ $K/18$ 2 $1/18$ $1/18$	Understand	Recall the axioms of probability, use it to compute unknown K, understand the relationship between the joint and marginal distribution functions and compute the required probability functions.	CO 4
6	Find the probability density function of the random variable <i>Y</i> , obtained by a quadratic transformation a random variable <i>X</i> .	Understand	Recall the variable transformation of a random variable and understand the relation for the nonmonotonic transformation of a random variable and derive the required probability density.	CO 3

S.No	Question	Blooms taxonomy level	How does this Subsume the levels?	Course Outcomes
7	The joint pdf is given as $f_{X,Y}(x, y) = Ae^{-(2x+y)}$ for $x \ge 0$ and $y \ge 0$. Find (a) the value of A and (b) the marginal density functions.	Understand	Recall the axioms of probability, use it to compute unknown K, understand the relationship between the joint and marginal distribution functions and compute the required probability functions.	CO 4
8	Find the conditional density functions for the joint density function $f_{X,Y}(x, y) =$ $4xye^{-(x^2+y^2)}u(x)u(y)$	Understand	Recall and understand the relationship between the joint and conditional density functions and find the required joint density	CO 4
9	The joint pdf of two variables X and Y is (x) for $f_{X,Y}(x, y) = \frac{1}{18}e^{-(\frac{x}{6}+\frac{y}{3})}$ for x ≥ 0 and $y \ge 0$. Show that X and Y are independent random variables	Understand	Recall the definition of statistical independence, understand the conditions of independence, and show that variables are independent.	CO 4
10	Find the pdf of W = X+ Y, where X and Y have joint pdf $f_{XY}(x, y) = 1/15$ $0 \le x \le 3, 0 \le y \le 5,$ =0 otherwise.	Understand	Recall the definition of joint and marginal density functions, understand their relationship and find the pdf of the output variable.	CO 4
		MODULE -	III	
	OPERATIONS ON MULTIP		VARIABLES – EXPECTATIONS	
		LE RANDOM	VARIABLES – EXPECTATIONS	
1		LE RANDOM		CO 6
1	PART – A (S Define the joint moments of order 3 about the origin of two random	LE RANDOM	ER QUESTIONS	CO 6 CO 6
	PART – A (S Define the joint moments of order 3 about the origin of two random variables. Define the correlation between two random variables <i>X</i> and <i>Y</i> for both	LE RANDOM SHORT ANSW Remember	TER QUESTIONS	
2	PART – A (S Define the joint moments of order 3 about the origin of two random variables. Define the correlation between two random variables <i>X</i> and <i>Y</i> for both continuous and discrete cases. Define the joint central moments of order 3 of two continuous random	LE RANDOM SHORT ANSW Remember Remember	TER QUESTIONS	CO 6
2	 PART – A (S Define the joint moments of order 3 about the origin of two random variables. Define the correlation between two random variables X and Y for both continuous and discrete cases. Define the joint central moments of order 3 of two continuous random variables X and Y. Define the covariance between two random variables X and Y for both 	LE RANDOM SHORT ANSW Remember Remember Remember		CO 6
2 3 4	 PART – A (S Define the joint moments of order 3 about the origin of two random variables. Define the correlation between two random variables X and Y for both continuous and discrete cases. Define the joint central moments of order 3 of two continuous random variables X and Y. Define the covariance between two random variables X and Y. Define the covariance between two random variables X and Y for both continuous and discrete cases. Define the normalized second central moment of two continuous random 	LE RANDOM SHORT ANSW Remember Remember Remember Remember		CO 6 CO 6 CO 6

S.No	Question	Blooms taxonomy level	How does this Subsume the levels?	Course Outcomes
8	Define the expected value of a function of two random variables.	Remember		CO 6
9	Explain two joint central moments for two-dimensional random variable (X, Y)	Understand	Recall the definition of Central Moments, interpret their physical meaning from the mathematical	CO 6
10	Describe joint characteristic function.	Understand		CO 6
11	How is the expected value of a conditional event defined? Explain.	Understand		CO 6
12	Define Joint Moments about the origin.	Remember		CO 6
13	Define the expected value of joint random variable.	Remember		CO 6
		CIE-II		
1	Define the expected value of a joint random variable of 2-dimensions.	Remember		CO 6
2	Define the joint characteristic function of two random variables for both continuous and discrete cases.	Remember		CO 6
3	Define the joint moment generating function of two random variables for both continuous and discrete cases.	Remember		CO 6
4	List and explain any four properties of joint Gaussian variables.	Understand	Recall the characteristic parameters of gaussian variable, interpret the expression for the joint density function of vector gaussian variable and explain the properties.	CO 7
5	What are the elements of the covariance matrix of two random variables?	Remember		CO 6
6	What is Jacobian? Where is it used in probability theory?	Remember		CO 7
7	Define the joint characteristic function of a 2-dimensional random variable defined?	Remember		CO 6
8	Define the joint moment generating function of a 2-dimensional random variable defined?	Remember		CO 6
	PART – B (I	LONG ANSWI	ER QUESTIONS)	
1	State and prove the properties of correlation between two random variables.	Understand	Recall the definition of correlation, understand the properties of correlation between two random variables and prove the correlation properties.	CO 6

S.No	Question	Blooms taxonomy level	How does this Subsume the levels?	Course Outcomes
2	For two random variables X and Y, prove that $cov(X + a, Y + b) = C_{XY}$ and $cov(aX, bY) = abC_{XY}$.	Understand	Recall the definition of covariance, understand its relationship with correlation and prove the required properties.	CO 6
3	Prove that any two random variables X and Y, the inequality $ \sigma_{XY} \le \sigma_X \sigma_Y$ is true.	Understand	Recall the definition of covariance, understand its relationship with correlation and prove the given inequality.	CO 6
4	Describe any four properties of the covariance between two random variables.	Understand	Recall the definition of covariance, understand its relationship with correlation and prove the required properties.	CO 6
5	Show that the variance of a weighted sum of uncorrelated random variables equals the weighted sum of the variances of the individual random variables.	Understand	Recall the definition of covariance, understand its relationship with correlation and prove the required properties.	CO 6
6	Show that the joint characteristic function of two independent random variables is equal to the product of the individual characteristic functions.	Understand	Recall the definition of joint characteristic function, condition for independence and prove the given property of joint characteristic function.	CO 6
7	Show that the characteristic function of sum of two independent random variables is equal to the product of the individual characteristic functions.	Understand	Recall the definition of joint characteristic function, condition for independence and prove the given property of joint characteristic function.	CO 6
8	Find variance and covariance of X- 2Y. If $E[X]=2$, $E[Y]=3$, $E[XY]=10$, $E[X^2]=9$, and $E[Y^2]=16$.	Understand	Recall the definition of covariance and variance, understand the relationship and compute variance and covariance of sum of two variables.	CO 6
9	Prove that the moment generating function of sum of two independent random variables is equal to the product of the individual moment generating functions.	Understand	Recall the definition of joint moment generating function, condition for independence and prove the given property of joint moment generating function.	CO 6
		CIE-II		
1	For random variables X, Y and Z, prove that $cov(X + Y, Z) =$ cov(X, Z) + cov(Y, Z).	Understand	Recall the definition of covariance, understand its relationship with correlation and prove the required property.	CO 7
2	Explain the Gaussian density function for <i>N</i> random variables.	Understand	Recall the Gaussian density function of scalar random variable, extend the same to N-dimensional vector random variable and describe the properties of N-dimensional Gaussian density	CO 7

S.No	Question	Blooms taxonomy level	How does this Subsume the levels?	Course Outcomes
3	Explain the linear transformations of Gaussian random variables.	Apply	Recall the transformation of scalar random variable, extend the same to the linear transformation of N- dimensional vector random variable using $N \times N$ transformation matrix and describe the properties of the output random variable	CO 7
4	Explain the Gaussian density function for two random variables.	Understand	Recall the Gaussian density function of scalar random variable, extend the same to 2-dimensional vector random variable and describe the properties of 2-dimensional Gaussian density function.	CO 7
5	State the properties of jointly Gaussian random variables.	Understand	Recall the Gaussian density function of scalar random variable, extend the same to joint (vector) random variable and describe the properties of the jointly Gaussian density	CO 7
6	Show that the linear transformation of vector Gaussian random variable is another vector Gaussian random variable. What is the mean and variance of the resulting variable?	Apply	Recall the Gaussian density function of scalar random variable, understand the linear transformation of N-dimensional vector random variable and apply using $N \times N$ transformation matrix to show that the output Gaussian random variable.	CO 7
	PART – C (Problem Se	olving and Cr	itical Thinking Questions)	
1	The joint density function of two random variables <i>X</i> and <i>Y</i> is $f_{X,Y}(x, y) =$ $\begin{cases} \frac{(x+y)^2}{40} & -1 \le x \le 1; -3 \le y \le 3\\ 0 & elsewhere\\ \text{Find (a) the variances of X and Y, and (b) the correlation coefficient. \end{cases}$	Understand	Recall the definition of covariance, understand its relationship with correlation, and solve the required variances and correlation coefficient.	CO 7
2	If the joint density function is $f_{X,Y}(x,y)$ $= \begin{cases} x + y & 0 \le x \le 1, \ 0 \le y \le \\ 0 & otherwise \end{cases}$ Find the correlation coefficient.	Understand	Recall the definition of covariance, understand its relationship with correlation, and solve the correlation coefficient.	CO 7
3	Find the coefficient of correlationbetween X and Y from the data given.Assume that X and Y are uniformrandom variables. \overline{X} 1234Y24810	Understand	Recall the definition of correlation coefficient of discrete variable, understand the related expression, and solve for the correlation coefficient.	CO 6
4	For two random variables X and Y, the joint density function is $f_{X,Y}(x, y) = 0.15\delta(x + 1)\delta(y) + 0.1\delta(x)\delta(y) + 0.1\delta(x)\delta(y - 2) + 0.4\delta(x - 1)\delta(y + 2) + 0.2\delta(x - 1)\delta(y - 1) + 0.2\delta(x - 1)\delta(y - 3)$	Understand	Recall the definitions of correlation coefficient of discrete variable, understand the correlation and orthogonality, and solve for the correlation coefficient.	CO 6

S.No	Question	Blooms taxonomy level	How does this Subsume the levels?	Course Outcomes
	Find (a) the correlation and (b) the correlation coefficient of <i>X</i> and <i>Y</i> . (c) Are <i>X</i> and <i>Y</i> either uncorrelated or orthogonal?			
5	Two random variables X and Y have the joint characteristic function $\emptyset_{X,Y}(w_1,w_2)=\exp(-2w_1^2-8w_2^2)$. Show that X and Y are both zero mean and that they are uncorrelated.	Understand	Recall the definition of joint characteristic function, understand the condition for correlation between two variables, solve and check for this condition and check the result.	CO 6
6	Calculate the following i) The variance of the sum of X and Y ii) The variance of the difference of X and Y for two random variables X and Y have zero mean and variance $\sigma_X^2 =$ 16 and $\sigma_Y^2 =$ 36 and correlation coefficient is 0.5.	Understand	Recall the definition of covariance, understand its relationship with correlation and compute the required variances using this relationship.	CO 6
7	The joint density function of X and Y is $f(x, y) = \begin{cases} \frac{1}{100}, & 0 < x < 5, 0 < y < 20\\ 0, & elsewhere \end{cases}$	Understand	Recall the definition of expectation operator, understand the joint moments, and their expressions, and compute the required expectations.	CO 6
	Find the expected value of the functions (a). XY (b). $X^{2}Y$ and (c) $(XY)^{2}$			
		CIE-II		
1	Let two random variables Y_1 and Y_2 be linear transformations of X_1 and X_2 given by $Y_1 = X_1 + X_2$, $Y_2 = 2X_1 + 3X_2$. If $f_{X_1 X_2}(x_1, x_2)$ is a joint density function of X_1 and X_2 , then find the joint density function of Y_1 and Y_2 .	Understand	Recall the transformation of scalar random variable, extend the same to the linear transformation of 2- dimensional vector random variable using 2×2 transformation matrix and solve for the output properties of the output joint density function.	CO 7
2	Consider two random variables X and Y such that $Y = -4X + 20$. The mean value and the variance of X are 4 and 2 respectively. Find the correlation between X and Y. comment on the result.	Apply	Recall the transformation of scalar random variable, and understand the covariance between two variables, and solve the correlation between these variables.	CO 7
3	Two random variables <i>X</i> and <i>Y</i> have mean values $\overline{X} = 1$ and $\overline{Y} = 1$, variances $\sigma_x^2 = 4$ and $\sigma_y^2 = 2$ and a correlation coefficient $\rho_{XY} = 0.2$. Define two new random variables V = -X - Y and $W = 2X + Y$. Find (a) correlations of <i>V</i> and <i>W</i> and (b) correlation coefficient ρ_{VW} .	Apply	Recall the transformation of scalar random variable, extend the same to the linear transformation of 2- dimensional vector random variable using 2×2 transformation matrix and solve for the output properties of the output joint density function.	CO 7
4	Consider two correlated random variables X and Y with variances σ_x and σ_y respectively. These variables are to be transformed to uncorrelated random variables X_I and Y_I by	Apply	Recall the transformation of correlated 2-D vector random variable to uncorrelated ones, understand the axis rotation operation involved in this and derive expression	CO 7

S.No	Question	Blooms taxonomy level	How does this Subsume the levels?	Course Outcomes
	coordinate rotation as $X_1 = X \cos \theta + Y \sin \theta$ and $Y_1 = Y \cos \theta - X \sin \theta$, where θ is the rotation angle. Show that the angle of rotation is given by $\theta = \frac{1}{2} \tan^{-1} \left[\frac{2\rho \sigma_x \sigma_y}{\sigma_x^2 - \sigma_y^2} \right]$		for finding the angle of rotation required for this conversion.	
5	Consider two correlated random variables X and Y with variances 4 and 9 respectively, which are . transformed to uncorrelated variables X_1 and Y_1 by angle of rotation $\theta = \pi/8$. Compute the correlation coefficient between the variables.	Understand	Consider two correlated random variables X and Y with variances 4 and 9 respectively, which are . transformed to uncorrelated variables X_I and Y_I by angle of rotation $\theta = \pi/8$. Compute the correlation coefficient between the variables.	CO 7
6	Two Gaussian random variable X_1 and X_2 have zero mean and variances $\sigma^2_{X_1} = 4$ and $\sigma^2_{X_2} = 9$. Their covariance is $C_{X_1X_2} = 3$. Find the covariance $C_{Y_1Y_2}$ of new random variables Y_1 and Y_2 , if the transformation is given as $Y_1 = X_1 - $	Understand	Recall the transformation of scalar random variable, extend the same to the linear transformation of 2- dimensional vector random variable using 2×2 transformation matrix and solve for the covariance between the output variables.	CO 7
	$2X_2$; $Y_2 = 3X_1 + 4X_2$			
		MODULE -	IV	
	$2X_2$; $Y_2 = 3X_1 + 4X_2$			
	$2X_2$; $Y_2 = 3X_1 + 4X_2$ RANDOM PROCESS	ES – TEMPOI	IV RAL CHARACTERISTICS ER QUESTIONS)	
1	$2X_2$; $Y_2 = 3X_1 + 4X_2$ RANDOM PROCESS	ES – TEMPOI	RAL CHARACTERISTICS	CO 8
<u> </u>	$2X_2; Y_2 = 3X_1 + 4X_2$ RANDOM PROCESS PART – A (S	ES – TEMPOI HORT ANSW	RAL CHARACTERISTICS ER QUESTIONS)	CO 8 CO 8
	$2X_2 ; Y_2 = 3X_1 + 4X_2$ RANDOM PROCESS PART – A (S Define random process.	ES – TEMPOI HORT ANSW Remember	RAL CHARACTERISTICS ER QUESTIONS)	
2	$2X_2 ; Y_2 = 3X_1 + 4X_2$ RANDOM PROCESS PART – A (S Define random process. Define ergodicity. Explain the first order stationary process. Explain second order stationary	ES – TEMPOI HORT ANSW Remember Remember	RAL CHARACTERISTICS ER QUESTIONS) Recall the definition of the first order stationary process, and then explain the Ergodicity by stating that the two	CO 8 CO 8 CO 8
2 3	$2X_2 ; Y_2 = 3X_1 + 4X_2$ RANDOM PROCESS PART – A (S Define random process. Define ergodicity. Explain the first order stationary process. Explain second order stationary State wide sense stationary random process.	ES – TEMPOI HORT ANSW Remember Remember Understand	RAL CHARACTERISTICS ER QUESTIONS) Recall the definition of the first order stationary process, and then explain the Ergodicity by stating that the two averages are same.	CO 8 CO 8
2 3 4 5 6	$2X_2 ; Y_2 = 3X_1 + 4X_2$ RANDOM PROCESS PART – A (S) Define random process. Define ergodicity. Explain the first order stationary process. Explain second order stationary State wide sense stationary random process. Define strict sense stationary random	ES – TEMPOI HORT ANSW Remember Remember Understand Understand Remember Remember	RAL CHARACTERISTICS ER QUESTIONS) Recall the definition of the first order stationary process, and then explain the Ergodicity by stating that the two averages are same.	CO 8 CO 8 CO 8 CO 8 CO 8
2 3 4 5	$2X_2 ; Y_2 = 3X_1 + 4X_2$ RANDOM PROCESS PART – A (S Define random process. Define ergodicity. Explain the first order stationary process. Explain second order stationary State wide sense stationary random process.	ES – TEMPOI HORT ANSW Remember Understand Understand Remember Remember Understand	RAL CHARACTERISTICS ER QUESTIONS) Recall the definition of the first order stationary process, and then explain the Ergodicity by stating that the two averages are same.	CO 8 CO 8 CO 8 CO 8 CO 8 CO 8
2 3 4 5 6 7 8	$2X_2 ; Y_2 = 3X_1 + 4X_2$ RANDOM PROCESS PART – A (S Define random process. Define ergodicity. Explain the first order stationary process. Explain second order stationary State wide sense stationary random process. Define strict sense stationary random Explain briefly about the Ergodicity. Define deterministic random process.	ES – TEMPOI HORT ANSW Remember Understand Understand Remember Remember Understand	RAL CHARACTERISTICS ER QUESTIONS) Recall the definition of the first order stationary process, and then explain the Ergodicity by stating that the two averages are same. Recall the definitions of both the time average and the ensemble average of a random process, and then explain the Ergodicity by stating that the two	CO 8 CO 8 CO 8 CO 8 CO 8 CO 8 CO 8
2 3 4 5 6 7 7 8 8 9	$2X_2 ; Y_2 = 3X_1 + 4X_2$ RANDOM PROCESS PART – A (S Define random process. Define ergodicity. Explain the first order stationary process. Explain second order stationary State wide sense stationary random process. Define strict sense stationary random Explain briefly about the Ergodicity. Define deterministic random process. Define distribution Function of a	ES – TEMPOI HORT ANSW Remember Remember Understand Remember Remember Understand	RAL CHARACTERISTICS ER QUESTIONS) Recall the definition of the first order stationary process, and then explain the Ergodicity by stating that the two averages are same. Recall the definitions of both the time average and the ensemble average of a random process, and then explain the Ergodicity by stating that the two averages are same.	CO 8 CO 8 CO 8 CO 8 CO 8 CO 8 CO 8 CO 8
2 3 4 5 6 7 7 8 8 9 11.	$2X_2 ; Y_2 = 3X_1 + 4X_2$ RANDOM PROCESS $PART - A (S)$ Define random process. Define ergodicity. Explain the first order stationary process. Explain second order stationary State wide sense stationary random process. Define strict sense stationary random Explain briefly about the Ergodicity. Define deterministic random process. Define distribution Function of a Define mean ergodic process.	ES – TEMPOI HORT ANSW Remember Understand Understand Remember Understand Remember Understand	RAL CHARACTERISTICS ER QUESTIONS) Recall the definition of the first order stationary process, and then explain the Ergodicity by stating that the two averages are same. Recall the definitions of both the time average and the ensemble average of a random process, and then explain the Ergodicity by stating that the two averages are same.	CO 8 CO 8 CO 8 CO 8 CO 8 CO 8 CO 8 CO 8
2 3 4 5 6 7 7 8 8 9 11. 12.	$2X_2 ; Y_2 = 3X_1 + 4X_2$ RANDOM PROCESS PART – A (S Define random process. Define ergodicity. Explain the first order stationary process. Explain second order stationary State wide sense stationary random process. Define strict sense stationary random Explain briefly about the Ergodicity. Define deterministic random process. Define distribution Function of a Define mean ergodic process. State correlation ergodic process.	ES – TEMPOI HORT ANSW Remember Understand Understand Remember Understand Remember Remember Remember Remember Remember Remember Remember	RAL CHARACTERISTICS ER QUESTIONS) Recall the definition of the first order stationary process, and then explain the Ergodicity by stating that the two averages are same. Recall the definitions of both the time average and the ensemble average of a random process, and then explain the Ergodicity by stating that the two averages are same.	CO 8 CO 8 CO 8 CO 8 CO 8 CO 8 CO 8 CO 8
2 3 4 5 6 7 7 8 8 9 11. 12. 13.	$2X_2$; $Y_2 = 3X_1 + 4X_2$ RANDOM PROCESSPART – A (S Define random process.Define ergodicity.Explain the first order stationary process.Explain second order stationary State wide sense stationary random process.Define strict sense stationary random Explain briefly about the Ergodicity.Define deterministic random process.Define auto correlation ergodic process.Define auto correlation function of a	ES – TEMPOI HORT ANSW Remember Understand Understand Remember Understand Remember Remember Remember Remember Remember Remember Remember	RAL CHARACTERISTICS ER QUESTIONS) Recall the definition of the first order stationary process, and then explain the Ergodicity by stating that the two averages are same. Recall the definitions of both the time average and the ensemble average of a random process, and then explain the Ergodicity by stating that the two averages are same.	CO 8 CO 8 CO 8 CO 8 CO 8 CO 8 CO 8 CO 8
2 3 4 5 6 7 7 8 8 9 11. 12.	$2X_2 ; Y_2 = 3X_1 + 4X_2$ RANDOM PROCESS PART – A (S Define random process. Define ergodicity. Explain the first order stationary process. Explain second order stationary State wide sense stationary random process. Define strict sense stationary random Explain briefly about the Ergodicity. Define deterministic random process. Define distribution Function of a Define mean ergodic process. State correlation ergodic process.	ES – TEMPOI HORT ANSW Remember Understand Understand Remember Understand Remember Remember Remember Remember Remember Remember Remember	RAL CHARACTERISTICS ER QUESTIONS) Recall the definition of the first order stationary process, and then explain the Ergodicity by stating that the two averages are same. Recall the definitions of both the time average and the ensemble average of a random process, and then explain the Ergodicity by stating that the two averages are same.	CO 8 CO 8 CO 8 CO 8 CO 8 CO 8 CO 8 CO 8

S.No	Question	Blooms taxonomy level	How does this Subsume the levels?	Course Outcomes
17.	State Cross Correlation Ergodic	Remember		CO 8
18.	Define Auto Covariance function.	Remember		CO 8
19.	State Cross Covariance Function.	Remember		CO 8
	PART – B (I	LONG ANSWI	ER QUESTIONS)	
1.	Explain classification of random processes with neat sketches.	Remember		CO 8
2.	Explain and write conditions for a wide sense stationary random process.	Remember		CO 8
3.	Briefly explain the distribution and density function in the context of stationary and independent random process	Understand	Recall the definition of 1-order and 2-order stationarity and the independence related to random processes and explain the required conditions.	CO 8
4.	Show that the process $X(t) = A \cos(w_0t+\theta)$ is wide sense stationary if it is assumed that A and w_0 are constants and θ is uniformly distributed random variable over the interval $(0,2\pi)$.	Understand	Recall and understand the definition of wide sense stationarity (WSS), compute the mean and ACF for the given process and show that the process is WSS.	CO 8, CO 9
5.	A random process $Y(t) = X(t)Cos$ (wt+ θ), where $X(t)$ is wide sense stationery, w is constant and θ is uniformly distributed random variable over the interval (π , - π). Find E[Y(t)].	Remember	Recall the definition of wide sense stationarity (WSS), understand the mean and ACF condition for WSS process, and compute the expectation of the output random process.	CO 8, CO 9
6.	A random process consists of three sample functions $X(t,s_1)=2$, $X(t,s_2)=2$ $\cos(t)$, and $X(t,s_3)=3$ $\sin(t)$, each occurring with equal probability. Is the process stationary in any sense?	Understand	Recall the concept of sample functions of a random process, understand the stationarity conditions, compute mean and ACF to verify the stationarity.	CO 8
7.	Distinguish between stationary and nonstationary random processes.	Understand	Recall and understand the conditions for stationarity and contrast between the stationary and nonstationary processes.	CO 8
8.	A random process $X(t)$ = a.cos (wt+ θ), where w and θ are constants and a is uniformly distributed random variable over the interval (-A, A). Check X(t) for stationarity.	Understand	Recall the definition of stationarity, understand the mean and ACF condition for WSS process, and compute the expectation of the output random process.	CO 8, CO 9
9.	A random process $X(t)=at+b$, where b is constant and a is uniformly distributed random variable over the interval (-2, 2). Check $X(t)$ for stationary.	Remember	Recall and understand the definition of stationarity, compute the mean and ACF and check whether stationarity conditions are satisfied or not.	CO 8, CO 9
10.	Obtain an expression for cross correlation function of input and output processes of a linear time invariant system.	Analyze	Recall and understand the definitions of cross correlation and the convolution operation, apply an input random process to LTI system, analyze the output and finally obtain cross correlation between the input and output processes.	CO 11
11.	State and prove any three properties of cross correlation function.	Understand	Recall and understand the definition of cross correlation, state the	CO 9

S.No	Question	Blooms taxonomy level	How does this Subsume the levels?	Course Outcomes
			properties of cross correlation of two random processes and derive the expressions to demonstrate the properties analytically.	
12.	Explain and prove any four properties of auto correlation function.	Understand	Recall and understand the definition of auto correlation, state the properties of auto correlation of two random processes and derive the expressions to demonstrate the properties analytically.	CO 9
13.	State and prove any four properties of cross covariance function.	Understand	Recall and understand the definition of cross covariance, state the properties of cross covariance of two random processes and derive the expressions to demonstrate the properties analytically.	CO 9
14.	State and prove any four properties of auto covariance function.	Remember	Recall and understand the definition of auto covariance, state the properties of auto covariance of two random processes and derive the expressions to demonstrate the properties analytically.	CO 9
15.	Analyze the output of an LTI system driven by a random process and develop the expression for the mean value of output process.	Analyze	Recall the definition of MS value of a random process and understand the convolution operation, apply an input random process to LTI system, analyze the output and finally obtain the mean of output process.	CO 11
16.	Analyze the output of an LTI system driven by a random process and develop the expression for the autocorrelation value of output process.	Analyze	Recall the definition of MS value of a random process and understand the convolution operation, apply an input random process to LTI system, analyze the output and finally obtain the autocorrelation of output process.	CO 11
17.	Analyze the output of an LTI system driven by a random process and develop the expression for the mean square value of output process.	Analyze	Recall the definition of MS value of a random process and understand the convolution operation, apply an input random process to LTI system, analyze the output and finally obtain the mean square value of output process.	CO 11
	PART – C (Problem S	olving and Cr	itical Thinking Questions)	
1	Find whether $X(t)$ is wide sense stationary or not, if A random process is given as $X(t) = At$, where A is a uniformly distributed random variable on (0,2).	Understand	Recall and understand the definition of wide sense stationarity (WSS), compute the mean and ACF for the given process and check whether the process is WSS.	CO 8, CO 9
2	Let two random processes $X(t)$ and $Y(t)$ be defined by $X(t) = A \cos(w_0 t) + B \sin(w_0 t)$ and $Y(t) = B \cos(w_0 t) - A \sin(w_0 t)$. Where A and B are random variables and w_0 is constant. Show that $X(t)$ and $Y(t)$ are jointly wide sense stationery, assume A and B are	Understand	Recall the definition of wide sense stationarity (WSS) process, appreciate the linear transformation of 2- dimensional vector random variable using 2 \times 2 transformation matrix, compute the mean and ACF of the output process and check for wide	CO 8, CO 9

S.No	Question	Blooms taxonomy level	How does this Subsume the levels?	Course Outcomes
	uncorrelated zero- mean random variables with same variance.		sense stationarity.	
3	Determine whether $X_1(t)$ and $X_2(t)$ are jointly wide sense stationary given that X(t) is a wide sense stationary random process. For each process $X_i(t)$ defined below (a) $X_1(t) = X(t + a)$ (b) $X_2(t) = X(at)$	Understand	Recall the definition of wide sense stationarity (WSS) process, appreciate the time translation and time scaling of a signal, compute the mean and ACF of the output processes and check for wide sense stationarity.	CO 8, CO 9
4	Define a random process by X(t)=A $\cos(\pi t)$, where A is a gaussian random variable with zero mean and variance σ^2_A a) find the density functions of X(0) and X(1) b) is X(t) is stationary in any sense?	Understand	Recall the definition of stationarity in strict sense or wide sense, understand and the stationarity conditions, compute the mean and ACF of the output processes and check for any kind of stationarity.	CO 4
5	X(t) is a stationary random process with a mean of 3 and an auto correlation function of $9 + 2e^{- \tau }$ Find the variance of the random process.	Understand	Recall the properties of auto correlation function (ACF), understand the method of obtaining MS value from ACF and then compute the variance.	CO 9
6	Given the random process X(t)=A sin(wt+ θ) where A and w are constants and θ is a random variable uniformly distributed on the interval (- π , π) define a new random process Y(t)= X ² (t). Find whether X(t) and Y(t) wide sense stationary? Are X(t) and Y(t) jointly wide sense stationary?	Understand	Recall the definition of (joint) wide sense stationarity, understand the stationarity conditions, compute the mean and ACF of the input processes and the crosscorrelation function of input and output processes.	CO 8, CO 9
7	A random process is defined as $X(t)=A$ $\cos(w_ct+\theta)$ where θ is a uniform random variable over $(0,2\pi)$. Verify the process is ergodic in the mean sense and auto correlation sense.	Understand	Recall the definition of stationarity, understand the ergodicity conditions, compute the time and ensemble statistics and check for ergodicity of the process.	CO 8, CO 9
8	Show that $Z(t)$ is WSS but not strictly stationary, where $Z(t) = A \cos(\omega_0 t) + B$ $\sin(\omega_0 t)$ is a random process. If A and B are uncorrelated zero mean random process having different density functions but the same variance σ^2 .	Understand	Recall the definition of (joint) wide sense stationarity, understand the stationarity conditions, compute the mean and ACF of the input processes and the crosscorrelation function of input and output processes	CO 4
9	Find E[Z], E[Z ²] and σ_z^2 of the random process Z(t) = X ₁ cos ω 0t - X ₂ sin ω 0t, and ω 0 a constant, if X ₁ and X ₂ are independent Gaussian random variables, each with zero mean and variance σ^2 .	Understand	Recall the definition of moments, understand transformation of scalar random variable by time functions, and compute the variance of the output process.	CO 9
10	Find mean, variance, and average power for a stationary ergodic random process having the Auto correlation function with the periodic components as $R_{XX}(\tau) = 25 + \frac{4}{1 + 6\tau^2} \cos 2\tau$	Understand	Recall the definition of moments and ergodicity, understand the conditions for stationarity and ergodicity on ACF, and finally compute the required parameters of the given process.	CO 9

S.No	Question	Blooms taxonomy level	How does this Subsume the levels?	Course Outcomes
11	Statistically independent zero mean random process X(t) and Y(t) have auto-correlation functions $R_{XX}(\tau)=e^{- \tau }$ and $R_{YY}(\tau)=\cos(2\pi\tau)$. Find the auto- correlation function of the difference w(t)=x(t)-y(t).	Understand	Recall and understand the definitions of ACF and statistical independence and compute the required parameters of the given process.	CO 9
12	Given $E[X(t)]=6$ and $R_{xx}(t,t+\tau)=$ 36+25 exp(- τ) for a random process X(t). Indicate which is true: (a). X(t) is first order stationary (b). X(t) is ergodic. (c). X(t) is wide sense stationary.	Understand	Recall and understand the definition of stationarity and ergodicity, understand the conditions for stationarity and ergodicity, compute the mean and ACF and finally check for the stationarity or ergodicity or both.	CO 8, CO 9
13	The random process $X(t) = u(t) \cos(w_0t+\theta)$, where w_0 is constant and θ is uniformly distributed random variable over the interval $(0,\pi)$. Find the power in $X(t)$ if $u(t)$ is a step function.	Understand	Recall the definition of power of a random process, understand the relation between ACF and power, compute the ACF and hence power of the given process.	CO 9
14	The random process $X(t) = A_0 \cos(w_0 t + \theta)$, where A_0 and w_0 are constants and θ is uniformly distributed random variable over the interval $(-\pi, \pi)$. Find the power in $X(t)$.	Understand	Recall the definition of power of a random process, understand the relation between ACF and power, compute the ACF and hence power of the given process.	CO 9
15	An LTI system with an impulse response $h(t)$ was driven by a WSS process $X(t)$. Find the mean and MS values of the system output $Y(t)$.	Analyze	Recall and understand the moments and convolution integral, compute the output of the LTI system driven by WSS process, and analyze the output process to compute required moments.	CO 11
16	An LTI system with an impulse response $h(t)$ was driven by a WSS process $X(t)$ having an ACF $R_{xx}(\tau)$. Show that the ACF of the system output $Y(t)$ is given by the convolution of $R_{yy}(\tau)$ with $h(\tau)$ and $h(\tau)$	Analyze	Recall and understand the ACF of a process and impulse response of an LTI system, apply the convolution integral, compute the output of the LTI system driven by WSS process, and analyze the output process and find its ACF.	CO 11
		MODULE ·	V	
	RANDOM PROCESS	SES – SPECTR	AL CHARACTERISTICS	
			ER QUESTIONS)	
1 2	State wiener Khinchin theorem. Explain any two properties of cross- power density spectrum of two random processes.	Remember Understand	 Recall and understand the definition of cross-power density and state the properties of cross-power density spectrum of two random processes.	CO 10 CO 10
3	Define cross –spectral density and its examples.	Remember		CO 10
4	Explain any two uses of spectral density spectrum.	Understand	Recall the definition of auto-power density, understand its relationship with ACF and state the uses of spectral density spectrum of a random	CO 10
5	Define power density spectrum.	Remember		CO 10

S.No	Question	Blooms taxonomy level	How does this Subsume the levels?	Course Outcomes
6	Explain any two properties of power density spectrum.	Understand	Recall the definition of auto-power density, understand its relationship with ACF and state the properties of spectral density spectrum of a random process.	CO 10
7	Define Narrow band random processes function.	Remember		CO 10
8	Prove that $S_{XX}(\omega) = S_{XX}(-\omega)$	Remember		CO 10
9	Define Average cross power.	Remember		CO 10
10	Explain the expression for the noise equivalent bandwidth of filter.	Understand	Recall the definition of filter frequency response and bandwidth, understand the noise equivalent bandwidth, and explain the meaning of each parameter in the expression.	CO 12
	PART – B (I	LONG ANSWI	ER QUESTIONS)	
1	What is significance of the power density spectrum of a random process? Derive the expression for it.	Apply		CO 10
2	Explain the cross-power density spectrum of two random processes and derive the expression for it.	Apply	Define the CCF and cross-power density spectrum, understand the relation between them, derive the cross power density spectrum of the two processes.	CO 10
3	Explain and derive the cross power spectral density of input and output random processes of a linear time invariant system.	Apply	Define the cross power density spectrum, understand the CCF and convolution integral, derive the cross power density spectrum from the CCF between input and output processes of an LTI system.	CO 12
4	State and Prove Wiener-Khinchin theorem.	Apply	State the Wiener-Khinchin theorem and understand the definitions of ACF, apply this in the definition of the power density spectrum of a random process, and prove the Wiener-Khinchin theorem.	CO 10
5	State and prove the properties of power density spectrum of a random process.	Apply	Define the power density spectrum, understand the ACF, apply this knowledge to prove the properties of power density spectrum	CO 10
6	Analyze any two properties of cross power density spectrum of input and output random processes of a LTI system.	Analyze	Define the cross power density spectrum, understand the convolution integral, derive the cross power density spectrum from the cross correlation of input and output of an LTI system, and analyze the system output properties.	CO 12
7	Derive the relation between power spectrum and auto correlation function of a random process.	Apply	Define the power density spectrum of a random process, understand the ACF and fourier transform, apply fourier transform on ACF to derive the power spectrum of the process.	CO 10

S.No	Question	Blooms taxonomy level	How does this Subsume the levels?	Course Outcomes
8	Derive the relation between cross power spectrum and cross correlation function of a random process.	Apply	Define the cross power density spectrum of a random process, understand the cross correlation function (CCF) and fourier transform, apply fourier transform on CCF to derive the cross-power spectrum of the process.	CO 10
9	Given that $X(t) = \sum_{i=1}^{N} \alpha_i X_i(t)$, where { α_i } is a set of real constants and the process $X_i(t)$ are stationary and orthogonal, show that $S_{XX}(w) = \sum_{i=1}^{N} (\alpha_i)^2 S_{XiXi}(w)$.	Apply	Recall the definition of power spectrum of the random, understand the orthogonality and the stationarity conditions and the linear transformation of processes, apply these concepts to obtain the power spectrum of the output processs.	CO 10
10	Find the power density spectrum of the random process for which $R_{XX}(\tau)=P \cos^4(\omega_0\tau)$, if P and ω_0 are constants. Determine the power in the process.	Apply	Recall and understand the ACF and power spectrum of a random process, apply this to develop the expression for the power density spectrum of process.	CO 10
11	Find the noise bandwidth of the power spectrum $S_{XX}(w)=1/[1+(\omega/W)^2]^N$, where W>0 is a constant and N>=2 is an integer.	Apply	Recall and understand the definition of power density spectrum and bandwidth, understand the noise equivalent bandwidth, and compute the noise bandwidth of the given power spectrum.	CO 12
12	A random process has the power density spectrum $S_{XX}(w)=6\omega^2/(1+\omega^2)^4$, find the average power.	Understand	Recall the definition of power density spectrum and bandwidth, understand and apply the method of obtaining process power from the power density to find the average power.	CO 10
13	Distinguish between white and colored noises. Where these noises are observed? Explain.	Analyze	Examine and bandwidth, apply this to find the power density spectrum of a noise process, analyze the shape of the power spectrum and Distinguish between white and colored noises	CO 12
14	An LTI system with an impulse response $h(t)$ was driven by white noise having a power density spectrum of $N_o/2$. Find the mean square value of the system output $Y(t)$.	Analyze	Recall the definition of MS value of a random process and understand the convolution operation, apply white random process to LTI system, analyze the output and finally obtain the mean square value of output process.	CO 12
15	Examine the autocorrelation and power density spectrum of white noise process.	Analyze	Recall the definition of ACF and power density spectrum of a random process, understand and compute the ACF of the white noise, apply this to compute the power density spectrum and examine the nature of ACF and power density.	CO 12

S.No	Question	Blooms taxonomy level	How does this Subsume the levels?	Course Outcomes
16	Examine the autocorrelation and power density spectrum of colored noise process and comment.	Analyze	Recall the definition of ACF and power density spectrum of a random process, understand and compute the ACF of the colored noise, apply this to compute the power density spectrum and examine the nature of ACF and power density, and comment.	CO 12
	PART – C (Problem S	olving and Ci	itical Thinking Questions)	
1	Find an expression for its power spectral density S_{XX} (ω).Let the auto correlation function of a certain random process X(t) be given by $R_{XX}(\tau) = A^2/2 \cos(\omega \tau)$.	Apply	Recall and understand the ACF and power spectrum of a random process, apply this to find the power density spectrum of process.	CO 10
2	Describe the power spectral density function for a wide sense stationary process X(t) that has autocorrelation function $R_{XX}(\tau) = A e^{-b \tau}$ where $b > 0$. $S_{XX}(f)$ and calculate the average power $E[X^2(t)]$.	Apply	Recall and understand the ACF and power spectrum of a random process, understand the wide sense stationary process, apply this to find the power density spectrum and average power of given process	CO 10
3	Find the average power in a random process defined by $X(t)=A \cos(w_0t+\Theta)$ where A and w_0 are constants and Θ is a random variable uniformly distributed on the interval $(0,\pi/2)$.	Apply	Recall and understand the ACF and power spectrum of a random process, understand the wide sense stationary process, apply this to find the power density spectrum and average power of given process.	CO 10
4	Find the autocorrelation function if the power Spectral density of X(t) is given by $S_{XX}(w)=1/(1+w^{2})$ for w>0.	Apply	Recall and understand the ACF and power spectrum of a random process, understand the wide sense stationary process, apply this to find the ACF from the power density spectrum of given process.	CO 10
5	The auto correlation function of ana periodic random process is $R_{XX}(T) = e^{-i\tau t}$. Find the PSD and average power of the signal.	Apply	Recall and understand the ACF and power spectrum of a random process, understand the wide sense stationary process, apply this to find the power density spectrum and average power of given process.	CO 10
6	The cross spectral density of two random process X (t) and Y (t) is $S_{XY}(w)=1+(jw/k)$ for $-k and 0elsewhere Where k > 0. Find thecross-correlation function between theprocesses?$	Apply	Recall and understand the CCF and cross power spectrum of two random processes, apply this to find the CCF from the cross-power density spectrum of given process.	CO 10
7	A random process has the power density spectrum $S_{XX}(w)=w^2/(w^2+1)$.Find the average power in the random process.	Apply	Recall and understand the power spectrum of a random process, understand the wide sense stationary process, apply this to find the average power of given process from its power density spectrum.	CO 10
8	Estimate the power spectral density of a stationary random process for which	Apply	Recall and understand the ACF and power spectrum of a random process,	CO 10

S.No	Question	Blooms taxonomy level	How does this Subsume the levels?	Course Outcomes
	auto correlation function is $R_{XX}(\tau)=6.e^{-\alpha \tau }$.		understand the wide sense stationary process, apply this to find the power density spectrum and average power of given process.	
9	Find i) The Auto correlation function of a random process Y(t), if it has the power spectral density $S_{YY}(\omega)=9/(\omega^2+64)$. ii) The average power of the process.	Apply	Recall and understand the ACF and power spectrum of a random process, understand the wide sense stationary process, apply this to find the ACF from the power density spectrum and average power of given process	CO 10
10	Find the RMS bandwidth of the power spectrum $S_{XX}(w) = \omega^2 / [1+(\omega/W)^2]^4$, where W>0 is a constant.	Analyze	Recall and understand the definition of power density spectrum and bandwidth, understand the noise equivalent bandwidth, and compute the noise bandwidth of the given power spectrum.	CO 12
11	A random process has the power density spectrum $S_{XX}(w) = 6\omega^2/1 + \omega^4$, find the average power.	Apply	Recall and understand the power spectrum of a random process, understand the wide sense stationary process, apply this to find the average power of given process from its power density spectrum.	CO 10
12	Find the cross-correlation function of sin(wt) and cos(wt) and hence find its cross power spectral density.	Apply	Define the cross power density spectrum of a random process, understand the cross correlation function (CCF) and fourier transform, apply fourier transform on CCF to derive the cross-power spectrum of the process.	CO 10
14	A random process has a power spectrum $S_{XX}(w)=4-(\omega^2/9)$; $ \omega \le 6$ = 0; elsewhere Find (a) the average power. (b) autocorrelation function of the process.	Apply	Recall and understand the ACF and power spectrum of a random process, understand the wide sense stationary process, apply this to find the ACF from the power density spectrum, and also average power of given process.	CO 10

Prepared by: Dr. M V Krishna Rao, Professor, ECE

HOD, ECE