INSTITUTE OF AERONAUTICAL ENGINEERING
(Autonomous)
Dundigal, Hyderabad -500 043
MECHANICALENGINEERING
COURSE DESCRIPTOR

Course Title	ENGINEERING DRAWING				
Course Code	AME001				
Program	B.Tech				
Semester	AE	EICE			
Course Type	Core				
Regulation	IARE - R16				
Course Structure	Theory			Practical	
	Lectures	Tutorials	Credits	Laboratory	Credits
	2		4	3	4
Chief Coordinator	Prof. B.V. S. N. Rao, Professor				
Course Faculty	Mr.G. Sarat Raju, Assistant Professor Mr A. Anudeep Kumar, Assistant Professor Mr M. Sunil Kumar, Assistant Professor				

I. COURSE OVERVIEW:

One of the best ways to communicate one's ideas is through some form of picture or drawing. This is especially true for the engineer. An engineering drawing course focuses on usage of drawing instruments, lettering, construction of geometric shapes, etc. Students study use of dimensioning, shapes and angles or views of such drawings. Dimensions feature prominently, with focus on interpretation, importance and accurate reflection of dimensions in an engineering drawing. Other areas of study in this course may include projected views, pictorial projections and development of surfaces. This course also gives basic concepts for studying machine drawing, building drawing, circuit drawings etc.
II. COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites	Credits
UG	AHS002	I	Linear Algebra and Differential Equations	4

III. MARKSDISTRIBUTION:

Subject	SEE Examination	CIA Examination	Total Marks
Engineering drawing	70 Marks	30 Marks	100

IV. DELIVERY / INSTRUCTIONAL METHODOLOGIES:

\checkmark	Chalk \& Talk	\checkmark	Quiz	\checkmark	Assignments	x	MOOCs
\checkmark	LCD / PPT	\checkmark	Seminars	x	Mini Project	\checkmark	Videos
x	Open Ended Experiments						

V. EVALUATION METHODOLOGY:

The SEE is conducted for 70 marks of 3 hours duration. The question paper pattern is as follows: two full questions with 'either' 'or' choice will be drawn from each unit. Each question carries 14 marks. There could be a maximum of two sub divisions in a question. All the drawing related courses are evaluated in line with laboratory courses. The distribution shall be 30 marks for internal evaluation (20 marks for day-to-day work, and 10 marks for internal tests) and 70 marks for semester end lab examination. There shall be ONE internal test for 10 marks in each semester.

The emphasis on the questions is broadly based on the following criteria:

50%	To test the objectiveness of the concept.
50%	To test the analytical skill of the concept OR to test the application skill of the concept.

VI. HOW PROGRAM OUTCOMES ARE ASSESSED:

Program Outcomes (POs)		Strength	Proficiency assessed by
PO 1	Engineering knowledge: Capability to apply the knowledge of Mathematics, science and Engineering in the field of Mechanical Engineering.	3	Assignments
PO 2	Problem analysis: An Ability to analyze complex engineering problems to arrive at relevant conclusions using knowledge of Mathematics, Science and Engineering.	2	Assignments
PO 4	Conduct investigations of complex problems: To design and conduct research oriented experiments as well as to analyze and implement data using research methodologies.	1	Assignments

3 = High; 2 = Medium; 1 = Low

VII. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

Program Specific Outcomes (PSOs)		Strength	Proficiency assessed by
PSO 1	Professional Skills: To produce engineering professional capable of synthesizing and analyzing mechanical systems including allied engineering streams	1	Assignments
PSO 2	Problem solving skills: An ability to adopt and integrate current technologies in the design and manufacturing domain to enhance the employability.	-	Assignments
PSO 3	Successful career and Entrepreneurship: To build the nation, by imparting technological inputs and managerial skills to become technocrats.	-	-

3 = High; 2 = Medium; 1 = Low
VIII. COURSE OBJECTIVES (COs):

The course should enable the students to:	
I	Understand the basic principles of engineering drawing and construction of curves used in engineering field
II	Apply the knowledge of interpretation of projection in different quadrants.
III	Understand the projections of solids, when it is inclined to both planes simultaneously
IV	Convert the pictorial views into orthographic view and vice versa.
V	Create intricate details of components through sections and develop its surfaces.

IX. COURSE LEARNING OUTCOMES (CLOs):

$\begin{aligned} & \text { CLO } \\ & \text { Code } \end{aligned}$	CLO's	At the end of the course, the student will have the ability to:	PO's Mapped	Strength of Mapping
AME001.01	CLO 1	Understand the BIS conventions of engineering drawing with basic concepts, ideas and methodology	PO 1	3
AME001.02	CLO 2	Recognize the need of single stroke lettering in defining the components	PO 1	3
AME001.03	CLO 3	Understand the different line types according to BIS standards to engineering drawings.	PO 1	3
AME001.04	CLO 4	Sketch the various types of polygons for applying in solid modeling	PO 2	2
AME001.05	CLO 5	Discuss the various types of scales for engineering application like maps, buildings, bridges.	PO 2	2
AME001.06	CLO 6	Visualize parabolic and elliptical profiles in buildings and bridges	PO 2	2
AME001.07	CLO 7	Visualize cycloidal and involute profiles in developing new products like gears and other engineering applications.	PO 4	1
AME001.08	CLO 8	Solve specific geometrical problems in plane geometry involving points and lines.	PO 4	1
AME001.09	CLO 9	Understand the theory of projection in planes located in various quadrants and apply in manufacturing processes.	PO 2	2
AME001.10	CLO 10	Understand the orthographic projection concepts in solid modeling and apply the concepts in the areas of design.	PO 2	2
AME001.11	CLO 11	Apply the terminology of development of surfaces in the area of chimneys and chutes.	PO 1	3
AME001.12	CLO 12	Visualize the components by isometric projection by representing three dimensional objects in two dimensions in technical and engineering drawings.	PO 1	3
AME001.13	CLO 13	Interpret plumbing drawings typically found in construction by using transformation of projection.	PO 1	3
AME001.14	CLO 14	Convert the orthographic views into pictorial views by using transformation of projection.	PO 1, PO 2	3
AME001.15	CLO 15	Convert the pictorial views into orthographic views by using transformation of projection..	PO 2	2

[^0]
X. MAPPING COURSE LEARNING OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

(CLOs)	Program Outcomes (POs)												Program Specific Outcomes (PSOs)		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CLO 1	3												1		
CLO 2	3												1		
CLO 3	3												1		
CLO 4		2													
CLO 5		2													
CLO 6		2													
CLO 7				1											
CLO 8				1											
CLO 9		2											1		
CLO 10		2											1		
CLO 11	3														
CLO 12	3														
CLO 13	3														
CLO 14	3	2											1		
CLO 15		2													

$$
3 \text { = High; } 2 \text { = Medium; } 1 \text { = Low }
$$

XI. ASSESSMENT METHODOLOGIES-DIRECT

CIE Exams	PO 1	SEE Exams	PO 1	Assignments	PO 2	Seminars	PO 2
Laboratory Practices	PO 2	Student Viva	-	Mini Project	-	Certification	-
Term Paper				Project			

XII. ASSESSMENT METHODOLOGIES-INDIRECT

$\boldsymbol{\iota}$	Early Semester Feedback	$\boldsymbol{\iota}$	End Semester OBE Feedback
\boldsymbol{x}	Assessment of Mini Projects by Experts		

XIII. SYLLABUS

UNIT-I
 FUNDAMENTALS OF ENGINEERING DRAWING, SCALES AND CURVES

Introduction to engineering drawing: Drawing instruments and accessories, types of line, lettering practice and rules of dimensioning, geometrical constructions, basic geometrical shapes; Scales: Types
of scales, units of length and their conversion, construction of scales, plain scale, diagonal scale, vernier scale; Curves used in engineering practice and their constructions; Conic sections, construction of ellipse parabola and hyperbola, special curves, construction of cycloid, epicycloids, hypocycloid and involutes..

UNIT-II \quad ORTHOGRAPHIC PROJECTION, PROJECTION OF PLANES

Orthographic projection: Principles of orthographic projections, conventions, first and third angle projections, projection of points, projection of lines, lines inclined to single plane, lines inclined to both the planes, true lengths and traces; Projection of planes: Projection of regular planes, planes inclined to one plane, planes inclined to both planes, projection of planes by auxiliary plane projection method.

UNIT-III \quad PROJECTION OF SOLIDS

Projection of solids: Projections of regular solid, prisms, cylinders, pyramids, cones. Solids inclined to one plane, solids inclined to both planes, projection of solid by auxiliary Page $\mid 5$ plane projection method.

UNIT-IV \quad DEVELOPMENT OF SURFACES, ISOMETRIC PROJECTIONS

Development of surfaces: Development of lateral surface of right regular solids, prisms, cylinders, pyramids and cones; Isometric projections: Principle of isometric projection, isometric scale, isometric projections and isometric views, isometric projections of planes, prisms, cylinders, pyramids, and cones.

UNIT-V \quad TRANSFORMATION OF PROJECTIONS

Transformation of projections: Conversion of isometric views to orthographic views and conversion of orthographic views to isometric views..

Text Books:

1. N. D. Bhatt, "Engineering Drawing", Charotar Publications, 49thEdition, 2012.
2. C. M. Agrawal, Basant Agrawal, "Engineering Drawing', Tata McGraw Hill, 2ndEdition, 2013.

Reference Books:

1. K.Venugopal, "Engineering Drawing and Graphics", New Age Publications, 2ndEdition, 2010.
2. K. C. John, "Engineering Drawing", PHI Learning Private Limited", 2nd Edition, 2009.
3. Dhananjay. A. Johle, "Engineering Drawing", Tata McGraw Hill, 1st Edition, 2008.

XIV. COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

Lecture No	Topics to be covered	Course Learning Outcomes (CLOs)	Reference
1	Principles of engineering drawing - various drawing instruments and their uses. (general exercises).	CLO 1	T1:1.1
2	Conventions in Drawing - Lettering - BIS	CLO 2	T1:1.1
3	Geometrical constructions.	CLO 2	T1:2.1
4	Construction of various scales for engineering use-Plain and diagonal	CLO 2	T1:2.2 R1: 2.2 .3
5	Construction of various scales for engineering use- Vernier scales	CLO 1	T1:2.3
6	Construction of various curves.-general method	CLO 2	T1:3.1
7	Construction of various curves- ellipse, parabola \& hyperbola	CLO1	T1:3.3
8	Construction of various curves cycloid, epicycloids, hypocycloid and involutes.	CLO 2	T1:3.4,
9	Projection of points and lines inclined to single plane.	CLO 2	T1:4.1
10	Projection of lines inclined to both planes	CLO1	T1:4.3
11	Projection of planes-simple position.	CLO 1	T1:4.3.2
12	Projection of planes- inclined to a both planes.	CLO1	T1:4.3
13	Projection of solids inclined to single plane.	CLO 2	T1:4.4
14	Projection of solids inclined to a both planes.	CLO 2	T1:5.2
15	Projection of solids Auxiliary plane method	CLO 2	T1: 5.2.3
16	Draw the development of surfaces	CLO 1	T1: 6.1
17	Draw the isometric projections	CLO 2	T1:8.1

Lecture No	Topics to be covered	Course Learning Outcomes (CLOs)	Reference
18	Convert the pictorial views to orthographic views	CLO 2	T1:8.1.2

XV. GAPS IN THE SYLLABUS - TO MEET INDUSTRY / PROFESSION REQUIREMENTS:

S No	Description	Proposed actions	Relevance with POs	Relevance with PSOs
1	Increase ability to communicate with people.	Seminars	PO 1, PO 2,	PSO 1
2	Learn to take data and transform it into graphic drawings	Guest Lectures	PO4, PO 5	PSO 2
3	Students will become familiar with office practices and standards.	Assignments /Laboratory Practices	PO9, PO10	PSO 3

Prepared by:
Mr. B.V.S.N. Rao, Professor

[^0]: 3 = High; 2 = Medium; 1 = Low

