

(Autonomous) Dundigal, Hyderabad - 500 043

ELECTRICAL AND ELECTRONICS ENGINEERING

Course Title	ELECTRONIC DEVICES AND CIRCUITS									
Course Code	A30404	A30404								
Regulation	R15 – JNTUH	R15 – JNTUH								
Course Structure	Lectures Tutorials Practicals Ci									
Course Structure	4 - 4									
Course Coordinator	B. Naresh, Assistant Profes	sor, ECE								
Team of Instructors	B. Naresh, Assistant Profes	sor, ECE								

COURSE DESCRIPTION FORMS

I. COURSE OVERVIEW

2 0 0 0

This course provides the basic knowledge over the construction and functionality of the basic electronic devices such as diodes and transistors. It also provides the information about the uncontrollable and controllable electronic switches and the flow of current through these switches in different biasing conditions. This course is intended to provide information about the different configurations and modes of controllable switches and how these electronic devices can be configured to work as rectifiers, clippers, clampers, oscillators and amplifiers.

II. PREREQUISITE (S)

Level	Credits	Periods / Week	Prerequisites
UG	4	4	Engineering Physics, Engineering Mathematics-I

III. MARKS DISTRIBUTION

Sessional Marks (25 Marks)	University End Marks	Total Marks
Mid Semester Test	75	100
There shall be 2 midterm examinations. Each midterm examination consists of		
subjective type and Objective type tests. The subjective test is for 10 marks,		
with duration of 1 hour. Subjective test of each semester shall contain 4		
questions The student has to answer 2 questions, each carrying 5 marks.		
The objective type test is for 10 marks with duration of 20minutes. It		
consists of 10 Multiple choice and 10 objective type questions. The student has		
to answer all the questions and each carries half mark. First midterm		
examination shall be conducted for the first 21/2 unit of syllabus and second midterm examination shall be conducted for the remaining portion		
Five marks are earmarked for assignments		
The marks are carmarked for assignments.		
There shall be two assignments in every theory course. Marks shall be awarded		
considering the average of two assignments in each course reason whatsoever,		
will get zero marks(s).the conduct of the second mid-examination. The total		
marks secured by the student in each mid-term examination are evaluated for 25		
marks, and the average of the two mid-term examinations shall be taken as the		
final marks secured by each candidate.		

IV. EVALUATION SCHEME:

S. No	Component	Duration	Marks
1	I Mid Examination	80 minutes	20
2	I Assignment	-	5
3	II Mid Examination	80 minutes	20
4	II Assignment	-	5
5	External Examination	3 hours	75

V. COURSE OBJECTIVES

At the end of the course, the students will be able to

- 1. Be familiar with the basic P-N junction diode, few special purpose diodes and their functioning.
- 2. Understand the diode as rectifier and regulator.
- 3. Be familiar with the construction, current flow, different configurations and modes of the three terminal electronic devices such as BJT and UJT.
- 4. Be familiar with the different biasing techniques.
- 5. Be familiar with the field effect transistors and functioning as amplifier.

VI. COURSE OUTCOMES

After completing this course the student must demonstrate the knowledge and ability to

- 1. Understand the operation of different types of diodes.
- 2. Analyze the characteristics of different types of diodes.
- 3. Analyze the diode application circuits.
- 4. Design diode application circuits.
- 5. Understand operation of transistors in different configurations.
- 6. Analyze the characteristics of transistors in different configurations.
- 7. Understand the biasing for transistor.
- 8. Understand the stabilization for transistor.
- 9. Apply the biasing and stabilization for transistor.
- 10. Analyze the biasing and stabilization for transistor.
- 11. Understand the operation of FET.
- 12. Analyze the characteristics of FET.
- 13. Design the amplifiers using FET.
- 14. Analyze the amplifiers using FET.

VII. HOW PROGRAM OUTCOMES ARE ASSESSED

		Program Outcomes	Level	Proficiency Assessed By
	PO1	Engineering Knowledge: Apply the knowledge of mathematics, science,	S	Assignments,
		engineering fundamentals, and an engineering specialization to the solution of		Tutorials
		complex engineering problems.		
Ī	PO2	Problem Analysis: Identify, formulate, review research literature, and analyze	S	Assignments
		complex engineering problems reaching substantiated conclusions using first		
		principles of mathematics, natural sciences, and engineering sciences.		
Ī	PO3	Design / Development of Solutions: Design solutions for complex	S	Mini Projects
		engineering problems and design system components or processes that meet		_
		the specified needs with appropriate consideration for the public health and		

	Program Outcomes	Level	Proficiency Assessed By
	safety, and the cultural, societal, and environmental considerations.		
PO4	Conduct Investigations of Complex Problems : Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.	S	Projects
PO5	Modern Tool Usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.	S	Projects
PO6	The Engineer and Society : Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.	N	
PO7	Environment and Sustainability : Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.	N	
PO8	Ethics : Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.	Ν	
PO9	Individual and Team Work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.	N	
PO10	Communication : Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.	Ν	
PO11	Project Management and Finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.	Ν	
PO12	Life-long learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.	S	Lectures, Projects

N - None

S - Supportive

H - Highly Related

VIII. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED

	Program Specific Outcomes	Level	Proficiency Assessed By
PSO1	Professional Skills: Able to utilize the knowledge of high voltage engineering in collaboration with power systems in innovative, dynamic and challenging environment, for the research based team work.	S	Lectures, Assignments
PSO2	Problem-Solving Skills: Can explore the scientific theories, ideas, methodologies and the new cutting edge technologies in renewable energy engineering, and use this erudition in their professional development and gain sufficient competence to solve the current and future energy problems universally.	S	Projects
PSO3	Successful Career and Entrepreneurship: The understanding of technologies like PLC, PMC, process controllers, transducers and HMI one can analyze, design electrical and electronics principles to install, test, maintain power system and applications.	S	Guest Lectures

N - None

IX. SYLLABUS

UNIT - I

P-N Junction Diode: Qualitative Theory of P-N Junction, P-N Junction as a Diode, Diode Equation, Volt-ampere Characteristics, Temperature dependence of VI characteristic, Ideal versus Practical – Resistance levels (Static and Dynamic), Transition and Diffusion Capacitances, Diode Equivalent Circuits, Load Line Analysis, Breakdown Mechanisms in Semiconductor Diodes, Zener Diode Characteristics. **Special Purpose Electronic Devices:** Principle of Operation and Characteristics of Tunnel Diode (with the help of Energy Band Diagram), Varactor Diode, SCR and Semiconductor Photo Diode.

UNIT - II

Rectifiers and Filters : The P-N junction as a Rectifier, Half wave Rectifier, Full wave Rectifier, Bridge Rectifier, Harmonic components in a Rectifier Circuit, Inductor Filters, Capacitor Filters, L- Section Filters, π - Section Filters, Comparision of Filters, Voltage Regulation using Zener Diode.

UNIT - III

Bipolar Junction Transistor and UJT: The Junction Transistor, Transistor Current Components, Transistor as an Amplifier, Transistor Construction, BJT Operation, BJT Symbol, Common Base, Common Emitter and Common Collector Configurations, Limits of Operation, BJT Specifications, BJT Hybrid Model, Determination of hparameters from Transistor Characteristics, Comparison of CB, CE, and CC Amplifier Configurations, UJT and Characteristics.

UNIT - IV

Transistor Biasing and Stabilization: Operating Point, The DC and AC Load lines, Need for Biasing, Fixed Bias, Collector Feedback Bias, Emitter Feedback Bias, Collector - Emitter Feedback Bias, Voltage Divider Bias, Bias Stability, Stabilization Factors, Stabilization against variations in VBE and β , Bias Compensation using Diodes and Transistors, Thermal Runaway, Thermal Stability, Analysis of a Transistor Amplifier Circuit using h-Parameters.

UNIT - V

Field Effect Transistor and FET Amplifiers

Field Effect Transistor: The Junction Field Effect Transistor (Construction, principle of operation, symbol) – Pinch-off Voltage - Volt-Ampere characteristics, The JFET Small Signal Model, MOSFET (Construction, principle of operation, symbol), MOSFET Characteristics in Enhancement and Depletion modes. **FET Amplifiers:** FET Common Source Amplifier, Common Drain Amplifier, Generalized FET Amplifier, Biasing FET, FET as Voltage Variable Resistor, Comparison of BJT and FET.

X. TEXT BOOKS:

- 1. Millman's Electronic Devices and Circuits J. Millman, C.C.Halkias, and Satyabrata Jit, 2 Ed., 1998, TMH.
- 2. Electronic Devices and Circuits Mohammad Rashid, Cengage Learing, 2013
- 3. Electronic Devices and Circuits David A. Bell, 5 Ed, Oxford

XI. REFERENCE BOOKS:

- 1. Integrated Electronics J. Millman and Christos C. Halkias, 1991 Ed., 2008, TMH.
- 2. Electronic Devices and Circuits R.L. Boylestad and Louis Nashelsky, 9 Ed., 2006, PEI/PHI.
- 3. Electronic Devices and Circuits K. Lal Kishore, 2 Ed., 2005, BSP.
- 4. Electronic Devices and Circuits S.Salivahanan, N.Suresh Kumar, A.Vallavaraj, 2 Ed., 2011, TMH.

IX. COURSE PLAN

At the end of the course, the students are able to achieve the following course learning outcomes

Lecture No.	Unit	Course Learning Objectives	Topics to be covered	Reference
1-3	Ι	To understand the classification of	P-N Junction Diode:	T1: 5.1
		materials and the types of	Qualitative theory of P-N Junction	
		semiconductors.	diode, junction as a diode	

4-5		To understand the PN Junction is formed and the operation of PN Junction under different external voltages.	Formation of PN Junction, operation PN Junction under forward and reverse direction.	T1: 5.2
6		To study the different currents and obtain the equation for conventional current flow through the diode	Derivation of diode current equation.	T1: 5.3
7		To understand and analyze the cut-in voltage, break down voltages of germanium and silicon diodes, Effect of temp on V-I Characteristics.	V-I Characteristics, Effect of temp on V-I Characteristics of a diode.	T1: 5.6-5.7
8		To analyze the equivalent circuits of a diode.	Comparison of ideal versus practical diode, Equivalent circuits of diode, load line analysis	T1: 5.6 – 5.7 R6: 1.7
9-10		To measure the resistances from VI Characteristics and must know the break down mechanisms.	Static & dynamic resistances, Transition and diffusion capacitance.	T1: 5.8 - 5.10
11		To understand the break down mechanisms of a diode. To understand the operation of Zener	Break down mechanisms like avalanche and Zener break down. Operation of Zener diode and V-I	T1: 5.12 R6: 1.15 T1: 5.12
		diode.	Characteristics	
13		To understand the operation of tunnel diode.	Operation of Tunnel diode, Varactor diode and V-I Characteristics	T1:5.13-5.14 R6: 8.2
14-15		To understand the operation of SCR and semiconductor photo diode.	SCR and semiconductor photo diode.	R6: 8.5-8.6
16-17	Π	To understand how the PN junction act as a rectifier, operation of half wave rectifier and calculating its harmonic components.	Rectifiers and Filters: PN junction as a rectifier, Operation of half wave rectifier and its corresponding harmonic components.	T1: 6.1-6.2
18-19		To understand the operation of full wave rectifier and calculating its harmonic components.	Operation of full wave rectifier and its corresponding harmonic components.	T1: 6.3
20-21		To understand operation of bridge wave rectifier and calculating its harmonic components.	Operation of bridge wave rectifier its corresponding harmonic components.	T1: 6.4-6.6
22		To understand the operation of L and C filters.	Types of filters, operation of Inductor and capacitor filters	T1: 6.7-6.8
23-24		To analyze the operation of L-section and Pi-section filters.	L-section and Pi-Section filters, comparison of all filters	T1: 6.10- 6.13
25		To design Zener diode to act as voltage regulator.	Zener diode as voltage regulator.	T1: 6.15
26	III	To understand the basics of BJT, Construction of BJT, and Types of BJT.	Bipolar Junction Transistors and UJT: Introduction to BJT, Construction, symbol	T1: 7.1, 7.4
27		To understand the operation of PNP and NPN Transistors.	Operation of PNP and NPN transistors.	T1: 7.1
28		To understand the current components of a Transistor.	Transistor current components, Transistor as an Amplifier	T1: 7.2-7.3
29		To understand the Input & output characteristics of a transistor in CB configuration.	Input & output characteristics of a transistor in CB configuration.	T1:7.7
30		To understand the Input & output characteristics of a transistor in CE configuration.	Input & output characteristics of a transistor in CE and configuration.	T1: 7.8-7.10
31		To understand the Input & output characteristics of a transistor in CC configuration, know the specifications of transistors.	Input & output characteristics of a transistor in CC configurations, limits of operation	T1: 7.12

32		To understand the h-parameter model.	BJT specifications, BJT Hybrid model	T1:9.6-9.7
33-34		To analyze the transistor amplifier	Determination of h-parameters from	T1:9.7
		using h-parameters.	transistor characteristics	
35-36		To understand the different types of	Comparison of CB, CE and CC	R6: 3.5
		Amplifier configurations.	amplifiers configuration.	
37		To understand the UJT transistor.	UJT and its characteristics	T1: 12.12
				R6: 7.12-
				7.13
38	IV	To analyze the transistor Q point	Transistor biasing and stabilization:	T1: 8.1
			Operating point.	
39		To understand and analyze the DC and	DC and AC load lines.	R6: 4.2
		AC load lines.		
40		To understand and analyze transistor	Need for biasing, fixed bias.	T1: 8.4
		biasing		
41-44		To understand transistor different	Collector feedback bias., Emitter	T1:8.5-8.6
		biasing techniques	feedback bias, Collector-Emitter	
			feedback bias and voltage divider bias	
45-46		To analyze the transistor stabilization	Bias stability, stabilization factor.	T1: 8.2
		factor		R6: 4.4
47		To understand Bias compensation	Bias compensation using diodes and	T1: 8.9
10			transistor.	R6: 4.5
48		To understand Thermal runaway and	Thermal runaway and stability	T1: 8.12-
40		stability of the BJ1		8.13
49		To analyze the CB transistor amplifier	n-parameter model for CB amplifier	11:10.6
50		To analyze the CE transistor amplifier	In and their comparison.	T1.104
30		to analyze the CE transistor amplifier	n-parameter model for CE amplifier	11:10.4
51.52		To analyze the CC transistor amplifier	H parameter model for CC amplifier	T1.105
51-52		using h-parameters	and their comparison	11.10.3
53-54	V	To understand the basics and	Field Effect Transistor and FET	T1·121
55 51	•	principles of IFET	Amplifiers	11.12.1
		principies of et 21	Junction field effect transistor	
			(construction, principle, and symbol)	
55		To understand the operation of JFET	Junction field effect transistor	T1: 12.2
		and the concept of Pinch off Voltage.	operation, pinch-off voltage	
56		To understand the VI characteristics	V-I characteristics of JFET	T1: 12.3
		of a JFET		
57-58		To analyze the small signal model of	Small signal model of JFET	R6: 7.8
		JFET.		
59-60		Must know the basics and principles	MOSFET (construction, principle of	T1:12.5
		of MOSFET	operation, symbol), characteristics in	
			enhancement and depletion modes	
61		To understand the operation of MOSFET	MOSFET (principle of operation)	T1: 12.5
62	1	Must know the characteristics in	MOSFET characteristics in	R6: 7.7
		different modes	enhancement and depletion modes	
63		To understand the operation of FET	FET Amplifiers: CS, CD Amplifier	R6: 7.1-7.5
		amplifiers		
64-66		To understand and analyze FET	Biasing FET, Voltage variable resistor	T1: 12.11
		biasing	and comparison between BJT and FET.	

XII. MAPPING COURSE OBJECTIVES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

Course		Program Outcomes												Program Specific Outcomes		
Objectives	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
1	S	S	S		S							S				
2	S	S	S		S							S				
3	S	S	S		S							S				
4	S	S	S		S							S				
5	S	S	S									S				

S – Supportive

H - Highly Related

XIII. MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

Course		Program Outcomes											Program Specific Outcomes		
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
1	S	S	Н									S			
2	S	S	S		S							S			
3	S	Н	Н		S							S			
4	S	Н	S		Н							S			
5	Н	S	S									S			
6	S	Н	Н		Н							S			
7	S	Н	Н		S							S			
8	S	Н	S		Н							S			
9															
10	S	S	Н									S			
11	S	S	S		S							S			
12	S	S	S		S							S			
13	S	Н	Н		S							S			
14	S	Н	S		Н							S			

S – Supportive

H - Highly Related

Prepared By: Mr. B. Naresh, Assistant Professor

HOD, ELECTRICAL AND ELECTRONICS ENGINEERING