

INSTITUTE OF AERONAUTICAL ENGINEERING

Dundigal, Hyderabad - 500 043

MECHANICAL ENGINEERING

COURSE DESCRIPTION

Department	:	MECHANICA	MECHANICAL ENGINEERING							
Course Title	:	ELECTRICAL AND ELECTRONICS ENGINEERING								
Course Code	:	A30203	130203							
Course Category	:	CORE								
		Lectures	Tutorials	Practical's	Credits					
Course Structure	:	5	-	-	4					
Course Coord <mark>inator</mark>	:	Mr. D Kumar, A	Assistant Profe	ssor						
Team of Instr <mark>uctors</mark>	:	Mr. P Mabuhussain, Assistant Professor Mr. D Kumar, Assistant Professor								

I. Course Overview:

Electrical and Electronics Engineering course deals with the concepts of electrical circuits, basic law's of electricity, different methods to solve the electrical networks and the instruments to measure the electrical quantities. It also focuses on the construction, operational features of energy conversion devices such as DC and AC machines, Transformers. It also emphasis on basic electronics semiconductor devices and their characteristics and operational features.

II. Prerequisites:

Level	Credits	Periods / Week	Prerequisites
0			Basic knowledge of Electrical
UG	1	5	components, electromagnetic principles
00		5	and Semiconductor materials.

III. Course Assessment Methods:

Marks Distribution:

Sessional Marks	University End Exam Marks	Total Marks
There shall be 2 midterm examinations. Each midterm examination consists of one objective paper, one subjective paper and one assignment. The objective paper is for 10 marks and subjective paper is for 10 marks, with duration of 1 hour 20 minutes (20 minutes for objective and 60 minutes for subjective paper). Objective paper is set with 20 bits of multiple choice questions, fill-in the blanks and matching type of questions for a total of 10 marks. Subjective paper contains 4 full questions of which, the student has to answer 2 questions, each question carrying 5 marks. First midterm examination shall be conducted for 1-2.5 units of the syllabus and second midterm examination shall be conducted for 2.5-5 units of syllabus. 5 marks are allocated for Assignments (as specified by the	75	100

concerned subject teacher) – first Assignment should be submitted before the conduct of the first mid, and the second Assignment should be submitted	
before the conduct of the second mid. The total marks secured by the	
student in each midterm examination are evaluated for 25 marks, and the	
average of the two midterm examinations shall be taken as the final marks	
secured by each candidate	

IV Evaluation Scheme:

S. No.	Component	Duration	Marks
1	I Mid Examination	1 hour 20 min	20
2	I Assignment lot		5
		Total	<mark>2</mark> 5
3	II Mid Examination	1 hour 20 min	20
4	II Assignment lot		5
		Total	25
MI	D Examination marks to be considered	l as average of above 2	<mark>2 MID's TO</mark> TAL
5	External Examination	3 hours	75
		GRAND TOTAL	<mark>1</mark> 00

V. Course Objectives:

- 1. To get the knowledge on basic concepts of electrical circuits, its components and the fundamental laws such as Ohm's law, Kirchhoff's laws.
- II. To understand the series, parallel networks and star-delta transformation techniques which are used to reduce a complex network to a simple network.
- III. To understand basic principle and operation of indicating instruments permanent magnet moving coil and moving iron instruments.
- IV. To know the construction, operational features of energy conversion devices such as DC Machines, AC Machines and Transformers.
- V. To know the operation and characteristics of different semiconductor devices such as Diodes, Transistors and SCR.
- VI. To understand the operation of CRO and its application to measure the voltage, current and frequency.

VI. Course Outcomes:

- 1. Ability to apply the Ohms law, Kirchhoff's Voltage and Current laws in the analysis of electrical circuits.
- 2. Shall have the ability to use permanent magnet and moving coil instruments in the measurement of current, voltage and power in electrical circuits.
- 3. Able to get the thorough knowledge on operation of the transformers in the energy conversion process.
- 4. Ability to operate and control the electro mechanical energy conversion devices such as DC Machines and AC Machines
- 5. Shall have the ability to find the characteristics and application of different semiconductor devices such as Diodes, Transistors and SCR.
- 6. Shall have the ability to measure the voltage, current and frequency using CRO.

VII. How course outcomes are assessed:

	Program Outcomes	Level	Proficiency assessed by
a	An ability to apply knowledge of mathematics, science, engineering and computing using modern tools.	Н	Assignments, Practicals, Midterm and University examinations
b	An ability to design and conduct experiments, as well as to synthesize, analyze and interpret data.	H	Assignments, Practicals, Midterm and University examinations
с	An ability to design a system, component, or process to meet desired needs within appropriate constraints for public Health, safety, cultural, societal and environmental considerations.	S	Assignments, Practicals, Midterm and University examinations
d	An ability to function on multidisciplinary teams as a member and leader.	S	Assignments, Practicals, Midterm and University examinations
e	An ability to identify, analyze, formulate, and solve diverse mechanical engineering problems	Н	Assignments, Practicals, Midterm and University examinations
f	An understanding of professional, ethical, legal, security, social issues and responsibilities	N	
g	An ability to use communication skills effectively	N	_
h	The broad education necessary to understand the local and global impact of engineering solutions in a economic, environmental, and societal context.	S	Assignments, Practicals, Midterm and University examinations
i	A Recognition of the need for and an ability to engage in life-long professional development.	Н	Assignments, Practicals, Midterm and University examinations
j	Knowledge of contemporary issues and Technology up-gradations.	Ν	
k	An ability to use the current techniques, skills, and modern engineering tools necessary for Mechanical Engineering practice.	Н	Assignments, Practicals, Midterm and University examinations
1	Ability to acquire professional competence for facing competitive examinations for successful employment in Mechanical Engineering.	S	Practicals, Midterm and University examinations

VIII. Syllabus:

UNIT-I

Electrical circuits: Basic definitions, types of elements. Ohm's law, resistive networks, Kirchhoff's laws, inductive networks, capacitive networks, series, parallel circuits and star/delta and delta-star transmission.

Instruments: Basic principle of indicating instruments-PMMC and MI instruments.

UNIT-II

DC Machines: Principle operation of DC generator – E.M.F equation-types-dc motor types-torque equations-applications-three point stator.

UNIT-III

Transformers: Principle of operation of single phase transformers- E.M.F equation-losses-efficiency and regulations.

AC Machines: Principle of operation of alternator- regulation by synchronous impedance method-Principle of operation of Induction Motor-Slip-Torque characteristics- Applications.

UNIT-IV

Diodes: P-N junction diode, symbol, V-I characteristics, Diode applications, and rectifiers-Half wave, Full wave and Bridge rectifiers (simple problems).

Transistors: PNP and NPN junction transistors, Transistor as an Amplifier, SCR characteristics and applications.

UNIT-V

Cathode ray oscilloscope: Principles of CRT (cathode ray tube), Deflection, sensitivity, Electro static and Magnetic Deflection, Applications of CRO- voltage, Current and Frequency Measurements

TEXT BOOKS:

- T1. Fundamentals of Electric Circuits Charles K. Alexander, Matthew N.O. Sadiku, Mc Graw Hill
- T2. Basic Electrical Engineering S.N.Singh, PHI
- T3. Electronic Devices and Circuits S.Salivahanan, N.Suresh Kumar, A.Vallavaraj, TMH
- T4. Electronic Devices and Circuits K.Lal Kishore, BS Publications.

REFERENCE BOOKS:

- R1. Basic Electrical Engineering D.P Kothari, I.J.Nagrath, McGraw-Hill.
- R2. Theory and performance of Electrical Machines J.B.Gupta, S.K. Kataria & Sons
- R3. Electronic Devices and Circuits R.L Boylestad and Louis Nashelsky, PEI/PHI.
- R4. Introduction to Electronic Devices and Circuits Rober T.Paynter, PE.

IX.Course Plan:

The course plan is meant as a guideline. There may probably be changes.

Lecture No.	Course Learning Outcomes	Topics to be covered	Reference				
UNIT-I Electrical Circuits							
	Understand the of Basic Definitions of Electrical Circuits	Basic Definitions of Electrical Circuits	T1, R1				

2		Types of elements and basic problems	T1, R1
3	Apply ohm's law to simple circuits	Ohm's law and simple problems	T1, R1
4	Understand Kirchhoff's laws	Kirchhoff's laws	T1, R1
5	Apply Kirchhoff's laws to simple problems	Problems on Kirchhoff's laws	T1, R1
6		Resistive Networks, Inductive Networks, Capacitive Networks	T1, R1
7	Apply Series and parallel networks to simple problems	Problems on series and parallel networks	T1, R1
8		Star-Delta conversion and Delta- Star conversion	T1, R1
9	Apply Star-Delta conversion and Delta- Star conversion to simple problems	Problems on Star-Delta conversion and Delta- Star conversion	T1, R1
10	Understand the Basic Principles of instruments	Basic Principles of indicating instruments	T2, R1
11-12	Differentiate the different types of instruments and their application	permanent magnet moving coil and moving iron instruments	T2, R1
		UNIT-II DC Machines	
13		Introduction of faraday law's and Lenz's law.	T2, R2
14	Understand principle of operation of D.C. generator	Principle and operation of DC generator	T2, R2
15	Understand construction of DC machine	Construction of DC Machine	T2, R2
16	Derive the equation for EMF of DC generator	EMF equation	T2, R2
17	Apply EMF Equation of generator to simple problems	Problems on EMF equation	T2, R2
18		Type of Generators and simple problems.	T2, R2
19	Understand Magnetization and Load Characteristics of DC Generators	Magnetization and Load Characteristics of DC Generators.	T2, R2
20	Understand Losses and efficiency of Dc generator	Losses and Efficiency of DC generator	T2, R2
21	Understand principle of operation of D.C. motor	Principle and operation of DC motor, Significance of Back EMF	T2, R2
22	Classify the different types of motors	Types of motors	T2, R2
23	Derive the equation for Armature Torque of DC motor	Armature Torque of DC motor	T2,R2
24	Determine the Armature	Problems on Armature Torque	T2, R2

	Torque		
25	Derive the expression for Efficiency and regulation of DC motor	Efficiency and regulation Of DC motor	T2, R2
26	Calculate the Efficiency of generator and motor	Problems on Efficiency of DC machines	T2, R2
27	Understand the three point stator and the applications of DC motors	Three Point Starter and applications	T2, R2
	Transfo	UNIT-III ormers & AC Machines	
28	Understand the Principle of operation of Single Phase transformer	Principle of operation of Single Phase transformer	T2, R2
29	Understand the construction and types of Transformers	Types and constructional features	T2, R2
30	Derive the EMF Equation of Transformer and apply it to solve simple problems	EMF equation and Simple problems	T2, R2
31 & 32	Understand the Losses and Efficiency of Transformer and its Regulation	Losses and Efficiency of Transformer and Regulation and simple problems	T2, R2
33	Know how to perform OC and SC tests on transformer	OC and SC Tests	T2, R2
34	Understand the working principle of Alternator	Alternators working Principle	T2, R2
35 & 36		EMF Equation of alternator and simple problems on frequency and synchronous speed	T2, R2
37	Determine the regulation of alternator by Synchronous Impedance Method	Predetermination of regulation by Synchronous Impedance Method.	T2, R2
38	Understand the basic principle of three phase induction motor	Principle of operation of three phase induction motors	T2, R2
39	Classify the types of three phase induction motors	Slip ring and Squirrel cage motors	T2, R2
40	Draw the Slip-Torque characteristics of three phase induction	Slip-Torque characteristics	T2, R2
41	Understand the applications of three phase induction motor	Applications	T2, R2
42	Apply slip-torque relation to solve simple problems	Problems on slip and torque of induction motor	T2, R2
		UNIT- IV	

Diodes & Transistors								
43	Know the working of a Diode	Introduction to PN-junction diode, Symbol.	T3, T4					
44	Draw the characteristics of Diode and also know the diode applications	V I- characteristics of diode and its applications	T3, R3					
45	Know the internal parameters of diode	Diffusion current, Diffusion capacitance	T3, R3					
46	Find the theoretical resistance of diode	Static and dynamic resistance	T3, T4, R3					
47	Derive the equation to find theoretical current of diode	Diode current equation	T3, R4					
48	Know the operation of half wave rectifier(power supply)	Half Wave rectifier-calculations	T4, R4					
49 & 50	Know the operation of Full wave rectifier(power supply)	Full wave rectifier-calculations	T4, R4					
51	Know the operation of Bridge wave rectifier(power supply)	Bridge wave rectifier-calculations	T4, R4					
52	Analyze the Rectifiers (Half, Full and Bridge wave)	Problems	T4, R4					
53 & 54	Understand the construction, operation and characteristics of BJT.	PNP and NPN Transistor	T3, R3					
55 & 56	Understand the different configurations of Transistors	CB, CE, CC configurations	T3, R3					
57	Know the parameters of transistor configuration	Relation between α , β , λ	T3, R3					
58	Understand the operation of Transistor as an amplifier	Transistor as an Amplifier	T3, R3					
59	Understand the operation of SCR and its applications	SCR characteristics and applications	T3, T4					
	Cath	UNIT-V ode Ray Oscilloscope	9					
60	Understand the principle of	Principle of CTR (Cathode Ray Tube)	T4, R4					
61	Understand the principle of operation of CRO.	Operation of CRO	T4, R4					
62	Understand the dynamics of electrons	Deflection Sensitivity	T4, R3, R4					
63	Understand the dynamics of electrons	Electrostatic and magnetic deflection	T4, R3, R4					
64	Know the applications of CRO	CRO Applications	T4, R3, R4					
65	Determine the Voltage, Current and frequency using CRO	Voltage, Current and Frequency measurement	T4, R3, R4					

X. MAPPING COURSE OBJECTIVES LEADING TO ACHIEVEMENT OF THE PROGRAM OUTCOMES.

Course	Program Outcomes											
objectives	А	b	c	d	e	f	g	h	i	J	k	1
Ι	Н	Н	S		Н						Н	S
II	Н	Н	S	S				S	Н			S
III	Н	Н	S	_	Н							
IV	Н	Н	S		Н			1				S
V	Н	Н	S		Н	1			Н			
VI	H			S			Н				S	

S=Supportive

H=Highly Related

XI. MAPPING COURSE OUTCOMES LEADING TO ACHIEVEMENT OF THE PROGRAM OUTCOMES.

Course	Program Outcomes											
Outcomes	a	b	С	D	e	f	g	h	i	j	k	1
1	H	Н	S	S	Н							
2	Н	Н	S		Н						Н	S
3	Н	H	S	1	Н							S
4	Н	Н	S	S	Н				Н		Н	
5	Н	Н	S		Н						Н	S
6		Н				S			S		1	

S=Supportive

H=Highly Related

Prepared By: D Kumar, Associate Professor

ATION FC

HOD, MECHANICAL ENGINEERING

LIBE