INTRODUCTION TO ROBOTICS

VI Semester: EEE										
Course Code	Category	Hours / Week			Credits	Maximum Marks				
AMEB56	Open Elective	L	Т	P	C	CIA	SEE	Total		
		3	-	-	3	30	70	100		
Contact Classes: 45	Tutorial Classes: Nil	Practical Classes: Nil			Total Classes: 45					

OBJECTIVES:

The course should enable the students to learn:

- I. The fundamental concepts of various configurations of the robot manipulators and their working principles used in the industries.
- II. The basics of motion analysis of manipulator and process to find forward kinematics and inverse kinematics of the robot manipulator.
- III. The path planning of a robot manipulator for given polynomial equation and how to avoid obstacles in its path.
- IV. The performance of various feedback components like sensors and actuators and how they can be used according to the specifications of the manipulator.

COURSE OUTCOMES:

After successful completion of the course, students will be able to:

- CO 1 **Outline** the relationship between mechanical structures of industrial robots and their operational workspace characteristics.
- CO 2 **Demonstrate** an ability to apply spatial transformation to obtain forward kinematics equation of robot manipulators.
- CO 3 **Develop** the mechanism for solving forward and inverse kinematics of simple robot manipulators.
- CO 4 **Develop** an ability to obtain the Jacobian matrix and use it to identify singularities.
- CO 5 Outline the various motions of the manipulator and use it for trajectory.
- CO 6 **Explain** an ability to generate the trajectory for given application of robot manipulator.
- CO 7 **Identify** the knowledge of robot controllers and actuators used in the manipulators.
- CO 8 Recall the applications of robot in manufacturing, material handling, assembly and inspections.
- CO 9 Illustrate the considerations of workspace for a given robot application.

MODULE-I INTRODUCTION TO ROBOTICS Classes: 09

Introduction: Automation and robotic, an over view of robotics, classification by coordinate system and control systems, components of the industrial robotics: Degrees of freedom, end effectors: mechanical gripper, magnetic vacuum cup and other types of grippers, general consideration on gripper selection and design.

MODULE-II MOTION ANALYSIS AND KINEMATICS Classes: 09

Motion analysis: Basic rotation matrices, composite rotation matrices, equivalent angle and axis homogeneous transformation, problems; Manipulator kinematics: D-H notations, joint coordinates and world coordinates, forward and inverse kinematics, problems.

MODULE-III	KINEMATICS AND DYNAMICS	Classes: 09
-------------------	-------------------------	-------------

Differential kinematics: Differential kinematics of planar and spherical manipulators, Jacobians problems. Robot dynamics: Lagrange, Euler formulations, Newton-Euler formulations, problems on planar two link manipulators.

MODULE-IV TRAJECTORY PLANNING AND ACTUATORS

Trajectory planning: Joint space scheme, cubic polynomial fit, avoidance of obstacles, types of motion: Slew motion, joint interpolated motion, straight line motion, problems, robot actuators and feedback components; actuators: pneumatic and hydraulic actuators.

MODULE-V ELECTRIC ACTUATORS AND ROBOTIC APPLICATIONS

Classes: 09

Classes: 09

Electric actuators: DC servo motors, stepper motors, feedback components: position sensors, potentiometers, resolvers and encoders, velocity sensors, tactile sensors; Robot application in manufacturing: Material handling, assembly and inspection.

Text Books:

- 1 Groover M. P, "Industrial Robotics", Tata McGraw-Hill, 1st Edition, 2013.
- 2 J.J Criag, "Introduction to Robotic Mechanics and Control", Pearson, 3rd Edition, 2013.

Reference Books:

- 1. K.S Fu, "Robotics", McGraw-Hill, 1st Edition, 2013
- 2. Richard, D. Klafter, "Robotic Engineering", Prentice Hall, 1st Edition, 2013.

Web Reference:

- 1. https://www.doc.ic.ac.uk/~ajd/Robotics/RoboticsResources/lecture1.pdf.
- 2. http://opencourses.emu.edu.tr/course/view.php?id=32
- 3. https://www.researchgate.net/publication/277712686_Introduction_to_Robotics_class_notes_UG_level

E-Book:

- 1. http://www.robot.bmstu.ru/
- 2. http://www.robotee.com/index.php/download-free-robotic-e-books/