

(Autonomous) Dundigal, Hyderabad -500 043

# **ELECTRICAL AND ELECTRONICS ENGINEERING**

# **COURSE DESCRIPTOR**

| Course Title     | MICROPROCESSORS AND MICROCONTROLLERS |                                             |         |            |         |  |
|------------------|--------------------------------------|---------------------------------------------|---------|------------|---------|--|
| Course Code      | AECB24                               | AECB24                                      |         |            |         |  |
| Programme        | B.Tech                               | B.Tech                                      |         |            |         |  |
| Semester         | FIVE                                 |                                             |         |            |         |  |
| Course Type      | CORE                                 |                                             |         |            |         |  |
| Regulation       | IARE - R18                           |                                             |         |            |         |  |
|                  |                                      | Theory                                      |         | Practio    | cal     |  |
| Course Structure | Lectures                             | Tutorials                                   | Credits | Laboratory | Credits |  |
|                  | 2                                    | 1                                           | 3       | -          | -       |  |
| Course Faculty   | Ms. B Laks                           | Ms. B Lakshmi Prasanna, Assistant Professor |         |            |         |  |

# I. COURSE OVERVIEW:

2000

The course will make them learn the basic theory of microprocessors and microcontroller and their applications in detail. Subsequently the course covers important concepts like Semiconductor memory devices and systems, microcomputer architecture, assembly language programming, I/O programming, I/O programming, I/O interface design, I/O peripheral devices, data communication to write an assembly language programming for interfacing various I/O modules and make them to communicate.

# **II. COURSE PRE-REQUISITES:**

| Level  | Course Code | Semester | Prerequisites       |
|--------|-------------|----------|---------------------|
| B.Tech | AECB03      | III      | Digital Electronics |

# **III. MARKS DISTRIBUTION:**

| Subject                              | SEE Examination | CIA Examination | Total Marks |
|--------------------------------------|-----------------|-----------------|-------------|
| Microprocessors and Microcontrollers | 70 Marks        | 30 Marks        | 100         |

| ~ | Chalk & Talk           | ~ | Quiz     | ~ | Assignments  | × | MOOCs  |
|---|------------------------|---|----------|---|--------------|---|--------|
| ~ | LCD / PPT              | ~ | Seminars | × | Mini Project | ~ | Videos |
| × | Open Ended Experiments |   |          |   |              |   |        |

## IV. DELIVERY / INSTRUCTIONAL METHODOLOGIES:

# V. EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIA examinations or the marks scored in the make-up examination.

**Semester End Examination (SEE):** The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into five units and each unit carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each unit. Each question carries 14 marks. **There could be a maximum of two sub divisions in a question.** The expected percentage of cognitive level of the questions is broadly based on the criteria given in Table: 1

| Percentage of Cognitive Level | Blooms Taxonomy Level |
|-------------------------------|-----------------------|
| 0%                            | Remember              |
| 60%                           | Understand            |
| 30%                           | Apply                 |
| 10%                           | Analyze               |
| 0%                            | Evaluate              |
| 0%                            | Create                |

Table 1: The expected percentage of cognitive level of questions in SEE

## **Continuous Internal Assessment (CIA):**

CIA is conducted for a total of 30 marks (Table 2), with 20 marks for Continuous Internal Examination (CIE), 05 marks for Quiz and 05 marks for Alternative Assessment Tool (Table 3).

Table 2: Assessment pattern for CIA

| Component          | nent Theory |      |     | Total Marka   |
|--------------------|-------------|------|-----|---------------|
| Type of Assessment | CIE Exam    | Quiz | AAT | i otai wiarks |
| CIA Marks          | 20          | 05   | 05  | 30            |

## **Continuous Internal Examination (CIE):**

Two CIE exams shall be conducted at the end of the 8th and 16th week of the semester respectively. The CIE exam is conducted for 20 marks of 2 hours duration consisting of five descriptive type

questions out of which four questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

#### **Quiz – Online Examination:**

Two Quiz exams shall be online examination consisting of 25 multiple choice questions and are to be answered by choosing the correct answer from a given set of choices (commonly four). Such a question paper shall be useful in testing of knowledge, skills, application, analysis, evaluation and understanding of the students. Marks shall be awarded considering the average of two quiz examinations for every course.

#### Alternative Assessment Tool (AAT):

This AAT enables faculty to design own assessment patterns during the CIA. The AAT converts the classroom into an effective learning centre. The AAT may include tutorial hours/classes, seminars, assignments, term paper, open ended experiments, METE (Modeling and Experimental Tools in Engineering), five minutes video, MOOCs etc. The AAT chosen for this course is given in table 3.

| Table  | 3. | Assessment  | nattern | for | AAT   |
|--------|----|-------------|---------|-----|-------|
| 1 auto | э. | rassessment | pattern | 101 | 11111 |

| 5 Minutes Video | Assignment | Tech-talk | Seminar | Open Ended Experiment |
|-----------------|------------|-----------|---------|-----------------------|
| 20%             | 30%        | 30%       | 10%     | 10%                   |

# VI. COURSE OBJECTIVES:

| The students will try to learn: |                                                                                                                                                                                                    |  |  |  |  |
|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Ι                               | The architecture and operation of microprocessors and microcontrollers.                                                                                                                            |  |  |  |  |
| II                              | The programming and interfacing of Intel microprocessors, microcontrollers to design processor and controller based circuits.                                                                      |  |  |  |  |
| III                             | The applications of microprocessors and microcontrollers in the field of<br>Communications, Electronic measurement, control systems, Consumer electronics<br>industry and other real-time systems. |  |  |  |  |

# VII. COURSE OUTCOMES:

| After successful completion of the course, Students will be able to: |                                                                                                                                                         |                                             |  |  |  |
|----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|--|--|--|
| CO No                                                                | Course Outcomes                                                                                                                                         | Knowledge<br>Level<br>(Bloom's<br>Taxonomy) |  |  |  |
| CO 1                                                                 | <b>Outline</b> the internal architecture of 8085, 8086 and 8051 microcomputers to study their functionality.                                            | Understand                                  |  |  |  |
| CO 2                                                                 | <b>Illustrate</b> the organization of registers and memory in 8086 for programming and memory allocation within processor.                              | Understand                                  |  |  |  |
| CO 3                                                                 | <b>Explain</b> various addressing modes and instruction set of target microprocessor and microcontroller useful for writing assembly language programs. | Understand                                  |  |  |  |
| CO 4                                                                 | <b>Distinguish</b> between minimum mode and maximum mode operation of 8086 microprocessor with timing diagrams.                                         | Analyze                                     |  |  |  |

| CO 5  | <b>Interpret</b> the functionality of various types of interrupts and their structure for controlling the processor or controller and program | Understand |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------|------------|
|       | execution flow.                                                                                                                               |            |
| CO 6  | <b>Demonstrate</b> the internal architecture and various modes of operation                                                                   | Understand |
|       | of the devices used for interfacing memory and I/O devices with                                                                               |            |
|       | microprocessor.                                                                                                                               |            |
| CO 7  | <b>Choose</b> an appropriate data transfer scheme and hardware to perform                                                                     | Apply      |
|       | serial data transfer among the devices.                                                                                                       |            |
| CO 8  | Make use of 8051 microcontroller to perform Time/Counter operations                                                                           | Apply      |
|       | in various applications.                                                                                                                      |            |
| CO 9  | Select the suitable registers of 8051 microcontroller and program it to                                                                       | Apply      |
|       | perform data conversion, interfacing with memory and I/O devices.                                                                             |            |
| CO 10 | Build necessary hardware and software interface using microcomputer                                                                           | Apply      |
|       | based systems to provide solution for real world problems.                                                                                    |            |

# COURSE KNOWLEDGE COMPETENCY LEVELS



# VIII. HOW PROGRAM OUTCOMES ARE ASSESSED:

|             | Program Outcomes                                              | Proficiency assessed by |
|-------------|---------------------------------------------------------------|-------------------------|
| PO 1        | Engineering knowledge: Apply the knowledge of                 | CIE/SEE/AAT             |
|             | mathematics, science, engineering fundamentals, and an        |                         |
|             | engineering specialization to the solution of complex         |                         |
|             | engineering problems.                                         |                         |
| PO 2        | Problem analysis: Identify, formulate, review research        | AAT                     |
|             | literature, and analyze complex engineering problems          |                         |
|             | reaching substantiated conclusions using first principles of  |                         |
|             | mathematics, natural sciences, and engineering sciences.      |                         |
| <b>PO 3</b> | Design/development of solutions: Design solutions for         | AAT                     |
|             | complex engineering problems and design system                |                         |
|             | components or processes that meet the specified needs with    |                         |
|             | appropriate consideration for the public health and safety,   |                         |
|             | and the cultural, societal, and environmental considerations. |                         |

|      | Program Outcomes                                                                                                                                                                                                                         | Proficiency assessed by |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| PO 5 | <b>Modern Tool Usage:</b> Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modeling to complex Engineering activities with an understanding of the limitations. | AAT                     |

# IX. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

|       | Program Specific Outcomes                                                                                                                                                                       | Proficiency assessed by |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| PSO 3 | Gain the hands-on competency skills in PLC automation,<br>process controllers, HMI and other computing tools<br>necessary for entry level position to meet the requirements<br>of the employer. | AAT                     |

# X. MAPPING OF EACH CO WITH PO(s), PSO(s):

| Course   |              |              | Program<br>Specific<br>Outcomes |   |              |   |   |   |   |    |    |    |   |   |              |
|----------|--------------|--------------|---------------------------------|---|--------------|---|---|---|---|----|----|----|---|---|--------------|
| Outcomes | 1            | 2            | 3                               | 4 | 5            | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 | 2 | 3            |
| CO 1     | $\checkmark$ |              |                                 |   |              |   |   |   |   |    |    |    |   |   |              |
| CO 2     | $\checkmark$ |              |                                 |   |              |   |   |   |   |    |    |    |   |   |              |
| CO 3     | $\checkmark$ |              |                                 |   |              |   |   |   |   |    |    |    |   |   |              |
| CO 4     | $\checkmark$ |              |                                 |   |              |   |   |   |   |    |    |    |   |   |              |
| CO 5     | $\checkmark$ |              |                                 |   |              |   |   |   |   |    |    |    |   |   |              |
| CO 6     | $\checkmark$ |              |                                 |   |              |   |   |   |   |    |    |    |   |   |              |
| CO 7     | $\checkmark$ |              |                                 |   |              |   |   |   |   |    |    |    |   |   | $\checkmark$ |
| CO 8     | $\checkmark$ | $\checkmark$ | $\checkmark$                    |   |              |   |   |   |   |    |    |    |   |   | $\checkmark$ |
| CO 9     | $\checkmark$ | $\checkmark$ | $\checkmark$                    |   |              |   |   |   |   |    |    |    |   |   |              |
| CO 10    | $\checkmark$ | $\checkmark$ | $\checkmark$                    |   | $\checkmark$ |   |   |   |   |    |    |    |   |   | $\checkmark$ |

# XI. JUSTIFICATIONS FOR CO – (PO, PSO) MAPPING

| Course<br>Outcomes | POs /<br>PSOs | Justification for mapping (Students will be able to)         | No. of key competencies |
|--------------------|---------------|--------------------------------------------------------------|-------------------------|
| <b>CO 1</b>        | <b>PO 1</b>   | Outline (Knowledge) the internal architecture of 8085, 8086, | 2                       |
|                    |               | 8051 microcomputers and Understand their functionality       |                         |
|                    |               | and identify the differences between processors by applying  |                         |
|                    |               | principles of mathematics and science.                       |                         |
| CO 2               | <b>PO 1</b>   | Illustrate (Understand) the organization of registers and    | 3                       |
|                    |               | memory in 8086 for programming (Apply) and memory            |                         |
|                    |               | allocation within processor for solving (complex)            |                         |

|             |             | engineering problems by applying engineering                    |   |
|-------------|-------------|-----------------------------------------------------------------|---|
|             |             | fundamentals, engineering specialization.                       |   |
| <b>CO 3</b> | <b>PO 1</b> | Explain (Understand) various addressing modes and               | 3 |
|             |             | instruction set of target microprocessor and microcontroller    |   |
|             |             | useful for writing assembly language programs by applying       |   |
|             |             | mathematics, science and engineering fundamentals .             |   |
| <b>CO 4</b> | <b>PO 1</b> | Distinguish (Analyze) between minimum mode and                  | 2 |
|             |             | maximum mode operation of 8086 microprocessor with              |   |
|             |             | timing diagrams by applying engineering fundamentals            |   |
|             |             | and engineering specialization.                                 |   |
| <b>CO 5</b> | <b>PO 1</b> | Interpret (Understand) the functionality of various types of    | 3 |
|             |             | interrupts and their structure for controlling the processor or |   |
|             |             | controller and program execution flow by applying               |   |
|             |             | mathematics, engineering fundamentals and engineering           |   |
|             |             | specialization.                                                 |   |
| <b>CO 6</b> | <b>PO 1</b> | Demonstrate (Understand) the internal architecture and          | 3 |
|             |             | various modes of operation of the devices used for interfacing  |   |
|             |             | memory and I/O devices with microprocessor by applying          |   |
|             |             | mathematics, engineering fundamentals and engineering           |   |
|             | DO 2        | specialization.                                                 | - |
|             | PO 2        | Interpret the internal architecture and Identify various modes  | 5 |
|             |             | of operation for information and data collection of the         |   |
|             |             | devices used by <b>reviewing research literature</b> for        |   |
|             |             | Interfacing memory and I/O devices for experimental             |   |
|             |             | design to solve complex engineering problems with               |   |
|             |             | nincroprocessor for the solution of development using           |   |
|             | PO 3        | Make use of the internal architecture (Understand) and          | 5 |
|             | 105         | various modes of operation of the devices for identifying a     | 5 |
|             |             | <b>problem</b> and make interfacing between memory and I/O      |   |
|             |             | devices with microprocessor for experimental design to          |   |
|             |             | meet specific needs with environmental considerations, to       |   |
|             |             | manage the design process and evaluate outcomes.                |   |
|             | PSO 3       | Demonstrate (knowledge) the proficiency in performing           | 1 |
|             |             | memory and I/O interfacing with microprocessor using            |   |
|             |             | modern tool necessary for entry level position to meet the      |   |
| CO 7        | <b>DO 1</b> | Characteristic data transformations and                         | 2 |
| 01          | roi         | Choose (Apply) an appropriate data transfer scheme and          | 3 |
|             |             | hardware to perform serial data transfer among the devices      |   |
|             |             | by applying mathematics, engineering fundamentals and           |   |
|             | <b>PO 2</b> | engineering specialization.                                     | 5 |
|             | 102         | collection and hardware for model translation and analyze       | 5 |
|             |             | an experimental design to perform serial data transfer          |   |
|             |             | among the devices with an interpretation of results             |   |
|             | PO 3        | Design proper data transfer scheme to manage the design         | 6 |
|             | 105         | process with appropriate considerations and hardware            | 0 |
|             |             | design system components for designing the solutions on         |   |
|             |             | complex engineering problems to perform serial data             |   |
|             |             | transfer among the devices by applying the knowledge of         |   |
|             |             | techniques, for real time design issues.                        |   |
|             |             |                                                                 |   |

|             | <b>PO 5</b> | Make use of software tools to analyze the data transfer        | 1 |
|-------------|-------------|----------------------------------------------------------------|---|
|             |             | schemes between the processor and I/O devices by               | 1 |
|             |             | application of <b>modern tools.</b>                            |   |
|             | PSO 3       | Demonstrate (knowledge) the proficiency in performing          | 1 |
|             | 1000        | serial data transfer among the device using modern tool        | 1 |
|             |             | necessary for entry level position to meet the requirements    |   |
|             |             | of the employer                                                |   |
| CO 8        | <b>PO 1</b> | Interprot (Understand) the internal building blocks and        | 2 |
| 000         | 101         | merpret (Onderstand) the internal bundling blocks and          | 2 |
|             |             | registers of 8031 microcontroller used to perform timer and    |   |
|             |             | counter operations by applying knowledge of mathematics,       |   |
|             |             | engineering fundamentals, engineering specialization.          | ~ |
|             | PO 2        | Explain the internal building blocks and identify registers of | 5 |
|             |             | 8051 microcontroller by analyzing complex engineering          |   |
|             |             | <b>problems</b> used to perform Timer/Counter operations for   |   |
|             |             | sustained conclusions by applying mathematics, natural         |   |
|             |             | sciences and Engineering sciences.                             |   |
|             | <b>PO 3</b> | Extend the internal building blocks and registers of 8051      | 6 |
|             |             | microcontroller find the solution for complex engineering      |   |
|             |             | <b>problems</b> and perform timer and counter operations by    |   |
|             |             | designing system components properly and to meet               |   |
|             | DO 5        | specific needs of societal and environmental aspects           | 1 |
|             | PO 5        | Make use of software tools to analyze the timer and counter    | 1 |
|             |             | operations using microcomputer system by application of        |   |
|             | DCI0.0      | modern tools.                                                  |   |
|             | PS0 3       | Demonstrate (knowledge) the proficiency in performing          | 1 |
|             |             | serial data transfer among the device using modern tool        |   |
|             |             | necessary for entry level position to meet the requirements    |   |
|             |             | of the employer.                                               |   |
| <b>CO 9</b> | <b>PO 1</b> | Interpret (Understand) the internal building blocks and        | 3 |
|             |             | registers of 8051 microcontroller used to perform data         |   |
|             |             | conversion, interfacing of memory and I/O devices by           |   |
|             |             | applying knowledge of mathematics, engineering                 |   |
|             |             | fundamentals, engineering specialization.                      |   |
|             | <b>PO 2</b> | Explain the internal building blocks and identify registers of | 6 |
|             |             | 8051 microcontroller by analyzing complex engineering          |   |
|             |             | problems used to perform data conversion, interfacing of       |   |
|             |             | memory and I/O devices for sustained conclusions by            |   |
|             |             | applying mathematics, natural sciences and Engineering         |   |
|             |             | sciences.                                                      |   |
|             | <b>PO 3</b> | Extend the internal building blocks and registers of 8051      | 6 |
|             |             | microcontroller find the solution for complex engineering      |   |
|             |             | problems and perform data conversion, interfacing of           |   |
|             |             | memory and I/O devices by designing system components          |   |
|             |             | properly and to meet specific needs of societal and            |   |
|             |             | environmental aspects                                          |   |
|             | <b>PO 5</b> | Make use of software tools to analyse the data conversion,     | 1 |
|             |             | memory and I/O interfacing using microcomputer system by       |   |
|             | DOC 1       | application of <b>modern tools.</b>                            |   |
|             | PSO 3       | Demonstrate (knowledge) the proficiency in performing data     | 1 |
|             |             | conversion, memory and I/O interfacing using modern tool       |   |
|             |             | necessary for entry level position to meet the requirements    |   |
|             |             | or the employer.                                               |   |

| CO 10 | <b>PO 1</b> | Build (Apply) necessary hardware and software interface     | 3 |
|-------|-------------|-------------------------------------------------------------|---|
|       |             | using microcomputer based systems to provide solution for   |   |
|       |             | real world problems by applying knowledge of                |   |
|       |             | mathematics, engineering fundamentals, engineering          |   |
|       |             | specialization.                                             |   |
|       | <b>PO 2</b> | Identify problem and Choose necessary hardware and          | 6 |
|       |             | software interface (information and data collection) and    |   |
|       |             | conduct experimental design with model translation to       |   |
|       |             | provide solution development for real world problems by     |   |
|       |             | interpreting results                                        |   |
|       | <b>PO 3</b> | Organize necessary hardware and software interface based    | 6 |
|       |             | on user needs and importance of considerations for          |   |
|       |             | innovative solutions, of the problem including all aspects  |   |
|       |             | to manage design process, in microcomputer based            |   |
|       |             | systems by applying different techniques, to achieve        |   |
|       |             | required sustained development, with legal requirements     |   |
|       |             | governing engineering activities, including personnel,      |   |
|       |             | health, safety, and risk issues.                            |   |
|       | <b>PO 5</b> | Make use of software and hardware tools to analyze real     | 1 |
|       |             | world applications developed using microcomputer system     |   |
|       |             | by application of <b>modern tools.</b>                      |   |
|       | PSO 3       | Demonstrate (knowledge) the proficiency in analyzing the    | 1 |
|       |             | real world applications developed around microcomputer      |   |
|       |             | system using modern tool necessary for entry level position |   |
|       |             | to meet the requirements of the employer.                   |   |

# XII. NUMBER OF KEY COMPETENCIES FOR CO – (PO,PSO) MAPPING:

|                    |   | ]  | Progr | am Ou | utcom | es / N | umbe | r of V | ital Fe | eature | S  |    | PSO/ No. of<br>Vital Features |   |   |
|--------------------|---|----|-------|-------|-------|--------|------|--------|---------|--------|----|----|-------------------------------|---|---|
| Course<br>Outcomes | 1 | 2  | 3     | 4     | 5     | 6      | 7    | 8      | 9       | 10     | 11 | 12 | 1                             | 2 | 3 |
|                    | 3 | 10 | 10    | 11    | 1     | 5      | 3    | 3      | 12      | 5      | 12 | 12 | 2                             | 2 | 2 |
| CO 1               | 2 |    |       |       |       |        |      |        |         |        |    |    |                               |   |   |
| CO 2               | 3 |    |       |       |       |        |      |        |         |        |    |    |                               |   |   |
| CO 3               | 2 |    |       |       |       |        |      |        |         |        |    |    |                               |   |   |
| <b>CO 4</b>        | 3 |    |       |       |       |        |      |        |         |        |    |    |                               |   |   |
| CO 5               | 3 |    |       |       |       |        |      |        |         |        |    |    |                               |   |   |
| <b>CO 6</b>        | 3 | 5  | 5     |       |       |        |      |        |         |        |    |    |                               |   | 1 |
| <b>CO 7</b>        | 3 | 5  | 6     |       | 1     |        |      |        |         |        |    |    |                               |   | 1 |
| CO 8               | 2 | 5  | 6     |       | 1     |        |      |        |         |        |    |    |                               |   | 1 |
| <b>CO 9</b>        | 3 | 6  | 6     |       | 1     |        |      |        |         |        |    |    |                               |   | 1 |
| CO 10              | 3 | 6  | 6     |       | 1     |        |      |        |         |        |    |    |                               |   | 1 |

|             |       | ]    | Progr | am O | utcom | es / N | umbe | r of Vi | ital Fe | eature | 8   |     | PSO / No. of<br>Vital Features |     |      |  |
|-------------|-------|------|-------|------|-------|--------|------|---------|---------|--------|-----|-----|--------------------------------|-----|------|--|
| Course      | 1     | 2    | 3     | 4    | 5     | 6      | 7    | 8       | 9       | 10     | 11  | 12  | 1                              | 2   | 3    |  |
| Outcomes    | 3     | 10   | 10    | 11   | 1     | 5      | 3    | 3       | 12      | 5      | 12  | 12  | 2                              | 1   | 2    |  |
| CO 1        | 66.0  | 0.0  | 0.0   | 0.0  | 0.0   | 0.0    | 0.0  | 0.0     | 0.0     | 0.0    | 0.0 | 0.0 | 0.0                            | 0.0 | 0.0  |  |
| CO 2        | 100.0 | 0.0  | 0.0   | 0.0  | 0.0   | 0.0    | 0.0  | 0.0     | 0.0     | 0.0    | 0.0 | 0.0 | 0.0                            | 0.0 | 0.0  |  |
| CO 3        | 66.0  | 0.0  | 0.0   | 0.0  | 0.0   | 0.0    | 0.0  | 0.0     | 0.0     | 0.0    | 0.0 | 0.0 | 0.0                            | 0.0 | 0.0  |  |
| <b>CO 4</b> | 100.0 | 0.0  | 0.0   | 0.0  | 0.0   | 0.0    | 0.0  | 0.0     | 0.0     | 0.0    | 0.0 | 0.0 | 0.0                            | 0.0 | 0.0  |  |
| CO 5        | 100.0 | 0.0  | 0.0   | 0.0  | 0.0   | 0.0    | 0.0  | 0.0     | 0.0     | 0.0    | 0.0 | 0.0 | 0.0                            | 0.0 | 0.0  |  |
| CO 6        | 100.0 | 50.0 | 50.0  | 0.0  | 0.0   | 0.0    | 0.0  | 0.0     | 0.0     | 0.0    | 0.0 | 0.0 | 0.0                            | 0.0 | 50.0 |  |
| <b>CO 7</b> | 100.0 | 50.0 | 60.0  | 0.0  | 100.0 | 0.0    | 0.0  | 0.0     | 0.0     | 0.0    | 0.0 | 0.0 | 0.0                            | 0.0 | 50.0 |  |
| <b>CO 8</b> | 66.0  | 50.0 | 60.0  | 0.0  | 100.0 | 0.0    | 0.0  | 0.0     | 0.0     | 0.0    | 0.0 | 0.0 | 0.0                            | 0.0 | 50.0 |  |
| CO 9        | 100.0 | 60.0 | 60.0  | 0.0  | 100.0 | 0.0    | 0.0  | 0.0     | 0.0     | 0.0    | 0.0 | 0.0 | 0.0                            | 0.0 | 50.0 |  |
| CO 10       | 100.0 | 60.0 | 60.0  | 0.0  | 100.0 | 0.0    | 0.0  | 0.0     | 0.0     | 0.0    | 0.0 | 0.0 | 5.0                            | 0.0 | 50.0 |  |

# XIII. PERCENTAGE OF KEY COMPETENCIES FOR CO – (PO,PSO) MAPPING:

# XIV. COURSE ARTICULATION MATRIX (CO - PO / PSO MAPPING):

COs and POs and COs and PSOs on the scale of 0 to 3, 0 being no correlation, 1 being the low correlation, 2 being medium correlation and 3 being high correlation.

 $\mathbf{0} - \mathbf{0} \le \mathbf{C} \le 5\%$ - No correlation;

 $1-5 < C \le 40\%$ -Low / Slight;

2 - 40 % < C < 60% – Moderate.

| $3 - 60\% \le C < 100\%$ | : 100%- | Substantial | /High |
|--------------------------|---------|-------------|-------|
|--------------------------|---------|-------------|-------|

| Course   |   |   |   |   | Pro | gram | Outco | omes |   |    |    |    | Program<br>Specific<br>Outcomes |   |   |
|----------|---|---|---|---|-----|------|-------|------|---|----|----|----|---------------------------------|---|---|
| outcomes | 1 | 2 | 3 | 4 | 5   | 6    | 7     | 8    | 9 | 10 | 11 | 12 | 1                               | 2 | 3 |
| CO 1     | 2 | - | - | - | -   | -    | -     | -    | - | -  | -  | -  | -                               | - | - |
| CO 2     | 3 | - | - | - | -   | -    | -     | -    | - | -  | -  | -  | -                               | - | - |
| CO 3     | 2 | - | - | - | -   | -    | -     | -    | - | -  | -  | -  | -                               | - | - |
| CO 4     | 3 | - | - | - | -   | -    | -     | -    | - | -  | -  | -  | -                               | - | - |
| CO 5     | 3 | - | - | - | -   | -    | -     | -    | - | -  | -  | -  | -                               | - | - |
| CO 6     | 3 | 2 | 2 | - | -   | -    | -     | -    | - | -  | -  | -  | -                               | - | 2 |
| CO 7     | 3 | 2 | 3 | - | 3   | -    | -     | -    | - | -  | -  | -  | -                               | - | 2 |
| CO 8     | 2 | 2 | 3 | - | 3   | -    | -     | -    | - | -  | -  | -  | -                               | - | 2 |

| <b>CO 9</b> | 3   | 3   | 3   | - | 3   | - | - | - | - | - | - | - | - | - | 2   |
|-------------|-----|-----|-----|---|-----|---|---|---|---|---|---|---|---|---|-----|
| CO 10       | 3   | 3   | 3   | - | 3   | - | - | - | - | - | - | - | - | - | 2   |
| TOTAL       | 27  | 12  | 14  |   | 12  |   |   |   |   |   |   |   |   |   | 10  |
| AVERAGE     | 3.0 | 1.0 | 2.0 |   | 1.0 |   |   |   |   |   |   |   |   |   | 1.0 |

# XV. ASSESSMENT METHODOLOGIES – DIRECT

| CIE Exams               | PO 1,PSO 3 | SEE Exams       | PO 1,<br>PSO 3 | Assignments  | PO 1,PO 2<br>PSO 3 | Seminars      | PO 1,PO 2,<br>PO 3,<br>PSO 3 |
|-------------------------|------------|-----------------|----------------|--------------|--------------------|---------------|------------------------------|
| Laboratory<br>Practices | PO 3,PO 5  | Student<br>Viva | -              | Mini Project | -                  | Certification | -                            |
| Term Paper              | -          |                 |                |              |                    |               |                              |

# XVI. ASSESSMENT METHODOLOGIES – INDIRECT

| ~ | Early Semester Feedback                | ~ | End Semester OBE Feedback |
|---|----------------------------------------|---|---------------------------|
| × | Assessment of Mini Projects by Experts |   |                           |

# XVII. SYLLABUS

| MODULE-I                                                                                                                                                                                                                                                                                                                                                                | 8086 MICROPROCESSORS                 |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--|--|--|
| Register organization of 8086, Architecture, signal description of 8086, physical memory organization, general bus operation, I/O addressing capability, special purpose activities, Minimum mode, maximum mode of 8086 system and timings, machine language instruction formats, addressing mode of 8086, instruction set of 8086, assembler directives and operators. |                                      |  |  |  |
| <b>MODULE-II</b>                                                                                                                                                                                                                                                                                                                                                        | PROGRAMMING WITH 8086 MICROPROCESSOR |  |  |  |
| Machine level programs, programming with an assembler, Assembly language programs, introduction to stack, stack structure of 8086/8088, interrupts and interrupt service routines. Interrupt cycle of 8086, non-mask able interrupt and mask able interrupts, interrupt programming.                                                                                    |                                      |  |  |  |
| MODULE-III                                                                                                                                                                                                                                                                                                                                                              | INTERFACING WITH 8086/880            |  |  |  |
| Semiconductor memory interfacing, dynamic RAM interfacing, interfacing i/o ports, PIO 8255 modes of operation of 8255, interfacing to D/A and A/D converters, stepper motor interfacing, control of high power devices using 8255.                                                                                                                                      |                                      |  |  |  |
| Programmable interrupt controller 8259A, the keyboard /display controller8279, programmable communication interface 8251 USART, DMA Controller 8257.                                                                                                                                                                                                                    |                                      |  |  |  |
| MODULE-IV                                                                                                                                                                                                                                                                                                                                                               | 8051 MICROCONTROLLER                 |  |  |  |
| 8051 Microcontroller – Internal architecture and pin configuration, 8051 addressing modes, instruction set, Bit addressable features. I/O Port structures, assembly language programming using data transfer, arithmetic, logical and branch instructions.                                                                                                              |                                      |  |  |  |

MODULE-V SYSTEM DESIGN USING MICROCONTROLLER

8051 Timers/Counters, Serial data communication and its programming, 8051 interrupts, Interrupt vector table, Interrupt programming. Real world interfacing of 8051 with external memory, expansion of I/O ports, LCD, ADC, DAC, stepper motor interfacing.

#### **TEXT BOOKS:**

- Ray A.K, Bhurchandi K.M, "Advanced Microprocessor and Peripherals", TMH, 2<sup>nd</sup> Edition, 2012
- 2 Muhammad Ali Mazidi, J.G. Mazidi, R.D McKinlay," The 8051 Microcontroller and Embedded systems using Assembly and C", Pearson education, 2<sup>nd</sup> Edition, 2009.
- 3 Douglas V. Hall, "Microprocessors and Interfacing Programming and Hardware", TMGH, 2<sup>nd</sup> Edition, 1994.

#### **REFERENCE BOOKS:**

- 1 Kenneth J. Ayala, "The 8051 Microcontroller", Thomson Learning, 3<sup>rd</sup> edition, 2005.
- 2 Manish K. Patel, "The 8051 Microcontroller Based Embedded Systems", McGraw Hill, 1<sup>st</sup> Edition, 2014.
- 3 Ajay V Deshmukh, "Microcontrollers", TATA McGraw Hill publications, 2<sup>nd</sup> Edition, 2012.

## **XVIII. COURSE PLAN:**

The course plan is meant as a guideline. Probably there may be changes.

| Lecture No. | Topics to be covered                    | СО   | Reference         |
|-------------|-----------------------------------------|------|-------------------|
| 1           | Introduction: An over view of 8085      | CO 1 | R1: 1.1           |
| 2           | Register organization of 8086           | CO 2 | T1: 1.1<br>R1:3.6 |
| 3           | Architecture                            | CO 1 | T1: 1.2<br>R1:3.9 |
| 4           | signal description of 8086              | CO 1 | T1: 1.3           |
| 5           | physical memory organization            | CO 1 | T1: 1.4<br>R1:3.8 |
| 5           | general bus operation                   | CO 1 | T1: 1.5           |
| 6           | I/O addressing capability               | CO 2 | T1: 1.6           |
| 6           | special purpose activities              | CO 2 | T1: 1.7           |
| 7           | Minimum mode of 8086 system and timings | CO 4 | T1: 1.8           |
| 8           | maximum mode of 8086 system and timings | CO 4 | T1: 1.9           |
| 9           | machine language instruction formats    | CO 3 | T1: 2.1           |
| 10          | addressing mode of 8086                 | CO 3 | T1: 2.2<br>R1:4.3 |
| 11-13       | instruction set of 8086,                | CO 3 | T1: 2.3<br>R1:5.1 |
| 14          | Assembler directives and operators      | CO 3 | T1: 2.4           |

| Lecture No. | Topics to be covered                             | СО   | Reference                |
|-------------|--------------------------------------------------|------|--------------------------|
| 15          | Machine level programs                           | CO 3 | T1: 3.1                  |
| 16          | programming with an assembler                    | CO 3 | T1: 3.3<br>R1:4.4        |
| 17-19       | Assembly language programs                       | CO 3 | T1: 3.4<br>R1:5.3,5.4    |
| 20          | introduction to stack                            | CO 1 | T1: 4.1<br>R1:6.2        |
| 20          | stack structure of 8086/8088                     | CO 1 | T1: 4.2<br>R1:6.2        |
| 21          | interrupts and interrupt service routines        | CO 5 | T1: 4.3<br>R1:7.2,7.4    |
| 22          | Interrupt cycle of 8086                          | CO 5 | T1: 4.4                  |
| 23          | non-mask able interrupt and mask able interrupts | CO 5 | T1: 4.5, 4.6             |
| 24          | interrupt programming                            | CO 5 | T1: 4.7<br>R1:7.11       |
| 25          | Semiconductor memory interfacing                 | CO 6 | T1: 5.1<br>R1:6.2        |
| 26          | dynamic RAM interfacing                          | CO 6 | T1: 5.2                  |
| 27          | interfacing i/o ports                            | CO 6 | T1: 5.3                  |
| 28-29       | PIO 8255 modes of operation of 8255              | CO 6 | T1: 5.4<br>R1:12.2       |
| 30-31       | Interfacing to D/A and A/D converters            | CO 6 | T1: 5.6, 5.7             |
| 32          | Stepper motor interfacing                        | CO 6 | T1: 5.8                  |
| 33          | Control of high power devices using 8255.        | CO 6 | T1: 5.9                  |
| 34-35       | Programmable interrupt controller 8259A          | CO 6 | T1: 6.2<br>R1:11.9       |
| 36          | the keyboard /display controller8279             | CO 6 | T1:6.3                   |
| 37-38       | programmable communication interface 8251 USART  | CO 6 | T1: 6.4<br>R1:12.2       |
| 39-40       | DMA Controller 8257                              | CO 6 | T1: 7.1                  |
| 41          | 8051 Microcontroller – Internal architecture     | CO 1 | T1: 17.2<br>R2:2.1       |
| 42          | pin configuration                                | CO 1 | T1: 17.3<br>R2:11.1,11.2 |
| 43          | 8051 addressing modes                            | CO 3 | T1: 17.7<br>R2:4.2       |
| 44-45       | instruction set                                  | CO 3 | T1: 17.8<br>R2:5,6,7     |
| 46          | Bit addressable features                         | CO 9 | R2:6.1                   |
| 46          | I/O Port structures                              | CO 9 | R2:13.1                  |

| Lecture No. | . Topics to be covered                                                                          |       | Reference |
|-------------|-------------------------------------------------------------------------------------------------|-------|-----------|
| 47-48       | Assembly language programming using data transfer, arithmetic, logical and branch instructions. | CO 3  | R2:12     |
| 49-50       | 8051 Timers/Counters                                                                            | CO 8  | R2:14     |
| 51-52       | Serial data communication and its programming                                                   | CO 5  | R2:15     |
| 53          | 8051 interrupts                                                                                 | CO 5  | R2:16.2   |
| 54          | Interrupt vector table                                                                          | CO 5  | R2:16.3   |
| 54          | Interrupt programming                                                                           | CO 5  | R2:16.4   |
| 55          | Real world interfacing of 8051 with external memory                                             | CO 10 | R2:21.1   |
| 55          | Expansion of I/O ports                                                                          | CO 9  | R2:13.1   |
| 56          | LCD                                                                                             | CO 9  | R2:18.3   |
| 56          | ADC                                                                                             | CO 9  | R2:19.1   |
| 57          | DAC                                                                                             | CO 9  | R2:19.2   |
| 58          | Stepper motor interfacing.                                                                      | CO 9  | R2:20.3   |

**Prepared by:** Ms. B Lakshmi Prasanna, Assistant Professor

HOD, ECE