INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad -500 043

ELECTRICAL AND ELECTRONICS ENGINEERING

COURSE DESCRIPTOR

Course Title	POWER S	POWER SYSTEM OPERATION AND CONTROL			
Course Code	AEE016	AEE016			
Programme	B.Tech	B.Tech			
Semester	SEVEN	SEVEN			
Course Type	Professional Core				
Regulation	IARE - R1	6			
	Theory Practical				
Lectures Tutorials Credits Laboratory Cred					
Course Structure	3	1	4	-	-
Chief Coordinator	Dr. P Sridh	ar, Professor			

I. COURSE OVERVIEW:

The objective of the control strategy is to generate and distribute power in an interconnected system as economically and reliably as possible while maintaining the frequency and voltage within permissible limits. The factors influencing power generation at minimal cost are operating efficiencies, fuel cost and transmission losses. In order to keep any power system in steady state the flow of active and reactive power must be checked. Successful achievement of these operational targets entailed the development of optimal dispatch solutions to find the optimal dispatch of generation for an interconnected power system.

II. COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites	Credits
UG	AEE011	V	Transmission and Distribution Systems	4
UG	AEE012	VI	Power System Analysis	4

III. MARKS DISTRIBUTION:

Subject	SEE Examination	CIA Examination	Total Marks
Power System Operation and Control	70 Marks	30 Marks	100

~	Chalk & Talk	~	Quiz	~	Assignments	×	MOOCs
~	PPT	~	Seminars	×	Mini Project	~	Videos
✗ Open Ended Experiments							

IV. DELIVERY / INSTRUCTIONAL METHODOLOGIES:

V. EVALUATIONMETHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIA examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into five units and each unit carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each unit. Each question carries 14 marks. There could be a maximum of two subdivisions in a question.

Percentage of Cognitive Level	Blooms Taxonomy Level
10 %	Remember
50 %	Understand
25 %	Apply
15 %	Analyze
0 %	Evaluate
0 %	Create

Table 1: The expected percentage of cognitive level of questions in SEE

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 2), with 25 marks for Continuous Internal Examination (CIE), 05 marks for Quiz/ Alternative Assessment Tool (AAT).

Table 2: Assessment pattern for CIA

Component	Theory		Total Manka
Type of Assessment	CIE Exam	Quiz / AAT	T OTAL WALKS
CIA Marks	25	05	30

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8th and 16th week of the semester respectively. The CIE exam is conducted for 25 marks of 2 hours duration consisting of two parts. Part A shall have five compulsory questions of one mark each. In part B, four out of five questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Quiz / Alternative Assessment Tool (AAT):

Two Quiz exams shall be online examination consisting of 25 multiple choice questions and are be answered by choosing the correct answer from a given set of choices (commonly four). Marks shall be awarded considering the average of two quizzes for every course. The AAT may include seminars, assignments, term paper, open ended experiments, five minutes video and MOOCs. The AAT chosen for this course is given in Table 3.

Table 3: Assessment pattern for AAT	1
-------------------------------------	---

5 Minutes Video	Assignment	Tech-talk	Seminar
30%	30%	30%	10%

VI. COURSE OBJECTIVES:

The stu	idents will try to learn:
Ι	The economic operation through optimal generation - load dispatch, hydro -thermal and pumped
	storage plant scheduling and their implementation through various classical methods.
II	The required mathematical and engineering fundamentals for controlling the governing system,
	turbine, excitation models and automatic, load frequency controllers in the power system.
III	The necessity and effective management of generation, transmission and distribution of electrical
	power for optimal operation of the system.
IV	The concepts of load frequency control in interconnected systems, its operation, reactive power
	control, compensation techniques in transmission line and types of loads with characteristics for real-
	world engineering problems and applications.
V	The control actions required on the system to meet the minute-to-minute variation of system demand
	and its significance in power system operation and control by maintaining the frequency and voltage
	as constant.

VII. COURSE OUTCOMES:

Upon the successful completion of this course, the students will be able to:

CO No	Course Outcomes	Knowledge Level (Bloom's Taxonomy)
CO1	Recall the knowledge of engineering science including electrical circuits, control systems and electrical machines in power system operation and control.	Remember
CO2	Determine economic scheduling of generation in a power system to supply specific amount of demand.	Understand
CO3	Outline the problems related to the economic dispatch of power, plant scheduling, strategies for minimizing transmission line losses and penalties imbibed.	Understand
CO4	Calculate the cost of generation, economic dispatch of power among 'n' thermal units using incremental cost curves and coordinate equation using iteration method.	Understand
CO5	Develop the mathematical models of the mechanical and electrical components involved in the operation of power systems under steady and dynamic conditions.	Analyze
CO6	Model excitation system using the fundamental characteristics and transfer function method.	Apply
CO7	Analyze the static performance of the system with automatic generation control, excitation voltage and reactive power control in an interconnected power system.	Analyze
CO8	Design a compensation scheme in a transmission line for imparting knowledge of various controllers with its evolution, principle of operation and applications.	Apply
CO9	Determine the optimal location of power capacitors for power factor improvement with economic justification.	Understand
CO10	Demonstrate the importance of load compensation in symmetrical as well as unsymmetrical loads with its characteristics.	Understand

CO11	Solve different numerical problems related to Economic Load Dispatch, Load	Apply
	Frequency Control and reactive power control.	

COURSE KNOWLEDGE COMPETENCY LEVELS

VIII. HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program Outcomes	Strength	Proficiency assessed by
PO1	Engineering knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.	3	CIE/Quiz/AAT
PO2	Problem analysis : Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences	3	CIE/Quiz/AAT
PO3	Design / development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.	2	CIE/Quiz/AAT

3 = **High; 2** = **Medium; 1** = Low

IX. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program Specific Outcomes	Strength	Proficiency assessed by
PSO2	Focus on the components of power system, its analysis, operation,	2	CIE / Quiz / AAT
	control and protection: electrical drives with its converter topology for		
	energy conversion, management and auditing specific applications of		
	industry and academia.		

3 = **High**; **2** = **Medium**; **1** = Low

Course		Program Outcomes													Program Specific Outcomes		
Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		
CO1	\checkmark																
CO2	\checkmark	\checkmark												\checkmark			
CO3		\checkmark	\checkmark											\checkmark			
CO4	\checkmark		\checkmark											\checkmark			
CO5	\checkmark	\checkmark												\checkmark			
CO6	\checkmark	\checkmark												\checkmark			
CO7	\checkmark	\checkmark															
CO8	\checkmark	\checkmark															
CO9	\checkmark	\checkmark												\checkmark			
CO10	\checkmark		\checkmark														
CO11	\checkmark		\checkmark											\checkmark			

X. MAPPING OF EACH CO WITH POs / PSOs:

XI. JUSTIFICATIONS FOR CO – PO / PSO MAPPING

Course	POs /	Justification for mapping (Students will be able to)	No. of key
CO1	PSOs PO1	Understand the principles of mathematics, science and engineering for solving problems related to power system operation and control.	2
CO2	PO1	Determine at all times the optimum combination of generating units connected to the systems so as to supply the load demand at minimum cost using principles of mathematics, science, and engineering fundamentals.	2
	PO2	Identify the optimum combinations of generating units for economics load dispatch there by using the analysis to solve complex engineering problems with basic mathematics and engineering sciences.	6
	PSO2	Design the economic scheduling of generation to meet demand Focusing on the components of power system, its analysis, operation, control and protection.	1
CO3	PO2	Analyze the equality and inequality problems arises during power plant scheduling, strategies for reducing line losses and penalties using principles of mathematics, science and engineering	7
	PO3	Design the solutions for the problems that arises during operation and control of power system.	4
	PSO2	Structuring the economic dispatch of power, plant scheduling, strategies for minimizing transmission line losses in power system operation and control.	1

CO4	PO1	Calculated the additional expenses involved in the production	2
		process, such as raw material, for one additional generating unit	
		using fundamentals of mathematics, science, and engineering	
		fundamentals.	
	PO3	Design the specifications of components required in	5
		incrementing units of thermal power plant to meet the	
		requirements economically.	
	PSO2	Find the number of thermal power plant units required for optimal	1
		operation of power system.	
CO5	PO1	Calculate the values of mechanical and electrical components of	2
		power system effected under steady state and transient states using	
		principles mathematics, science and engineering fundamentals.	
	PO2	Analyze the electrical and mechanical components affected during	6
		steady state and transient state study of power system to solve	
		complex problems in operation and control of power system using	
	PSO2	Design the mechanical and electrical components to improve	1
	1502	Design the mechanical and electrical components to improve	1
		conditions	
CO6	PO1	Determine the excitation system to provide continuous supply to	2
000	101	the system with the knowledge of mathematics , science and	2
		engineering fundamentals.	
	PO2	Design the solution related to excitation system in power system	7
		using different approaches with basics of mathematics and	
		engineering	
	PSO2	Study the performance of excitation system in power system	1
		operation and control	
CO7	PO1	Understand the behavior of power system under static conditions	2
		with automatic generation control, excitation voltage and reactive	
		power control using knowledge of mathematics, science and	
		engineering fundamentals.	
	PO2	Determine the solution for the power system operation and control	6
		under static conditions with various schemes using basics of	
000	DO1	mathematics and engineering.	
008	POI	Demonstrate the voltage magnitude, improve the voltage quality,	2
		and enhance the system stability using fundamentals of	
	DO1	mathematics, science, and engineering fundamentals.	
	PO2	Design the compensation schemes for power quality improvement	/
		under various conditions and implement the same with basics of	
COQ	PO1	Calculate the position where consister must be placed for power	2
00	101	factor improvement using the principles of methometics and	2
		angingering fundamentals	
	PO2	Provide the expressions used for optimal location of power system	7
	104	to improve its performance under typical conditions with help of	/
		hasic mathematics and engineering sciences	
	PSO2	Identify the location of canacitor in nower system for ontimal	1
		operation and control.	I
CO10	PO1	Illustrate the management of reactive power to improve power	2
	- ~ *	quality i.e. V profile and power factor using the principles of	-
		mathematics and engineering fundamentals.	
L	1		

	PO3	Determine the specifications of components involved in symmetrical and asymmetrical load compensation for management of reactive power control.	4
CO11	PO1	Demonstrate the factors involved in Economic Load Dispatch, Load Frequency Control and reactive power control using knowledge of mathematics, science and engineering fundamentals.	2
	PO3	Calculate the specifications of components used for increasing number of units economically, maintain uniform frequency and reactive power generation and consumption.	5
	PSO2	Solve the number of generating units, operation frequency under synchronism and reactive power for economic operation and control of power system.	1

XII. NUMBER OF KEY COMPETENCIES FOR CO – PO/PSO MAPPING:

			Progr	am O	utcom	es / Nu	umber	of Vi	tal Fea	atures			PS Vita	O/No. l Feat	of ures
Course Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	3	10	10	11	1	5	3	3	12	5	12	12	2	2	2
CO1	2														
CO2	2	6												1	
CO3		7	4											1	
CO4	2		5											1	
CO5	2	6												1	
CO6	2	7												1	
CO7	2	6													
CO8	2	7													
CO9	2	7												1	
CO10	2		4												
CO11	2		5											1	

XIII. PERCENTAGE OF KEY COMPETENCIES FOR CO – PO/PSO MAPPING:

Course Outcomes		Program Outcomes / Number of Vital Features												Program Specific Outcomes / No. of Vital Features		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
	3	10	10	11	1	5	3	3	12	5	12	12	2	2	2	
CO1	66.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	

CO2	66.6	60.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	50.0	0.0
CO3	0.0	70.0	40.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	50.0	0.0
CO4	66.6	0.0	40.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	50.0	0.0
CO5	66.6	60.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	50.0	0.0
CO6	66.6	70.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	50.0	0.0
CO7	66.6	60.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
CO8	66.6	70.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
CO9	66.6	70.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	50.0	0.0
CO10	66.6	0.0	40.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
C011	66.6	0.0	50.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	50.0	0.0

XIV. COURSE ARTICULATION MATRIX (CO - PO / PSO MAPPING):

COs and POs and COs and PSOs on the scale of 0 to 3, 0 being no correlation, 1 being the low correlation, 2 being medium correlation and 3 being high correlation.

- $\mathbf{0} \mathbf{0} \le \mathbf{C} \le 5\%$ No correlation;
- $\mathbf{2}-40$ % $<\!\!\boldsymbol{C}\!<60\%$ Moderate.
- $1-5 < C \le 40\%$ Low/ Slight;
- $\mathbf{3}-60\% \leq \textit{C} < 100\%$ -Substantial /High

Course				Pro	gram (Outcor	nes				Pro	Program Specific Outcomes				
Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
CO2	3	3	-	-	-	-	-	-	-	-	-	-	-	2	-	
CO3	-	3	2	-	-	-	-	-	-	-	-	-	-	2	-	
CO4	3	-	2	-	-	-	-	-	-	-	-	-	-	2	-	
CO5	3	3	-	-	-	-	-	-	-	-	-	-	-	2	-	
CO6	3	3	-	-	-	-	-	-	-	-	-	-	-	2	-	
CO7	3	3	-	-	-	-	-	-	-	-	-	-	-	-	-	
CO8	3	3	-	-	-	-	-	-	-	-	-	-	-	-	-	
CO9	3	3	-	-	-	-	-	-	-	-	-	-	-	2	-	
CO10	3	-	2	-	-	-	-	-	-	-	-	-	-	-	-	
C011	3	-	2	-	-	-	-	-	-	-	-	-	-	2	-	
TOTAL	30	21	8											14		
AVERAGE	3.0	3.0	2.0											2.0		

XV. ASSESSMENT METHODOLOGIES - DIRECT:

CIE Exams	PO 1,PO 2, PO 3,PSO 2	SEE Exams	PO 1, PO 2, PO 3,PSO 2	Assignments	PO 1, PO 2, PO 3, PSO 2	Seminars	PO 1, PO 2, PO 3, PSO 2
Laboratory Practices	-	Student Viva	-	Mini Project	-	Term Paper	PO 1, PO 2, PO 3, PSO 2
Certification							

XVI. ASSESSMENT METHODOLOGIES -INDIRECT:

~	Early Semester Feedback	~	End Semester OBE Feedback
×	Assessment of Mini Projects by Experts		

XVII. SYLLABUS

UNIT - I	ECONOMIC OPERATION OF POWER SYSTEMS								
Optimal schedulin curve, cost curve, without and with Optimal schedulin hydrothermal sche	Optimal scheduling of thermal power system: Optimal operation of generators in thermal power stations, heat rate curve, cost curve, incremental fuel and production costs, input output characteristics, optimum generation allocation without and with transmission line losses coefficients, general transmission line loss formula, unit commitment; Optimal scheduling of hydrothermal system: Hydroelectric power plant models, scheduling problems, short term hydrothermal scheduling problem.								
UNIT - II	MODELING OF GOVERNOR, TURBINE AND EXCITATION SYSTEMS								
Modeling of governor: Mathematical modeling of speed governing system, derivation of small signal transfer function; Modeling of turbine: First order turbine model, block diagram representation of steam turbines and approximate linear models; Modeling of excitation system: Fundamental characteristics of an excitation system, transfer function, block diagram representation of IEEE type-1 model.									
UNIT - III	SINGLE AREA AND TWO AREA LOAD FREQUENCY CONTROL								
Load frequency co single area contro response, uncontro Load frequency co	Load frequency control of single area system: Necessity of keeping frequency constant, definitions of control area, single area control, block diagram representation of an isolated power system, steady state analysis, dynamic response, uncontrolled case. Load frequency control of two area system: Uncontrolled case and controlled case, tie line bias control;								
Load frequency co steady state respon	ontrollers: Proportional plus integral control of single area and its block diagram representation, nse, load frequency control and economic dispatch.								
UNIT - IV	COMPENSATION FOR POWER FACTOR IMPROVEMENT AND REACTIVE POWER CONTROL								
Voltage control: E power factor con capacitors (fixed a determine the bes systems, advantag Uncompensated an	Voltage control: Equipment for voltage control, effect of series capacitors, line drop compensation, effect of AVR, power factor control using different types of power capacitors, shunt and series capacitors, effect of shunt capacitors (fixed and switched), power factor correction, capacitor allocation, economic justification, procedure to determine the best capacitor location; Reactive power control: Reactive power compensation in transmission systems, advantages and disadvantages of different types of compensating equipment for transmission systems; Uncompensated and compensated transmission lines: Shunt and series compensation								
UNIT - V	UNIT - V LOAD COMPENSATION								
Load Compensation: characteristics of loads, factors associated with loads, relation between the load factor and loss factor; specifications of load compensator; Classification of loads: Residential, commercial, agricultural and industrial and their characteristics.									
Textbooks:									
 Sivanagarju, ' Turan Gonen, T J E Miller, ' 	Power system operation and control", Pearson Education India,2009 "Electric Power Distribution System Engineering", Mc Graw-Hill Book Company "Reactive power control in Electrical system", Wiley Inderscience Publication,1982.								

4. V K Mehta and Rohit Mehta, "Principles of Power System", S Chand, 3rd revised Edition, 2015.

Reference Books:

- Singh S N, "Electric Power Generation, Transmission and Distribution", Prentice Hall of India Pvt. Ltd., New 1. Delhi, 2nd Edition, 2002.
- 2. Turan Gonen, "Electrical Power Distribution System Engineering", CRC Press, 3rd Edition, 2014.
- V Kamaraju, "Electrical Power Distribution Systems", TMH, Publication, 2nd Edition, 2009 O I Elgerd, "Electrical Energy Systems Theory", Tata McGraw-Hill, 2nd Edition, 2007. 3.
- 4.

XVIII. **COURSE PLAN:**

The course plan is meant as a guideline. Probably there may be changes.

Lecture No	Topics to be covered	Course Outcomes	Reference
1-2	Understand optimal operation of generators in thermal power stations and their characteristics	CO1	T1:5-6
3	Understand the heat rate curve, cost curve, incremental fuel and production costs, input output characteristic	CO2	T1: 25-26
4	Solve optimum generation allocation without transmission line losses coefficients, general transmission line loss formula	CO4	T1: 26-28
5	Solve optimum generation allocation with transmission line losses coefficients, general transmission line loss formula,	CO4	T1: 26-28 R1: 34 - 45
6	Solve the unit Commitment problem with various constraints using conventional optimization techniques and general transmission line loss formula	CO11	T1: 26-28 R4: 32- 51
7-9	Examine optimal scheduling of hydrothermal system, its performance characteristics and their economic operation	CO11	T1: 30-32
10-11	Design mathematical modeling of speed governing system and derive small signal transfer function	CO5	T3:312-318
13-14	Design block diagram representation of steam turbines and approximate linear models	CO5	T3:312-318
15	Design mathematical modeling of excitation system of steam turbine	CO6	T3:322-326
16	Understand the fundamental characteristics of an excitation system	CO6	T3:319
17	Understand the block diagram of an excitation system	CO6	T2:11.5 R2:17.5
18-19	Understand block diagram representation of IEEE type-1 model.	CO6	T1: 84-85
20	Study the definitions of control area and single area control	CO7	T1: 327-330
21	Interpret the block diagram representation of an isolated power system for uncontrolled case	CO7	T1: 327-330
22	Describe the steady state analysis and dynamic response for uncontrolled case	CO7	T1: 327-330
23	Study the uncontrolled case and controlled case, tie line bias control for two area system	CO7	T1: 327-330
24	Study the controlled case, tie line bias control for two area system	CO7	T1: 58-59
25	Examine the proportional plus integral control of single area system	CO7	T1: 58-59
26-27	Study the Proportional plus integral control of single area and its block diagram representation	CO7	T1 :60-62
28-29	Study the steady state response, load frequency control and economic dispatch	CO7	T1 :65-68
30	Understand the significance of reactive power control in power systems to maintain quality of power	CO8	T1:296
31	Discuss equipment for voltage control, effect of series capacitors, line drop compensation, effect of AVR, power factor control using different types of power capacitors.	CO8	T2:383-385

32	Describe the effect of series capacitors, line drop compensation, effect of AVR, power factor control using different types of power capacitors	CO9	T2:383-385 T3: 254 - 295
33	Study the effect of series capacitors, line drop compensation	CO9	T2:383
34	Learn the shunt and series capacitors, effect of shunt capacitors fixed and switched power factor correction,	CO9	T 1: 330-345
35	Analyze the capacitor location and Reactive power control	CO9	T2:337
36-37	Demonstrate the reactive power compensation in transmission systems	CO9	T2:342-345
38	Distinguish between advantages and disadvantages of different types of compensating equipment for transmission systems	CO10	T2:342-345
39	Describe the uncompensated and compensated transmission lines and shunt and series compensation.	CO10	T2:337
40-42	Understand the uncompensated and compensated transmission lines and shunt and series compensation	CO10	T2:325-327 R3: 114-154
43 - 44	Tutorial problems	CO11	T2:325-327
45	Tutorial problems	CO11	T2:325-327
46	Learn characteristics of loads and load compensation	CO10	T2:25
47	Understand the significance of distribution systems and their characteristics	CO10	T2:26-28
48 - 55	Illustrate the different types of loads and their characteristics	CO10	T2:29-35
56-58	Tutorial problems	C011	T2:31-35
59-60	Revision	C011	T2:31-35

XIX. GAPS IN THE SYLLABUS - TO MEET INDUSTRY / PROFESSION REQUIREMENTS:

S No	Description	Proposed Actions	Relevance with POs	Relevance with PSOs
1	Designing the turbine model, generator load modelling and load frequency loop with gains using digital simulation	MATLAB Demos /NPTEL	PO5	-
2	Optimum generation allocation with and without transmission line losses coefficients by using digital simulation	MATLAB Demos / NPTEL	PO5	-

Prepared by: Dr. P Sridhar, Professor

HOD, EEE