INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad - 500 043

ELECTRICAL AND ELECTRONICS ENGINEERING

COURSE DESCRIPTOR

Course Title	WIND AND	WIND AND SOLAR ENERGY SYSTEMS			
Course Code	AEEB46	AEEB46			
Programme	B.Tech	B.Tech			
Semester	FIVE	FIVE			
Course Type	Professional Elective				
Regulation	IARE - R18				
		Theory		Practic	al
Course Structure	Lectures	Tutorials	Credits	Laboratory	Credits
	3	-	3	-	-
Chief Coordinator	Mr. S. Srikanth, Assistant Professor				
Course Faculty	Mr. S. Srika Mr. A. Srika	nth, Assistant Pro Inth, Assistant Pr	ofessor ofessor		

I. COURSE OVERVIEW:

0 0 0

Wind and Solar Energy Systems deals with design and operation of wind power system, design and operation of Photo voltaic system, power conditioning schemes for solar energy system, wind energy conversion systems and power quality issues in the integration of renewable energy resources.

II. COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites
UG	AEEB14	IV	Electrical Power Generating Systems

III. MARKS DISTRIBUTION:

Subject	SEE Examination	CIA Examination	Total Marks
Wind and Solar Energy Systems	70 Marks	30 Marks	100

~	Chalk & Talk	~	Quiz	~	Assignments	×	MOOCs
~	LCD / PPT	~	Seminars	×	Mini Project	×	Videos
×	★ Open Ended Experiments						

IV. DELIVERY / INSTRUCTIONAL METHODOLOGIES:

V. EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIA examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into FIVE modules and each module carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each module. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The expected percentage of cognitive level of the questions is broadly based on the criteria given in Table: 1.

Percentage of Cognitive Level	Blooms Taxonomy Level
10 %	Remember
60 %	Understand
30 %	Apply
0 %	Analyze
0 %	Evaluate
0 %	Create

Table 1: The expected percentage of cognitive level of questions in SEE

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 2), with 20 marks for Continuous Internal Examination (CIE), 05 marks for Quiz and 05 marks for Alternative Assessment Tool (Table 3).

Table 2: Assessment pattern for CIA

Component	Theory			Total Marka
Type of Assessment	CIE Exam Quiz AAT		I Otal Marks	
CIA Marks	20	05	05	30

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8th and 16th week of the semester respectively. The CIE exam is conducted for 20 marks of 2 hours duration consisting of five descriptive type questions out of which four questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams

Quiz – Online Examination:

Two Quiz exams shall be online examination consisting of 25 multiple choice questions and are to be answered by choosing the correct answer from a given set of choices (commonly four). Such a question paper shall be useful in testing of knowledge, skills, application, analysis, evaluation and understanding of the students. Marks shall be awarded considering the average of two quiz examinations for every course.

Alternative Assessment Tool (AAT):

This AAT enables faculty to design own assessment patterns during the CIA. The AAT converts the classroom into an effective learning center. The AAT may include tutorial hours/classes, seminars, assignments, term paper, open ended experiments, METE (Modeling and Experimental Tools in Engineering), five minutes video, MOOCs etc. The AAT chosen for this course is given in table 3.

5 Minutes Video	Assignment	Tech-talk	Seminar	Open Ended Experiment
25%	25%	25%	25%	0%

VI. COURSE OBJECTIVES:

The stud	lents will try to learn:
Ι	The fundamental concepts of power generation and gain enough knowledge about the wind
	and solar energy sources.
II	The construction, principle of operation of various equipments used in power generation
	using wind energy.
III	The key aspects in the design and operation of photovoltaic along with solar thermal power
	energy systems.
IV	The various factors affecting the power quality issues in integration of renewable energy
	resources.

VII. COURSE OUTCOMES:

Upon tl	Upon the successful completion of the course students will be able to				
CO No	Course outcomes	Knowledge Level (Bloom's Taxonomy)			
CO 1	Recall the power conversions involved in windmills/ PV Systems for production of electricity.	Remember			
CO 2	Outline various components involved and their functionality in production of electricity from wind and solar power plants.	Understand			
CO 3	Summarize the control schemes, environmental aspects and classification of wind energy conversion systems for reliable operation.	Understand			

CO 4	Outline the characteristics of solar PV modules for design of solar arrays.	Understand
CO 5	Demonstrate the functioning of various components involved in solar	Understand
	thermal systems for designing commercial solar power plants.	
CO 6	Develop the suitable scheme for extracting maximum power from solar	Apply
	PV module using MPPT algorithms.	
CO 7	Utilize the power conditioners and inverters for grid synchronization and	Understand
	harmonic reduction in solar PV systems.	
CO 8	Make use of AC voltage controllers for power factor improvement and	Apply
	harmonic reduction in Isolated induction generators	
CO 9	Identify the power quality issues and mitigation techniques used in	Apply
	standalone and grid connected systems for ensuring the quality of power.	
CO 10	Outline the control and protection of renewable energy systems using	Understand
	custom power devices for stable operation of power systems.	

COURSE KNOWLEDGE COMPETENCY LEVELS

VIII. HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program Outcomes	
PO 1	Engineering knowledge: Apply the knowledge of mathematics,	AAT/CIE/SEE
	science, engineering fundamentals, and an engineering specialization to	
	the solution of complex engineering problems.	
PO 2	Problem analysis: Identify, formulate, review research literature, and	AAT/CIE/SEE
	analyze complex engineering problems reaching substantiated	
	conclusions using first principles of mathematics, natural sciences, and	
	engineering sciences.	
PO 3	Design/development of solutions: Design solutions for complex	AAT/CIE/SEE
	engineering problems and design system components or processes that	
	meet the specified needs with appropriate consideration for the public	
	health and safety, and the cultural, societal, and environmental	
	considerations.	

3 = High; 2 = Medium; 1 = Low

IX. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program Specific Outcomes	Proficiency assessed by
PSO2	Focus on the components of power system, its analysis, operation, control and protection; electrical drives with its converter topologies for energy conversion, management and auditing in specific applications of industry and academia.	AAT/CIE/SEE

3 = High; **2** = Medium; **1** = Low

X. MAPPING OF EACH CO WITH PO(s), PSO(s):

Course		Program Outcomes											Program Specific Outcomes			
Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO 1	\checkmark															
CO 2	\checkmark	\checkmark	\checkmark											\checkmark		
CO 3	\checkmark	\checkmark												\checkmark		
CO 4	\checkmark	\checkmark	\checkmark											\checkmark		
CO 5	\checkmark													\checkmark		
CO 6	\checkmark	\checkmark												\checkmark		
CO 7	\checkmark	\checkmark	\checkmark											\checkmark		
CO 8	\checkmark		\checkmark											\checkmark		
CO 9	\checkmark	\checkmark												\checkmark		
CO 10	\checkmark	\checkmark												\checkmark		

XI. JUSTIFICATIONS FOR CO - (PO, PSO) MAPPING -DIRECT

Course Outcomes	POs / PSOs	Justification for mapping (Students will be able to)	No. of key competencies
CO 1	PO 1	Recall about the power conversions involved in wind mills for producing electricity knowledge of mathematics, science and engineering fundamentals.	2
CO 2	PO 1	Analyze various components involved and their functionality using principles of mathematics, science and engineering fundamentals.	3
	PO 2	Get knowledge on operations of modern energy sources with wind and solar plants using principles of mathematics and engineering sciences.	7
	PO 3	Design solutions for variable speed operation, system design features for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration.	5

	PSO 2	Utilizing wind energy system and solar power for modern energy	1
		demand and commercializing the system .	
CO 3	PO 1	Provide knowledge about control schemes and classification of	3
		wind energy conversion systems with basic fundamentals of	
	D O A	science, and engineering fundamentals.	
	PO 2	Get knowledge on operations of modern energy sources to	6
		analyze wind energy conversion systems using principles of	
	DEO1	Make use of wind engineering sciences.	1
	PS02	wake use of whild energy conversion system as another source of aid to now or system	1
<u> </u>	PO 1	Equip with required skills to for the design PV cell and arrays with	2
04	101	the fundamentals of mathematics science and	3
		angingeringfundementele	
	DO 1	Device the colutions for the characteristics of DV coll using basies	-
	PO 2	Derive the solutions for the characteristics of PV cell using basics	1
	DO 1	of mathematics and engineering sciences.	
	PO 3	Design the solution for problems of PV cells, modules and	5
		arrays	
	PSO2	Understand the importance of PV cell for generation of power in	1
		power system.	
CO 5	PO 1	Summarize various operating modes of solar thermal systems with	3
		the knowledge of mathematics, science and engineering	
		fundamentals.	
	PO 2	Derive the solution for generating electrical power commercially	7
		using basic mathematics and engineering principles.	
	PSO 2	Recognize the importance of various operating modes of solar	1
		thermal systems in generation, transmission and distribution of	
		power.	
CO 6	PO 1	Use the basics of mathematics, science and engineering	3
		fundamentals for obtaining maximum power tracking	-
		algorithms.	
	PO 2	Develop maximum power point tracking algorithms and knowing	7
		the importance of maximum power tracking in solving complex	,
		engineering problems.	
	PSO 2	Understand the maximum power point tracking algorithms used	1
	1001	ingeneration of electrical power with PV system	1
CO 7	PO 1	Estimate the solar energy utilization, operation of power	3
		conditioner and inverters using the principles of mathematics	5
		and engineering fundamentals.	
	PO 2	Develop the solutions for power conditioner and inverters using	6
	102	which complex engineering problems can be solved with help	0
		of basic mathematics and engineering sciences.	
	PO 3	Design the solution for problems of harmonic reduction in solar	4
	100	energy production	
	PSO 2	Summarize the grid synchronization using electrical machines in	1
		power system.	
CO 8	PO 1	Distinguish different AC voltage controllers for power factor	2
		improvement by applying basic knowledge of science and	-
		engineering fundamentals.	
	PO 3	Understanding the harmonic reduction in induction	5
	_	generatorsaccording to the necessities.	2
	PSO 2	Understand the solar energy collection and generation of electrical	1
		power with PV system	1

CO 9	PO 1	Summarize power quality issues, mitigation techniques used	3
		in standalone and grid connected systems with the help of	
		basic fundamentals of mathematics science and engineering	
		fundamentals.	
	PO 2	Determine power quality issues of grid connected system for	6
		analyzing the behavior of complex electrical components.	
	PSO 2	Summarize the power quality features of standalone and grid	1
		connected systems with the required electrical machines in	
		power system.	
CO 10	PO 1	Outline the control and protection and their impact on renewable	3
		energy systems with the help of basic fundamentals of	
		mathematics science and engineering fundamentals.	
	PO 2	Determine the protection equipment used in the renewable energy	6
		systems using basics of mathematics and engineering sciences.	
	PSO 2	Focus on the custom power devices for operation and control of	1
		different modes of power system.	

XII. TOTAL COUNT OF KEY COMPETENCIES FOR CO – (PO, PSO) MAPPING

		Program Outcomes / Number of Vital Features											PSOs / No. of Vital Features		
Course Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	3	10	10	11	1	5	3	3	12	5	12	12	2	2	2
CO 1	2														
CO 2	3	7	5											1	
CO 3	3	6												1	
CO 4	3	7	5											1	
CO 5	3	7												1	
CO 6	3	7												1	
CO 7	3	6	4											1	
CO 8	2		5											1	
CO 9	3	6												1	
CO 10	3	6												1	

XIII. PERCENTAGE OF KEY COMPETENCIES FOR CO – PO MAPPING:

			Prog	gram (Outcon	nes / N	umber	of Vit	al Fea	tures			PS Vita	Os / No al Feat	o. of ures
Course Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	3	10	10	11	1	5	3	3	12	5	12	12	2	2	2
CO 1	66.67	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

CO 2	100.0	70.0	50.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	50.0	0.0
CO 3	100.0	60.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	50.0	0.0
CO 4	100.0	70.0	50.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	50.0	0.0
CO 5	100.0	70.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	50.0	0.0
CO 6	100.0	70.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	50.0	0.0
CO 7	100.0	60.0	40.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	50.0	0.0
CO 8	100.0	0.0	50.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	50.0	0.0
CO 9	100.0	60.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	50.0	0.0
CO 10	100.0	60.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	50.0	0.0

XIV. COURSE ARTICULATION MATRIX (PO – PSO MAPPING)

COs and POs and COs and PSOs on the scale of 0 to 3, 0 being no correlation, 1 being the low correlation, 2 being medium correlation and 3 being high correlation.

 $\mathbf{0}-\mathbf{0}{\leq}\,\mathbf{C}{\leq}\,5\%{-}\mathrm{No}$ correlation;

 $1-5 < C \le 40\%$ Low/ Slight;

2 - 40 % < C < 60% –Moderate $3 - 60\% \le C < 100\%$ – Substantial /High

Course					Pro	gram	Outco	mes					P S O	rogra Specifi utcom	m c es
Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	3	-	-	I	-	-	I	I	-	-	-	-	I	-	I
CO 2	3	3	2	-	-	-	-	-	-	-	-	-	-	2	-
CO 3	3	3	-	-	-	-	-	-	-	-	-	-	-	2	-
CO 4	3	3	2	-	-	-	-	-	-	-	-	-	-	2	-
CO 5	3	3	-	-	-	-	-	-	-	-	-	-	-	2	-
CO 6	3	3	-	-	-	-	-	-	-	-	-	-	-	2	-
CO 7	3	3	2	-	-	-	-	-	-	-	-	-	-	2	-
CO 8	3	-	2	-	-	-	-	-	-	-	-	-	-	2	-
CO 9	3	3	-	-	-	-	-	-	-	-	-	-	-	2	-
CO 10	3	3	-	-	-	-	-	-	-	-	-	-	-	2	-
TOTAL	30	24	8											18	
AVERAGE	3.0	3.0	2.0											2.0	

CIE Exams	PO 1,PO 2, PO 3	SEE Exams	PO1,PO 2, PO 3	Assignments	PO 1,PO 2, PO 3	Seminars	PO 1,PO 2, PO 3
Laboratory Practices	-	Student Viva	-	Mini Project	-	Certification	-
Term Paper	-	5 Minutes Video	PO 1,PO 2, PO 3	Tech talk	PO 1,PO 2, PO 3	Open Ended Experiments	-

XV. ASSESSMENT METHODOLOGIES-DIRECT

XVI. ASSESSMENT METHODOLOGIES-INDIRECT

	Early Semester Feedback	~	End Semester OBE Feedback
×	Assessment of Mini Projects by Experts		

XVII. SYLLABUS

MODULE-I	DESIGN AND OPERATION OF WIND POWER SYSTEM
Wind Power	System: Components, turbine rating, electrical load matching, variable-speed
operation, system	em design features, maximum power operation, system control requirements, speed
control. rate	control and environmental aspects, wind energy conversion systems and their
classification.	
MODULE-II	DESIGN AND OPERATION OF PV SYSTEM
Solar Photovol	taic Power System: The PV Cell, module and array, equivalent electrical circuit.
open circuit vo	Itage and short circuit current, I-V and P-V curves, array design, neak power point
operation PV	system components: Solar Thermal System: Energy collection synchronous
generator equ	ivalent electrical circuit excitation methods electrical power output transient
stability limit	commercial power plants
stability illit, v	
MODULE-III	POWER CONDITIONING SCHEMES FOR SOLAR ENERGY SYSTEMS
Switching devi	ces for solar energy conversion: DC power conditioning converters, maximum power
point tracking a	algorithms.
AC Power con	nditioners, Line commutated inverters, synchronized operation with grid supply,
Harmonic redu	ction.
	WIND ENERGY CONVERSION SYSTEMS
MODULE-IV	WIND ENERGY CONVERSION SYSTEMS
Wind energy C	Conversion system (WECS): Performance of Induction generators for WECS, Self-
excited inducti	on generator (SEIG) for isolated power generators. Controllable DC power from
SEIGs, system	performance, Grid related problems, generator control, AC voltage controllers,
Harmonic redu	ction and Power factor improvement.
	POWER QUALITY ISSUES IN INTEGRATION OF RENEWABLE
MODULE-V	ENERGY RESOURCES
Stand alone an	d Grid connected systems, Power Quality issues, Impact of power quality problems
on DG. Mitiga	tion of power quality problems, and Role of custom power devices in Distributed
Generation.	
Text Books:	
I Mukund R P	atel, "Wind and Solar Power Systems", CRC Press, 1 ^a Edition, 1999.
2 G D Rai, "N	on- Conventional Energy Resources", Khanna Publishers, 1 st Edition, 2002.
2 G D Rai, "N	on- Conventional Energy Resources", Khanna Publishers, 1 st Edition, 2002.

Reference Books:

- 1 Daniel, Hunt. V Wind Power, A Hand Book of WECS, Van Nostrend Co., Newyork, 2nd Edition, 1998.
- 2 ArindamGhosh, Gerard Ledwich, "Power Quality Enhancement Using Custom Power Devices", Springer, 1st Edition, 2002.
- 3 Roger C Dugan, Mark E Mc. Granaghan, Surya Santosoh and H. Wayne Beaty, "Electrical Power Systems Quality", TATA McGraw Hill, 2nd Edition, 2010.

Web References:

- 1. https://www.NPTEL video lectures.
- 2. https://www.books.askvenkat.com/engineering-textbooks
- 3. https://www.electrical4u.com.

E-Text Books:

- 1. ArindamGhosh, Gerard Ledwich, Power Quality Enhancement Using Custom Power Devices, Springer, 2002.
- 2. https://www.freebookcentre.net

XVIII. COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

Lecture No.	Topics to be covered	СО	Reference
1	Wind Power System Components	CO 2	T1: 5.1 R4:1.1-1.8
2	Wind Turbine rating, electrical load matching	CO 2	T1: 5.2 R4:1.1-1.8
3	Wind turbine Variable-speed operation, system design features	CO 2	T1: 5.4 R4:1.1-1.8
4	Maximum power operation in wind turbines	CO 3	T1: 5.6 R2:2.3
5	Wind power system control requirements	CO 3	T1: 5.7 R2:2.3
6	Speed control, rate control of wind turbines	CO 3	T1: 5.7.1 R2:3.2
7	Environmental aspects of wind power stations	CO 3	T1:5.8 R2:3.2
8	Wind energy conversion systems and their classification.	CO 1	T2:6.6 R2:2.9
9	Review of wind energy systems	CO 1	T2:6.6 R2:2.9
10	PV Cell, module and array, equivalent electrical circuit	CO 4	T1: 8.1 R2:2.9-2.10
11	Open circuit voltage and short circuit current in solar system	CO 4	T1: 8.4 R2:2.11
12	Solar plate I-V and P-V curves, array design	CO 4	T1:8.5 R2:2.11
13	PV system components of solar power plant	CO 5	T1:8.8 R2:3.5
14	Solar Thermal System, energy collection of solar plates	CO 5	T1:9.1 R2:3.5
15	Synchronous generator used in solar power stations	CO 5	T1:6.1.2 R2:3.7
16	Equivalent electrical circuit of synchronous generator	CO 5	T1:6.1.2 R2:3.7
17	Excitation methods, electrical power output of synchronous generator	CO 5	T1:6.1.3 R2:3.7

18	Transient stability limit in synchronous generator	CO 5	T1:6.1.4 R2:3.7
19	Commercial solar power plants	CO 5	T1:8.6 R2:3.7
20	Overview of solar thermal power plants	CO 4	T1:8.5 R2:2.11
21	Switching devices for solar energy conversion	CO 7	T1:8.2 R2:4.1
22	DC power conditioning converters used in solar power plant	CO 7	T1:8.3 R2:5.1
23	Maximum power point tracking algorithms in solar power system	CO 6	T1:8.7 R2:5.2
24	AC Power conditioners used in solar power plants	CO 7	T1:8.8 R2:5.4
25	Line commutated inverters used in solar power generation	CO 7	T1:8.9 R2:4.3-4.4
26	Synchronized operation of solar plant with grid supply	CO 7	T1:8.6.2 R2:4.3-4.4
27	Harmonic reduction in solar power stations	CO 7	T1:8.6.3 R2:4.5
28	Overview of power switching devices used in solar thermal plant	CO 6	T1:8.7 R2:5.2
29	Introduction wind energy Conversion system	CO 1	T2:6.1 R2:6.1
30	Performance of Induction generators used for WECS	CO 8	T2:6.1 R2:6.2
31	Self-excited induction generator (SEIG) for isolated power generators	CO 8	T2:6.5 R2:7.1-7.2
32	Controllable DC power from SEIGs	CO 8	T2:6.11 R2:7.4
33	Wind energy conversion system performance	CO 1	T2:6.10 R2:7.4
34	Grid related problems with wind power plants	CO 8	T2:6.12 R2:7.4
35	Induction Generator control in wind power stations	CO 8	T2:6.11 R2:7.4
36	AC voltage controllers used in wind power stations	CO 8	T2:6.13 R2:7.3
37	Harmonic reduction in AC voltage controllers used in wind farms	CO 8	T2:6.14 R2:7.3
38	Overview AC power conditioners used in wind power plants	CO 8	T2:6.11 R2:7.4
39	Power factor improvement in wind power plants	CO 8	T2:6.16
40	Stand alone and Grid connected systems of wind power stations	CO 9	T2:6.3-6.4
41	Power Quality issues in integration of renewable energy systems	CO 9	T2:6.3-6.4 R2:7.4
42	Impact of power quality problems on Distributed Generation	CO 9	T2:6.2 R2:6.3
43	Mitigation of power quality problems	CO 9	T2:6.3-6.4 R2:7.8
44	Role of custom power devices in Distributed Generation	CO 10	T1:6.3-6.4 R2:7.8
45	Review of power quality issues in wind and solar power plants	CO 9	T2:6.2 R2:6.3

Prepared by: Mr. S Srikanth, Assistant Professor