

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad - 500 043

ELECTRONICS AND COMMUNICATION ENGINEERING

Course Title	ELECTRIC CIRCUITS							
Course Code	R15-A30204							
Course Structure	Lectures	Tutorials	Practicals	Credits				
	4	1	-	4				
Course Coordinator	Mr K. Sudhakar Reddy, Assistant Professor							
Team of Instructors	Ms. Kalyani, Assistant Professor							

COURSE DESCRIPTION

I. COURSE OVERVIEW:

This course introduces the basic concepts of circuit analysis which is the foundation for all subjects of the Electrical Engineering discipline. The emphasis of this course if laid on the basic analysis of circuits which includes single phase circuits, magnetic circuits, theorems and network topology.

II. PREREQUISITE(S):

Level	Credits	periods	Prerequisite
UG	4	4	Understand basic concepts of Electrical Engineering

III. MARKS DISTRIBUTION:

Sessional Marks	University End Exam Marks	Total Marks
There shall be 2 midterm examinations. Each midterm examination consists of subjective test. The subjective test is for 20 marks, with duration of 2 hours. Subjective test of each semester shall contain 5 one mark compulsory questions in part-A and part-B contains 5 questions, the student has to answer 3 questions, each carrying 5 marks. First midterm examination shall be conducted for the first two and half units of syllabus and second midterm examination shall be conducted for the remaining portion. Five marks are earmarked for assignments. There shall be two assignments in every theory course. Marks shall be awarded considering the average of two assignments in each course.	75	100

IV. EVALUATION SCHEME:

S.No	Component	Duration	Marks		
1	I mid examination	90 minutes	20		
2	I assignment		05		
3	II mid examination	90 minutes	20		
4	II assignment		05		
5	External examination	3 hours	75		

V. COURSE OBJECTIVES:

- I. Describe basic fundamentals of Electric Circuits, their components and the mathematical tools used to represent and analyze Electrical circuits.
- II. Develop fundamentals, including Ohm's law, Kirchoff's laws and be able to solve for currents, voltages and power in complex circuits.
- III. Demonstrate to write and solve loop current and node voltage equations for arbitrary DC, AC networks including resistors, capacitors, inductors, dependent and independent sources.
- IV. Extrapolate the concept of magnetic circuit, Faraday's laws and analyze the series and parallel magnetic circuits.
- V. Summarize various two port network parameters and their relations and develop the design and analysis of basic DC and AC circuits with network topologies.

VI. COURSE OUTCOMES:

After completing this course the student must demonstrate the knowledge and ability to:

- 1. **Define** basic electrical concepts, including electric charge, current, electrical potential, electrical Power and energy.
- 2. **Distinguish** the relationship of voltage and current in resistors, capacitors, inductors, and mutual Inductors.
- 3. **Differentiate** circuits with ideal, independent, and controlled voltage and current sources and able to apply Kirchhoff's voltage and current laws to the analysis of electric circuits.
- 4. **Illustrate** to apply concepts of electric network topology, nodes, branches, and loops to solve circuit problems, including the use of computer simulation.
- 5. **Emphasize** on basic laws and techniques to develop a working knowledge of the methods of analysis used.
- 6. **Interpret** to solve series and parallel magnetic circuits
- 7. **Design** various two port network parameters and relations between them

VII. HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program outcomes	Level	Proficiency assessed by
PO1	General knowledge: An ability to apply the knowledge		
	of mathematics, science and Engineering for solving	S	Assignments
	multifaceted issues of Electrical Engineering		
PO2	Problem Analysis: An ability to communicate effectively		
	and to prepare formal technical plans leading to solutions	Ν	Exercise
	and detailed reports for electrical systems		
PO3	Design/Development of solutions: To develop Broad		
	theoretical knowledge in Electrical Engineering and learn		
	the methods of applying them to identify, formulate and	Н	Assignments, Discussion
	solve practical problems involving electrical power		
PO4	Conduct investigations of complex problems : An		
	ability to apply the techniques of using appropriate		
	technologies to investigate, analyze, design, simulate	н	Fxercise
	and/or fabricate/commission complete systems involving	11	Excicise
	generation, transmission and distribution of electrical		
DO5	Modorn tool usage: An ability to model real life		
FUS	problems using different hardware and software		
	platforms, both offline and real-time with the help of	Ν	
	various tools along with upgraded versions.		
PO6	The engineer and society: An Ability to design and		
	fabricate modules, control systems and relevant processes	S	Exercise
	to meet desired performance needs, within realistic		
PO7	Environment and sustainability: An ability To estimate		
107	the feasibility applicability optimality and future scope	_	
	of power networks and apparatus for design of eco-	S	Discussion,Seminars
	friendly with sustainability		
PO8	Ethics: ToPossess an appreciation of professional,		
	societal, environmental and ethical issues and proper use	Ν	Discussion, Seminars
DOG	of renewable resources		
PO9	Individual and team work: An Ability to design schemes involving signal sensing and processing leading		
	to decision making for real time electrical engineering	S	Discussions
	systems and processes at individual and team levels		
PO10	Communication: an Ability to work in a team and		
	comprehend his/her scope of work, deliverables , issues	S	Discussion Seminars
	and be able to communicate both in verbal ,written for	~	215005000,2000000
DO11	effective technical presentation		
PUII	Line-iong learning: An ability to align with and upgrade	N	
	to nigner learning and research activities along with	IN	
DO12	engaging in life-long learning.		
PO12	Project management and finance : To be familiar with	G	
	project management problems and basic financial	S	Prototype, Discussions
	principles for a multi-disciplinary work		
N - Nor	ne S - Supportive		H – Highly Kelated

VIII HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

PROGRAM	SPECIFIC OUTCOMES	LEVEL	PROFICIENCY
			ASSESSED BY
PSO 1	Professional Skills: An ability to understand the basic concepts	Н	Lectures and
	in Electronics & Communication Engineering and to apply		Assignments
	them to various areas, like Electronics, Communications,		
	Signal processing, VLSI, Embedded systems etc., in the design		
	and implementation of complex systems.		
PSO 2	Problem-solving skills: An ability to solve complex	S	Tutorials
	Electronics and communication Engineering problems, using		
	latest hardware and software tools, along with analytical skills		
	to arrive cost effective and appropriate solutions.		
PSO 3	Successful career and Entrepreneurship: An understanding	S	Seminars and Projects
	of social-awareness & environmental-wisdom along with		
	ethical responsibility to have a successful career and to sustain		
	passion and zeal for real-world applications using optimal		
	resources as an Entrepreneur.		

VIII SYLLABUS:

UNIT – I

Introduction to Electrical Circuits: Circuit Concept, R-L-C Parameters, Voltage and Current Sources, Independent and Dependent Sources, Source Transformation, Voltage – Current relationship forPassive Elements (for different input signals –Square, Ramp, Saw toot hand Triangular). Kirchhoff's Laws,Network ReductionTechniques–Series,Parallel,SeriesParallel,Star–to-DeltaorDelta-to-StarTransformations,Nodal Analysis, Mesh Analysis, Super node and Super mesh for DCExcitations.

UNIT – II`

Single Phase A.C. Circuits: R.M.S. and Average values and form factor for different periodic wave forms, Steady State Analysis of R, L and C (in Series, Parallel and Series Parallel Combinations) withSinusoidal Excitation, Concept of Reactance, Impedance, SusceptanceandAdmittance, Phase and Phasedifference, Concept of Power Factor, Real and Reactive powers, J-notation, Complex and Polar forms ofrepresentation, Complexpower.

UNIT – III

Locusdiagrams,ResonanceandMagneticcircuits:Locusdiagrams-seriesR-L,R-C,R-L-Candparallel combination with variation of various parameters - Resonance-series, parallel circuits, concept of band widthand Q factor. Magnetic circuits-Faraday's laws of electromagnetic induction-concept of self and mutualinductance-dot convention-coefficientofcoupling-compositemagneticcircuitanalysisofseriesandparallelmagneticcircuits.

$\mathbf{UNIT} - \mathbf{IV}$

Network Topology: Definitions, Graph, Tree, Basic cutsetandBasic Tie set Matrices for Planar Networks,Loop and Nodal methods for analysis of Networks with Dependent &Independent Voltage and Current Sources, Duality & DualNetworks

UNIT – V

Network Theorems (With A.C. & D.C): Tellegen's, Superposition, Reciprocity, Thevinin's, Norton's, Maximum Power Transfer, Milliman's and Compensation theorems for D.C excitations.

Textbooks:

- 1. Electric Circuits A.Chakrabarhty, DhanipatRai& Sons.
- 2. Network analysis N.C Jagan and C. Lakhminarayana, BSpublications.

Referencebooks:

- 1. Engineering Circuit Analysis William Hayt ,Jack E. Kemmerly, S M Durbin, McGraw Hill Companies.
- 2. Electric Circuit Analysis K.S.Suresh Kumar, PearsonEducation.
- 3. Electrical Circuits David A.Bell, Oxford UniversityPress.
- 4. Network Analysis and Circuits M.Arshad, Infinity SciencePress.
- 5. Circuits A.Bruce Carlson, CengageLearning.
- 6. Electrical Circuits: An Introduction KCA Smith & RE Alley, Cambridge UniversityPress.

VIII. COURSE PLAN:

The course plan is meant as a guideline. There may probably be changes.

Lecture No.	Course Learning Outcomes	Topics to be covered	Reference
1	Introduction of Electrical Circuits	Explain the basics of electrical Circuits Introduction of Electrical Circuits	T1:1.1
2	Circuit Concept, R-L-C Parameters	KnowingCircuit Concept, R-L-C Parameters	T1:1.1
3	Voltage and current sources - Independent and dependent sources	Differentiate the dependent and independent sources voltage and current sources – Independent and dependent sources	T1:1.1-1.5
4	Source transformation Technique	Transform the voltage sources to current sources and vice versa	T1:1.6
5-6	Voltage – current relationship for passive elements	Discuss the relation between voltage and current across passive elements	T1:1.1
7	Kirchhoff's Laws	Apply the Kirchhoff's Laws Kirchhoff's laws	T1:2.1
8-10	Network reduction techniques-Series, Parallel, Series and Parallel, Delta to Star and Vice versa	Measure the equivalent resistance of a circuit.	T1:1.2-1.4
11	Mesh equations by inspection method	Explain how to apply the mesh analysis for various electrical circuits	T1:2.5
12	Concept of super mesh analysis	Solve the networks using Super-mesh analysis	T1:2.5-2.6
13	Examples on super mesh analysis	Apply the super-mesh method for electrical circuits	T1:2.6
14	Concept of Super-node analysis	Solve the networks using Super- node analysis	T1:2.5-2.6

15	R.M.S. and Average values and form factor for different periodic wave forms	Knowing R.M.S. and Average values and form factor for different periodic wave forms	T1:4.1
16-19	Steady State Analysis of R, L and C (in Series, Parallel and Series Parallel Combinations) withSinusoidal Excitation	Knowing Steady State Analysis of R, L and C (in Series, Parallel and Series Parallel Combinations) withSinusoidal Excitation	T1:4.2-4.8
20	Concept of Reactance	Knowing Concept of Reactance	T1:4.1-4.8
21-22	Impedance, SusceptanceandAdmittance	Knowing Impedance, SusceptanceandAdmittance	T1:4.1-4.8
23	Phase and Phasedifference	Knowing Phase and Phasedifference	T1:4.1-4.8
24	Concept of Power Factor	Knowing Concept of Power Factor	T1:4.1-4.8
25	Real and Reactive powers, J-notation	Knowing Real and Reactive powers, J-notation	T1:4.1-4.8
26	Complex and Polar forms of representation	Knowing Complex and Polar forms of representation	T1: 4.1-4.8
27	Complexpower	Knowing Complexpower	T1: 4.1-4.8
28	Problems	exercise	T1:4.10
29-30	Locusdiagrams-seriesR-L,R-C,R-L- Candparallel combination with variation of various parameters - Resonance-series	Knowing Locusdiagrams-seriesR-L,R-C,R-L-Candparallel combination with variation of various parameters - Resonance-series	T1: 4.1-4.8
31-32	Parallel circuits, concept of band widthand Q factor.	Knowing Parallel circuits, concept of band widthand Q factor.	T1:4.8
33-34	Magnetic circuits-Faraday's laws of electromagnetic induction	Knowing Magnetic circuits-Faraday's laws of electromagnetic induction	T1:11.1
35-36	concept of self and mutualinductance	Knowing concept of self and mutualinductance	T1:11.2
37-38	dot convention-coefficientofcoupling	Knowing dot convention-coefficientofcoupling	T1:11.7
39-40	Compositemagneticcircuit- analysisofseriesandparallelmagneticcircuits.	Knowing Compositemagneticcircuit- analysisofseriesandparallelmagneticcircuits.	T1:11.5
41-43	Definitions, Graph, Tree, Basic cutsetandBasic Tie set Matrices for Planar Networks	Knowing Definitions, Graph, Tree, Basic cutsetandBasic Tie set Matrices for Planar Networks	T1:15.1-15.5
44-46	Loop and Nodal methods for analysis of Networks with Dependent &Independent Voltage and Current Sources	Knowing Loop and Nodal methods for analysis of Networks with Dependent &Independent Voltage and Current Sources	T1:
47-48	Duality & DualNetworks	Knowing Duality & DualNetworks	T1:
49-50	Problems	exercise	T1:11.11,15.18
51-53	Tellegen's, Superposition, Reciprocity theorems	Knowing Tellegen's, Superposition, Reciprocity theorems	T1:3.4,3.7,3.10
54-56	Thevinin's, Norton's, theorems	KnowingThevinin's, Norton's, theorems	T1:3.2-3.3
57-58	Maximum Power Transfer, Milliman's	Knowing Maximum Power Transfer, Milliman's	T1:3.5-3.6
59-61	Compensation theorems for D.C excitations.	Knowing Compensation theorems for D.C excitations.	T1:3.9
62-64	Problems	exercise	T1:3.11

IX. MAPPING COURSE OBJECTIVES LEADING TO THE ACHIEVEMENT OF THE PROGRAM OUTCOMES:

Course	Program Outcomes											Program Specific Outcomes			
Objectives	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
Ι	S	N	Н	S	N	S	S	N	S	S	Ν	Н	Н	Н	S
II	Н	N	Н	Н	N	Н	S	N	S	S	Ν	Н	Н	Н	S
III	S	N	Н	Н	N	Н	S	N	S	S	Ν	Н	S	S	S
IV	S	N	Н	Н	N	S	S	N	S	S	Ν	Η	S	Н	S
V	Н	N	Н	S	N	Н	S	N	S	S	Ν	Н	S	S	S
N=None	S=Supportive H=Highly related														

X MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF TSHE PROGRAM OUTCOMES:

Course Objective	Program Outcomes										Program Specific Outcomes				
s	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
1	S	N	Н	S	N	S	S	N	S	S	Ν	S	S	S	S
2	Н	N	Н	Н	N	Н	S	N	S	S	Ν	S	S	S	S
3	S	N	Н	Н	N	Н	S	N	S	S	N	S	S	Н	S
4	S	N	Н	Н	N	S	S	N	S	S	N	S	S	Н	Ν
5	Н	N	Н	S	N	Н	S	N	S	S	N	S	N	S	Ν
6	S	N	Н	S	N	Н	S	N	S	S	Ν	S	N	S	N
7	S	N	Н	S	N	Н	S	N	S	S	N	S	Ν	S	S
N=None	S=Supportive H=Highly related														

Prepared by: Mr G Hari Krishna, Assistant Professor

HOD, ELECTRICAL AND ELECTRONICS ENGINEERING