

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad -500 043

ELECTRICAL AND ELECTRONICS ENGINEERING

COURSE DESCRIPTOR

Course Title	ELECTR	ELECTRO MAGNETIC FIELD THEORY										
Course Code	AEE006	AEE006										
Programme	B.Tech	3.Tech										
Semester	III E	EE										
Course Type	Profession	al Core										
Regulation	IARE - R	16										
		Theory		Practio	cal							
Course Structure	Lecture	Tutorials	Credits	Laboratory	Credits							
	3	1	4	-	-							
Chief Coordinator	Mr. T. An	il Kumar, Assistan	t Professor, EE	E								
Course Faculty		il Kumar, Assistan Iralidhar Nayak, A										

I. COURSE OVERVIEW:

Electromagnetic theory field deals with principles and basic laws of electrostatics, characteristics and properties of conductors and dielectrics, behavior of static magnetic field and application of ampere law, determination of force in magnetic field and magnetic potential, concept of time varying fields and application of numerical methods to electrostatic and magnetic fields.

II. COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites	Credits
UG	AHS003	Ι	Computational Mathematics and Integral Calculus	4
UG	AHS006	Ι	Engineering Physics	4

III. MARKS DISTRIBUTION:

Subject	SEE Examination	CIA Examination	Total Marks	
Electromagnetic Field Theory	70 Marks	30 Marks	100	

IV. DELIVERY / INSTRUCTIONAL METHODOLOGIES:

~	Chalk & Talk	/	Quiz	/	Assignments	×	MOOCs
~	LCD / PPT	~	Seminars	x	Mini Project	×	Videos
×	Open Ended Expe	eriments	S				

V. EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIA examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into five units and each unit carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each unit. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The emphasis on the questions is broadly based on the following criteria:

50 %	To test the objectiveness of the concept.
50 %	To test the analytical skill of the concept OR to test the application skill of the concept.

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 25 marks for Continuous Internal Examination (CIE), 05 marks for Quiz/ Alternative Assessment Tool (AAT).

 Component
 Theory

 Type of Assessment
 CIE Exam
 Quiz / AAT

 CIA Marks
 25
 05
 30

Table 1: Assessment pattern for CIA

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8th and 16th week of the semester respectively. The CIE exam is conducted for 25 marks of 2 hours duration consisting of two parts. Part–A shall have five compulsory questions of one mark each. In part–B, four out of five questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Quiz / Alternative Assessment Tool (AAT):

Two Quiz exams shall be online examination consisting of 25 multiple choice questions and are be answered by choosing the correct answer from a given set of choices (commonly four). Marks shall be awarded considering the average of two quizzes for every course. The AAT may include seminars, assignments, term paper, open ended experiments, five minutes video and MOOCs.

VI. HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program Outcomes (POs)	Strength	Proficiency assessed
			by
PO 1	Engineering knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.	2	Assignment And Seminars
PO 2	Problem analysis : Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.	3	Assignment And Seminars
PO 3	Design/development of solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.	2	Assignment And Seminars

^{3 =} High; 2 = Medium; 1 = Low

VII. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program Specific Outcomes (PSOs)	Strength	Proficiency assessed
			by
PSO1	Problem Solving: Exploit the knowledge of high voltage	3	Assignment And
1501	engineering in collaboration with power systems in		Seminars
	innovative, dynamic and challenging environment, for the		
	research based team work.		
PSO2	Professional Skills: Identify the scientific theories, ideas,	-	-
1302	methodologies and the new cutting edge technologies in		
	renewable energy engineering, and use this erudition in their		
	professional development and gain sufficient competence to		
	solve the current and future energy problems universally.		
PSO3	Modern Tools in Electrical Engineering: Comprehend the	-	-
1303	technologies like PLC, PMC, process controllers,		
	transducers and HMI and design, install, test, maintain		
	power systems and industrial applications.		

 $^{3 = \}text{High}$; 2 = Medium; 1 = Low

VIII. COURSE OBJECTIVES (COs):

The c	ourse should enable the students to:
I	Demonstrate the concept of electrostatic field intensity and electric potential.
11	Illustrate polarization of dielectrics and the behavior of conductors and dielectrics in an electric
II	field.
III	Understand the concept of field intensity and flux density in magnetic fields.
IV	Discuss forces in magnetic fields and laws of electromagnetic induction
V	Summarize the concept of time varying field and apply numerical methods to electro-statics and
V	magnetic fields.

${\bf IX.} \quad {\bf COURSE\ LEARNING\ OUTCOMES\ (CLOs):}$

CLO Code	CLO's	At the end of the course, the student will have the ability to	PO's Mapped	Strength of Mapping
AEE006.01	CLO 1	Analyze the force and electric field intensity in the electrostatic field.	PO1,PO2	3

AEE006.02	CLO 2	Identify the characteristics of electrostatic fields in terms of definitions.	PO1	3
AEE006.03	CLO 3	State different laws which defines characteristics of electrostatic fields.	PO1	2
AEE006.04		Illustrate polarization of dielectrics and the behavior of conductors and dielectrics in electric field.	PO1	3
AEE006.05	CLO 5	Demonstrate the electric dipole and its effect on electric field.	PO1	2
AEE006.06	CLO 6	Estimate the capacitance of parallel plates, spherical and coaxial capacitors with composite dielectrics.	PO1,PO2,P O3,	2
AEE006.07	CLO 7	Summarize the concept of magneto static and interrelate the terms of magnetic fields.	PO1	2
AEE006.08	CLO 8	Interpret the magnetic field intensity due to circular, square and solenoid current carrying wire.	PO1,PO2,P O3,	2
AEE006.09	CLO 9	Use Ampere circuital law to determine magnetic field intensity due to an infinite sheet of current, a long current carrying filament and its applications.		2
AEE006.10	CLO 10	Predict the force due to moving charge in the magnetic field for different configuration of current carrying conductor.		3
AEE006.11	CLO 11	Demonstrate the magnetic dipole and its effect on magnetic field.	PO1	2
AEE006.12	CLO 12	Calculate the self inductance and mutual inductance for different configurations of wires and applications of permanent magnet.		3
AEE006.13	CLO 13	State the Faraday's laws of electromagnetic induction and nature of voltage induced in the coil.	PO1	3
AEE006.14		Derive and explain the differential and integral form of Maxwell's equation in time varying fields and fields varying harmonically with time.	PO1	3
AEE006.15	CLO 15	Discuss the different numerical methods to calculate the electrostatic and magneto static fields.	PO1,PO2, PO3	3
AEE006.16		Apply the concept of electromagnetic and electrostatic fields to solve real time world applications.	PO1,PO2, PO3	3
AEE006.17	CLO 17	Explore the knowledge and skills of employability to succeed in national and international level competitive examinations.	PO1,PO2, PO5, PO12	2

3 = High; 2 = Medium; 1 = Low

X. MAPPING COURSE LEARNING OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

Course Learning		Program Outcomes (POs)												Program Specific Outcomes (PSOs)		
Outcomes (CLOs)	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CLO 1	3	2											2			
CLO 2	3												2			
CLO 3	2												3			
CLO 4	3												3			
CLO 5	2												2			
CLO 6	2	2	3										3			

CLO 7	2								2	
CLO 8	2	3	2						3	
CLO 9	2	3	2						2	
CLO 10	2	3							2	
CLO 11	2									
CLO 12	2	3							3	
CLO 13	3								3	
CLO 14	3								2	
CLO 15	2	3	3						3	
CLO 16	3	3	2						3	
CLO 17	3	3		2				2	2	

3 = High; 2 = Medium; 1 = Low

XI. ASSESSMENT METHODOLOGIES - DIRECT

CIE Exams	PO1,PO2, PO3	SEE Exams	PO1,PO2, PO3	Assignments	PO1,PO2, PO3	Seminars	PO1,PO2, PO3
Laboratory Practices	-	Student Viva	ı	Mini Project	1	Certification	-
Term Paper	-						

XII. ASSESSMENT METHODOLOGIES – INDIRECT

·	/	Early Semester Feedback	'	End Semester OBE Feedback
>	~	Assessment of Mini Projects by Experts		

XIII. SYLLABUS

Unit-I	ELECTROSTATICS				
	Coulomb's law, electric field intensity due to line and surface charges, work done in moving a point				
_	charge in an electrostatic field, electric potential, properties of potential function, potential gradient,				
Gauss's lav	Gauss's law, application of Gauss's law, Maxwell's first law, Laplace's and Poisson's equations,				
solution of	Laplace's equation in one variable.				
Unit-II	CONDUCTORS AND DIELECTRICS				
Dipole mo	Dipole moment, potential and electric field intensity due to an electric dipole, torque on an electric				
dipole in an electric field, behavior of conductors in an electric field, electric field inside a dielectric					
material, polarization, conductor and dielectric, dielectric boundary conditions, capacitance of parallel					
plate and spherical and coaxial capacitors with composite dielectrics, energy stored and energy density					
in a static e	in a static electric field, current density, conduction and convection current densities, Ohm's law in point				

Unit-III MAGNETOSTATICS

form, equation of continuity.

Biot-Savart's law, magnetic field intensity, magnetic field intensity due to a straight current carrying filament, magnetic field intensity due to circular, square and solenoid current carrying wire, relation between magnetic flux, magnetic flux density and magnetic field intensity, Maxwell's second equation, div(B)=0.

Magnetic field intensity due to an infinite sheet of current and a long current carrying filament, point form of Ampere's circuital law, Maxwell's third equation, Curl (H)=Jc, field due to a circular loop, rectangular and square loops.

Unit-IV FORCE IN MAGNETIC FIELD AND MAGNETIC POTENTIAL

Moving charges in a magnetic field, Lorentz force equation, force on a current element in a magnetic field, force on a straight and a long current carrying conductor in a magnetic field, force between two straight long and parallel current carrying conductors, magnetic dipole and dipole moment, a differential current loop as a magnetic dipole, torque on a current loop placed in a magnetic field;

Vector magnetic potential and its properties, vector magnetic potential due to simple configurations, Poisson's equations, self and mutual inductance, Neumann's formula, determination of self-inductance of a solenoid, toroid and determination of mutual inductance between a straight long wire and a square loop of wire in the same plane, energy stored and density in a magnetic field, characteristics and applications of permanent magnets.

Unit-V TIME VARYING FIELDS AND FINITE ELEMENT METHOD

Faraday's laws of electromagnetic induction, integral and point forms, Maxwell's fourth equation, curl $(E)=\partial B/\partial t$, statically and dynamically induced EMFs, modification of Maxwell's equations for time varying fields, displacement current; Numerical methods: Finite difference method (FDM), finite element method (FEM), charge simulation method (CSM), boundary element method, application of finite element method to calculate electrostatic and magneto static fields.

Text Books:

- 1 K.B. Madhu Sahu, "Eelectromagnetic Fields", Scitech Ltd., 2nd Edition.
- 2 David J Griffiths, "Introduction to Electrodynamics" Pearson Education Ltd., 4th Edition, 2014.
- 3 Sunil Bhooshan, "Fundamentals of Engineering Electromagnetics", Oxford University Press, Edition, 2012.
- 4 E Kuffel, W S Zaengl, J Kuffel, "High Voltage Engineering Fundamentals", Newnes, 2nd Edition, 2000

1st

Reference Books:

- 1 Matthew N O Sadiku, S V Kulkarni, "Principles of Electromagnetics", Oxford University Press, 6th Edition, 2015.
- 2 AS Mahajan, AA Rangwala "Electricity And Magnetism", McGraw Hill Publications, 1st Edition, 2000.
- 3 MS Naidu, V Kamaraju "High Voltage Engineering", McGraw Hill Publications, 3rd Edition, 2013
- 4 William H Hayt, John A Buck, "Problems and Solutions in Electromagnetics", McGraw Hill Publications, 1st Edition, 2010.

XIV. COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

Lecture No.	Topics to be covered		Reference
1	Introduction to electro static fields and coulomb's law.	CLO3	T1: 2.1-2.3, R:2.3
2	Calculation Of Electric field intensity due to line and surface charges.	CLO1	T1:2.4-2.5 R:3.2
3	Derive the work done in moving a point charge in an electrostatic field.	CLO1	T1:2.15 R:2.9
4-6	Define electric potential, properties of potential function, potential gradient.	CLO2	T1:2.16-2.17 R:2.9-2.10

Lecture No.	Topics to be covered		Reference
7	State Gauss's law and application of Gauss's law.		T1:2.13-2.14 R:2.11
8	Deduce Maxwell's first law.	CLO3	T1:2.20 R:2.11
9	Derive the Laplace's and Poisson's equations.	CLO1	T1:2.21 R:3.5
10	Determine the solution of Laplace's equation in one variable.	CLO1	T1:2.21 R:3.5
11	Introduction to Dipole moment.	CLO5	T1:3.1 R:3.7
12	Write the expression for potential and electric field intensity due to an electric dipole.	CLO5	T1:3.2-3.3 R3.7
13	Find torque on an electric dipole in an electric field.	CLO5	T1:3.4 R:3.7
14	Study behavior of conductors in an electric field.	CLO4	T1:4.1-4.2 R:4.1
15	Understand electric field inside a dielectric material.	CLO4	T1:4.3,4.5 R:5.1
16	Discuss on polarization, conductor and dielectric.	CLO4	T1:4.3.2,4.3.3 R:5.2
17	Derive dielectric boundary conditions.	CLO4	T1:4.6 R:5.4
18	Calculate capacitance of parallel plate and spherical and coaxial capacitors with composite dielectrics.	CLO6	T1:3.5.2-3.5.5 R:4.3-4.4
19	Estimate capacitance of parallel plate and spherical and coaxial capacitors with composite dielectrics.	CLO6	T1:3.5.2-3.5.51 R:4.3-4.4
20	Derive the expressions for energy stored and energy density in a static electric field.	CLO6	T1:3.5.7-3.5.8 R:4.5
21	Define current density, conduction and convection current densities.	CLO6	T1:4.7-4.8 R:6.1
22	Deduce Ohm's law in point form, equation of continuity.	CLO6	T1:4.9-4.10 R:6.2
23	Introduction to static magnetic fields.	CLO7	T1:5.1-5.2 R:7.1-7.2
24	State Biot-Savart's law and magnetic field intensity.	CLO8	T1:5.3-5.4 R:7.4
25	Determine magnetic field intensity due to a straight current carrying filament.	CLO8	T1:5.4-5.7 R:7.4
26	Determine magnetic field intensity due to circular.	CLO8	T1:5.4-5.7 R:7.4
27	Find magnetic field for square and solenoid current carrying wire.	CLO8	T1:5.4-5.7 R:7.4
28	Relation between magnetic flux, magnetic flux density and magnetic field intensity.	CLO7	T1:5.2.7 R:7.3
29	Deduce Maxwell's second equation, div (B)=0.	CLO8	T1:5.8 R:7.3
30	Determine magnetic field intensity due to an infinite sheet of current and a long current carrying filament.	CLO8	T1:6.3-6.4
31	Find magnetic field intensity due to an infinite sheet of current and a long current carrying filament.	CLO8	T1:6.3-6.4 R:7.4
32	State point form of Ampere's circuital law.	CLO9	T1:6.1 R:7.7
33	Deduce Maxwell's third equation, Curl (H)=Jc	CLO9	T1:6.2 R:6.3
34	Estimate field due to a circular loop, rectangular and square loops.	CLO9	T1:6.3-6.4 R:7.8
35	Determine field due to a circular loop, rectangular and square loops.	CLO9	T1:6.3-6.4 R:7.8
36	Expression for force due to Moving charges in a magnetic	CLO10	T1:7.1-7.4

Lecture No.	Topics to be covered	CLOS	Reference
37-38	Expression for force on a current element in a magnetic field, force on a straight and a long current carrying conductor in a	CLO10	T1:7.3,7.5-7.7 R:8.6
39	Find force between two straight long and parallel current carrying conductors.	CLO10	T1:7.5-7.7 R:8.6
40	Explain magnetic dipole and dipole moment, a differential current loop as a magnetic dipole.	CLO11	T1:7.8 R:8.6
41	Derive torque on a current loop placed in a magnetic field.	CLO11	T1:7.9 R:8.7
42	Define vector magnetic potential and its properties.	CLO11	T1:8.2 R:7.12-7.13
43	Define vector magnetic potential due to simple configurations.	CLO11	T1:8.2 R:7.12-7.13
44	Explain Poisson's equations, self and mutual inductance.	CLO12	T1:8.3-8.4 R:9.4-9.5
45	Derive Neumann's formula, determination of self-inductance of a solenoid, toroid.	CLO12	T1:8.5,8.3-8.4 R:7.11
46	Determination of mutual inductance between a straight long wire and a square loop of wire in the same plane.	CLO12	T1:8.6 R:7.11
47	Calculate energy stored and density in a magnetic field.	CLO12	T1:8.7-8.8 R:7.11
48	Study characteristics and applications of permanent. magnets.	CLO12	T1:8.1
49	State Faraday's laws of electromagnetic induction.	CLO 13	T1:9.2,9.4 R:9.1
50	Deduce integral and point forms.	CLO14	T1:9.3 R:9.2
51	Derive Maxwell's fourth equation.	CLO14	T1:9.6 R:9.2
52	Derive Curl (E)= ∂ B/ ∂ t, statically and dynamically induced emf.	CLO14	T1:9.4 R:12.2
53	Modification of Maxwell's equations for time varying fields.	CLO14	T1:9.8 R:12.2
54	Define displacement current.	CLO14	T1:9.5 R:12.1
55	Discuss Finite difference method (FDM).	CLO15	T1:4.4.1 R:1.6
56	Discuss Finite element method (FEM).	CLO15	T1:4.4.2 R:1.6
57	Discuss Charge simulation method (CSM).	CLO15	T1:4.4.3 R:1.6
58	Discuss Boundary element method.	CLO15	T1:4.4.4 R:1.6
59	Application of finite element method to calculate electrostatic and magneto static fields.	CLO15	T1:4.4 R:1.6

XV. GAPS IN THE SYLLABUS - TO MEET INDUSTRY / PROFESSION REQUIREMENTS:

S. No	Description	Proposed Actions	Relevance With POs	Relevance With PSOs
1	Complete behavior of dielectrics.	Seminars / NPTEL	PO1, PO2	PSO1
2	Analytical calculations of magnetic field in air gap.	NPTEL	PO1, PO2	PSO1

Prepared by:

Mr. T. Anil Kumar, Assistant Professor