

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad - 500 043

ELECTRONICS AND COMMUNICATION ENGINEERING

COURSE DESCRIPTION

Course Code	:	A40411	A40411								
Course Title	:	ELECTROMAC	LECTROMAGNETIC THEORY AND TRANSMISSION LINES								
Acadamic-year		2015-16									
Course Structure	:	Lectures	Tutorials	Practical's	Credits						
		5	-	-	4						
Course Coordinator	:	Ms.A.US	SHA RANI								
Team of Instructors	•		Ms. A. Usha Rani, Associate Professor. Mr. G.Nagendra Prasad, Associate Professor.								

I. COURSE OVERVIEW:

The course covers the basics of the electrostatic field—Gauss's law; boundary conditions; capacitance; Laplace's and Poisson's equations; energy, forces, and torques. The steady electric current. The magneto static field, vector potential; Ampere's and Biot-Savart laws; inductance; energy, forces, and torques. Quasi static fields; electromagnetic induction. It also deals with the propagation of Electromagnetic (EM) waves through guided and unguided media

II. PREREQUISITE(S):

Level	Credits	Periods / Week	Prerequisites
UG	4	5	Mathematical background and Logical Thinking

III. MARKS DISTRIBUTION:

Sessional Marks (25 Marks)	University End Exam Marks	Total Marks
Mid Semester Test	75	100
There shall be 3 midterm examinations. Each midterm examination consists		
of subjective type and Objective type tests. The subjective test is for 10		
marks, with duration of 1 hour. Subjective test of each semester shall		
contain 4 questions. The student has to answer 2 questions, each carrying 5		
marks. The objective type test is for 10 marks with duration of		
20minutes. It consists of 10 Multiple choice and 10 objective type questions.		
The student has to answer all the questions and each carries half mark.		
First midterm examination shall be conducted for the first unit of syllabus		
and second midterm examination shall be conducted for the remaining		
portion. Five marks are earmarked for assignments. There shall be three		
assignments in every theory course.		
Marks shall be awarded considering the average of two assignments in each		
course reason whatsoever, will get zero marks(s).		

IV. EVALUATION SCHEME:

Sl.No	Component	Duration(Hrs)	Marks
1	I Mid Examination	1hr 20 min	20
2	I Assignment		5
3	II Mid Examination	1hr 20min	20
4	II Assignment		5
5	End Semester Examination	3hr	75

V. COURSE OBJECTIVES:

This course has the basics of electric and magnetic fields such as different charge densities, flux (electric and magnetic), scalar and vector potentials, emf, mmf, and capacitance induced and propagation of EM waves through

- To introduce the concept of co-ordinate systems and types to analyze the motion of object and their applications in free space to student.
- To impart the knowledge of electric and magnetic fields in real time applications.
- To introduce the fundamental theory of electromagnetic waves in transmission lines and their practical applications.
- To study the propagation characteristics of electromagnetic wave in bounded and unbounded media.
- To calculate various line parameters by conventional and graphical methods

VI. COURSE OUTCOMES:

- 1. Upon successful completion of this course, the student will be able to understand and design the electrical machines based on the concept of electrostatics.
- 2. To generate modified equations for boundaries and Medias
- 3. To design the long time charge storage devices
- 4. To know the energy storage design of high magnetic field coils used in transformers, motors and generators
- 5. To understand and development of Maxwell's equation for dielectric and conducting media
- 6. To understand the design of long length transmission lines for point to point communications
- 7. To understand the design of high frequency transmission lines with low loss
- 8. To design impedance matching couplers

VII. HOW COURSE OUTCOMES ARE ASSESSED:

	Program Outcomes	Level	Proficiency assessed by
PO 1	Engineering knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.	Н	Assignments, Exercises
PO 2	Problem analysis : Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.	N	
PO 3	Design/development of solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental	N	-

analysis and interpretation of data, and synthesis of the information to provide valid conclusions.HExercisesPO 5Modern Tool Usage: techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.NDesign ExercisesPO 6The Engineer And Society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.N-PO 7Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.S-PO 8Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.N-PO 9Individual and Team Work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.SDesign ExercisesPO 10Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.Developme orPO 11Project management and finance: Demonstrate manage projects and in multidisciplinary environments.SDevelopmePO 12Life-long learning : Recognize the need for, and have the preparation and ability to engage in indep	considerations.		
techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.NDesign ExercisesP0 6The Engineer And Society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.NP0 7Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental development.S-P0 8Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.N-P0 9Individual and Team Work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.SDesign ExercisesP0 10Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.SDecumen Preparation Preparation Preparation Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.SDevelopme of Mini ProjectP0 12Life-long learning : Recognize the need for, and have the preparation and ability to engage in independent and life-longHExercises	knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.	Н	Assignments, Exercises
contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.NPO 7Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.SPO 8Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.NPO 9Individual and Team Work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.SDesign ExercisesPO 10Communication: Communicate effectively on complex engineering 	techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an	Ν	Design Exercises
professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.S-PO 8Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.N-PO 9Individual and Team Work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.SDesign ExercisesPO 10Communication: Communicate effectively on complex engineering 	contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the	Ν	
and responsibilities and norms of the engineering practice.NPO 9Individual and Team Work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.SDesign ExercisesPO 10Communication: Communicate effectively on complex engineering 	professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable	S	-
and as a member or leader in diverse teams, and in multidisciplinary settings.SDesign ExercisesPO 10Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.SDocument Preparation PresentationPO 11Project management and finance: Demonstrate manage projects and in multidisciplinary environments.SDevelopme of Mini ProjectsPO 12Life-long learning : Recognize the need for, and have the preparation and ability to engage in independent and life-longHExercises		Ν	-
activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.Document Preparation PresentationPO 11Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.SDocument Preparation PresentationPO 12Life-long learning : Recognize the need for, and have the preparation and ability to engage in independent and life-longHExercises	and as a member or leader in diverse teams, and in multidisciplinary	S	Design Exercises
understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.SDevelopme of Mini 	activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and	S	Document Preparation, Presentation
PO 12 Life-long learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long H Exercises	understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to	S	Development of Mini Projects
8	PO 12 Life-long learning : Recognize the need for, and have the	Н	Exercises

N = None S = Supportive H = Highly Related

VIII. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	PROGRAM SPECIFIC OUTCOMES	LEVEL	PROFICIENCY ASSESSED BY
PSO 1	Professional Skills: An ability to understand the basic concepts in Electronics & Communication Engineering and to apply them to various areas, like Electronics, Communications, Signal processing, VLSI, Embedded systems etc., in the design and implementation of complex systems.	Н	Lectures and Assignments
PSO 2	Problem-solving skills: An ability to solve complex Electronics and communication Engineering problems, using latest hardware and software tools, along with analytical skills to arrive cost effective and appropriate solutions.	S	Tutorials
PSO 3	Successful career and Entrepreneurship: An understanding of social- awareness & environmental-wisdom along with ethical responsibility to have a successful career and to sustain passion and zeal for real-world applications using optimal resources as an Entrepreneur.	S	Seminars and Projects

VIII. SYLLABUS

Unit – I

Electrostatics: Coulomb's law, Electric field Intensity, Fields due to different charge distributions, Electric Flux Density, Gauss law and its Applications, Electric Flux Density, Gauss law and its Applications,

Electric Potential, Relation Between E and V, Maxwell's Two equations for Electrostatic Fields, energy Density, Maxwell's Two equations for Electrostatic Fields, energy Density, Illustrative Problems.

Convection and Conduction Currents, Dielectric Constant, Isotropic and Homogeneous Dielectrics, Continuity Equation and Relaxation Time, Poisson's and Laplace's Equations, Capacitance- Parallel plate, Co-axial and Spherical capacitors, Illustrative Problems.

Unit-II

Magnetostatics: Biot-Savart Law, Ampere's circuital Law and Applications, Magnetic Flux Density, Maxwell's Two Equations for Magneto static fields, Magnetic Scalar and Vector Potentials, Forces due to Magnetic Fields, Ampere's force Law, Forces due to Magnetic Fields, Ampere's force Law, Inductances and Magnetic Energy, Illustrative Problems.

Maxwell's Equations (Time Varying Fields): Faraday's Law and Transformer emf, Inconsistence of Ampere's Law and Displacement Current density, Maxwell's Equations indifferent Final Forms and Word

Statements, Conditions at a boundary Surface: Dielectric-dielectric, dielectric-conductor Interfaces, Illustrative Problems.

Unit-III

EM Wave Characteristics-I: Wave Equations for conducting and Perfect Dielectric Media, Uniform Plane Waves-Definition, All Relations between E and H, Sinusoidal Variations, Wave Propagation in Lossless and Conducting Media, Conductors and Dielectrics-Characterization, Wave Propagation in good conductors and Good Dielectrics, Polarization, Illustrative Problems.

EM Wave Characteristics-II: Reflection and Refraction of Plane waves-Normal and Oblique Incidences for Perfect Dielectric, Brewster angle, Critical Angle, Total Internal Reflection, Surface Impedance, Poynting Vector Poynting Theorem-Applications, Power Loss in Plane Conductor, Illustrative Problems.

Unit-IV

Transmission Lines-I: Types, Parameters, Transmission line Equations, Primary and Secondary Constants, Expressions for Characteristic Impedance, Propagation Constant, Phase and Group Velocities, Infinite Line Concepts, Losslessness/Low Loss Characterization, Distortion-Condition for Distortionlessness and Minimum Attenuation, Loading- Types of loading, Illustrative Problems.

Unit-V

Transmission Lines-II: Input Impedance Relations, SC and OC Lines, Reflection Coefficient, VSWR, UHF Lines as Circuit Elements, $\lambda/4$, $\lambda/2$ and $\lambda/8$ Lines- Impedance Transformations, Significance of Z_{min} and Z_{max}, Smith Chart-Configuration and Applications, Single and Double Stub Matching, Illustrative Problems.

Text Books:

- 1. Elements of Electromagnetic- Matthew N.o. Sadiku, 4thEd. Oxford Univ. Press.
- 2. Electromagnetic waves and Radiating Systems- E.C. Jordan and K.G. Balmain, 2ndEd., 2000, PHI.
- 3. Transmission lines and Networks- Umesh Sinha, Satya Prakashan, 2001, (Tech, India Publications), New Delhi.

Reference Books:

- 1. Engineering Electromagnetic- Nathan Ida, 2ndEd., 2005, Springer (India) Pvt. Ltd., New Delhi.
- 2. Engineering electromagnetic- William H. Hayt Jr. and John A. Buck, 7thEd., 2006, TMH.
- 3. Electromagnetic Field theory and Transmission Lines-G. Sashibushana Rao, Wiley India, 2013.

IX. COURSE PLAN

Unit NO	CLO's Number	Course Learning Objective	Lecture Number	Topics to be name	Reference	
			1	Coulomb's law, Electric field Intensity	T1	
		To design flux controlled	2	Fields due to different charge distributions	T1	
	1	motors and generators	3-4	Electric Flux Density, Gauss law and its Applications	T1, T2	
			5	Electric Potential, Relation Between E and V	T1,T2	
		To analyze the Maxwell's	6-7	Maxwell's Two equations for Electrostatic Fields, energy Density	T1	
	2	electrostatic field	8	Illustrative Problems	T1	
Ι	2	equations	9	Convection and Conduction Currents	T1	
			10	Dielectric Constant, Isotropic and Homogeneous Dielectrics	T1	
	3	To design long time charge boosters(chargers)	11	Continuity Equation and Relaxation Time	T1	
			12	Poisson's and Laplace's Equations	T1	
	4	Design of dielectric or synthetic capacitors	13	Capacitance- Parallel plate, Co-axial and Spherical capacitors	T1	
			14	Illustrative Problems	T1	
		To know the energy	15-16	Biot-Savart Law, Ampere's Law and Applications	T1	
		storage design of high	17	Magnetic Flux Density	T1	
II	5	magnetic filed coils used in transformers ,motors	18	Maxwell's Two Equations for Magneto static fields	T1	
11		and generators	19	Magnetic Scalar and Vector Potentials	T1	
		OR magnetic coupled devices	20	Forces due to Magnetic Fields, Ampere's force Law	T1	
			21	Inductances and Magnetic Energy	T1	
			22	Illustrative Problems	T1	
			23	Maxwell's Equations (Time Varying Fields), Faraday's Law and Transformer EMF	T1	
III	6	Design of ac and dc motors and generators	24	Inconsistence of Ampere's Law and Displacement Current density	T1	
			25	Maxwell's Equations indifferent Final Forms and Word Statements	T1	
	7	To know the skin depth of materials	26	Conditions at a boundary Surface: Dielectric-dielectric, dielectric- conductor Interfaces	T1	
			27	Illustrative Problems	T1	
				Wave Equations for conducting and		
			28	Perfect Dielectric Media	T1	
	8	To understand the media	29	Uniform Plane Waves-Definition, All Relations between E and H	T1	
	Ű	characteristics	30	Sinusoidal Variations	T1	
			31	Wave Propagation in Lossless and Conducting Media	T1	

	0	To understand the	32	Conductors and Dielectrics- Characterization	T1,T2
	9	material characteristics	33	Wave Propagation in good conductors and Good Dielectrics	T1,T2
	10	To understand the wave motion in guided and un guided media	34	Polarization and types	T1
		0	35	Illustrative Problems	T1
		To know the skin depth of materials	36	Reflection And Refraction of Plane Waves	T1
		materials	37	Normal and Oblique Incidences for Perfect Conductor	T1
	11		38	Normal and Oblique Incidences for Perfect Dielectric	T1
			39	Brewster angle, Critical Angle	T1,T2
			40	Total Internal Reflection, Surface Impedance	T1
	12	To understand the	41	Poynting Vector, Poynting Theorem- Applications	T1,T2
		behavior of EM signal	42	Power Loss in Plane Conductor	T1
			43	Illustrative Problems	T1
			44	Constants Types,	T3
	13		45-46	Transmission line Equations, Primary and Secondary Parameters	T1,T3
117		Design of transmission	47-48	Expressions for Characteristic Impedance, Propagation Constant, Phase and Group Velocities	Т3
IV	15	lines and to understand characteristics	49	Infinite Line Concepts	T1, T3
		enaracteristics	50	Losslessness/Low Loss Characterization	T3
			51-52	Distortion-Condition for Distortionlessness and Minimum Attenuation	Т3
			53	Loading, Types of loading	T1, T3
			54	Illustrative Problems	T3
	14	Design of electronic and	55-56	and OC Lines	T3
	14	electrical circuits	57	Reflection Coefficient, VSWR	Т3
			58	UHF Lines as Circuit Elements	T3
V	15	Design and understanding of antenna elements like dipoles and its behavior	59-60	$\lambda/4$, $\lambda/2$ and $\lambda/8$ Lines- Impedance Transformations	T1, T3
	16	To achieve the impedance matching	61	Significance of Z _{min} and Z _{max} Smith Chart-Configuration and	T3
			62	Applications	T1,T3
	17	Design of couplers	63-64	Single and Double Stub Matching	T1,T3
			65	Illustrative Problems	T3

X. MAPPING COURSE OBJECTIVES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

Course Objectives		Program Out Comes Program Outco													
	PO	PO											PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
Ι	Н			S			Н		S				Н	S	
II		S		Н					S		Н			S	
III	S								S	S				S	
IV		Н		S			S					S		S	S
V	Н				S		S		S			S		S	S

S = Supportive H = Highly Related

XI. MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM **OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:**

Course		PROGRAM OUTCOMES												Program Specific Outcomes			
Outcomes	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3		
1	Н	S					S						Н	S			
2		S					S		S								
3	S										Н		S				
4									S								
5	S													Н			
6		Н		S						S			S				
7	S	S					S		S				S	S			
		S	= Sup	oporti	ve		Η	= Hig	hly Re	elated							

HOD, ELECTRONICS AND COMMUNICATION ENGINEERING