

INSTITUTE OF AERONAUTICAL ENGINEERING

(AUTONOMOUS)

Dundigal, Hyderabad - 500 043

CIVIL ENGINEERING

COURSE DESCRIPTION

Department	:	CIVIL ENGINEERING			
Course Title	:	ELECTRICAL AND ELECTRONICS ENGINEERING			
Course Code	:	A30203	A30203		
Course Category	:	CORE			
		Lectures	Tutorials	Practical's	Credits
Course Structure	·	5	-	-	4
Course Coordinator	:	Mr. A Sathishku	Mr. A Sathishkumar, Assistant Professor		
Team of Instructors	:	Mr. A Sathishku Mr. M Diva Ku	ımar, Assistan mar, Assistant	t Professor Professor	

I. Course Overview:

Electrical and Electronics Engineering course deals with the concepts of electrical circuits, basic law's of electricity, different methods to solve the electrical networks and the instruments to measure the electrical quantities. It also focuses on the construction, operational features of energy conversion devices such as DC and AC machines, Transformers. It also emphasis on basic electronics semiconductor devices and their characteristics and operational features

II. Prerequisites:

Level	Credits	Periods / Week	Prerequisites
UG	4	5	Basic knowledge of Electrical components, electromagnetic principles and Semiconductor materials.

III. Course Assessment Methods:

Marks Distribution:

Sessional Marks	University End Exam Marks	Total Marks
There shall be 2 midterm examinations. Each midterm examination consists of one objective paper, one subjective paper and one assignment. The objective paper is for 10 marks and subjective paper is for 10 marks, with duration of 1 hour 20 minutes (20 minutes for objective and 60 minutes for subjective paper). Objective paper is set with 20 bits of multiple choice questions, fill-in the blanks and matching type of questions for a total of 10 marks. Subjective paper contains 4 full questions of which, the student has to answer 2 questions, each question carrying 5 marks. First midterm examination shall be conducted for 1-2.5 units of the syllabus and second midterm examination shall be conducted for 2.5-5	75	100

units of syllabus. 5 marks are allocated for Assignments (as specified	
by the concerned subject teacher) - first Assignment should be	
submitted before the conduct of the first mid, and the second	
Assignment should be submitted before the conduct of the second mid.	
The total marks secured by the student in each midterm examination are	
evaluated for 25 marks, and the average of the two midterm	
examinations shall be taken as the final marks secured by each candidate	

IV Evaluation Scheme:

S. No.	Component	Duration	Marks
1	I Mid Examination	1 hour 20 min	20
2	I Assignment		5
		Total	25
3	II Mid Examination	1 hour 20 min	20
4	II Assignment		5
		Total	25
	MID Examination marks to be consi	dered as average of ab	oove 2 MID's TOTAL
5	External Examination	3 hours	75
		GRAND TOTAL	100

V. Course Objectives:

- I. To get the knowledge on basic concepts of electrical circuits, its components and the fundamental laws such as Ohm's law, Kirchhoff's laws.
- II. To understand the series, parallel networks and star-delta transformation techniques which are used to reduce a complex network to a simple network.
- III. To understand basic principle and operation of indicating instruments permanent magnet moving coil and moving iron instruments.
- IV. To know the construction, operational features of energy conversion devices such as DC Machines, AC Machines and Transformers.
- V. To know the operation and characteristics of different semiconductor devices such as Diodes, Transistors and SCR.
- VI. To understand the operation of CRO and its application to measure the voltage, current and frequency.

VII. Course Outcomes:

- 1. Ability to apply the Ohms law in the analysis of electrical circuits.
- 2. Ability to apply the Kirchhoff's Voltage and Current laws in the analysis of electrical circuits.
- 3. Shall have the ability to use permanent magnet and moving coil instruments in the measurement of current, voltage and power in electrical circuits.
- 4. Able to know the construction and operation of DC machines
- 5. Able to get the thorough knowledge on operation of the transformers in the energy conversion process.
- 6. Able to know the performance of transformer
- 7. Ability to operate and control the electro mechanical energy conversion devices such as DC Machines and AC Machines

- 8. Able to know the fundamental of semiconductor devices
- 9. Shall have the ability to find the characteristics and application of different semiconductor devices such as Diodes, Transistors and SCR.
- 10. Shall have the ability to measure the voltage, current and frequency using CRO

VIII. How course outcomes are assessed:

	Program outcomes		Proficiency
			assessed by
PO1	An ability to apply the knowledge of mathematics, science and	Н	Assignments,
	Engineering for solving multifaceted issues of Electrical		Practicals, Midterm
	Engineering.(General knowledge)		and University
			examinations
PO2	An ability to communicate effectively and to prepare formal	Н	Assignments,
	technical plans leading to solutions and detailed reports for		Practicals, Midterm
	electrical systems.(Problem Analysis)		and University
DO2	To develop Drood theoretical knowledge in Electrical	C	examinations
PO5	To develop Broad theoretical knowledge in Electrical	5	Assignments,
	Engineering and learn the methods of applying them to identify,		Practicals, Midterin
	formulate and solve practical problems involving electrical		and University
DO4	power. (Design/Development of solutions).	G	
P04	An ability to apply the techniques of using appropriate	5	Assignments,
	technologies to investigate, analyze, design, simulate and/or		Practicals, Midterin
	Tablicate/commission complete systems involving generation,		and University
	transmission and distribution of electrical energy. (Conduct		examinations
PO5	An ability to model real life problems using different bardware	TT	Assignments
FUS	All admity to model real me problems using different hardware	п	Assignments, Dracticala Midtarm
	and software platforms, both online and real-time with the help of various tools along with ungraded varions. (Modern tool		and University
	of various tools along with upgraded versions. (Nodern tool		examinations
DO6	usage)	N	cxammations
FU0	All Admity to design and fadicate modules, control systems and	IN	
	realistic constraints for social needs (The angineer and society)		
PO7	An ability To estimate the feasibility applicability optimality	N	
107	and future scope of power networks and apparatus for design of	IN	
	eco-friendly with sustainability (Environment and sustainability)		
PO8	To Possess an appreciation of professional, societal,	S	Assignments,
	environmental and ethical issues and proper use of renewable		Practicals, Midterm
	resources.(Ethics)		and University
			examinations
PO9	an Ability to design schemes involving signal sensing and	Н	Assignments,
	processing leading to decision making for real time electrical		Practicals, Midterm
	engineering systems and processes at individual and team levels.		and University
	(Individual and team work)		examinations
PO10	an Ability to work in a team and comprehend his/her scope of	Ν	
	work, deliverables, issues and be able to communicate both in		
	verbal, written for effective technical presentation.		
	(Communication)		
PO11	An ability to align with and upgrade to higher learning and	Н	Assignments,
	research activities along with engaging in life-long learning.		Practicals, Midterm
			and University
			examinations

PO12	To be familiar with project management problems and basic	S	Practicals, Midterm
	financial principles for a multi-disciplinary work.(Project		and University
	management and finance)		examinations

IX. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program Specific Outcomes	Level	Proficiency assessed by
PSO1	Professional Skills: Able to utilize the knowledge of high voltage engineering in collaboration with power systems in innovative, dynamic and challenging environment, for the research based team work.	Н	Lectures, Assignments
PSO2	Problem-Solving Skills: Can explore the scientific theories, ideas, methodologies and the new cutting edge technologies in renewable energy engineering and use this erudition in their professional development and gain sufficient competence to solve the current and future energy problems universally.	S	Projects
PSO3	Successful Career and Entrepreneurship: The understanding of technologies like PLC, PMC, process controllers, transducers and HMI one can analyze, design electrical and electronics principles to install, test, maintain power system and applications.	S	Projects
	N - None S - Supportive H	- Highly	Related

X. Syllabus:

UNIT-I

Electrical circuits: Basic definitions, types of elements. Ohm's law, resistive networks, Kirchhoff's laws, inductive networks, capacitive networks, series, parallel circuits and star/delta and delta-star transmission.

Instruments: Basic principle of indicating instruments-PMMC and MI instruments.

UNIT-II

DC Machines: Principle operation of DC generator – E.M.F equation-types-dc motor types-torque equations-applications-three point stator.

UNIT-III

Transformers: Principle of operation of single phase transformers- E.M.F equation-losses-efficiency and regulations.

AC Machines: Principle of operation of alternator- regulation by synchronous impedance method-Principle of operation of Induction Motor-Slip-Torque characteristics- Applications.

UNIT-IV

Diodes: P-N junction diode, symbol, V-I characteristics, Diode applications, and rectifiers-Half wave, Full wave and Bridge rectifiers (simple problems).

Transistors: PNP and NPN junction transistors, Transistor as an Amplifier, SCR characteristics and applications.

UNIT-V

Cathode ray oscilloscope: Principles of CRT (cathode ray tube), Deflection, sensitivity, Electro static and Magnetic Deflection, Applications of CRO- voltage, Current and Frequency Measurements

TEXT BOOKS:

T1. Fundamentals of Electric Circuits – Charles K. Alexander, Matthew N.O. Sadiku, Mc Graw Hill

- T2. Basic Electrical Engineering S.N.Singh, PHI
- T3. Electronic Devices and Circuits S.Salivahanan, N.Suresh Kumar, A.Vallavaraj, TMH
- T4. Electronic Devices and Circuits K.Lal Kishore, BS Publications.

REFERENCE BOOKS:

- R1. Basic Electrical Engineering D.P Kothari, I.J.Nagrath, McGraw-Hill.
- R2. Theory and performance of Electrical Machines J.B.Gupta, S.K. Kataria & Sons
- R3. Electronic Devices and Circuits R.L Boylestad and Louis Nashelsky, PEI/PHI.
- R4. Introduction to Electronic Devices and Circuits Rober T.Paynter, PE.

XI. Course Plan:

The course plan is meant as a guideline. There may probably be changes.

Lecture No.	Course Learning Outcomes	Topics to be covered	Reference		
	UNIT-I Electrical Circuits				
1	Understand the of Basic Definitions of Electrical Circuits	Basic Definitions of Electrical Circuits	T1, R1		
2	Understand the Basic Elements	Types of elements and basic problems	T1, R1		
3	Apply ohm's law to simple circuits	Ohm's law and simple problems	T1, R1		
4	Understand Kirchhoff's laws	Kirchhoff's laws	T1, R1		
5	Apply Kirchhoff's laws to simple problems	Problems on Kirchhoff's laws	T1, R1		
6	Classify the types of networks	Resistive Networks, Inductive Networks, Capacitive Networks	T1, R1		
7	Apply Series and parallel networks to simple problems	Problems on series and parallel networks	T1, R1		
8	Understand star connected and Delta connected systems	Star-Delta conversion and Delta- Star conversion	T1, R1		
9	Apply Star-Delta conversion and Delta- Star conversion to simple problems	Problems on Star-Delta conversion and Delta- Star conversion	T1, R1		
10	Understand the Basic Principles of instruments	Basic Principles of indicating instruments	T2, R1		
11-12	Differentiate the different types of instruments and their application	permanent magnet moving coil and moving iron instruments	T2, R1		
	UNIT-II DC Machines				
13	Understand the Basic Principles and Laws of EMF	Introduction of faraday law's and Lenz's law.	T2, R2		
14	Understand principle of operation of D.C. generator	Principle and operation of DC generator	T2, R2		
15	Understand construction of DC machine	Construction of DC Machine	T2, R2		
16	Derive the equation for EMF of DC generator	EMF equation	T2, R2		

17	Apply EMF Equation of generator to simple problems	Problems on EMF equation	T2, R2
18	Classify the different types of Generators	Type of Generators and simple problems.	T2, R2
19	Understand Magnetization and Load Characteristics of DC Generators	Magnetization and Load Characteristics of DC Generators.	T2, R2
20	Understand Losses and efficiency of Dc generator	Losses and Efficiency of DC generator	T2, R2
21	Understand principle of operation of D.C. motor	Principle and operation of DC motor, Significance of Back EMF	T2, R2
22	Classify the different types of motors	Types of motors	T2, R2
23	Derive the equation for Armature Torque of DC motor	Armature Torque of DC motor	T2,R2
24	Determine the Armature Torque	Problems on Armature Torque	T2, R2
25	Derive the expression for Efficiency and regulation of DC motor	Efficiency and regulation Of DC motor	T2, R2
26	Calculate the Efficiency of generator and motor	Problems on Efficiency of DC machines	T2, R2
27	Understand the three point stator and the applications of DC motors	Three Point Starter and applications	T2, R2
		UNIT-III	
	Transfor	mers & AC Machines	
	Understand the Principle of		T 2 D2
28	operation of Single Phase transformer	Principle of operation of Single Phase transformer	12, K 2
29	Understand the construction and types of Transformers	Types and constructional features	T2, R2
30	Derive the EMF Equation of Transformer and apply it to solve simple problems	EMF equation and Simple problems	T2, R2
31 & 32	Understand the Losses and Efficiency of Transformer and its Regulation	Losses and Efficiency of Transformer and Regulation and simple problems	T2, R2
33	Know how to perform OC and SC tests on transformer	OC and SC Tests	T2, R2
34	Understand the working principle of Alternator	Alternators working Principle	T2, R2
35 & 36	Derive EMF Equation of alternator and apply it to solve simple problems	EMF Equation of alternator and simple problems on frequency and synchronous speed	T2, R2
37	Determine the regulation of alternator by Synchronous Impedance Method	Predetermination of regulation by Synchronous Impedance Method.	T2, R2
38	Understand the basic principle of three phase induction motor	Principle of operation of three phase induction motors	T2, R2

39	Classify the types of three	Slip ring and Squirrel cage motors	T2, R2		
	Draw the Slip-Torque				
40	characteristics of three phase	Slip-Torque characteristics	T2 R2		
-10	induction	Ship Torque characteristics	12, 112		
	Understand the applications				
41	of three phase induction motor	Applications	T2, R2		
10	Apply slip-torque relation to	Problems on slip and torque of	T2 D2		
42	solve simple problems	induction motor	12, K2		
		UNIT- IV			
	Dio	des & Transistors			
43	Know the working of a Diode	Introduction to PN-junction diode, Symbol.	T3, T4		
	Draw the characteristics of	V L characteristics of diode and its			
44	Diode and also know the	applications	T3, R3		
	diode applications				
45	Know the internal parameters	Diffusion current, Diffusion	T3. R3		
	of diode	capacitance	- , -		
46	Find the theoretical resistance	Static and dynamic resistance	T3, T4, R3		
	Derive the equation to find				
47	theoretical current of diode	Diode current equation	T3, R4		
	Know the operation of half	Half Wave rectifier-calculations			
48	wave rectifier(power supply)	Than wave rectifier calculations	T4, R4		
10 0 70	Know the operation of Full	Full wave rectifier-calculations	T (D (
49 & 50	wave rectifier(power supply)		T4, R4		
51	Know the operation of Bridge	Bridge wave rectifier-calculations	T4 D4		
51	wave rectifier(power supply)		14, K4		
52	Analyze the Rectifiers (Half,	Problems	T4 R4		
52	Full and Bridge wave)		17, 187		
50 0 54	Understand the construction,				
53 & 54	operation and characteristics	PNP and NPN Transistor	T3, R3		
	OI BJI.				
55 & 56	configurations of Transistors	CB, CE, CC configurations	T3, R3		
	Know the parameters of	Relation between α β λ			
57	transistor configuration	Relation between u, p, k	T3, R3		
	Understand the operation of		Ta Da		
58	Transistor as an amplifier	Transistor as an Amplifier	T3, R3		
50	Understand the operation of	SCD share staristics and applications	T2 T4		
59	SCR and its applications	SCR characteristics and applications	13, 14		
		UNIT-V			
	Cathode Ray Oscilloscope				
	Understand the principle of				
60	operation of CRT.	Principle of CTR (Cathode Ray Tube)	T4, R4		
	*	· · · · · · · · · · · · · · · · · · ·			
61	Understand the principle of	Operation of CPO	T4 D4		
01	operation of CRO.		14, K4		
62	Understand the dynamics of	Deflection Sensitivity	T4 R3 R4		
02	electrons		17, 10, 107		
63	Understand the dynamics of	Electrostatic and magnetic deflection	T4, R3, R4		
	electrons		<u> </u>		
64	Know the applications of	CKU Applications	14, K3, K4		

	CRO		
65	Determine the Voltage, Current and frequency using CRO	Voltage ,Current and Frequency measurement	T4, R3, R4

XII. MAPPING COURSE OBJECTIVES LEADING TO THE ACHIEVEMENT OF THE **PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:**

Course Objectives			Program Specific Outcomes												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
Ι	Н	Н	S		Н						Н	S	Н		S
II	Η	Н	S	S				S	Н			S	S	Н	S
III	Η	Н	S		Н								Н	S	
IV	Η	Н	S		Н							S		S	
V	Η	Н	S		Н				Н				Н		S
VI	Η			S							S				

S – **Supportive** H= Highly related

XIII. MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF THE **PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:**

Course Outcomes			Program Specific Outcomes												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
1	Η	Н	S	S	Н								Н		S
2	Η	Н	S		Н			Η			Н	S	Н	S	S
3	Η	Н	S		Н							S	S	S	
4	Н	Н	S	S	Н			S	Н	l	Н		S	S	S
5	Н	Н	S		Н						Н	S		Н	
6		Н							S					S	S
S-Support	tivo	•	•	•	H-Highly Related										

5=Supportive

H=Highly Kelated

Prepared By: A Sathishkumar, Assistant Professor

HOD, CIVIL ENGINEERING