

**INSTITUTE OF AERONAUTICAL ENGINEERING** 

(Autonomous)

Dundigal, Hyderabad -500 043

# **CIVIL ENGINEERING**

## **COURSE DESCRIPTOR**

| Course Title      | FINITE ELEMENT METHOD IN STRUCTURAL ENGINEERING |        |           |           |            |         |  |  |  |  |
|-------------------|-------------------------------------------------|--------|-----------|-----------|------------|---------|--|--|--|--|
| Course Code       | BST00                                           | BST001 |           |           |            |         |  |  |  |  |
| Programme         | M.Tech(StructuralEngineering)                   |        |           |           |            |         |  |  |  |  |
| Semester          | II CE                                           |        |           |           |            |         |  |  |  |  |
| Course Type       | Core                                            |        |           |           |            |         |  |  |  |  |
| Regulation        | IARE - R18                                      |        |           |           |            |         |  |  |  |  |
|                   |                                                 |        | Theory    | Practical |            |         |  |  |  |  |
| Course Structure  | Lectures                                        |        | Tutorials | Credits   | Laboratory | Credits |  |  |  |  |
|                   | 3                                               |        | -         | 4         | -          | 3       |  |  |  |  |
| Chief Coordinator | Mr. Gude Ramakrishna, Assciate Professor        |        |           |           |            |         |  |  |  |  |
| Course Faculty    | Mr. Gude Ramakrishna, Assciate Professor        |        |           |           |            |         |  |  |  |  |

## I. COURSE OVERVIEW:

The Finite Element Method (FEM) is widely used in industry for analysing and modelling struct ures and continua, whose physical behaviour is described by ordinary and partial differential equations. The FEM is particularly useful for engineering problems that are too complicated to be solved by classical analytical methods. The main objective of this course is to introduce them at the matical concepts of the Finite Element Method for obtaining an approximate solution of ordinar y and partial differential equations. In this course you will attend lecture son the fundamental soft he Finite Element Method. The learning process will be enhanced by completing assignments us ingmathematical software. You will also be introduced to a commercial Finite Elements of tware is a software of the software is a software. The software is a software in the software is a software in the software is a software in the software is a software. The software is a software is a software in the software is a software is a software in the software in the software in the software is a software in the software is a software in the software is a software in the software in the software in the software in the software is a software in the softwa

epackage-ANSYS-

duringlectures with computer laboratories providing opportunities to practice on, and to complete practice lassignments, using ANSYS.

| Level | Course Code | Semester | Prerequisites                       |
|-------|-------------|----------|-------------------------------------|
| UG    | ACE001      | III      | StrengthofMaterials-I               |
| UG    | ACE004      | IV       | Strength of Materials – II          |
| UG    | ACE008      | V        | Structural Analysis                 |
| PG    | BST003      | Ι        | Computer Oriented Numerical Methods |

## **II.** COURSE PRE-REQUISITES:

#### **III. MARKSDISTRIBUTION:**

| Subject                                            | SEE Examination | CIA<br>Examination | Total Marks |  |
|----------------------------------------------------|-----------------|--------------------|-------------|--|
| Finite element method in structural<br>engineering | 70 Marks        | 30 Marks           | 100         |  |

## IV. DELIVERY / INSTRUCTIONAL METHODOLOGIES:

| ~ | Chalk & Talk           | × | Quiz     | ~ | Assignments    | × | MOOCs  |  |  |  |
|---|------------------------|---|----------|---|----------------|---|--------|--|--|--|
| > | LCD / PPT              | > | Seminars | > | ✔ Mini Project |   | Videos |  |  |  |
| × | Open Ended Experiments |   |          |   |                |   |        |  |  |  |

#### V. EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIA examinations or the marks scored in the make-up examination.

SemesterEndExamination(SEE):TheSEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into FIVE units and each unit carries equal weight age in terms of marks distribution. The question parternis as follows: two full questions with 'either' 'or' choice will be drawn from each unit. Each que stion carries 14 marks.

#### **Continuous Internal Assessment (CIA):**

CIA is conducted for a total of 30 marks, with 25 marks for Continuous Internal Examination (CIE) and 05 marks for Technical Seminar and Term Paper.

| Component          |          | Total Marka    |    |  |
|--------------------|----------|----------------|----|--|
| Type of Assessment | CIE Exam | I OTAL IVLARKS |    |  |
| CIA Marks          | 25       | 05             | 30 |  |

Table 1: Assessment pattern for CIA

## ContinuousInternalExamination(CIE):

TheCIE examisconducted for 25 marks of 2 hours duration consisting of two parts. Part-

 $\label{eq:asymptotic} A shall have five compulsory questions of one markeach. In part-B, four out of five questions have to be answered where, each question carries 5 marks. Marks are award edby taking average of marks correct intwo CIE exams.$ 

#### TechnicalSeminarandTermPaper:

Twoseminar presentations are conducted during Iyear Isemester and IIsemester. For seminar, as tude ntunder the supervision of a concerned faculty member, shall identify a topic in each course and prepare the term paper with overview of topic. The evaluation of Technical seminar and term paper is for maxim umof 5 marks. Marks are awarded by taking average of marks scored in two Seminar Evaluations.

|       | Program Outcomes (POs)                                                                                                                                                                                                                                                                           | Strength | Proficiency assessed<br>by      |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------------------------------|
| PO 1  | <b>Engineering knowledge</b> : Apply the knowledge of mathematics, science, engineeringfundamentals, and an engineering specialization to the solution of complex engineering problems.                                                                                                          | 3        | Assignments                     |
| PO2   | <b>Problemanalysis</b> :Identify,formulate,reviewresearchliteratur<br>e,andanalyzecomplexengineeringproblemsreachingsubstanti<br>atedconclusionsusingfirstprinciplesofmathematics,naturalsc<br>iences,andengineeringsciences.                                                                    | 3        | Assignments                     |
| PO 3  | <b>Design/development of solutions:</b> Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations. | 3        | Assignments                     |
| PO 4  | <b>Conduct investigations of complex problems</b> : Use<br>research-based knowledge and researchmethods including<br>design of experiments, analysis and interpretation of data,<br>and synthesis of the information to provide valid<br>conclusions.                                            | 2        | Open ended<br>experiments       |
| PO5   | <b>Moderntoolusage</b> :Create,select,andapplyappropriatetechni<br>ques,resources,andmodernengineeringandITtoolsincludingp<br>redictionandmodelingtocomplexengineeringactivitieswithan<br>understandingofthelimitations.                                                                         | 1        | Mini Project                    |
| PO 10 | <b>Communication</b> :Communicateeffectivelyoncomplexengin<br>eeringactivitieswiththeengineeringcommunityandwithsociet<br>yatlarge,suchas,beingabletocomprehendandwriteeffectivere<br>portsanddesigndocumentation,makeeffectivepresentations,a<br>ndgiveandreceiveclearinstructions.             | 2        | TechnicalSeminars/Term<br>Paper |
| PO12  | Life-<br>longlearning:Recognizetheneedfor,andhavethepreparationa<br>ndabilitytoengageinindependentandlife-<br>longlearninginthebroadestcontextoftechnologicalchange.                                                                                                                             | 3        | Research Projects               |

#### VI. HOW PROGRAM OUTCOMES ARE ASSESSED:

3 = High; 2 = Medium; 1 = Low

## VII. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

|       | Program Specific Outcomes (PSOs)                                                                                                                                                                                                                                                                                   | Strength | Proficiency assessed  |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------------------|
|       |                                                                                                                                                                                                                                                                                                                    |          | by                    |
| PSO 1 | <b>Engineering knowledge:</b> Graduates shall demonstrate sound knowledge in analysis, design, laboratory investigations and construction aspects of civil engineering infrastructure, along with good foundation in mathematics, basic sciences and technical communication                                       | 3        | Lectures, Assignments |
| PSO 2 | <b>Broadness and diversity:</b> Graduates will have a broad<br>understanding of economical, environmental, societal,<br>health and safety factors involved in infrastructural<br>development, and shall demonstrate ability to function<br>within multidisciplinary teams with competence in modern<br>tool usage. | 2        | Projects              |

| Program Specific Outcomes (PSOs)                                                                                                                                                                                                                                         | Strength | Proficiency assessed<br>by |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------------------------|
| PSO 3 <b>Self-learning and service:</b> Graduates will be motivated for continuous self-learning in engineering practice and/or pursue research in advanced areas of civil engineering in order to offer engineering services to the society, ethically and responsibly. | 1        | Guest Lectures             |

3 = High; 2 = Medium; 1 = Low

## VIII. COURSE OBJECTIVES (COs):

| T   | The course should enable the students to:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |  |  |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| Ι   | Equipthestudents with the Finite Element Analysis fundamentals.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |  |  |
| II  | EnablethestudentstoformulatethedesignproblemsintoFiniteElementMethod(FEM).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |  |  |
| III | Developtheabilitytogeneratethegoverningfiniteelementequationsforsystems.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |  |
| IV  | Enabletounderstandthedifferentkindsofelementsusedwhileanalysingthestructure.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |  |
| V   | Understand the use of the basic finite elements for structural applications using truss, beam, frame and plate elements. In the structural application of |  |  |  |  |  |  |  |  |

## IX. COURSE LEARNING OUTCOMES (CLOs):

| CLO        | CLO's        | At the end of the course, the student will have    | PO's   | Strength of |
|------------|--------------|----------------------------------------------------|--------|-------------|
| Code       |              | the ability to:                                    | Mapped | Mapping     |
| CBST001.01 | CLO 1        | Understand the Concepts of FEM, steps involved     | PO 1   | 3           |
|            |              | merits and demerits.                               |        |             |
| CBST001.02 | CLO 2        | Solve the problems using Raleigh-Ritz method of    | PO 1   | 3           |
|            |              | functional approximation.                          |        |             |
| CBST001.03 | CLO 3        | Understand the concept of One dimensional FEM      | PO 1   | 3           |
|            |              | Stiffness matrix for beam and bar elements.        |        |             |
| CBST001.04 | CLO 4        | Know the generalized coordinates, shape functions. | PO 3   | 2           |
| CBST001.05 | CLO 5        | Different types of elements for plane stress and   | PO 3   | 2           |
|            |              | plane strain analysis, displacement models.        |        |             |
| CBST001.06 | CLO 6        | Generalized coordinates, shape functions,          | PO 4   | 2           |
|            |              | convergent and compatibility requirements.         |        |             |
| CBST001.07 | CLO 7        | Understand the generation of element stiffness and | PO 4   | 2           |
|            |              | nodal load matrices.                               |        |             |
| CBST001.08 | CLO 8        | Know the natural coordinate system, area and       | PO 4   | 2           |
|            |              | volume coordinates.                                |        |             |
| CBST001.09 | CLO 9        | Concept of Axisymmetric bodies of revolution,      | PO 1   | 2           |
|            |              | axisymmetric modeling.                             |        |             |
| CBST001.10 | CLO 10       | Know the different 3-D elements strain,            | PO 4   | 2           |
|            |              | displacement relationship.                         |        |             |
| CBST001.11 | CLO 11       | Concept of Axisymmetric bodies of revolution,      | PO 1   | 3           |
|            |              | axisymmetric modeling.                             |        |             |
| CBST001.12 | CLO 12       | Understand the strain displacement relationship,   | PO 4   | 3           |
| CDST001 12 | $CI \cap 12$ | formulation of axisymmetric elements.              | DO 4   | 2           |
| CBS1001.13 | CLO IS       | isoparametric elements for 2D analysis             | PO 4   | 2           |
| CBST001.14 | CLO 14       | Concept of Axisymmetric bodies of revolution.      | PO 4   | 3           |
| 020100111  | 02011        | axisymmetric modeling.                             | 10.    | C C         |
|            |              | ,,,g.                                              |        |             |
| CBST001.15 | CLO 15       | Understand the strain displacement relationship,   | PO 3   | 2           |
|            |              | formulation of axisymmetric elements.              |        |             |
|            |              |                                                    |        |             |

| CBST001.16 | CLO 16 | Concept of Plane Stress, CST Element, Plane Strain | PO 3  | 3 |
|------------|--------|----------------------------------------------------|-------|---|
|            |        | Rectangular Element                                |       |   |
| CBST001.17 | CLO 17 | Understand the Principle Isoperimetric Formulation | PO 1, | 2 |
|            |        | of the Plane Quadrilateral Element, Axi-           | PO 4  |   |
|            |        | Symmetric element.                                 |       |   |
| CBST001.18 | CLO 18 | Introduction to Computer Implementation of FEM     | PO 1, | 2 |
|            |        | ,use of commercial FEA Software.                   | PO 3  |   |

**3** = High; **2** = Medium; **1** = Low

## X. MAPPING COURSE LEARNING OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

| Course<br>Learning | Program Outcomes (POs) |     |     |     |     |     |            |     | Prog<br>Oute | Program Specific<br>Outcomes (PSOs) |      |      |      |      |      |
|--------------------|------------------------|-----|-----|-----|-----|-----|------------|-----|--------------|-------------------------------------|------|------|------|------|------|
| Outcomes<br>(CLOs) | PO1                    | PO2 | PO3 | PO4 | PO5 | PO6 | <b>PO7</b> | PO8 | PO9          | PO10                                | PO11 | PO12 | PSO1 | PSO2 | PSO3 |
| CLO 1              | 3                      | 2   |     |     |     |     |            |     |              |                                     |      |      | 1    |      |      |
| CLO 2              | 3                      | 2   |     |     |     |     |            |     |              |                                     |      |      | 3    |      |      |
| CLO 3              |                        | 3   |     |     | 3   |     |            |     |              |                                     |      |      |      | 2    |      |
| CLO 4              |                        |     | 2   |     |     |     |            |     |              |                                     |      |      | 3    |      |      |
| CLO 5              |                        | 3   | 3   |     |     |     |            |     |              |                                     |      |      | 1    |      |      |
| CLO 6              |                        | 1   |     |     | 3   |     |            |     |              |                                     |      | 2    | 1    |      |      |
| CLO 7              |                        |     | 3   | 2   |     |     |            |     |              |                                     |      |      |      | 2    |      |
| CLO 8              |                        | 3   |     | 1   |     |     |            |     |              |                                     |      |      | 1    |      |      |
| CLO 9              |                        | 3   |     |     |     |     |            |     |              |                                     |      |      | 1    |      |      |
| CLO 10             |                        |     |     | 1   |     |     |            |     |              |                                     |      |      |      | 3    |      |
| CLO 11             | 2                      | 1   |     | 3   |     |     |            |     |              |                                     |      |      |      | 2    |      |
| CLO 12             |                        |     |     |     | 3   |     |            |     |              |                                     |      |      | 2    |      |      |
| CLO 13             | 1                      |     | 3   |     |     |     |            |     |              | 2                                   |      | 2    |      | 3    |      |
| CLO 14             |                        |     |     |     | 3   |     |            |     |              |                                     |      |      | 1    |      |      |
| CLO 15             |                        | 1   | 3   |     |     |     |            |     |              |                                     |      |      |      |      |      |
| CLO 16             |                        | 2   |     |     |     |     |            |     |              | 2                                   |      |      |      |      |      |
| CLO 17             | 1                      | 1   |     | 2   |     |     |            |     |              |                                     |      |      |      | 3    |      |
| CLO 18             |                        | 3   |     |     |     |     |            |     |              |                                     |      |      | 2    |      |      |

## 3 = High; 2 = Medium; 1 = Low

## XI. ASSESSMENT METHODOLOGIES-DIRECT

| CIE Exams               | PO 1; PO 3;<br>PO 4 | SEE Exams       | PO 1; PO 3;<br>PO 4 | Assignments  | PO 3 | Seminars      | PO 4 |
|-------------------------|---------------------|-----------------|---------------------|--------------|------|---------------|------|
| Laboratory<br>Practices | -                   | Student<br>Viva | -                   | Mini Project | -    | Certification | -    |

| Term Paper - |  |
|--------------|--|
|--------------|--|

## XII. ASSESSMENT METHODOLOGIES-INDIRECT

| ~ | Early Semester Feedback                | ~ | End Semester OBE Feedback |
|---|----------------------------------------|---|---------------------------|
| × | Assessment of Mini Projects by Experts |   |                           |

### XIII. SYLLABUS

| Unit-I                                         | INTRODUCTION                                                                                                                                                                                   |
|------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| History an<br>Method, N                        | nd Applications. Spring and Bar Elements, Minimum Potential Energy Principle, Direct Stiffness<br>Nodal Equilibrium equations, Assembly of Global Stiffness Matrix, Element Strain and Stress. |
| Unit-II                                        | BEAM ELEMENTS                                                                                                                                                                                  |
| Flexure E                                      | lement, Element Stiffness Matrix, Element Load Vector.                                                                                                                                         |
| Unit-III                                       | METHOD OF WEIGHTED RESIDUALS                                                                                                                                                                   |
| Galerkin<br>Compatib                           | Finite Element Method, Application to Structural Elements, Interpolation Functions, ility and Completeness Requirements, Polynomial Forms, Applications.                                       |
| Unit-IV                                        | TYPES                                                                                                                                                                                          |
| Triangula<br>Axi-Symr                          | r Elements, Rectangular Elements, Three-Dimensional Elements, Isoparametric Formulation, netric Elements, Numerical Integration, Gaussian Quadrature.                                          |
| Unit-V                                         | APPLICATION TO SOLID MECHANICS & COMPUTER IMPLEMENTATION                                                                                                                                       |
| Applicatio                                     | on to Solid Mechanics Plane Stress, CST Element, Plane Strain Rectangular Element,                                                                                                             |
| Isoparame                                      | etric Formulation of the Plane Quadrilateral Element, Axi- Symmetric Stress Analysis, Strain and                                                                                               |
| Stress Co<br>Processing                        | omputations. Computer Implementation of FEM procedure, Pre-Processing, Solution, Post-<br>g Use of Commercial FEA Software                                                                     |
| Toxt Boo                                       |                                                                                                                                                                                                |
|                                                | no.                                                                                                                                                                                            |
| <ol> <li>Finite</li> <li>Conception</li> </ol> | ts and Applications of Finite Element Analysis, Cook R. D., Wiley J., New York, 1995.                                                                                                          |
| Reference                                      | e Books:                                                                                                                                                                                       |
| 1. F                                           | Fundamentals of Finite Element Analysis, Hutton David, Mc-Graw Hill, 2004.                                                                                                                     |
| 2. F                                           | Finite Element Analysis, Buchanan G.R., McGraw Hill Publications, New York, 1995.                                                                                                              |
| 3. F                                           | Finite Element Method, Zienkiewicz O.C. & Taylor R.L. Vol. I, II & III, Elsevier, 2000.                                                                                                        |
| 4. F                                           | Finite Element Methods in Engineering, Belegundu A.D., Chandrupatla, T.R., Prentice Hall, ndia 1991                                                                                            |

## **XIV. COURSE PLAN:**

The course plan is meant as a guideline. Probably there may be changes.

| Lecture<br>No | Topics to be covered                                                                             | Course<br>Learning<br>Outcomes<br>(CLOs) | Reference        |
|---------------|--------------------------------------------------------------------------------------------------|------------------------------------------|------------------|
| 1-2           | Introduction, Concepts of FEM, steps involved merits and                                         | CLO 1                                    | T1:3.1,          |
|               | demerits                                                                                         |                                          | 2.4,6.1          |
| 3-5           | Energy principles, discrimination                                                                | CLO 1                                    | T1:3.9           |
| 6-8           | Raleigh, ritz method of functional approximation.                                                | CLO 1                                    | T1:3.3           |
| 9             | Principles of Elasticity: Stress equations, strain displacement                                  | CLO 1                                    | T1:3.4           |
|               | relationships in matrix form plane stress                                                        | ~ ~ ~ /                                  |                  |
| 7             | Study about precautions in blasting                                                              | CLO 1                                    | T1:3.4           |
| 8-9           | Study of dressing of stone.                                                                      | CLO 1                                    | T1:3.7           |
| 10            | Axi-symmetric bodies of revolution with axi-symmetric loading.                                   | CLO 2                                    | T1:2.7           |
| 11-13         | One dimensional FEM: Stiffness matrix for beam and bar elements. shape functions for ID elements | CLO 2                                    | T1:2.9           |
| 14-15         | Different types of elements for plane stress and plane strain                                    | CLO 4                                    | T1:6.2,          |
|               | analysis, displacement models                                                                    |                                          | 6.12             |
| 16-17         | Geometric invariance, natural coordinate system, area and                                        | CLO 1                                    | T1:6.8           |
|               | volume coordinates                                                                               |                                          |                  |
| 18-20         | Isoparametric formulation: Concept, different iso-parametric                                     | CLO 4                                    | T1:6.9           |
|               | elements for 2D analysis.                                                                        |                                          |                  |
| 21            | Isoparametric formulation: Concept, different iso-parametric elements for 2D analysis.           | CLO 5                                    | T1:5.1,5.2       |
| 22-24         | Formulation of 4-noded and 8-noded isoparametric quadrilateral elements.                         | CLO 5                                    | T1:5.9           |
| 25-26         | lagrange elements, serendipity elements.                                                         | CLO 6                                    | T1:10            |
| 27-28         | Axi Symmetric Analysis.                                                                          | CLO 6                                    | T1:10.17         |
| 29-31         | Formulation of axi symmetric elements. Three dimensional FEM:<br>Different 3-D element strain    | CLO 7                                    | T2:9.1           |
| 32-34         | Displacement relationship, formulation of hexahedral and isoparametric solid element.            | CLO 8                                    | T2:12            |
| 35-36         | Bodies of revolution of Axi Symmetric element. Analysis.                                         | CLO 10                                   | T2:9.2           |
| 37            | Analysis, axi symmetric modeling, strain displacement relationship.                              | CLO12                                    | T1:4.4           |
| 38-39         | Explainabout Application to Solid Mechanics Plane Stress.                                        | CLO 14                                   | T1:4.14,<br>4.17 |
| 40            | CST Element, Plane                                                                               | CLO 14                                   | T2:11            |
| 41            | CST Element, Plane Strain Rectangular Element                                                    | CLO 16                                   | T2:8             |
| 42-43         | Introduction to Isoperimetric Formulation of the Plane                                           | CLO 14                                   | T2:8             |
|               | Ouadrilateral Element, Axi- Symmetric element.                                                   | 22011                                    |                  |
| 44            | Explain Introduction to Computer Implementation of FEM.                                          | CLO 17                                   | T2:9             |
| 45            | Applications for commercial FEA Software.                                                        | CLO 18                                   | T2:14            |

# XV. GAPS IN THE SYLLABUS - TO MEET INDUSTRY / PROFESSION REQUIREMENTS:

| S no | Description                                                         | Proposed actions                 | Relevance<br>with POs | Relevance with<br>PSOs |
|------|---------------------------------------------------------------------|----------------------------------|-----------------------|------------------------|
| 1    | Experimental analysis of Structure<br>and the behaviour under loads | Seminars/Guest<br>Lectures/NPTEL | PO 1                  | PSO 1                  |
| 2    | Finite Element Analysis of using<br>Software packages               | Seminars/Guest<br>Lectures/NPTEL | PO 3                  | PSO 1                  |

| 3 | Thermal analysis of a structures using FEM | Assignments / | PO 4 | PSO 1 |
|---|--------------------------------------------|---------------|------|-------|
|   |                                            | Laboratory    |      |       |
|   |                                            | Practices     |      |       |

**Prepared by:** Mr. Gude Ramakrishna, Associate Professor

## HOD, CIVIL ENGINEERING