INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad - 500 043

ELECTRICAL AND ELECTRONICS ENGINEERING

Course Title	FLUID MECHANI	FLUID MECHANICS AND HYDRAULIC MACHINERY										
Course Code	A30102	A30102										
Regulation	R13 – JNTUH											
Course Structure	Lectures	Tutorials	Practicals	Credits								
Course Structure	4	01	-	4								
Academic Year	2016 - 2017											
	G. Sharat Raju,											
Course Coordinator	Assistant Professor											
Team of Instructors	G. Sharat Raju, Assis	stant Professor										

COURSE DESCRIPTION FORM

I. Course Overview:

2 0 0 0

The aim of this course is to introduce basic principles of fluid mechanics and it is further extended to cover the application of fluid mechanics by the inclusion of fluid machinery. Nowadays the principles of fluid mechanics find wide applications in many situations. The course deals with the fluid machinery, like turbines, pumps in general and in power stations. This course also deals with the large variety of fluids such as air, water, steam, etc; however the major emphasis is given for the study of water.

II. Prerequisite(s):

Level	Credits	Periods	Prerequisite
UG	4	5	Mathematics, Physics, Chemistry

III. Marks Distribution

Sessional Marks	University End Exam Marks	Total Marks
There shall be 2 midterm examinations. Each midterm examination consists of subjective test. The subjective test is for 20 marks, with duration of 2 hours. Subjective test of each semester shall contain 5 one mark compulsory questions in part- A and part-B contains 5 questions, the student has to answer 3 questions, each carrying 5 marks. First midterm examination shall be conducted for the first two and half units of syllabus and second midterm examination shall be conducted for the remaining portion.	75	100
Five marks are earmarked for assignments. There shall be two assignments in every theory course. Marks shall be awarded considering the average of two assignments in each course.		

IV. Evaluation Scheme:

S. No.	Component	Duration	Marks					
1	I Mid Examination	1 hour and 20 min	20					
2	I Assignment lot	5						
	TOTAL							
3	II Mid Examination	1 hour and 20 min	20					
4	II Assignment lot		5					
		TOTAL	25					
MID Exa	amination marks to be consider	ed as average of above 2 MID's TO	DTAL					
5	EXTERNAL Examination	75						
		GRAND TOTAL	100					

V. Course Objectives:

The objectives of the course are to enable the student;

- I. To understand the basic principles of fluid mechanics
- II . To identify various types of flows
- III. To understand the concept of storage requirements of hydro electric power stations.
- IV. To evaluate the performance of hydraulic turbines
- V. To understand the functioning and characteristic curves of pumps

VI. Course Outcomes:

- 1. Able to explain the effect of fluid properties on a flow system.
- 2. Able to identify type of fluid flow patterns and describe continuity equation.
- 3. Able to analyze the effect of impact of jet on various vanes and to study the working of hydro electric power station.
- 4. To select and analyze an appropriate turbine with reference to given situation in power plants.
- 5. To estimate performance parameters of a given Centrifugal and Reciprocating pump.

VII. How Course Outcomes are assessed:

	Program outcomes	Level	Proficiency assessed by
PO1	Engineering knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.	Н	Assignments
PO2	Problem analysis : Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering	Н	Exercise

	sciences.		
PO3	Design/development of solutions: Design solutions for	N	Projects
	complex engineering problems and design system		
	components or processes that meet the specified needs		
	with appropriate consideration for the public health and		
	safety, and the cultural, societal, and environmental		
	considerations.		
PO4	Conduct investigations of complex problems: Use	Ν	
	research-based knowledge and research methods		
	including design of experiments, analysis and		
	interpretation of data, and synthesis of the information		
DOT	to provide valid conclusions.	ŊŢ	D' '
PO5	Modern tool usage: Create, select, and apply	N	Discussion,
	appropriate techniques, resources, and modern		Seminars
	engineering and 11 tools including prediction and		
	understanding of the limitations.		
PO6	The engineer and society: Apply reasoning informed	S	Exercise
	by the contextual knowledge to assess societal, health,		
	safety, legal and cultural issues and the consequent		
	responsibilities relevant to the professional engineering		
	practice.		
PO7	Environment and sustainability: Understand the	S	Discussion,
	impact of the professional engineering solutions in		Seminars
	societal and environmental contexts, and demonstrate		
	the knowledge of, and need for sustainable		
	development.	~	
PO8	Ethics: Apply ethical principles and commit to	S	Discussions
	professional ethics and responsibilities and norms of the		
DOO	engineering practice.	C	D'
PO9	Individual and team work: Function effectively as an	S	Discussions
	individual, and as a member or leader in diverse teams,		
DO10	and in munulesciplinary settings.	c	Discussion
F010	engineering activities with the engineering community	5	Seminars
	and with society at large such as being able to		Seminars
	comprehend and write effective reports and design		
	documentation, make effective presentations, and give		
	and receive clear instructions.		
PO11	Project management and finance: Demonstrate	S	Discussions,
	knowledge and understanding of the engineering and		Seminars
	management principles and apply these to one's own		
	work, as a member and leader in a team, to manage		
	projects and in multidisciplinary environments.		
PO12	Life-long learning: Recognize the need for, and have	S	Prototype,
	the preparation and ability to engage in independent and		discussions
	life-long learning in the broadest context of		
	technological change.		
N= Non	e S=Supportive	H=high	y related

VIII. How Program Specific Outcomes are Accessed

Program Specific Outcomes	Level	Proficiency assessed by
PSO1 Professional Skills: Able to utilize the knowledge of high voltage engineering in collaboration with power systems in innovative, dynamic and challenging environment, for the research based team work.	N	
PSO2 Problem-Solving Skills: Can explore the scientific theories, ideas, methodologies and the new cutting edge technologies in renewable energy engineering, and use this erudition in their professional development and gain sufficient competence to solve the current and future energy problems universally.	S	Lectures, Assignments
PSO3 Successful Career and Entrepreneurship: The understanding of technologies like PLC, PMC, process controllers, transducers and HMI one can analyze, design electrical and electronics principles to install, test, maintain power system and applications.	Ν	

N - None

S - Supportive

H - Highly Related

IX Syllabus:

UNIT – I: FLUID STATICS:

Dimensions and units, Physical properties of fluids-specific gravity, viscosity, surface tension-vapour pressure and their influence on fluid motion-atmospheric, gauge and vacuum pressuresmeasurement of pressure- piezometer, U-tube and differential manometers.

FLUID KINEMATICS:

Stream line, path line, streak line and stream tube, classification of flows- steady and unsteady, uniform and non uniform, laminar and turbulent, rotational and irrotational flows - equation of continuity for one dimensional flow and three dimensional flow.

UNIT-II

Fluid dynamics: Surface and body forces, Euler's and Bernoulli's equations for flow along a stream line, Momentum equation and its application on force on pipe bend.

Closed conduit flow: Reynolds's experiment, Darcy Weisbach equation-minor losses in pipes, Pipes in series and pipes in parallel, Total energy line - hydraulic gradient line, Measurement of flow: Pitot tube, venture meter, and orifice meter, flow nozzle

UNIT – III:

Basics of Turbo machinery: Hydrodynamic force of jets on stationary and moving flat, inclined vanes, curved vanes, jet striking centrally and at tip, velocity diagrams, work done and efficiency, flow over radial vanes.

Hydroelectric power stations: Elements of hydro electric power station types-concept of

pumped storage plants-storage plants- storage requirements, mass curve (explanation only) estimation of power developed from a given catchment area; head and efficiencies.

UNIT-IV

Hydraulic Turbines: classification of turbines, heads and efficiencies, impulse and reaction turbines, Pelton wheel, Francis turbine and Kaplan turbine-working proportions, work done, efficiencies, hydraulic design-draft tube -theory –functions and efficiency.

Performance of hydraulic turbines: unit and specific quantities, model analysis, characteristic curves, governing of turbines, selection of type of turbine, cavitation, surge tank.

UNIT-V:

Centrifugal pumps: Classification, working, work done- manomertic head, static head - losses and efficiencies- Specific speed – model analysis, pumps in series and parallel-performance characteristic curves, NPSH, water hammer

List of Text Books / References / Websites / Journals / Others

TEXT BOOKS:

- T1. Fluid Mechanics and Hydraulic Machines by Rajput
- T2. Hydraulics, fluid mechanics and Hydraulic machinery, Modi and Seth/Rajsons Publications

REFERENCES:

- R1. Fluid Mechanics and Fluid Power Engineering by D.S. Kumar, Kotaria & Sons.
- R2. Fluid Mechanics and Machinery by D. Rama Durgaiah, New age international
- R3. Hydraulic Machines by Banga & Sharma, Khanna Publishers.
- R4. Instrumentation for Engineering Measurements by James W.Dally, Willam E.Riley, John Wiley & Sons Inc. 2004(chapter 12-Fuid Flow Measurements).
- E. Kney, John whey & Sons Inc. 2004(chapter 12-Fund Flow Measurem
- R5. Power plant Engineering by Arora and Domkundwar

X Course Plan:

The course plan is meant as a guideline. There may probably be changes.

Lecture No	Course Learning Outcomes	Topics to be covered	Reference
1	Outline of various units	Introduction, dimensions and units	R4, T2
6	Distinguish various pressures	Atmospheric, gauge and vacuum pressures	R4
7-10	Determine pressure with different instruments	Measurement of pressure- piezometer, U-tube and differential manometers	R4, T1, T2
11-12	Differentiate various flow lines	Fluid Kinematics: Stream line, path line, streak line and stream tube	R4, T2
13-14	Classify and describe various flows	Classification of flows- steady and unsteady, uniform and non uniform, laminar and turbulent, rotational and irrotational flows	R4, T1, T2
15-16	Formulate continuity equation for 1 and 3-d flow	Equation of continuity for one dimensional flow and three dimensional flows	R4, T1
17	List various forces	Fluid dynamics: Surface and body	R4

		forces	
18-20	Formulate Euler's and	Euler's and Bernoulli's equations	
	Bernoulli's equations	for flow along a stream line	R4, T2
21-22	Apply momentum equation for a	Momentum equation and its	
21 22	nipe bend	application on force on pipe bend	R4, T2
23	Discuss how friction varies with	Revnold's Experiment	
23	Revnold's Number	Reynold's Experiment	R4, T2
24-25	Formulate the Darcy's equation	Darcy's weisbach equation-minor losses in pipes	R4, T2
26-27	Discuss the series and parallel connections of pipes	Pipes in series and pipes in parallel	R4, T1
28	Construct total energy and hydraulic gradient lines	Total energy line - hydraulic gradient line	R4
36-39	Measure the discharge	Measurement of flow: Pitot tube, venture meter, and orifice meter, flow nozzle	R4, T2
40-41	Discuss the effect of hydrodynamic force on flat vanes	UNIT – III: Basics of Turbo machinery: Hydrodynamic force of jets on stationary and moving flat, inclined vanes	R4, T1
42-45	Draw the velocity triangles for Curved vanes	Curved vanes, jet striking centrally and at tip, velocity diagrams, work done and efficiency, flow over radial vanes	R4, T1
46-47	Discuss the various elements of Hydro electric power station	Elements of Hydro electric power station	T2,R5
48	Explain the concept of pumped storage plants	Concept of pumped storage and requirements	R5
49	Explain mass curve	Mass curve	T2
50-52	Estimation of power developed from a given catchment area and efficiencies	Power developed from given catchment area and efficiencies	T1, R5
53	Classify the turbines	UNIT-IV Hydraulic Turbines: classification of turbines, heads and efficiencies, impulse and reaction turbines	R4, T1, T2
53-54	Evaluate the performance of turbines	Pelton wheel, Francis turbine and Kaplan turbine-working proportions, work done, efficiencies	R4, T1, T2
55	Describe the functions of draft tube	Hydraulic design-draft tube theory –functions and efficiency	R4, T2
56	Define unit quantities and Draw characteristic curves	Performance of hydraulic turbines: Geometric similarity, unit and specific quantities, characteristic curves, model analysis.	R4, T2
57-59	Illustrate the governing of turbines	Governing of turbines, selection of type of turbine	R4, T2
60	Explain Cavitation, water hammer, surge tank	Cavitation, surge tank	R4, T2
61-63	Classify and Explain the working of centrifugal pump	UNIT-V:Centrifugal pumps: Classification, working, work done- manomertic head and static head losses and efficiencies	R4, T2

64-65	Compare the characteristic curves of centrifugal pump	Specific speed modal analysis – performance characteristic curves,	R4, T1, T2
		NPSH.	

XI. Mapping Course Objectives Leading to the Achievement of Program Outcomes and Program Specific Outcomes

Course Objectives		Program Outcomes													Program Specific Outcomes	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
1	Η		S				S									
2				S			S	S		S		l		S		
3	Н	Н	S			S		S				S		S		
4	Н	Н		S										S		
5	Н	Н										S				

S – **Supportive**

H - Highly Related

XII. Mapping Course Outcomes Leading to the Achievement of the Program Outcomes and Program Specific Outcomes

Course Outcomes		Program Outcomes												Program Specific Outcomes	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
1		S										S			
2	S					S									
3	Н	Н		S			S					S		S	
4	Н		S									S		S	
5	Н		S									S		S	

S – **Supportive**

H - Highly Related

Prepared by: G. Sarat Raju, Assistant Professor

HOD, ELECTRICAL AND ELECTRONICS ENGINEERING