

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad - 500 043

AERONAUTICAL ENGINEERING

COURSE DESCRIPTION FORM

Course Title	FLIGHT MECHAN	FLIGHT MECHANICS – II									
Course Code	A52111	\$52111									
Regulation	R15-JNTUH	15-JNTUH									
Course Structure	Lectures	Practical's	Credits								
Course Structure	4 - 4										
Course Coordinator	Ms. G Swathi, Assista	ant Professor									
Team of Instructors	Ms. G Swathi, Assista	ant Professor, Mr. A	Rathan Babu, Ass	istant Professor							

I. COURSE OVERVIEW

Flight mechanics is the science that investigates the control of aircraft and other flying vehicles. From the time of the Wright brothers it was recognized that flight without control is impossible. Since then, several different concepts for controlling aircraft flight have been devised including control surfaces, deformable surfaces, rockets and others. This course introduces some of these concepts and describes their operation, as well as the degree of stability that they can provide. Both aircraft and helicopters are addressed. Modern aircraft control is ensured through automatic control systems. Their role is to increase safety, facilitate the pilot's task and improve flight qualities. The course will introduce modern aircraft control and discuss some of its objectives and applications.

II. PREREQUISITE(S)

Level	Credits	Periods	Prerequisite
UG	4	5	Concepts on Introduction of Aerospace Engineering, Flight Mechanics I

III. MARKS DISTRIBUTION

Sessional Marks	University End Exam Marks	Total Marks
Sessional Marks Mid Semester Test There shall be two midterm examinations. Each midterm examination consists of subjective type and objective type tests. The subjective test is for 10 marks of 60 minutes duration. Subjective test of shall contain 4 questions; the student has to answer 2 questions, each carrying 5 marks. The objective type test is for 10 marks of 20 minutes duration. It consists of 10 Multiple choice and 10 objective type questions, the student has to answer all the questions and each carries half mark. First midterm examination shall be conducted for the first two and half units of syllabus and second midterm examination shall be conducted for the remaining portion. Assignment Five marks are marked for assignments. There shall be two assignments in every	University End Exam Marks 75	Total Marks
theory course. Marks shall be awarded considering the average of two assignments in each course		

IV. EVALUATION SCHEME

S No	Component	Duration	Marks
1	I Mid examination	80 minutes	20
2	I Assignment		05
3	II Mid examination	80 minutes	20
4	II Assignment		05
5	External examination	3 hours	75

V. COURSE OBJECTIVES:

- I. **Discuss** the concepts of Flight performance.
- II. Understand the parameters affecting the performance.
- III. Formulate the equations of motion for an aircraft in atmospheric flight.
- IV. Motivate the assumptions made to simplify a flight mechanics problem.
- V. **Explain** the basic modes of motion and related mechanisms of an aircraft.
- VI. Perform a simple trajectory calculations using simplifies equations of motion.
- VII. Present your results in a well written report.

VI. COURSE OUTCOMES

After completing this course the student must demonstrate the knowledge and ability to:

- 1. **Estimate** the aerodynamic derivatives of a given airplane.
- 2. Analyze the aircraft equations of rigid-body motion.
- 3. Evaluate aircraft flight characteristics using computational techniques.
- 4. **Understand** the effects of aerodynamic and propulsive controls on equilibrium conditions.
- 5. Identify the significance of flight stability and its impact of aircraft operations and pilot workload.
- 6. **Explain** the meaning of aerodynamic stability derivatives and their sources.
- 7. **Relate** the effects of aerodynamic derivatives on flight stability.
- 8. Analyze dynamics and control of flight vehicles.
- 9. Describe the impact of flight stability and trim on all atmospheric flight vehicles.

VII. HOW PROGRAM OUTCOMES ARE ASSESSED

	Program outcomes	Level	Proficiency assessed by
PO1	General knowledge: An ability to apply the knowledge of mathematics,	Н	Assignments,
	science and Engineering for solving multifaceted issues of Aeronautical		Tutorials
	Engineering		
PO2	Problem Analysis: An ability to communicate effectively and to prepare formal	Н	Assignments
	technical plans leading to solutions and detailed reports for Aeronautical		
	systems		
PO3	Design/Development of solutions: To develop Broad theoretical knowledge in	Н	Mini Projects
	Aeronautical Engineering and learn the methods of applying them to identify,		
	formulate and solve practical problems involving Aerodynamics		
PO4	Conduct investigations of complex problems: An ability to apply the	Н	Projects
	techniques of using appropriate technologies to investigate, analyze, design,		
	simulate and/or fabricate/commission complete systems involving complex		
	aerodynamics flow situations.		
PO5	Modern tool usage: An ability to model real life problems using different	S	Projects
	hardware and software platforms, both offline and real-time with the help of		
	various tools along with upgraded versions.		
PO6	The engineer and society: An Ability to design and fabricate modules, control		
	systems and relevant processes to meet desired performance needs, within		
	realistic constraints for social needs		

PO7	Environment and sustainability: An ability To estimate the feasibility,		
	applicability, optimality and future scope of power networks and apparatus for		
	design of eco-friendly with sustainability		
PO8	Ethics: To Possess an appreciation of professional, societal, environmental and	S	Oral
	ethical issues and proper use of renewable resources		Discussions
PO9	Individual and team work: An Ability to design schemes involving signal		
	sensing and processing leading to decision making for real time Aeronautical		
	systems and processes at individual and team levels.		
PO10	Communication: an Ability to work in a team and comprehend his/her scope of	S	Presentations
	work, deliverables, issues and be able to communicate both in verbal,		
	written for effective technical presentation		
PO11	Project management and finance: To be familiar with project management	Н	Development of
	problems and basic financial principles for a multi-disciplinary work		Prototype,
			Projects
PO12	Life-long learning: An ability to align with and upgrade to higher learning and	S	Seminars,
	research activities along with engaging in life-long learning.		Discussions

S – Supportive

H – Highly Related

VIII. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED

	Program Specific Outcomes	Level	Proficiency assessed by
PSO1	Professional skills: Able to utilize the knowledge of aeronautical/aerospace	Н	Lectures,
	engineering in innovative, dynamic and challenging environment for design		Assignments
	and development of new products		
PSO2	Problem solving skills: imparted through simulation language skills and	S	Tutorials
	general purpose CAE packages to solve practical, design and analysis		
	problems of components to complete the challenge of airworthiness for flight		
	vehicles		
PSO3	Practical implementation and testing skills: Providing different types of in	S	Seminars and
	house and training and industry practice to fabricate and test and develop the		Projects
	products with more innovative technologies		
PSO4	Successful career and entrepreneurship: To prepare the students with broad		
	aerospace knowledge to design and develop systems and subsystems of		
	aerospace and allied systems and become technocrats		
C C		TT I	

S – Supportive

H - Highly Related

IX. SYLLABUS

UNIT-I

AIRCRAFT IN EQUILIBRIUM FLIGHT- ELEVATOR ANGLE AND STICK FORCES TO TRIM-LONGITUDINAL STATIC AND MANEUVER STABILITY:

Need For Controlled Flight. Equilibrium, Stability, Control, Trim- Definitions- Examples. Longitudinal Forces And Moments On Aircraft In Un-Accelerated Flight- Contribution Of Principal Components. Equations Of Equilibrium- Thrust, Angle Of Attack, Elevator Angle Required To Trim. Control Gradient, Airplane Lift Curve Slope And Pitch Stiffness. Tailless Aircraft And Aircraft With Fore Planes. Longitudinal Static Stability- Definition, Relation To Control Gradient, Pitch Stiffness. Stick Fixed Neutral Point- Static Margin. Effect Of Flaps And Flight Speed On Force And Moment Coefficients, Aerodynamic Derivatives, Stability, Trim.

Steady, Symmetric Pull-Up Maneuvers- Equations Of Motion-Pitch Rate, Pitch Damping. Control To Trim, Trim Curves- Elevator Per G- Maneuver Point, Maneuver Margin- Relation To Static Margin. Statutory Limits On Position Of Center Of Gravity. Determination Of Neutral And Maneuver Points By Flight Testing.

UNIT – II

ESTIMATION OF AERODYNAMIC FORCE AND MOMENT DERIVATIVES OF AIRCRAFT:

Significance Of Aerodynamic Derivatives. Derivatives Of Axial, Normal Force Components And Pitching Moment With Respect To The Velocity, Angle Of Attack, Angle Of Attack Rate, Pitch Rate, Elevator Angle-Dependence On Vehicle Geometry, Flight Configuration- Effect Of Flaps, Power, Compressibility And Aero Elasticity.

Lateral-Directional Motions- Coupling- Derivate Of Side Force, Rolling And Yawing Moments With Respect To The Side Slip, Rate Of Side Slip, Roll Rate, Yaw Rate, Aileron, Rudder Deflections-Dependence On Vehicle Geometry, Flight Configuration. Estimation- The Strip Theory Method. Relation Between Dimension-Less And Dimensional Aerodynamic Derivatives.

UNIT – III

STICK FREE LONGITUDINAL STABILITY- CONTROL FORCES TO TRIM, LATERAL-DIRECTIONAL STATIC STABILITY AND TRIM:

Elevator Hinge Moments- Relation To Control Stick Forces. Hinge Moment Derivatives. Stick Force To Trim In Symmetric Un-Accelerated Flight, Maneuvering Flight. Stick Force Gradients- Effect Of Trim Speed- Role Of Trim Tab. Effect Of Freeing Elevator On Tail Effectiveness, Static And Maneuver Stability. Elevator-Free Factor. Stick-Free Neutral And Maneuver Points, Stability Margins- Relation With Stick Force Gradients. Aerodynamic And Mass Balancing Of Control Surfaces. Control Tabs-Types, Function, and Construction.

Lateral-Directional Static Stability, Definition, Requirements. Equilibrium Of Forces And Moments. Aileron, Rudder, Elevator And Thrust Required To Trim Aircraft In Steady Sideslip, Roll, Coordinated Turn, Engine Out Condition. Cross Wind Landings.

UNIT – IV

AIRCRAFT EQUATIONS OF MOTION- PERTURBED MOTION- LINEARISED, DECOUPLED EQUATIONS OFMOTION OF AIRCRAFT:

Description Of Motion Of Flight Vehicle- Systems Of Reference Frames. Euler Angles, Angles Of Attack And Sideslip– Definitions- Earth To Body Axis Transformation, Rotating Axis System-Expressions For Linear And Angular Moment Of Rigid Body, Time Derivatives- Inertia Tensor, Components Of Linear And Angular Velocities, Accelerations. Components Of Aerodynamic, Gravity Forces, Moments Applied On Flight Vehicle. Equations Of Motion- Longitudinal And Lateral-Directional. Relation Between Angular Velocity Components And Euler Angle Rates. Determination Of Velocities Of Airplane In Earth Axis System. Determination Of Vehicle Trajectory- Outline Of Method.

Description Of Motion As Perturbations Over Prescribed Reference Flight Condition. Equation Of Motion In Perturbation Variables. Assumption Of Small Perturbations, First Order Approximations-Linearized Equations Of Motion. Decoupling Into Longitudinal And Lateral-Directional Motions-Conditions For Validity, Role Of Symmetry. Linearized Longitudinal And Lateral-Directional Equations Of Perturbed Motion.

UNIT – V

LONGITUDINAL AND LATERAL-DIRECTIOAL DYNAMIC STABILITY:

Linearized Longitudinal Equations Of Motion Of Aircraft - Three Degree Of Freedom Analysis-Characteristic Equations- Solutions- Principal Modes Of Motion- Characteristics- Time Constant, Undammed Natural Frequency And Damping Ratio- Mode Shapes- Significance. One Degree Of Freedom, Two Degree Of Freedom Approximations- Constant Speed, Constant Angle Of Attack Approximation- Solutions- Comparison With Three Degree of Freedom Solutions- Justification Of Approximations. Lateral Directional Equations- Three Degrees of Freedom Analysis. Principal Modes-Characteristics- Mode Shapes- Significance, Lower Order Analysis- Approximate Solutions.

Determination of Longitudinal And Lateral Stability From Coefficients Of Characteristic Equation-Stability Criteria, Approximate Roots. Special Problems In Aircraft Dynamics- Roll Coupling, High Angle Of Attack Operation. Aircraft Spin- Entry, Balance Of Forces In Steady Spin, Recovery, Pilot Techniques.

TEXT BOOKS:

- 1. Yechout, T.R. et al., "Introduction to Aircraft Flight Mechanics", AIAA education Series, 2003, ISBN 1-56347577-4.
- Nelson, R.C., "Flight Stability and Automatic Control", 2nd edn, Tata McGraw Hill, 2007, ISBN 0-07-066110-3.

REFERENCES:

- 1. Etkin, B. and Reid, L.D., "Dynamics of Fligh"t, 3rdedn, John Wiley, 1998, ISBN 0-47103418-5.
- 2. Schmidt, L.V., "Introduction to Aircraft Flight Dynamics", AIAA Education Series, 1998, ISBN A-56347-226-0.
- 3. McCormick, B.W., "Aerodynamics, Aeronautics, and Flight Mechanics", 2ndedn., Wiley India, 1995, ISBN 978-0471575061

X. COURSE PLAN:

The course plan is meant as a guideline. There may probably be changes.

Lecture No	Course Learning Outcomes Topics to be covered							
1	Define Equilibrium, stability,	UNIT-I: AIRCRAFT IN EQUILIBRIUM FLIGHT	T1, T2, T3					
	control, trim	ELEVATOR ANGLE AND STICK FORCES TO						
		TRIM LONGITUDINAL STATIC AND						
		MANEUVER STABILITY Need for controlled						
		flight Equilibrium, stability, control, trim-						
2.2		definitions- examples.	T 1 T 2 T 2					
2-3	Derive forces and moments	Longitudinal forces accelerated flight- and moments	11, 12, 13					
16	Digonga principal components	Contribution of minoingl commonants	T1 T2 T2					
4-0	Discuss principal components	Contribution of principal components.	11, 12, 15					
7	Derive equations of equilibrium	Equations of equilibrium- thrust, angle of attack,	T1, T2, T3					
		elevator angle required to trim.						
8	Explain control gradient, lift	Control gradient, airplane lift curve slope and pitch	T1, T2, T3					
	curve slope and pitch stiffness	stiffness.						
9	Discuss tailless aircraft and	Tailless aircraft and aircraft with fore-planes.	T1, T2, T3					
	Define longitudinal static	Longitudinal static stability- definition, relation to						
10	Stability	Stick fixed neutral point, static mannin	T1 T2 T2					
10	Explain NP and static margin	Stick fixed fieutral point- static margin.	11, 12, 15					
11-12	Explain effects of flaps and	Effect of flaps and flight speed on force and moment	T1, T2, T3					
	flight speed	coefficients, aerodynamic derivatives, stability, trim.						
13	Explain different maneuvers	Steady, symmetric pull-up maneuvers	T1, T2, T3					
14	Derive equations of motion	Equations of motion-pitch rate, pitch damping.	T1, T2, T3					
15	Explain how to control trim	Control to trim, Trim curves- elevator per g- maneuver	T1, T2, T3					
		point, maneuver margin- relation to static margin.						
16-17	Discuss various limits on cg	Statutory limits on position of center of gravity.	T1, T2, T3					
		Determination of neutral and maneuver points by						
	D • (1) (1)	flight testing.	T1 T2 T2					
10	Discuss the importance of	UNIT-II:ESTIMATION OF AERODYNAMIC	11, 12, 13, T4					
18	aerodynamic derivatives	FORCE AND MOMENT DERIVATIVES OF	14					
10.20	Domina fanas como anosta	AIRCRAFT Significance of aerodynamic derivatives	T1 T2 T2					
19-20	Derive force components	pitching moment with respect to the velocity angle of	11, 12, 13, T4					
		attack angle of attack rate pitch rate elevator angle	14					
21-23	Explain dependence on vehicle	Dependence on vehicle geometry flight configuration-	T1 T2 T3					
21 25	geometry and effects of flap	effect of flaps, power, compressibility and aero	T4					
	6	elasticity.						
24-26	Derive lateral directional	Lateral-directional motions- coupling- derivatives of	T1, T2, T3,					
	motions and its derivatives	side force, rolling and yawing moments with respect to	T4					

	the side slip, rate of side slip, roll rate, yaw rate,								
-		aileron, rudder deflections							
27	Discuss flight configuration	Dependence on vehicle geometry, flight configuration.	T1, T2, T3, T4						
28-29	Explain strip theory method	Estimation- the strip theory method.	T1, T2, T3, T4						
30	Discuss the relation between dimension and dimensionless	Relation between dimension-less and dimensional aerodynamic derivatives.	T1, T2, T3, T4						
21.20	aerodynamic derivatives		T1 T2 T2						
31-32	moments	STABILITY- CONTROL FORCES TO TRIM, LATERAL-DIRECTIONAL STATIC STABILITY AND TRIM Elevator hinge moments- relation to control stick	T1, 12, 13, T4						
33-35	Explain elevator hinge moment derivatives	Hinge moment derivatives.	T1, T2, T3, T4						
36-37	Derive stick forces to trim	Forces Stick force to trim in symmetric un-accelerated flight, maneuvering flight.	T1, T2, T3, T4						
38-39	Derive stick force gradients	Stick force gradients- effect of trim speed- role of trim tab	T1, T2, T3, T4						
40-41	Explain the effect of freeing elevator	Effect of freeing elevator on tail effectiveness, static and maneuver stability.	T1, T2, T3, T4						
42	Explain stick free NP	Elevator-free factor. Stick-free neutral and maneuver points, stability margins- relation with stick force gradients.	T1, T2, T3, T4						
43	Explain aerodynamic and mass balancing control surfaces	Aerodynamic and mass balancing of control surfaces.	T1, T2, T3, T4						
44	Explain control tabs	Control tabs- types, function and construction.	T1, T2, T3, T4						
45	Define lateral directional static stability	Lateral-directional static stability, definition, requirements.	T1, T2, T3, T4						
46	Derive equilibrium forces and moments	Equilibrium of forces and moments.	T1, T2, T3, T4						
47-48	Explain control surfaces required to trim	Aileron, rudder, elevator and thrust required to trim aircraft in steady sideslip, roll, coordinated turn, engine out condition. Cross wind landings.	T1, T2, T3, T4						
49	Describe motion of flight vehicle reference system	UNIT – IV: AIRCRAFT EQUATIONS OF MOTION- PERTURBED MOTION- LINEARISED, DECOUPLED EQUATIONS OF MOTION OF AIRCRAFT Description of motion of flight vehicle systems of reference frames	T1, T2, T3, T4						
50-51	Derive Euler's angles, aoa, side slip and expressions for linear, angular moments of rigid body	Euler angles, angles of attack and sideslip- definitions- earth to body axis transformation, Rotating axis system- expressions for linear and angular moments of rigid body, time derivatives inertia tensor, components of linear and angular velocities, accelerations.	T1, T2, T3, T4						
52	Derive components of aerodynamic, gravity forces, moments	Components of aerodynamic, gravity forces, moments applied on flight vehicle.	T1, T2, T3, T4						
53	Derive Equations of motion	Equations of motion- longitudinal and lateral- directional. Relation between angular velocity components and Euler angle rates.	T1, T2, T3, T4						
54-55	Determine velocities of airplane in earth axis system	Determination of velocities of airplane in earth axis system. Determination of vehicle trajectory- outline of method.	T1, T2, T3, T4						
56	Describe motion as perturbations over prescribed reference flight condition.	Description of motion as perturbations over prescribed reference flight condition.	T1, T2, T3, T4						

57-58	Derive equation of motion in	Equation of motion in perturbation variables.	
	perturbation variables	Assumption of small perturbations, first order	T1, T2, T3,
		approximations- linearized equations of motion.	T4
		Decoupling into longitudinal and lateral-directional	
		motions- conditions for validity, role of symmetry.	
59-60	Derive linearized longitudinal	Linearized longitudinal and lateral-directional	T1, T2, T3,
	and lateral- directional	equations of perturbed motion.	T4
	equations of perturbed motion.		
61-62	Derive linearized longitudinal	UNIT – V: LONGITUDINAL AND LATERAL	
	equations of motion of aircraft	DIRECTIOAL DYNAMIC STABILITY Linearized	T1, T2, T3,
		longitudinal equations of motion of aircraft - three	T4
		degree of freedom analysis- characteristic equations-	
		solutions- principal modes of motion- characteristics-	
		time constant, undamped	
		natural frequency and damping ratio- mode	
		Shapes- significance.	
63-64	Explain one degree of freedom,	One degree of freedom,two degree	T1, T2,T3,
	two degree of freedom	of freedom approximations- constant	T4
	approximations	speed, constant angle of attack approximation-	
		solutions- comparison with three degree of freedom	
		solutions- justification of approximations.	
65-66	Derive lateral directional	Lateral directional equations- three degrees of freedom	T1, T2,T3,
	equations	analysis. Principal modes- characteristics- mode	T4
		shapes- significance, lower order analysis-	
		approximate solutions.	
67	Determine longitudinal and	Determination of longitudinal and lateral stability from	T1, T2,T3,
	lateral stability from	coefficients of characteristic equation- stability	T4
	coefficients of characteristic	criteria, approximate roots.	
	equation		
68-69	Discuss special problems in	Special problems in aircraft dynamics- roll coupling,	T1, T2, T3,
	aircraft dynamics	high angle of attack operation	T4
70-73	Explain aircraft spin	Aircraft spin- entry, balance of forces in steady spin,	T1, T2, T3,
		recovery, pilot techniques	T4

XI. MAPPING COURSE OBJECTIVES LEADING TO THE ACHIEVEMENT OF THE PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES

Course Objectives		Program Outcomes													Program Specific Outcomes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4	
Ι	S				Н					Н			Н				
II	S	Н	Н	S										Н			
III							Н								Н		
IV		S										Н	Н			Н	
V					S												
VI	Н						S					S			Н		
VII			Н	Н	S								Н			Н	

S – Supportive

H - Highly related

XII. MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES

Course		Program Outcomes													Program Specific Outcomes		
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4	
1	Н	Н											Н	Н			
2	S		Н														
3				Н	Н										Н		
4													S				
5		Н															
6			Н													S	
7												S					
8				Н													
9		Н	S												Н		

S-Supportive

H - Highly related

Prepared by: Ms. G Swathi, Assistant Professor, Mr. A Rathan Babu, Assistant Professor

HOD, AE